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We investigate interaction-driven integer quantum Hall states realized in Landau levels of mono-
layer graphene when two out of its four nearly degenerate spin-valley flavors are filled. By employing
a model that accounts for interactions beyond pure delta-functions as well as Zeeman and substrate-
induced valley potentials, we demonstrate the existence of a delicate competition of several phases
with spontaneous generation of spin-valley entanglement, akin to the spontaneous appearance of
spin-orbit coupling driven by interactions. We encounter a particular phase that we term the
entangled-Kekulé-antiferromagnet (E-KD-AF) which only becomes spin-valley entangled under the
simultaneous presence of Zeeman and substrate potentials, because it gains energy by simultane-
ously canting in the spin and valley spaces, by combining features of a canted anti-ferromagnet and
a canted Kekulé state. We quantify the degree of spin-valley entanglement of the many competing
phases by computing their bipartite concurrence.

Introduction. The phase diagram of monolayer
graphene in strong magnetic fields continues to present
puzzles. At charge neutrality in the N = 0 Landau level
it is still debated whether graphene is in a Canted Anti-
ferromgnet (CAF), as proposed in transport and magnon
transmission experiments [1–5], or in a Kekulé (KD) state
as visualized in STM experiments [6–9]. In higher Lan-
dau levels the nature of states remains much less clear
and the experimental evidence much more limited [10].

Reference [11] introduced an important model that
simplified the understanding of symmetry broken states
relative to earlier studies [12–16] by capturing the val-
ley symmetry breaking interactions in the N = 0 Landau
level as pure delta function interactions. Recent stud-
ies, however, have emphasized the need to consider in-
teractions beyond delta functions in higher Landau lev-
els [10, 17], and also in the N = 0 Landau level aris-
ing from Landau level mixing [18, 19]. In this work
we investigate the interplay of such longer range inter-
actions with the presence of spin Zeeman and substrate-
induced sub-lattice symmetry breaking potentials, within
a model that is applicable to integer quantum Hall states
of graphene in any of its Landau levels. We will demon-
strate that the combination of these ingredients leads to
an interesting competition of phases with spontaneous
spin-valley entanglement. Interestingly we find a state
which becomes entangled only under the simultaneous
presence of spin and valley Zeeman terms and interac-
tions with longer range than pure delta functions, which
we term the Entangled-Kekulé-Antiferromagnet state (E-
KD-AF) (see Fig.1).

Model, mean-field theory, and entanglement measure.
A series of recent works have considered the following
continuum model of the projected interaction Hamilto-
nian onto the N-th Landau level of graphene [17–20]:
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where V N

z,⊥(rij) are interactions that depend only on dis-

Figure 1. a) Integer quantum Hall states of half-filled Lan-
dau levels in graphene with Zeeman, ϵz = 1, and valley po-
tential, ϵv = 0.1, and non-delta function interactions with
∆⊥ = 2, ∆z = 1 (see Eq.(3)). The spin-valley entangled state
E-KD-AF appears between the two SVE states from Ref. [19].
b) The concurrence (C) measure of spin-valley entanglement
is plotted for the cut shown in Fig. 1(a) at uH

⊥ = 2.

tance rij between particles i, j, τ i⊥τ
j
⊥ = τ ixτ

j
x + τ

i
yτ

j
y and

sa, τa, a = 0, ...,3 are the Pauli matrices acting on the
valleys and spin respectively. This model captures the
symmetry breaking terms beyond the SU(4) invariant
long-range part of the Coulomb interaction. This model
goes beyond the model of Ref. [11] which can be viewed
as a limit of Eq. 1 when the interactions become delta
functions, Vz,⊥(rij) = Vz,⊥δ(ri − rj). Refs. [1, 17] have
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Figure 2. Phase diagrams of integer quantum Hall states in graphene for half-filled Landau levels: a) delta-function interactions
and ϵz = ϵv = 0 from Ref. [11]. b) For interactions with finite range, ∆z = 1, ∆⊥ = 2, and ϵz = ϵv = 0, showing that the KD-AF
becomes favourable. c) For interactions with finite range, ∆z = 1, ∆⊥ = 2, and ϵz = 1, ϵv = 0, showing that the KD-AF cants and
becomes the KD-CAF and the SVE phase [19] becomes favourable. d) For interactions with finite range, ∆z = 2, ∆⊥ = 1, and
ϵv = 1, ϵz = 0 showing that the KD-AF cants in the valleys space and becomes the CaKD-AF and the SVE phase of Ref. [19]
appears in between the KD-AF and the FM states.

demonstrated that even for models of unprojected inter-
actions that are short-ranged (see e.g. Ref. [21]), effective
interactions will naturally appear as a result of the pro-
jection onto higher Landau levels (N ≠ 0). It has been
also recently emphasized that corrections to pure delta
functions appear naturally in higher Landau levels [17]
by projecting the general model of short-distance interac-
tions of graphene of Ref. [21], but can also appear even in
the N = 0 LL due to Landau level mixing effects [18, 19].

When there is an integer-filling of Landau levels, the
Hartree-Fock variational energy functional of translation-
ally invariant quantum Hall ferromagnets for the above
model can be written as [17]:

EHF [P ] =
1

2
∑

i=x,y,z
(uH

i (Tr{τiP})
2
− uX

i Tr{(τiP )
2
})

− ϵzTr{szP} − ϵvTr{ηzP},

(2)

here P is the projector into the occupied spinors, which
in the case of half-filling (two filled components) equals
P = ∣F1⟩ ⟨F1∣ + ∣F2⟩ ⟨F2∣, where ∣Fi⟩ , i = 1,2 are arbitrary
orthonormal vectors within the four-dimensional Hilbert
space of spin and valley flavors. The HF energy function
is parametrized by four independent interaction energy

scales uH
z , uX

z , uH,X
x = uH,X

y = uH,X
⊥ , given by:

uH
a =

Va(q = 0)

8π2
, uX

a =
1

8π2∬ dqVa(q), a =⊥, z. (3)

In the limit of pure delta function interactions, the dif-
ference between Hartree and exchange energy constants,
∆z,⊥ = uH

z,⊥ − u
X
z,⊥ would vanish, and we would have only

two interaction constants, as in the model of Ref. [11].
We will consider general spin-valley entangled variational
states [17–20, 22, 23]:

∣F ⟩1 = cos
a1
2
∣η⟩ ∣s⟩ + eiβ1 sin

a1
2
∣−η⟩ ∣−s⟩ ,

∣F ⟩2 = cos
a2
2
∣η⟩ ∣−s⟩ + eiβ2 sin

a2
2
∣−η⟩ ∣s⟩ .

(4)

Here ∣η⟩ and ∣s⟩ are states parametrized by unit vectors
η and s in the spin and valley Bloch spheres respectively
and a1,2 and β1,2 are real constants. Because the pro-
jector P is effectively a mixed state, simple measures of
bipartite entanglement applicable to pure states, such as
the von-Neumann entropy of the reduced density matrix,
are not suitable. Instead, the degree of spin-valley bipar-
tite entanglement associated with the projector P onto
the above two states, can be measured by the concurrence
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C defined as [24, 25]:

C ≡Max{λ1 − λ2 − λ3 − λ4,0}, (5)

where λi are the eigenvalues of the matrix R =

P (τy⊗ sy)P
T (τy⊗ sy)P , ordered according to λi ≥ λj ,

for i > j. For projector onto the states in Eq. (4), the
concurrence is:

C = ∣ sin2 a1 − sin
2 a2∣. (6)

When the minima of HF energy are spin-valley disen-
tangled states, we have C = 0, and these states can be
separated into two classes, one of “valley-active” states
with spinors given by:

∣F ⟩1 = ∣η1⟩ ∣s⟩ , ∣F ⟩2 = ∣η2⟩ ∣−s⟩ , (7)

where η1,η2 are two arbirtary directions in the valley
Bloch sphere, and another class of “spin active” states,
with spinors given by:

∣F ⟩1 = ∣η⟩ ∣s1⟩ , ∣F ⟩2 = ∣−η⟩ ∣s2⟩ . (8)

where s1,s2 are two arbirtary directions in the valley
Bloch sphere.

In the limit of pure delta function interactions (∆z,⊥ =
0), Ref. [11] found a phase diagram with four spin-valley
disentangled states that we reproduce in Fig 2.(a): FM
(Ferromagnet), AF (Antiferromagnet), KD (Kekulé dis-
tortion), and CDW (Charge density wave). When in-
teractions are not pure delta functions, and in the ab-
sence of Zeeman and valley potentials (ϵz = ϵv = 0), we
recently found in Ref. [17] that a new phase termed the
KD-AF (Kekulé- Antiferromagnet) can appear, as shown
in Fig. 1(a). However in the absence of Zeeman and
valley potentials (ϵz = ϵv = 0) all these five states have
no spin-valley quantum entanglement. In particular, the
KD-AF phase can be viewed as one of valley-active states
from Eq.(7) having one component occupying an equal
amplitude superposition of both valleys (e.g. η1 = x̂)
with one spin and the other component occupying the
opposite valley coherent superposition (e.g. η2 = −x̂)
with the opposite spin, and therefore has a non-trivial
spin-valley correlation, but no spin-valley entanglement
properly speaking.

In this work, we will show that these five states (FM,
AF, KD, CDW, KD-AF) can be viewed as parent states
to several spin-valley entangled phases. Some of them,
such as the KD/AF coexistence and SVE states identified
in Refs. [18, 19], arise near the phase boundaries between
these parent states after adding Zeeman and valley po-
tentials. However, we will also show that among these
five parent states the KD-AF is special because it is the
only one that becomes spin-valley entangled under the
simultaneous presence of Zeeman and valley sublattice

potentials, and we will term the state that evolves con-
tinuously from the KD-AF under these perturbations the
entangled-Kekulé-antiferromagnet (E-KD-AF) state (see
Appendix S-VI for details of comparison with Ref. [19]).

Ground states with either Zeeman or valley potentials.
We begin our analysis by studying the phase diagram
when only the Zeeman coupling, ϵz ≠ 0, ϵv = 0, is present
in Eq. (1). We find that both the AF and the KD-
AF cant their spins, which is a natural tendency of the
anti-ferromagnetic states in order to take advantage of
the Zeeman energy, evolving into the CAF and KD-CAF
states depicted in Fig. 1c). These two states remain, how-
ever, spin-valley disentangled. The KD-CAF appears in
between the FM and the CDW as long as 0 < ϵz < 2∆z.

However, as pointed out in Refs. [18, 19], the CAF and
the KD become unstable over some region close to their
boundary leading to a mixed state of AFM-Kekulé phase
coexistence which occupies a thin sliver of the phase
boundary between these two phases. The analytic coordi-
nates for this coexistence state are discussed in Appendix
S-III. This phase coexistence occurs only when ∆⊥ > 0
and otherwise there is a direct first order phase transition
between the Kekulé and CAF states. Additionally, a fi-
nite ϵz induces the formation of another a new phase, the
SVE of Ref. [19] growing from the boundary of the CDW
with the KD-CAF. For ϵz = ϵv = 0 the SVE phase is never
the ground state over any finite region, but interestingly
it is is degenerate with KD-AF only at its boundaries
with the FM and CDW. We note that the degeneracy
at the boundary with the FM persists for all values of
the Zeeman field, making this boundary presumably of
higher symmetry [26]. When ϵz > 0 and ϵv = 0, the SVE,
therefore, starts nucleating at the boundary of the CDW
and the KD-AF and grows with increasing ϵz until it oc-
cupies the whole region between the CDW and the FM at
a critical value of the Zeeman field ϵcz = 2∆z. The transi-
tion of KD-CAF with the FM is continuous, i.e the spin
of the KD-CAF cants continuously until it reaches the
fully polarized value of sz = 2. The KD-CAF is therefore
expected to have the similar signatures as the standard
CAF state in spin sensitive probes, such as the magnon
transmission experiments of Ref. [1].

It is also useful to consider the limit when (ϵv ≠ 0)
is present but the Zeeman coupling vanishes (ϵz = 0).
This leads to the canting of the KD, similarly to the
N = 0 Landau level, as discussed in Refs. [27] and also
as shown in Fig. 2(d). Interestingly, since the KD-AF
is simultaneously anti-ferromagnetic in the valley space
and in the spin space, it will undergo canting of the valley
pseudo-spins towards the z-axis driven by the finite ϵv.
We also find that the ϵv also induces an intermediate
coexistence region at the boundary between CaKD and
AF analogous to the coexistence region of Ref. [18, 19].
(see Fig. 2d). On the other hand, for ϵv > 0 and ϵz = 0,
the SVE state now starts growing from the boundary
of the FM with the KD-AF whereas the SVE is always
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States appearing for two filled Landau levels
States Coordinates Concurrence C
CDW (Charge density wave) a1 = a2 = θp = 0 0
CaKD (Canted Kekulé distortion) a1 = a2 = 0, θp = cos

−1
( ϵv
uH
z −uH⊥ +(∆z−∆⊥)) 0

FM (Ferromagnet) a1 = 0, a2 = π, θp = θs = 0 0
CAF (Canted Antiferromagnet) a1 = a, cosa = − ϵz

2uX⊥
, a2 = π − a, θp = π/2, θs = 0, β = 0 0

E-KD-AF (Entangled Kekulé Distortion
antiferromagnet)

a1,2 = cos−1{± ϵz
∆⊥+∆z−uH⊥ −uH

z
+

ϵv
−∆⊥+∆z+uH⊥ +uH

z
}, θp =

0, θs = 0, β = 0

∣ sin2 a1 − sin
2 a2∣

SVE (Spin-valley entangled phase of Ref. [19]) a1 = 0, cosa2 =
ϵz−ϵv+uH

z +uH
⊥ −∆⊥

−∆z
, θp = 0, θs = 0, β = 0 sin2 a2

Table I. Competing states and their coordinates. The KD and KD-CAF are obtained by taking the limit of ϵv → 0 from the
CaKD and CaKD-CAF respectively while the AF and CaKD-AF by taking the limit of ϵz → 0 from the CAF and CaKD-CAF
respectively. In the a1,2 coordinates of E-KD-AF the + (−) sign corresponds to a1(a2).

degenerate with the KD-AF at its boundary with the
CDW. The CaKD-AF persists until a critical value of
the valley Zeeman, ϵcv = 2∆z.

Ground states with both Zeeman and valley potentials.
We now turn to the general case where both the Zeeman
coupling and the hBN substrate are present. Our results
are illustrated in Fig. 1a). We again find a coexistence
of the CaKD and the CAF along a sliver of the phase di-
agram. However, the main qualitative difference is that
the KD-AF state transforms into a new spin-valley entan-
gled state that we call the E-KD-AF when both spin and
valley Zeeman fields are simultaneously present, as de-
picted in Fig. 1b). This tendency orginates from the fact
that the KD-AF state gains energy by canting either in
the spin and valley direction under the presence of spin or
valley Zeeman terms, but it is impossible to construct dis-
entangled states that cant simultaneously in this way (see
Table I). We have found the exact coordinates of the spin-
valley entangled minima of the Hartree-Fock functional
in Eq. (2) and they satisfy β = θs = θp = 0, which is shared
by all the phases in the right two quadrants of the phase
diagrams. The E-KD-AF is now sandwiched between two
spin-valley entangled SVE phases of Ref. [19] in the re-
gion between the FM and the CDW (see Fig. 1a)), yet
represents a qualitative distinct phase.

We can distinguish the two competing spin-valley en-
tangled phases, namely the E-KD-AFM and the SVE
of Ref. [19] by their order parameters, Ôij = Tr{Pτisj}
(see supplementary material for further details). Both of
them have a vanishing total of valley and spin in the x−y
plane, Ôa0 = Ô0a = 0, with a = x, y. However, the SVE
phase of Ref. [19], has the order parameters Ôxx, Ôyy

locked to be equal Ôxx = Ôyy = sina, while for the E-
KD-AF these order parameters are generally distinct and
given by Ôxx = sina1 + sina2, Ôyy = − sina1 + sina2 (see
Table I for the values of a1,2). Moreover, as illustrated
in Fig. 1b), the concurrence of the SVE is different than
that of the E-KD-AF (see also Table I).

Summary and Discussion. We have studied the inte-
ger quantum Hall ferromagnet states of graphene within
a model applicable to any of its Landau levels, and fo-

cused on the case of half-filling when two out of four of its
nearly degenerate spin-valley states are filled. Our model
accounts for valley symmetry-breaking interactions be-
yond pure delta functions, and includes the simulatneous
presence of the Zeeman coupling and a substrate-induced
valley symmetry breaking potential (e.g. from alignment
with a hBN substrate). We have computed the concur-
rence measure of entanglement which allows us to quan-
tify the degree of spin-valley entanglement of these states.

Besides the known spin-valley disentangled states such
as the antiferromagnet and the Kekulé valence-bond-
solid, we have found a delicate competition of states
featuring spontaneous spin-valley entanglement, akin to
that arising from spin-orbit coupling, but whose origin
stems purely from interaction driven spontaneous sym-
metry breaking. Notably, we have found a state which
only becomes entangled under the simultaneous pres-
ence of spin and valley Zeeman terms and interactions
with longer range than pure delta functions, which we
term the Entangled-Kekulé-Antiferromagnet state (E-
KD-AF). This tendency arises because this state com-
bines features of the anti-ferromagnet and the Kekulé
states, and the state tries to cant simultaneously in the
spin and valley Bloch sphere in order to gain energy from
these single particle terms, but it can only achieve this
at the expense of becoming spin-valley entangled.
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Supplemental Material: Spin-valley entangled quantum Hall states in graphene

S-I: BRIEF REVIEW OF THE MODEL AND HARTREE-FOCK THEORY

In Ref. [17], we introduced a model for the higher Landau levels of graphene which arises from projecting all the
possible valley dependent short range interactions. This is based on the model of Ref. [21], which describes the
short-range electron-electron interactions in the absence of a magnetic field and can be written in the following way:

HA =∑
i<j
{∑
α,β

VαβT
i
αβT

j
αβ}δ(ri − rj), (S-1)

where we have defined T
i(j)
αβ = τ

i(j)
α ⊗σ

i(j)
β ⊗ s

i(j)
0 , and τ

i(j)
α , σ

i(j)
β , s

i(j)
0 α,β = 0, x, y, z to be the Pauli matrices acting

on valley, sublattice and spin respectively. The lattice symmetries of graphene introduce certain constraints on the
interaction strengths [21]:

F⊥z ≡ Vxx = Vyx,

Fz⊥ ≡ V0x = Vzy,

F⊥⊥ ≡ Vxz = Vy0 = Vyz = Vx0,

F0⊥ ≡ Vzx = V0y,

F⊥0 ≡ Vyy = Vxy,

Fzz ≡ V0z,

Fz0 ≡ Vz0,

F0z ≡ Vzz,

(S-2)

yielding only 9 real independent parameters. The projected model in the higher Landau levels takes the form [17]:

H
N
A =∑

i<j
{V N

z (rij)τ
i
zτ

j
z + V

N
⊥ (rij)τ

i
⊥τ

j
⊥}, (S-3)

with τ i⊥τ
j
⊥ = τ ixτ

j
x + τ

i
yτ

j
y and the strengths now containing longer range interactions:

Vz,⊥(rij) =
2

∑
n=0

gz,⊥n ∇
2nδ(rij). (S-4)

The model of Eq. (S-3) would also contain non-delta function effective interactions arising from Landau level mix-
ing [18, 19], and therefore by taking Vz, and V⊥ to be arbitrary functions, we can also view it as a general model for any
Landau level of graphene. Then, the Hartree-Fock functional for translational invariant quantum hall ferromagnets,
including the Zeeman effect and hBN substrate, reads:

EHF =
1

2
{2uH

z (M
1
zM

2
z − ∣M

12
z ∣

2) + 2uH
⊥ (M

1
xM

2
x +M

1
yM

2
y − ∣M

12
x ∣

2
− ∣M12

y ∣
2)

+∆z(∣M
1
z ∣

2
+ ∣M2

z ∣
2
+ 2∣M12

z ∣
2) +∆⊥(∣M1

x ∣
2
+ ∣M2

y ∣
2
+ 2∣M12

x ∣
2
+ ∣M1

y ∣
2
+ ∣M2

y ∣
2
+ 2∣M12

y ∣
2)}

− ϵzsz − ϵvηz,

(S-5)

with M
i(j)
a = ⟨Fi∣τa∣Fj⟩, where the vectors Fi are defined in Eq. (4) of the main text, and we can write the unit vector

η as , η =
⎛
⎜
⎝

sin θp cosϕp

sin θp sinϕp

cos θp

⎞
⎟
⎠
. We first minimize the Hartree-Fock functional in the valley-spin disentangled spaces. The

valley active subspace consists of ∣F ⟩1 = ∣η1⟩ ∣s⟩ , ∣F ⟩ = ∣η2⟩ ∣−s⟩:

EHF =
1

2
{∆z(n

2
1z + n

2
1z) + 2u

H
z n1zn1z +∆⊥(n2

1⊥ + n
2
1⊥) + 2u

H
⊥ n1⊥n1⊥ − 2ϵv(n1z + n1z)}, (S-6)

and of the spin active states , ∣F ⟩1 = ∣η⟩ ∣s1⟩ , ∣F ⟩2 = ∣−η⟩ ∣s2⟩:

EHF =
1

2
{ − (2uX

⊥ + u
X
z )(1 + s1 ⋅ s2) − (u

X
⊥ n

2
⊥ + u

X
z n2

z)(1 − s1 ⋅ s2)} − ϵz(s1z + s2z). (S-7)
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S-II: SPIN AND VALLEY CANTED STATES IN THE N = 1 LANDAU LEVEL

The minimization without the presence of spin and valley Zeeman was carried out in Ref. [17]. The antiferromagnets,
both in spin and valley space, in the presence of Zeeman coupling and hBN substrate respectively, will cant in the
x − y plane to take advantage of the spin (valley) Zeeman. The spin antiferromagnets i.e the KD-AF and the AF
will cant their spins in the x − y plane while the magnitudes of spin remains fixed ∣s1∣ = ∣s2∣ = 1. Moreover, the U(1)
symmetry in the x − y plane gives:

s1,2 = (±
√
1 − s2z,0, sz). (S-8)

The energies of the spin active states are :

Spin active states Energies

FM EFM = −
1
2
{(2uX

⊥ + u
X
z ) + 4ϵz}

AF EAF = −u
X
z

KD-AF EKD−AF = −u
X
⊥

Now let us consider how each sector nz = 1 and n⊥ = 1 behaves due to the Zeeman. For nz = 1:

E
nz=1
HF = −(uX

⊥ + u
X
z ) − u

X
⊥ s1s2 − ϵz(s1z + s2z). (S-9)

Now due to canting (S-8), the CAF will have :

E
CAF

= −uX
z +

ϵ2z
2uX⊥

= −(uH
z −∆z) +

ϵ2z
2(uH

z −∆z)
,

s∗z = −
ϵz
2uX⊥

,

(S-10)

with cosa = − ϵz
2uX

z
. We note that :

s∗z = 1→ uH
⊥ =∆⊥ −

ϵz
2
, (S-11)

which coincides with the CAF-FM boundary. For n⊥ = 1:

E
n⊥=1
HF = −(3uX

⊥ + u
X
z ) − (u

X
⊥ + u

X
z )sasb − 2ϵz(saz + sbz). (S-12)

Now due to canting (S-8), the KD-CAF will have :

E
KD−CAF

= −2uX
⊥ +

2ϵ2z
uX⊥ + uX

z

= −2(uH
⊥ −∆⊥) +

2ϵ2z
(uH

z + u
H⊥ ) − (∆z +∆⊥)

s∗z = −
ϵz

(uX⊥ + uX
z )

,
(S-13)

We note that :

s∗z = 1→ uH
z = −u

H
⊥ + (∆⊥ +∆z) − ϵz, (S-14)

which coincides with the KD-CAF-FM boundary. Similarly for the valley active states due to Eq. (S-6), we find that
the CaKD has :

ηCaKD
z =

ϵv
uH
z − u

H⊥ + (∆z −∆⊥)
,

ECaKD = 2{∆⊥ + uH
⊥ −

ϵ2v
uH
z − u

H⊥ + (∆z −∆⊥)
},

(S-15)

and the CaKD-AF :

ηCaKD−AF
z =

ϵv
uH
z + u

H⊥ + (∆z −∆⊥)

ECaKD−AF = 2{∆⊥ − uH
⊥ −

ϵ2v
uH
z + u

H⊥ + (∆z −∆⊥)
}.

(S-16)



8

S-III: LINEAR STABILITY ANALYSIS

By expanding the complete Hartree-Fock functional, EHF {a1, a2, θp, θs, β, ϕp}, in Eq. (S-5)we are able to see if
the phases which minimize the Hartree-Fock functional in the spin-valley disentangled spaces, remain stable to spin-
valley entangled fluctuations. Below we present the instability lines which are defined as the lines where one of the
eigenvalues of the bilinear matrix of stability vanishes.

CDW

The coordinates of the CDW are a1 = a2 = θp = 0 . The instability lines and the directions at which they become
unstable:

a1,2 ∶ u
H
z = −u

H
⊥ + (∆⊥ −∆z) ± ϵv + ϵv,

θp ∶ u
H
z = u

H
⊥ + (∆⊥ −∆z) + ϵv.

(S-17)

CaKD

The coordinates of the CaKD are a1 = a2 = 0, θp = cos
−1 ( ϵv

uH
z −uH⊥ +(∆z−∆⊥)). The instability lines and the directions

at which they become unstable:

a1,2 ∶ 2∆⊥ − 2(∆z + 5u
H
⊥ + 3u

H
z ) + 8ϵv cosa0 + 2(3∆⊥ − 3∆z + u

H
⊥ − u

H
z ) cos 2a0

±

√

64ϵ2Z + 6(∆⊥ −∆z − uH⊥ + uH
z )

2 + 2(∆⊥ −∆z − uH⊥ + uH
z )

2(−4 cos 2a0 + cos 4a0) = 0

θp ∶ uH
z = u

H
⊥ + (∆⊥ −∆z),

uH
z = u

H
⊥ + (∆⊥ −∆z) ± ϵv.

(S-18)

FM

The coordinates of the CaKD are a1 = 0, a2 = π, θp = θs = 0 . The instability lines and the directions at which they
become unstable:

a1,2 ∶ u
H
z = −u

H
⊥ + (∆⊥ +∆z) ± ϵv − ϵz. (S-19)

CAF

The coordinates of the CAF are a1 = 0, a2 = π, θp = θs = 0. Defining cosa0 = −
ϵz

2(uH⊥ −∆⊥) , the instability lines are :

a1,2, θp ∶ ϵv =
√
(−∆⊥ +∆z + u⊥ − uz)(∆z − u⊥ − uz − ϵz cosa0 +∆⊥ cos 2a0),

u⊥ =∆⊥ ±
ϵz
2
.

(S-20)
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CaKD-AF

The coordinates of the CaKD-AF are α1,2 = cos−1{ϵv/(−∆⊥ +∆z + u
H
⊥ + u

H
z )}, θp = 0, θs = 0, β = 0 . Defining

cosa0 = ϵv/(uz + u⊥ +∆z −∆⊥), the Hartree-Fock functional is :

EHF =
1

2
a21{∆⊥ − u

H
⊥ − u

H
z + 2(ϵv + ϵz) cosa0 + (∆⊥ − 2∆z − u

H
⊥ − uz) cos 2a0}

+
1

2
a22{∆⊥ − u

H
⊥ − u

H
z + 2(ϵv − ϵz) cosa0 + (∆⊥ − 2∆z − u

H
⊥ − uz) cos 2a0}

+ a1a2{−∆⊥ + u⊥ + uz + (∆⊥ − u⊥ − uz) cos 2a0}

+ 2θ2p{u⊥ − uz + ϵv cosa0 + (∆⊥ −∆z) cos 2a0}

+ 2ϵz(a1 + a2) sina0.

(S-21)

Because of the linear term, this state is generically unstable in the presence of Zeeman field. For ϵz = 0, this gives:

a1,2 ∶ u
H
z = −u

H
⊥ +∆⊥ −∆z

uH
z = −u

H
⊥ ±
√
∆2

z + ϵ
2
v +∆⊥

uH
z = −u

H
⊥ −∆z +∆⊥ ± ϵv

θp ∶ u
H
z = ±

√

ϵ2v + (u
H⊥ +∆z −∆⊥)2

(S-22)

KD-CAF

The coordinates of the KD-CAF are a1,2 = cos−1{±ϵz/(∆⊥ + ∆z − u
H
⊥ − u

H
z )}, θp = 0, θs = 0, β = 0. Defining

cosa0 = −ϵz/(u
X
z + u

X
⊥ ), the Hartree-Fock functional is :

EHF =
1

2
a21{−∆⊥ + u

H
⊥ + u

H
z + 2(ϵv + ϵz) cosa0 + 2(−∆⊥ − 2∆z + u

H
⊥ + uz) cos 2a0}

+
1

2
a22{−∆⊥ + u

H
⊥ + u

H
z + 2(−ϵv + ϵz) cosa0 + 2(−∆⊥ − 2∆z + u

H
⊥ + uz) cos 2a0}

+ a1a2{−∆⊥ + u⊥ + uz + (∆⊥ − u⊥ − uz) cos 2a0}

+ θ2p{−∆⊥ +∆z + u⊥ − uz + (∆⊥ −∆z − u⊥ + uz) cos 2a0}

+ 2ϵz cosa0θ
2
s

+ 2ϵv(a1 + a2) sina0.

(S-23)

Because of the linear term, this state is generically unstable in the presence of hBN substrate. In the absence of it,
the linear stability analysis yields:

a1,2 ∶ u
H
z = −u

H
⊥ + (∆z +∆⊥),

uH
z = −u

H
⊥ + (∆⊥ −∆z),

uH
z = −u

H
⊥ + (∆z +∆⊥) ± ϵz,

β ∶ −,

θs ∶ −,

θp ∶ u
H
z = u

H
⊥ + (∆z −∆⊥).

(S-24)
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SVE

The instability lines of SVE are:

uH
z = −u

H
⊥ + (∆z +∆⊥) + ϵv − ϵz

uH
z = −u

H
⊥ + (∆⊥ −∆z) + ϵv − ϵz

uH
z = u

H
⊥ (2

∆z

∆⊥
− 1) + ϵv − ϵz +∆⊥ +

∆zϵz
∆⊥

−∆z

uH
z = −u

H
⊥ +∆⊥ + ϵv − ϵz +

√
ϵ2z − 2(2∆z + ϵv)ϵz + (−2∆z + ϵv)2

(S-25)

KD+CAF

The coexistence phase of KD+CAF of Ref. [18] can be found by minimizing the Hartree-Fock functional in Eq. (S-5)
in the subspace of θp = π/2 (since both the KD and the CAF belong in this subspace). More concretely, the HF
functional takes the following form then :

EHF = − ϵz(x1 − x2) +
1

4
∆⊥{(x1 − x2)

2
− (y1 + y2)

2
} + x1x2{ −

1

2
∆z +

3

2
uH
⊥ +

1

2
uH
z } + y1y2{

1

2
∆z +

1

2
uH
⊥ −

1

2
uH
z }

+∆⊥ +
∆z

2
−
uH
⊥
2
−
uH
z

2
,

(S-26)

where we have defined xi(yi) = cosai (sinai), i = 1,2, satisfying the constraint x2
i +y

2
i = 1, i = 1,2 . The minimization

can be analytically achieved, by changing variables as follows:

z1 = x1 + x2, z2 = x1 − x2,

w1 = y1 + y2, w2 = y1 − y2.
(S-27)

under the constraints :

∑
i=1,2

z2i +w
2
i = 4,

∑
i=1,2

ziwi = 0.
(S-28)

This yields up to constants:

EHF = −ϵzw1 +
∆⊥
2

w2
1 −

uH
⊥
2

u +
w2

1

u
(∆z −∆⊥ − uH

⊥ − u
H
z ), (S-29)

where we have defined u = w2
1 +w

2
2. The minimization is straightforward and yields for the coordinates and energy of

the coexistence phase KD+CAF, respectively:

w1 =
−
√
−2u⊥(∆z −∆⊥ − u⊥ − uz) + ϵz

∆⊥
,

u =
ϵz
√
2(∆z −∆⊥ − u⊥ − uz) − 2(∆z −∆⊥ − u⊥ − uz)

√
−u⊥

∆⊥
√
−u⊥

,

EKD+CAF = −
1

2∆⊥
(x − ϵz)

2
+C, x =

√
−2u⊥(∆z −∆⊥ − u⊥ − uz),

C =∆⊥ + u⊥.

(S-30)

The concurrence of this state can be easily computed as :

C =
√

(u −w2
1)w

2
1(4/u − 1), (S-31)

and therefore in general the coexistence phase is generally spin-valley entangled. The concurrence is plotted in Fig. S-2
for uH

z = −u
X
x , uX

⊥ = 1.25u
H
⊥ , ϵz = 1.
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E-KD-AF

Since the canted phases only in the valleys become unstable in the presence of both fields, we seek to minimize the
Hartree-Fock functional in the subspace of β = θs = θp = 0, since all of the states share this feature. Therefore, we find:

EHF = 2(∆⊥ − uH
⊥ ) + cosa1{−2(ϵv + ϵz) +∆z cosa1}+

2{−ϵv + ϵz + cosa1(−∆⊥ + uH
⊥ + u

H
z )} cosa2 +∆z cos

2 a2

= a cosa1 + β cos2 a1 + γ cosa1 cosa2 + δ cos
2 a2 + ϵ cosa2.

(S-32)

We have :

∂E

∂a1,2
= 0, (S-33)

and the coordinates of this state are given by:

a1 = cos
−1
{

ϵz
∆⊥ +∆z − uH⊥ − uH

z

+
ϵv

−∆⊥ +∆z + uH⊥ + uH
z

},

a2 = cos
−1
{−

ϵz
∆⊥ +∆z − uH⊥ − uH

z

+
ϵv

−∆⊥ +∆z + uH⊥ + uH
z

}.
(S-34)

We see now that the ϵz,v → 0 limits reduce to the KD-CAF, CaKD-AF.
The linearly stable states competing with their energies are summarized in Table S-II. The SVE state has energy :

States Energies

CDW ∆z + u
H
z − 2ϵv

CaKD ∆⊥ + uH
⊥ −

ϵ2v
uH
z −uH⊥ +(∆z−∆⊥)

FM 2∆⊥ +∆z − 2u
H
⊥ − u

H
z − 2ϵz

CAF ∆z − u
H
z +

ϵ2z
2(uH⊥ −∆⊥)

CaKD-AF ∆⊥ − uH
⊥ −

ϵ2v
uH
z +uH⊥ +(∆z−∆⊥)

KD-CAF ∆⊥ − uH
⊥ +

ϵ2z
(uH⊥ +uH

z )−(∆z+∆⊥)

E-KD-AF ∆⊥ − uH
⊥ +

ϵ2z
uH⊥ +uH

z −(∆⊥+∆z) −
ϵ2v

uH⊥ +uH
z +(∆z−∆⊥)

Table S-II. Energies of linearly stable competing states. The CaKD-AF and KD-CAF remain stable only in the absence of
Zeeman effect and hBN substrate respectively.

ESV E = −
1

2∆z
{(uH

z )
2
+ 2uH

z (ϵz − ϵv + u
H
⊥ −∆⊥) + ϵ

2
v − 2ϵv(ϵz + u

H
⊥ −∆z −∆⊥)+

ϵ2z + 2ϵz(u
H
⊥ −∆⊥ +∆z) + (u

H
⊥ −∆⊥)

2
+ 2∆z(u

H
⊥ −∆⊥) −∆

2
z}.

(S-35)

The stability lines of the SVE and the E-KD-AF are illustrated in Fig. S-1

S-IV: ORDER PARAMETERS OF COMPETING STATES

We calculate the order parameters (OPs) of the states < Ôij >=< τiσj >= Tr{ÔijP̂}. We find that :

< Ôij > = cos
2 a1
2
⟨η∣τi∣η⟩ ⟨s∣σj ∣s⟩ + sina1Re{e−iβ1 ⟨−η∣τi∣η⟩ ⟨−s∣σj ∣s⟩}+

+ sin2
a1
2
⟨−η∣τi∣ − η⟩ ⟨−s∣σj ∣ − s⟩+

+ cos2
a2
2
⟨η∣τi∣η⟩ ⟨−s∣σj ∣ − s⟩ + sina2Re{e−iβ2 ⟨−η∣τi∣η⟩ ⟨s∣σj ∣ − s⟩}+

+ sin2
a2
2
⟨−η∣τi∣ − η⟩ ⟨s∣σj ∣s⟩

(S-36)
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uH
z

uH⊥

Boundaries
E-KD-AF

SVE

CAF

KD

CDW

FM

E-KD-AFSVE

SVE

KD+CAF

Figure S-1. Instability lines of the SVE state and E-KD-AF illustrated as dashed red (blue dotted) for Zeeman, ϵz = 1, and
valley potential, ϵv = 0.1, and ∆⊥ = 2, ∆z = 1.

We note that this reduces for i&j ≠ 0 to :

< Ôij > = sina1Re{e−iβ1 ⟨−η∣τi∣η⟩ ⟨−s∣σj ∣s⟩}+

+ sina2Re{e−iβ2 ⟨−η∣τi∣η⟩ ⟨s∣σj ∣ − s⟩}.
(S-37)

By defining :

η(s) =
⎛

⎝

cos
θp(s)
2

sin
θp(s)
2

eiϕp(s)

⎞

⎠
→ −η(−s) =

⎛

⎝

sin
θp(s)
2

− cos
θp(s)
2

eiϕp(s)

⎞

⎠
, (S-38)

we can calculate the expressions appearing in Eq. (S-36). We find that (we choose ϕp = ϕs = 0) :

• < Ô0i >= 2si(cosa1 − cosa2)

• < Ôi0 >= 2ηi(cosa1 − cosa2)

• < Ôxx >= ηzsz(sina1 + sina2)

• < Ôxy >=< Ôyz >= 0

• < Ôxz >= −ηzs⊥(sina1 + sina2)

• < Ôyy >= − sina1 + sina2

• < Ôzz >= η⊥s⊥(sina1 + sina2)

CDW

The non-vanishing OP is :

< Ôz0 >= 4ηz ≠ 0 (S-39)

CaKD

The non-vanishing OP is :

< Ôi0 >= 4ηi ≠ 0, i = 1,2,3 (S-40)
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FM

The non-vanishing OP is :

< Ôz0 >= 4sz ≠ 0 (S-41)

CAF

The non-vanishing OP is :

< Ôz0 >= 4sz cosa ≠ 0 (S-42)

SVE

The non-vanishing OPs are :

< Ô0z > = 2sz(1 − cosa) ≠ 0

< Ôz0 > = 2ηz(1 + cosa) ≠ 0

< Ôxx > =< Ôyy >= sina ≠ 0

(S-43)

E-KD-AF

The non-vanishing OPs are :

< Ô0z > = 2sz(cosa1 − cosa2) ≠ 0

< Ôz0 > = 2ηz(cosa1 + cosa2) ≠ 0

< Ôxx > = sina1 + sina2 ≠ 0

< Ôyy > = − sina1 + sina2 ≠ 0

(S-44)

S-V: MEASURE OF SPIN-VALLEY ENTANGLEMENT OF STATES

A measure of spin valley entanglement is the concurrence, defined as:

C =max{λ1 − λ2 − λ3 − λ4,0}, (S-45)

where λi are the eigenvalues of the matrix R = P (τy⊗ sy)P
T (τy⊗ sy)P according to λi ≥ λj , for i > j.The matrix

A = (τy⊗ sy)P
T (τy⊗ sy) acts as a time-reversal flipping both the valleys and the spin in the density matrix ρ =

∣F ⟩1 ⟨F ∣1 + ∣F ⟩2 ⟨F ∣2. For the valley-active and spin-active states:

λ1 = λ2 =
1

2
{1 − s1s2(τ1τ2)},

λ3 = λ4 = 0,
(S-46)

where the sa(τa) matrices are in the case of spin (valley) active states.

S-VI: COMPARISON WITH REF. [19]

In this section we compare in detail some of our results and those of Ref. [19]. We would like to focus particularly
on clarifying the connection between our KD-AF phase and those of Ref. [19]. The KD-AF state was first identified in
Ref. [17]. This state, or more precisely its canted version in spin space (which we call in the main text KD-CAF), was
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b)a)

C

uH⊥

KD KD-CAF

K
D
+C

AF

Figure S-2. a) Fig.22 of Ref. [19]. Phase diagram for uH
z = −u

X
x , uX

⊥ = 1.25u
H
⊥ , ϵz = 1. b) Concurrence for the parameters of

the the phase diagram in a) along the cut uH
z =1. The concurrence of the KD-CAF vanishes as expected.

then re-encountered in Ref. [19] and labeled as coexistence “FSVE” phase, where the “SVE” stands for “spin-valley
entangled”. To illustrate this we reproduce Fig.22 of Ref. [19] in Fig. S-2(a).

There are, however, two inaccuracies with the identifications of Ref. [19]. First, while the KD-CAF state (“FSVE”
in Ref. [19]) has non-trivial spin-valley correlations, it is not a spin-valley entangled state. In fact, in the presence of
only spin Zeeman but zero valley potential (ϵz ≠ 0, ϵv = 0), from the phases that appear in Fig.22 of Ref. [19] the only
one with non-zero spin-valley entanglement is the coexistence state of AFM and KD (KD+CAF), and all other states,
including the KD-CAF (“FSVE” in Ref. [19]) have zero spin-valley entanglement. This is illustrated in Fig. S-2(b),
by plotting the concurrence along the dotted line indicated in Fig. S-2(a).

The second inaccuracy of Ref. [19] is that the KD-CAF state (“FSVE” in Ref. [19]), should not be viewed as
a coexistence state between two other phases. As we have discussed in the main text, this KD-AF state simply
continuously evolves by canting the spins from the KD-AF state, which is one of the parent states that exist as a
phase of its own without the need of single particle Zeeman or valley terms. The KD-AF state is stabilized by the
interactions with a range longer than pure delta functions (see Fig.2(b) of the main text for ϵz = 0, ϵv = 0). The KD-
CAF state contains correlations that combine Kekulé valley coherence and anti-ferromagnetism, namely, one of the
components occupies an equal amplitude superposition of both valleys (e.g. with direction x̂ in valley Bloch sphere)
with one spin and the other component occupies the opposite valley coherent superposition (e.g. with direction −x̂ in
valley Bloch sphere) with the opposite spin. Despite combining these characteristics of Kekulé and AFM state, the
KD-AF is however a distinct phase and not merely a coexistence state of these two states (which, for example, would
be the case for the coexistence state introduced in Ref.[18]). To see this it suffices to notice that its total XY valley
pseudo-spin vanishes (in contrast to Kekulé state) and so does its staggered sub-lattice spin moment (in contrast to
the usual anti-ferromagnet), and therefore it has zero value of the order parameters of these states and thus should
not be viewed as a a state where they coexist.

We also notice that in several of the phase diagrams of Ref. [19] the KD-AF and its descendant were missing simply
because the range of their plots did not cover the region where this phase becomes favorable. An example of this is
illustrated in Fig. S-3 which reproduces Fig.4 of Ref. [19] over a longer paramater range that includes the descendants
of the KD-AF state (namely KD-CAF in Fig. S-3(a), CaKD-AF in Fig. S-3(b), E-KD-AF in Fig. S-3(c)).
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Figure S-3. a) Fig. 4 of Ref. [19]. This is for ϵz = 1, u
X
z,⊥ = 1.25u

H
z,⊥. There is an additional phase, the KD-CAF, which was missed

in Ref. [19]. b)Fig.14 of Ref. [19]. This is for ∆z,⊥ = −0.25uH
z,⊥, ϵv = 0.25. There is an additional phase, the CaKD-AF, which was

missed in Ref. [19]. c) Phase diagram when both Zeeman and valley Zeeman fields are present: ∆z,⊥ = −0.25uz,⊥, ϵv = 0.1, ϵz = 1
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