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In this work, we investigate quenches in a free-fermion chain with long-range hopping which decay with the
distance with an exponent ν and has range D. By exploring the exact solution of the model, we found that the
dynamic free energy is non-analytical, in the thermodynamic limit, whenever the sudden quench crosses the
equilibrium quantum critical point. We were able to determine the non-analyticities of dynamic free energy
f (t) at some critical times tc by solving nonlinear equations. We also show that the Yang-Lee-Fisher (YLF)
zeros cross the real-time axis at those critical times. We found that the number of nontrivial critical times, Ns,
depends on ν and D. In particular, we show that for small ν and large D the dynamic free energy presents
non-analyticities in any time interval ∆t ∼ 1/D ≪ 1, i.e., there are non-analyticities at almost all times. For the
spacial case ν = 0, we obtain the critical times in terms of a simple expression of the model parameters and
also show that f (t) is non-analytical even for finite system under anti-periodic boundary condition, when we
consider some special values of quench parameters. We also show that, generically, the first derivative of the
dynamic free energy is discontinuous at the critical time instant when the YLF zeros are non-degenerate. On
the other hand, when they become degenerate, all derivatives of f (t) exist at the associated critical instant.

I. INTRODUCTION

Equilibrium phase transitions (PTs) have been detail stud-
ied and observed in several compounds in the last two cen-
turies [1–3]. Along the lines (or planes, or points) that sep-
arate the distinct phases, the thermodynamic functions are
non-analytic. Due to this fact, the systems present unusual
physical properties close to these lines. In general, we can
not understand the phenomena close to the transition lines by
a simple picture, such as the Fermi liquid for instance. For
this reason, this subject has been of great interest for sev-
eral physicist communities. The non-analyticity of the ther-
modynamic functions is encoded in the zeros of the partition
function Z , the so-called Yang-Lee-Fisher (YLF) zeros [4–
6]. In general, the zeros of Z (q) = Tr

(
e−qH

)
happen for

q = β + iα , where β = 1
kBT and α ̸= 0. In the thermody-

namic limit, however, these zeros can touch the real temper-
ature axis yielding to non-analyticities of the Helmholtz free
energy F = −kBT ln(Z (β )). For a recent experimental ver-
ification of this phenomenon, see, for instance, Refs. 7, 8.
A similar equilibrium partition function that is also studied
is the boundary partition function Z b(β ) =

〈
ψb

∣∣e−βH
∣∣ψb

〉
,

i.e., the partition function ruled by the Hamiltonian H with
boundaries described by the boundary state

∣∣ψb
〉

separated by
β [9–11].

In the last years [12–27], the concept of YLF zeros has been
applied to sudden quenches: a parameter δ of a system Hamil-
tonian H (δ ) changes from δ0 → δ at the time instant t = 0.
Specifically, the dynamical analog of the boundary partition
function is the return probability Z(t) =

〈
ψ0

∣∣∣e−iH(δ )t
∣∣∣ψ0

〉
,

where |ψ0⟩ is the ground state of the Hamiltonian H (δ0). The
dynamical analog of the free energy is f (t)=− 1

N ln
(
|Z(t)|2

)
,

where N is the number of degrees of freedom, and can also be
a non-analytic function at some critical time tc. For a review

and generalizations to other out-of-equilibrium scenarios see,
e.g., Ref. 28.

The quantum quench protocol we consider here is the
following: the system is prepared in the ground state of
H(δ0) and then is time-evolved according to H(δ ), being
δ some tuning parameter of H. The non-analytical behav-
ior of f in time was called dynamical quantum phase tran-
sition (DQPT) [12] and was recently observed in experi-
ments [20, 23, 25]. It is important to mention that, by
now, it is well established that there is no one-to-one cor-
respondence between DQPTs and equilibrium phase transi-
tions [13, 14, 16–19, 22].

Experimental observation of the DQPTs was observed re-
centely [25], where trapped ions were used to simulate the
transverse-field Ising chain with long range interaction. The
long range interaction between two spins i and j is given by
Ji, j = Ω2νR ∑m

bimb jm
µ2−ν2

m
[29] and depends on the experimental

setup, namely: the Rabi frequency Ω of the laser, the ion
mass of the single ion via the recoil frequency νR associated
with the dipole force, the orthonormal mode component of
the ith ion bim with mode m and frequency νm, as well as
the symmetric detuning µ of the beatnote from the spin-flip
transition [25, 29–32]. It has been observed in trapped ion
experiments that the long range coupling Ji, j can be approx-
imated as Ji, j ∼ 1/|i− j|α where 0 < α < 3 depends on the
laser detuning µ [25, 29, 33, 34].

The effect of the long-range interactions in the context of
the DQPTs were investigated in the transversal-Field Ising
chain [18, 19, 24–26]. All those studies were done numeri-
cally since the long-range interaction, in general, breaks inte-
grability (exceptions exist and can be found in, e.g., 35 and
36). Although numerical results can give strong evidence of
the DQPTs, those methods are limited. In particular, the stud-
ies based on exact diagonalization and/or matrix product state
(MPS) are limited by the size of the system, and/or by the

ar
X

iv
:2

30
8.

05
18

2v
3 

 [
co

nd
-m

at
.s

tr
-e

l]
  5

 D
ec

 2
02

3



2

bond dimension, as well as limited to short times. In princi-
ple and strictly according to the YLF zeros theory, the DQPTs
manifest only in the thermodynamic limit. In this sense, a
rigorous proof of the existence of a DQPT in the transversal-
Field Ising chain with long-range interaction is still missing.
In this vein, it is highly desirable to have a deep understanding
of the long-range interaction effects in the context of DQPTs
through analytical results. Insights into this issue may be
gained by considering the free fermions with long-range hop-
ping, since the model can be mapped, by using the Jordan-
Wigner transformation, in a XX chain with long range interac-
tion. Although in this case, multiple spin interactions appear
[37–39]. Very recently, the effect of the long range hopping
in the context of the DQPT were investigated in few models,
like some variant of the Kitaev chain [40–42] (see also Refs.
35 and 36). Motivated by the aforementioned facts, we inves-
tigate DQPTs in an exactly solvable free fermion model with
long-range hoppings.

The paper is organized as follows: In Sec. II, we present the
model and its exact diagonalization. Analytical expressions
for the dynamic free energy and the YLF zeros are determined
in Sec. III together with numerical results. Our concluding
remarks are given in Sec. IV.

II. THE MODEL

We consider a free fermion chain with long-range hoppings
under twisted boundary condition given by the Hamiltonian

H(δ ) =
L

∑
j=1

1+(−1) j
δ

2

D

∑
ℓ=1

J j,2ℓ−1

(
c†

jc j+2ℓ−1 +H.c.
)
. (1)

We consider systems of L sites in which L is even. The hop-
ping amplitude decays as J j,ℓ = J2ν(ℓ+1)−ν . Here, the con-
stant J sets the energy (or inverse time) unit of the system
(and, from now on, is set to J = 1), and c j+L = exp(−φπi)c j
(1 ≤ j ≤ L), where φ defines the type of boundary condition:
φ = 0 means periodic boundary condition (PBC) and φ = 1
means anti-periodic boundary condition (APBC). The expo-
nent ν ≥ 0 controls the decay of the hopping amplitude with
the distance, D is the hopping range, and δ is the dimerization
parameter which tunes the system across an equilibrium quan-
tum phase transition (QPT) at δ = 0. For D = 1, this model
recovers the dimerized chain with nearest-neighbor hopping,
also known as Su-Schrieffer-Heeger (SSH) chain [43]. This
model, for some particular choice of the parameters, was used
to study symmetry-resolved entanglement entropy [39, 44].
This is an interesting model because it allows one to investi-
gate the effects of long-range hopping and is amenable to be
solved by free-fermion techniques.

Note that the gauge transformation c j → e−iπΦ j/Lc j makes
the Hamiltonian translational invariant and, thus, can be diag-
onalized by the Fourier series. For the sake of completeness,
we present the main steps below. First, we introduce the new
fermionic operators γq and ηq by

c2 j =

√
2
L ∑

q
e2iq j

ηq, and c2 j−1 =

√
2
L ∑

q
eiq(2 j−1)

γq, (2)

where the momenta are q = qn = 2π

aL

(
n− φ

2

)
, n =

1,2, . . . ,L/2, and, from now on, we set the lattice spacing to
a = 1. In terms of γq and ηq the Hamiltonian is

H = ∑
q

(
γ†

q η†
q
)( 0 Cq − iδSq

Cq + iδSq 0

)(
γq
ηq

)
,

= ∑
q

ωq,δ

(
α

†
+,q,δ α+,q,δ −α

†
−,q,δ α−,q,δ

)
, (3)

where

Cq =Cq(ν ,D) =
D

∑
ℓ=1

ℓ−ν cos((2ℓ−1)q) , (4)

Sq = Sq(ν ,D) =
D

∑
ℓ=1

ℓ−ν sin((2ℓ−1)q) , (5)

ωq,δ = ωq,δ (ν ,D) =
√

C2
q +δ 2S2

q, (6)

and

α±,q,δ =
1√
2

(
eiθq,δ γq ± e−iθq,δ ηq

)
(7)

are the eigen-operators associated to positive and negative
branches of the dispersion relation ±ωq,δ (ν ,D). Here,
cos2θq,δ =Cq/ωq,δ and sin2θq,δ = δSq/ωq,δ .1

Finally, notice that

Cπ
2 −q =−Cπ

2 +q, and S π
2 −q = S π

2 +q, (8)

and that the ground state of H(δ ) is

|ψ0(δ )⟩= ∏
q

α
†
−,q,δ |0⟩ , (9)

where the product is over all q’s in Eq. (2).
It is worth mentioning that for some special values of ν and

D, the functions Cq and Sq can also be written in terms of
some well known functions, as depicted in Table I. For ν = ∞

or D = 1, Eq. (6) recovers that of the nearest-neighbor hop-

ping problem ωq,δ =
√

cos2(q)+δ 2 sin2(q). The case ν = 0
and D = L/4 is very peculiar and presents some anomalous
characteristics (see Appendix A): (i) The ground-state energy
E0 ∼ aL lnL + bL is not extensive. (ii) Different boundary
conditions lead to distinct behaviors. For PBC (APBC), the
system is gapless (gapped) at half filling. In addition, the dif-
ference EAPBC

0 −EPBC
0 ∼−L lnL.

1 The quantities defined in Eqs. (4)–(7) depend on q, δ , ν and D. To lighten
the notation, only the dependence of q and δ is kept in the subscript.
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Table I. The functions Cq(ν ,D) and Sq(ν ,D) for some special values of ν and D. Liν (z) is the polylogarithm function of order ν .

Cq(ν ,D) Sq(ν ,D)

ν = 0 sin(2Dq)
2sinq

1−cos(2Dq)
2sin(q)

ν = 1 D = ∞ −1/2 [cos(q) ln(|2sinq/2|)− sin(q)(π −2q)] 1/2 [cos(q)(π −2q)+ sin(q) ln(|2sinq/2|)]
ν = 2 D = ∞

π2

6 − 2q
2 + q2

4 −
´ q

0 ln(2sin(t/2))dt
ν = ∞ cos(q) sin(q)
D = ∞ Re

(
e−iqLiν

(
ei2q)) Im

(
e−iqLiν

(
ei2q))

III. RESULTS

A. The dynamic free energy and the YLF zeros

As we already mentioned, in our quench protocol the sys-
tem is initialized in |ψ0(δ0)⟩, the ground state of H(δ0), and
time-evolved according to H(δ ). Only δ is changed in the
sudden quench, ν and D remain constants. The return prob-
ability amplitude Z(t) =

〈
ψ0(δ0)

∣∣∣e−iH(δ )t
∣∣∣ψ0(δ0)

〉
can be

evaluated following the same procedure of Ref. [27, 45]. For
completeness, we present below the main steps.

To time-evolve |ψ0(δ0)⟩, we need the relation between the
pre- and post-quench eigen-operators α±,q,δ0 and α±,q,δ [see
Eq. (3)]. This task is simple, since the wavenumbers q in (2),
and, therefore, γq and ηq, do not depend on δ . Then, from
Eq. (7), we find that

α
†
−,q,δ0

= cos
(
∆θq,δ ,δ0

)
α

†
−,q,δ + isin

(
∆θq,δ ,δ0

)
α

†
+,q,δ , (10)

where ∆θq,δ ,δ0 = θq,δ −θq,δ0 . Therefore,

Z(t) =

〈
0

∣∣∣∣∣∏q
α−,q,δ0e−iHt

∏
k

α
†
−,k,δ0

∣∣∣∣∣0

〉
= ∏

q

[
cos

(
ωq,δ t

)
+ igq,δ ,δ0 sin

(
ωq,δ t

)]
, (11)

where 0 ≤ gq,δ ,δ0 =
C2

q+δδ0S2
q

ωq,δ ωq,δ0
≤ 1.

Finally, the dynamic free energy f (t)≡−L−1 ln |Z(t)|2 is

f (t) =−1
L ∑

q
ln
[
cos2 (

ωq,δ t
)
+g2

q,δ ,δ0
sin2 (

ωq,δ t
)]

, (12)

and, in the thermodynamic limit, we can replace the sum by
the integral

f (t) =−
π/2ˆ

0

dq
π

ln
[
cos2 (

ωq,δ t
)
+g2

q,δ ,δ0
sin2 (

ωq,δ t
)]

, (13)

where the properties (8) where used to shorten the integration
limit.

Let ζn,m = tn,m + iτn (or ζqn,m = tqn,m + iτqn ) be the YLF
zeros of Z. From Eq. (11), it is simple to show that

ζqn,m =

(
m− 1

2

)
π + i

2 ln
( 1+gqn ,δ ,δ0

1−gqn ,δ ,δ0

)
ωqn,δ

, (14)

were m ∈ N+ is the mth accumulation line of YLF zeros, and
n = 1, . . . , L

2 labels the nth wavenumber qn in (2). Although
there are L

2 YLF zeros per accumulation line, not all of them
are distinct because of (8). For L

2 odd, there are 1
2

(L
2 −1

)
distinct zeros (which are doubly degenerated), and one (for
q = π for PBC and q = π

2 for APBC) has
∣∣τqn

∣∣ = ∞. Thus,
effectively there are 1

2

(L
2 −1

)
zeros. For PBC and L

2 even,
there are 1

2

(L
2 −2

)
distinct zeros (which are doubly degener-

ated), and 2 zeros (for q= π

2 and π) with
∣∣τqn

∣∣=∞. For APBC
and L

2 even, there are L
4 doubly degenerated distinct zeros.

The DQPTs occur whenever τqn = 0 and, thus, from
Eq. (14), they can only happen if C2

qc +δδ0S2
qc = 0, i.e.,

T 2
qc(ν ,D)≡

S2
qc(ν ,D)

C2
qc(ν ,D)

=− 1
δδ0

. (15)

Notice the necessary condition δδ0 < 0 which corresponds
to the quench crossing the equilibrium QPT of the model at
δ c

eq = 0.2 Once the set {qc} is determined from Eq. (15),

the time instants of the DQPTs are simply tc
{qc},m = (2m−1)π

2ωqc,δ
.

Due to the properties (8), if qc is a solution of (15), so is
π − qc. In addition, they provide the same YLF zero since
ωq,δ = ωπ−q,δ . Thus, it is sufficient to consider only the val-
ues of q in the domain

[
0, π

2

]
when solving for {qc} in (15).

In general, Eq. (15) admits no solution for finite systems
since {qn} in Eq. (2) is a discrete set. Nonetheless, as re-
ported in Appendix A, for some special values of ν , D, δ and
δ0, Eq. (15) admits solutions for finite systems and, thus, for
a real-time instant tc, f (tc) is non-analytic even for finite L.
Non-analyticities in finite-size systems were also reported in
Refs. 13 and 15.

B. The case of nearest-neighbor (D = 1) and
third-nearest-neighbor (D = 2) hoppings

For completeness, we now briefly review the results for D=
1 and compare them with the case D = 2. It turns out that
this comparison is very instructive to understand the case of
generic D.

2 δ c
eq is determined by requiring ωqc = 0 in Eq. (6). For ν ̸= 0, Sq(ν ,D) ̸=

0 ∀q, and thus, δ c
eq = 0. Notice it does not depend on ν which is quite differ-

ent from the transverse-field Ising model with long-range interaction [18].
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0 0.1 0.2 0.3 0.4 0.5
q/π

-4

-2

0

2

4

τq

tq,1

qc

(a)

0 3 6 9 12 15tq,m

-2

-1

0

1

2

τ
q

(b)

m=1 m=2 m=3 m=4

0 3 6 9 12 15t
-0.8

-0.4

0

0.4

0.8

u(t)

f(t)

(c)

δ = 0.7

δ0 = -0.8

D = 1

Figure 1. In (a) and (b) we show the Yang-Lee-Fisher zeros ζqn,m
[Eq. (14)] for D = 1. (a) tq,1 and τq as a function of the momentum
q (for accumulation line m = 1). (b) The complex-time plane (for
m = 1, . . . ,4). (c) The associated dynamical free energy f [Eq. (13)]
and its time derivative u as a function of t. In (a), qc denotes the
momentum associated with the real-time YLF zero. The symbols in
(a) and (b) correspond to the allowed values of q for a finite chain of
length L = 60. The continuous lines in (a), (b) and (c) correspond to
the thermodynamic limit. The sudden quench is from δ0 = −0.8 to
δ = 0.7.

For D = 1 and δδ0 < 0, Eq. (15) gives a single solution

qc = arctan
(

1√
−δδ0

)
∈
[
0, π

2

]
[see Fig. 1(a)]. This means

that each accumulation line in (14) provides only one real-

time instant tqc,m =
(
m− 1

2

)
π

√
1−δδ0

δ (δ−δ0)
in which the dynamic

free energy is non-analytic in the thermodynamic limit [see
Fig. 1(b)]. This non-analyticity is manifest as a cusp in f (t)
(or a discontinuity in the dynamic internal energy u ≡ ∂ f

∂ t ) at
t = ζqc,m = tqc,m [see Fig. 1(c)]. Note that for the case D = 1,
the results do not depend on the value of ν .

Precisely, the non-analyticity of the dynamic free energy
can be quantified by analyzing the behavior of the YLF

zeros near the real-time axis. From the Weierstrass fac-
torization theorem [4–6], the singular part of the free en-
ergy due to the zero in the mth accumulation line is fn-a =
−L−1

∑n ln(ζ −ζqn,m)+ c.c. . Here, c.c. stands for complex
conjugate and accounts for the zeros of Z̄ (the complex con-
jugate of Z). In the thermodynamic limit, ζqn,m in Eq. (14)
can be expanded near qc [see Fig. 1(a)]. Then, the real-time
non-analyticity of the dynamic internal energy is quantified by

un-a =− 1
π

ˆ
δq

−δq

dq̃
∆t − (Aqc,m − iBqc) q̃

+ c.c., (16)

where ∆t = t − ζqc,m = t − tqc,m, q̃ = q − qc, Aqc,m =
∂ tq,m

∂q

∣∣∣
q=qc

= − δ0(1−δ 2)
(δ−δ0)

√
−δδ0

tqc,m, Bqc = − ∂τq
∂q

∣∣∣
q=qc

=

2 |δ |ω−3
qc,δ , and δq is a positive constant whose value is

unimportant for quantifying the non-analyticity of u. The
numerical prefactor is π−1 and not (2π)−1 because we are
using the properties (8) to take into account the other YLF
zero in the interval q ∈

[
π

2 ,π
]
. By a simple integration (via

residues, for instance), we can show that first derivative of the
dynamic free energy has a discontinuity given by

∆u(ζ = ζq,m) = lim
∆t→0+

un-a − lim
∆t→0−

un-a =− 4Bqc

A2
qc,m +B2

qc
.

(17)
This is because the pole at q̃ = ∆t

Aqc,m−iBqc crosses the real-q̃
axis when ∆t changes sign. We have confirmed this result via
numerical integration of (13).

For D = 2 and δδ0 < 0, the situation is more involved.
If v < log2 3 ≈ 1.585, Eq. (15) admits two additional solu-

tions if − 1
δδ0

> T 2
qmin

(ν ,D)=
(

3+2ν

3−2ν

)3(
2ν+1
2ν−1

)
[see Fig. 2(a)].

This is because T 2
q (ν ,D) has a local minimum at qmin =

1
2 arccos

(
− 4ν+3

22+ν

)
. Thus, each accumulation line of YLF ze-

ros crosses the real-time axis at three different instants [see
Fig. 2(b)]. The corresponding density of YLF zeros crossing
the real-time axis is a constant. Hence, as in the case D = 1,
the corresponding non-analyticities are cusps in f (t) at those
time instants [see Figs. 2(c) and (d)].

However, it is not straightforward to anticipate the resulting
singularity when the two additional YLF zeros become de-
generate, i.e., when − 1

δδ0
= T 2

qmin
(ν ,D). Following the same

steps as in Eq. (16), the singular part of the dynamical internal
energy around the time instant ζqmin,m = t∗qmin,m is

un-a =− 1
π

ˆ
δq

−δq

dq̃
∆t −

(
Aqmin,mq̃− i

2Cqmin q̃2
) + c.c. (18)

where ∆t = t − ζqmin,m = t − t∗qmin,m, q̃ = q− qmin, Aqmin,m =
∂ tq,m

∂q

∣∣∣
q=qmin

, Cqmin = − ∂ 2τq
∂q2

∣∣∣
q=qmin

, and δq, as before, is an

unimportant positive constant. As for the case D = 1, the
non-analytical behavior of un-a comes when a pole crosses
the real-q̃ axis. However, we now face the situation where
the integrand of un-a has two poles. It is easy to see that
one of the poles always remains far from the real-q̃ axis and,
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q/π
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tq,1
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(a)δ = -δ0 = 0.4

δ = -δ0 = Tqmin

-1

0 2 4 6 8 10tq,1

-4

-2

0

2

τ
q

ν = 1/2

D = 2

tqmin,1
*

δ = -δ0 = 0.4δ = -δ0 = Tqmin

-1

(b)

-0.2

0

0.2

0.4

0 2 4 6 8 10t
-0.4

-0.2

0

0.2

0.4

u(t)

f(t)
(c)

tqmin,1
*

δ = -δ0 = 0.4

f(t)

(d) δ = -δ0 = Tqmin

-1

u(t)

tc1,1

tc1,1

tc2,1

tc1,2
tc3,1

tc1,2

tc1,3

Figure 2. In (a) and (b) we show the Yang-Lee-Fisher zeros ζqn,m
[Eq. (14)] for D = 2 and ν = 1/2. (a) tq,1 and τq as a function
of the momentum q (for accumulation line m = 1) and (b) in the
complex-time plane (for m = 1). (c) and (d) The associated dynami-
cal free energy f [Eq. (13)] and its time derivative u as a function
of t. We consider two sudden quenches: (c) from δ0 = −0.4 to
δ = 0.4 (fulfilling − 1

δδ0
> T 2

qmin
) and (d) from δ0 = −T−1

qmin
(ν ,D)

to δ = T−1
qmin

(ν ,D)≈ 0.52 (see legends). In (a), qmin denotes the mo-
mentum associated with the real-time YLF zero which only touches
the real-time axis. In (b) and (d), the corresponding time instant tqmin

is highlighted. The symbols in (a) and (b) correspond to the allowed
values of q for a finite chain of length L = 60. The continuous lines
in (a), (b), (c) and (d) correspond to the thermodynamic limit.

thus, does not contribute to the non-analyticity. The other one
does not cross the real-q̃ axis either. It only touches it when
∆t = 0. As a result, the limit un-a(t) as t → tqmin exists, i.e.,
∆u = lim∆t→0+ un-a − lim∆t→0− un-a = 0. The same reasoning
applies to all derivatives of u. Finally, we conclude that al-
though f is non-analytic at tqmin , it is a smooth function (all
derivatives exist) at that time instant [see Fig. 2(d)]. Nonethe-
less, we recall that this non-analyticity poses a numerical chal-

0 0.1 0.2 0.3 0.4 0.5
q / π

10
-1

10
0

10
1

10
2

10
3

10
4

T
2 q
(ν

,D
)

ν = 0.5, D = 4
ν = 0.75, D = 4

(a)

Figure 3. (a) T 2
ν ,D vs. q for D = 4 and ν = 0.5 and 0.75. (b) The

dynamic free energy f (t) vs. t for a system of size L= 40000, D= 4,
ν = 0.5, and δ0 = −δ = 0.5 [meaning Eq. (15) has three solutions
for 0 < q < π

2 ]. The arrows indicate the cusp positions, which are
located at tc

k,m (see text). Inset: f (t) for L = 40 and L = 4000.

lenge in computing f and its derivatives at that time instant.
In analogy to the Ehrenfest’s classification of the order of

the equilibrium phase transitions [46], we could classify the
order of the DQPTs by the lowest derivative of the dynamic
free energy that is discontinuous at the transition. With this
classification in mind, we observe that when the YLF zeros
are not degenerate, the DQPT is of first order. On the other
hand, when the YLF zeros become degenerate, the DQPT is
of infinite order. It is then tempting to state that this is the dy-
namic analog of the Berezinskii-Kosterlitz–Thouless (BKT)
transition of equilibrium systems. However, BKT transition
has a continuous of YLF zeros in one of the phases. Here,
there is no continuous distribution of YLF zeros after or be-
fore the instant of non-analyticity t∗qmin,m.

C. Numerical results

As we show below, this feature of two dynamical QPTs be-
coming degenerate (either by fine-tuning δδ0 or ν) and the
associated cusps annihilating each other is a general feature
for all other values of the hopping range D.

We plot in Fig. 3(a) T 2
q (ν ,D) ≡ S2

q(ν ,D)

C2
q(ν ,D)

[see Eqs. (4) and

(5)] for ν = 0.5 and D = 4. Notice that T 2
ν ,D diverges for q’s

such that Cq(ν ,D) = 0. When ν is sufficiently small, T 2
ν ,D
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has D−1 local minima in the domain q ∈
[
0, π

2

]
. This means

that, for sufficiently large − 1
δδ0

, there are 2D− 1 solutions
of Eq. (15). Let

{
qc

k

}
be the set of solutions of Eq. (15)

for generic values − 1
δδ0

> 0. Then, k runs from 1 to Ns,
where 1 ≤ Ns ≤ 2D − 1. The corresponding critical times
are tc

k,m = (2m−1)π
2ωqc

k ,δ
. As a representative example, we plot

in Fig. 3(b) f (t) for δ0 = −δ = 0.5 and L = 40000. For
these parameters, we have that Ns = 3 with tc

1,1 ≈ 0.380π ,
tc
1,2 ≈ 0.954π , tc

1,3 ≈ 1.591π , and tc
2,1 ≈ 1.141π . The corre-

sponding non-analyticities are cusps. Evidently, these cusps
become rounded for finite systems (see, for instance, the inset
of Fig. 3(b)). However, for the case ν = 0, non-analyticities
occur even for finite systems (see Appendix A).

As previously argued, the number of minima in T 2
q is D−1

for sufficiently small ν , yielding up to Ns = 2D−1 solutions
of Eq. (15) (critical time instants per accumulation line). This
number has to diminish when ν increases as Ns = 1 for ν →
∞. This is clearly demonstrated in Fig. 3(a) for ν = 0.75.
Notice that, instead of only local minima, T 2

q develops local
maxima for larger values of ν . This means that the number of
critical time instants Ns per accumulation line [solutions ] is
a non-monotonic function of the quench parameters δ and δ0.
This non-trivial behavior is demonstrated in Figs. 4(a) and (b)
where we plot Ns as a function of ν and δ for fixed δ0 = 1 and
D = 4 and 40. Notice that Ns always change by ±2 as these
solutions always appear or disappear in pairs. At the transition
lines, two solutions degenerate. The resulting non-analiticity
is a smooth one as demonstrated for the case D = 2.

Having discussed the cases of large and small ν , and small
D, we now discuss the interesting case of small ν and D ≫ 1.
As we have argued there can be 2D−1 solutions of Eq. (15).
This means the existence of many critical time instants per
accumulation line. More interesting, it can be demonstrated
that the largest critical time instant is of order unity and the
smallest one is of order D−1 [see Fig. 4(d)]. As shown in
Fig. 4(c), these time instants are somewhat evenly distributed
in the interval

[
∼ D−1,∼ 1

]
(see more details in Appendix

A). Intriguingly, this means that for large values of D the dy-
namic free energy f (t) will present a large number of non-
analyticities in time. This is not only because the number of
critical time instants is of order D per accumulation line. As
many of those instants happen at tc ∼ D−1, they “reappear”
yet at short time-scales in the other accumulation lines. As
a result, f (t) has non-analyticities at almost all times if the
quantum quench crosses the transition, D is sufficiently large,
and ν is sufficiently small (see Fig. 5).

IV. FURTHER DISCUSSIONS AND CONCLUSIONS

We studied the dynamic free energy f (t) of a free fermion
chain with long-range hopping couplings, which is described
by Eq. (1), focusing on its non-analyticities and the associated
Yang-Lee-Fisher zeros.

For effective short-range hoppings (small D or large ν) the
YLF zeros cross the real-time axis only in a few instants per
accumulation line. In contrast, when the hoppings are suf-

0 0.25 0.5 0.75 1 1.25 1.5

ν

−1

−0.8

−0.6

−0.4

−0.2
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1
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3

4

5

6

7

N
s

(a)

0 0.25 0.5 0.75 1 1.25 1.5

ν

−1

−0.8

−0.6

−0.4

−0.2

δ

1

14

27

40

53

66

79

N
s

(b)

Figure 4. (a) The number of solutions of Eq. (15), Ns, as a function
of ν and δ for fixed δ0 = 1 and (a) D = 4 and (b) D = 40. (c) The
critical times tc

k,1 for various values of ν , D = 400 and δ0 = −δ =

0.5. (d) The earliest critical instant tc
1,1 vs. 1/D for ν = 0.1 and

δ0 =−δ = 0.5.
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0 0.5 1 1.5 2
t

0

0.1

0.2

0.3

0.4
f(

t)

D = 50

ν = 0

δ = 0.8

δ0 = -0.9

Figure 5. The dynamical free energy f as a function of time t in the
case D = 50 and ν = 0 for the quantum quench from δ0 = −0.9 to
δ = 0.8. Many non-analyticities appear already at short time scales.

ficiently long ranged (large D and small ν), the number of
times the YLF zeros cross the real-time axis increases with D
and are more or less evenly spread in the short time interval
0 < Jt ≲ 1, where J is the microscopic energy scale.

We point out that these many non-analyticities are different
from other cases studied in the literature, where the YLF zeros
accumulate in an area on the complex-time plane. This is the
case for the Kitaev honeycomb model [47] and for disordered
systems exhibiting dynamical Griffiths singularities [27]. In
the thermodynamic limit, the infinitely many zeros crossing
the real-time axis yield to non-analyticities only at the edges
of those distributions of zeros. Here, for the model Hamil-
tonian (1), the zeros do not become continuously distributed
over an area on the complex-time plane. They remain dis-
tributed in lines that cross the real-time axis in many different
time instants. Evidently, when the distance between these sin-
gularities increases beyond numerical or experimental resolu-
tion, they will appear as a smooth function of time, resembling
the case of continuously distributed zeros over a time window.

We emphasize that the singularities are prominent only in
sufficiently large systems (rigorously, only in the thermody-
namic limit), especially when D is large and ν small. There-
fore, the observation of these many singularities in the current
cold-atom platform, where the system size is not too large,
may be a challenging task. Perhaps, the best way to cir-
cumvent this obstacle is to consider model with anti-periodic
boundary condition, D = L/4, and ν = 0 (see Appendix A).
For this situation, the YLF zeros lie on the real-time axis even
for finite systems. We note that anti-periodic boundary con-
ditions can be realized by considering the one dimensional
chain with periodic boundary condition with a magnetic field
passing through the ring. For a particular choice of the flux
magnetic, it is possible to map this model to one with the anti-
periodic boundary condition (see, for instance, Refs. 48–50).

To the best of our knowledge, long-range interaction ef-
fects in the context of DQPTs have only been studied for the
transverse-Field Ising chain [18, 19, 24–26]. Although the
model studied here is different, the present work may shed
light on what happens in other models. For instance, in the

transverse-field Ising model anomalous cusps (associated with
the emergence of new cusps) in the dynamic free energy were
reported when ν ≲ 2.2, at least for some quench parame-
ters [18]. These cusps were denominated as anomalous simply
because they are not equally spaced in time. As we have ex-
plicitly shown, new cusps not evenly separated in time appear
for sufficiently long-range hopping (small ν) in a non-trivial
fashion (see Fig. 4) as predicted by Eq. (15). It is then desir-
able to understand Eq. (15) in a more fundamental way and/or
generalize it to other systems, in particular, to non-integrable
ones. To this end, we recast Eq. (15) is terms of general quan-
tities and find that it is equivalent to δ0ω2

q,δ + δω2
q,δ0

= 0.
Thus, in the lack of a better analogy, the number of YLF ze-
ros (or cusps) equals the number of Fermi point pairs of this
“weighted dispersion” with zero “chemical potential”. While
this is a simple fact for the model we studied, it would be
desirable to verify it to other models. For the conventional
nearest-neighbor transvere-field Ising chain, the analogous re-
lation can be obtained by recasting the results of Ref. 12: it
is simply ω2

q,g +ω2
q,g0

= (g−g0)
2, where the dispersion rela-

tion is ωq,g =

√
(g− cosq)2 + sin2 q and g = h/J is the ratio

between the transverse field and the ferromagnetic coupling.
Again, one needs to find the Fermi points of a weighted dis-
persion with chemical potential (g−g0)

2. We emphasize that,
in both models, the YLF zeros are determined uniquely by the
knowledge of the dispersion relation and of the pre- and post-
quench parameters. It certainly desirable to verify whether
this remains true for other models.

Finally, we mention that smaller the value of ν , harder is
the detection of the non-analyticities numerically. In partic-
ular, the cusps become rounded if the system size is not suf-
ficiently large [see Fig. 3] precluding its detection with exact
diagonalization. On the other hand, powerful numerical tech-
niques such as the tDMRG or the MPS use, typically, a time
step ∆t ∼ 0.01/J to evolve the initial state. Our results indi-
cate that such time step is not sufficiently small to detect the
non-analyticities that appear already at short time scales when
1/(DJ)< 0.01/J (or D ≳ 100).
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Appendix A: The case ν = 0

In this appendix, we consider the special case that ν = 0,
where Eqs. (4) and (5) become

Cq =
sin(Dq)cos(Dq)

sinq
and Sq =

sin2 (Dq)
sinq

. (A1)
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1. Critical time instants

We need to solve Eq. (15) with the care of having ωq ̸= 0.
Thus, we need to solve

cos2 (Dqc)+δ0δ sin2 (Dqc) = 0. (A2)

As we are interested in solutions in the interval q∈ [0, π

2 ], then,

qc
k =

1
D

(
(k−1)π + arcsin

(
1√

1−δδ0

))
, k = 1, ...,

D
2
.

(A3)
As we already mentioned, in the Sec. III, to solve Eq. (A2)

we need that D ≪ L, otherwise, there are not enough q’s to
satisfy this equation. Once we determine critical values of q
that satisfy Eq. (A2) we obtain the critical times tc

i,n =
(2n−1)π
2ωqc

i
(δ ) ,

n = 1,2, ..., which are given by

tc
k,m =

(
m− 1

2

)
π

1−δδ0√
δ (δ −δ0)

sin(qc
k) . (A4)

a. The limit D ≫ 1

In this limit, the first critical instants (k ≪ D) of each accu-
mulation line m become

tc
k,m ≈

(
m− 1

2

)
π

1−δδ0√
δ (δ −δ0)

 (k−1)π + arcsin
(

1√
1−δδ0

)
D

 .

(A5)
Thus, they vanish ∼ D−1.

b. The case D = L/4 and δδ0 =−1

When δδ0 =−1, Eq. (A3) becomes qc
k =

π

2D

(
2k− 3

2

)
. The

Fourier wavevectors in (2) are qn =
2π

L

(
n− φ

2

)
. Thus, inter-

estingly, when D = L/4 and the anti-periodic boundary con-
dition is considered (φ = 1), all critical wavevectors qc

k exist
even for finite systems (evidently, L is a multiple of 4). The
associated critical instants are

tc
k,m = (2m−1)π

1√
1+δ 2

sin(qc
k) . (A6)

Notice also that, because the zeros of Z are on the real-time
axis even for finite systems, the dynamic free energy diverges
at tc

m,k. Similar non-analyticities at finite systems were ob-
served in other models [13, 15, 45]. We illustrate this peculiar
behavior of the f (t) in Fig. 6 for a quench where δ =− 1

δ0
= 2

and L= 16 and L= 1600. The peaks are finite due to the finite
time step we used (∼ 10−4). Evidently, f (t) becomes analytic
in the thermodynamic limit as there will be a continuous dis-
tribution of YLF zeros over the real-time axis.

Figure 6. (a) The dynamic free energy f (t) vs. t/π for the case
ν = 0, D = L/4, δ = − 1

δ0
= −2. (a) For a system size L = 16. The

arrows indicate the critical time positions given by Eq. (A6). (b) The
same as (a) but L = 1600. Inset: shows a zoom of the region close to
t = 0.06π .

2. Ground state energy for D = L/4

We now compute the ground state energy for systems with
PBC (φ = 0) and APBC (φ = 1), ν = 0, and D = L/4. The
dispersion (6) becomes

ωqn,δ =

√
φ +δ 2 (1+2(1−φ)(−1)n)

2

2sinqn
, (A7)

for n = 1, ..., L
2 , except for n = L

2 and φ = 0. Instead, in that
case, ωπ,δ = L

4 . Notice that the system is gapless (gapful) for
PBC (APBC) φ = 0 (φ = 1) regardless of the value of the
dimerization parameter δ . A similar situation appears in the
topological insulators (TIs). However, in the TIs the bulk is
gapped under PBC and there are gapless boundary states for
OBC. In the present model, we have gapless states in the bulk
for the PBC case, and a gapped state for φ ̸= 0. In Fig. 7(a),
we illustrate the dispersion relation Eq. (A7) for L = 100 and
δ = 0.5 for the model with PBC and APBC. It is interesting
to note that, in the thermodynamic limit, the system with PBC
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Figure 7. (a) The dispersion relation ±ωq,δ (ν ,D) vs. q for systems
under PBC and APBC (see legend) with L = 100, ν = 0, δ = 0.5
and D = L/4. The symbols are the data obtained from Eqs. (A8) and
(A11). The solid lines connect the fitted points using Eqs. A10 and
A12.

has two degenerate flat bands.
The ground state energy EAPBC

0 (δ ,ν = 0) for the system
with APBC is

EAPBC
0 (δ ,0) =−

√
1+δ 2

2

L
2

∑
n=1

1
sinqn

. (A8)

We can replace a sum by a integral by using the Euler-

Maclaurin sum

n

∑
m=0

F(a+kh) =
1
h

ˆ b

a
F(q)dq+

1
2
(F(b)+F(a))+R, (A9)

where R is the residual term. So,

EAPBC
0 (δ ,0) = −L

√
1+δ 2

4π

{ˆ π−π/L

π/L

dq
sinq

+
2π

Lsin(π/L)

+
2πR

L

}
,

= −L

√
1+δ 2

2π

{
ln
[

cos(π/2L)
sin(π/2L)

]
+

π

Lsin(π/L)

+πa1

}
, (A10)

where we use the fact that the residual term R = La1. We
were not able to obtain the exact value of a1. However, we
obtain that a1 = 0.08596 by fitting the exact data Eq. (A8)
with Eq. (A10) [see Fig. 7(b)]. We verify that a1 does not de-
pend on δ . For large values of L, the energy per site becomes

EAPBC
0 (δ ,0)/L = −

√
1+δ 2

2π
[ln(2L/π)+2+πa1]. Note that

the energy is not extensive. However, we can recover the ex-
tensivity if we consider the volume of the system as V = L lnL.

For periodic boundary conditions, the ground state energy
for L multiple of 4 is

EPBC
0 (δ ,0) =−L

4
−|δ |

L
4 −1

∑
m=0

1
sin(2π/L(2m+1))

. (A11)

Similarly as the APBC case, we obtain

EPBC
0 (δ ,0) = −L

4
−L

|δ |
2π

{
ln
[

cos(π/L)
sin(π/L)

]
+

2π

Lsin(2π/L)

+2πa2

}
, (A12)

where a2 = 0.04297 ≈ a1/2 as expected since the residual
term depends on the interval and on h, which are basically
the same in the thermodynamic limit. In this case, for large
values of L, the energy per site becomes EPBC

0 (δ ,0)/L =

− 1
4 − |δ |

2π
[ln(L/π)+2+2πa2]. Note that EAPBC

0 − EPBC
0 ∼

−
(√

1+δ 2 −|δ |
)

L ln(L).
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