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Optical box traps for cold atoms offer new possibilities for quantum-gas experiments. Building on
their exquisite spatial and temporal control, we propose to engineer system-reservoir configurations
using box traps, in view of preparing and manipulating topological atomic states in optical lattices.
First, we consider the injection of particles from the reservoir to the system: this scenario is shown
to be particularly well suited to activate energy-selective chiral edge currents, but also, to prepare
fractional Chern insulating ground states. Then, we devise a practical evaporative-cooling scheme
to effectively cool down atomic gases into topological ground states. Our open-system approach
to optical-lattice settings provides a new path for the investigation of ultracold quantum matter,
including strongly-correlated and topological phases.

Introduction. Optical box traps have been demon-
strated as a powerful tool in cold-atom experiments [1].
Boxes of different shapes and dimensionalities have
been realized for ultracold atoms or molecules [2–6],
which led to novel observations including the quantum
Joule–Thomson effect [7] and the recurrences of coher-
ence in a quantum many-body system [8]. The gas homo-
geneity also facilitates the probe of density-related quan-
tities, including the quantum depletion of atomic conden-
sate [9], the low-energy excitation spectrum of ultracold
Fermi gases [10], and sound speed in superfluids [11–18].
Besides, box traps have been used for state preparation,
leading to the discovery of a novel breather in a 2D Bose
gas [19], the deterministic preparation of a Townes soli-
ton [20], and the demonstration of the transition between
atomic and molecular condensates [21].

Combined with optical lattices, box potentials allow
to study a well-controlled number of atoms trapped in
a few lattice sites. This exquisite control opens up new
possibilities, such as measuring the growth of entangle-
ment upon a quench [22], or revealing fundamental prop-
erties of the Fermi-Hubbard model [23–31] and many-
body localization [32–34]. More recently, programmable
box traps enabled the generation of large homogeneous
systems of more than 2000 atoms, leading to large-scale
quantum simulation of out-of-equilibrium dynamics [35–
37]. In the context of topological matter, a Laughlin-type
fractional quantum Hall (QH) state has been recently
realized in a small box filled with strongly interacting
bosons [38]. Isolating 1D lattices also allowed for the ob-
servation of the symmetry-protected Haldane phase [39]
and 1D anyons [40]. Furthermore, the ability of creat-
ing optical boxes with sharp boundaries offers an ideal
framework to study topological edge modes [41, 42].

Inspired by the possibility of shaping box potentials of
arbitrary geometries, combined with the ability to control
these dynamically, we propose to use box traps to parti-
tion a lattice system into different subregions, separating
a “reservoir” region from a “system” of interest. We ex-
plore how dynamically tuning the relative energy between
these two regions allows for the controlled preparation
of interesting states within the system, a scheme coined
“cold-atom elevator”. We investigate two main scenarii:
(i) injection of particles from the reservoir to the system,
so as to populate edge states in an energy-resolved man-
ner [Fig. 1(a)], or to prepare a strongly-interacting topo-
logical ground state in the bulk [Fig. 1(b)]; (ii) controlled
removal of particles from an excited state (e.g. a thermal
metal), performed in a repeated “vacuum-cleaner” man-
ner, in view of cooling the system down to a topological
insulating ground-state [Fig. 1(c)]; see also Refs. [43, 44].

Edge-state injection. Partitioning boxes naturally
provides sharp boundaries between a system and reser-
voirs, an ideal platform to realize and probe topological
edge states. Hallmark of topologically nontrivial states,
chiral edge states have been observed in photonic sys-
tems [45–47] and in cold atoms using synthetic dimen-
sions [48–54]. Despite various proposals [55–62], the re-
alization of real-space atomic chiral edge modes has only
been reported recently [41, 42]. We now show how our
sub-box geometry can be used to activate topological
edge currents within an empty system, in an energy-
selective manner and without populating the bulk.

The general idea consists in coupling an empty lattice
system (potentially hosting QH states) to a reservoir, as
sketched in Fig. 1(a). Particles are initially prepared in
the reservoir, in a state that can be chosen trivial [63]. We
then perform a sudden lift of the reservoir sub-box energy
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FIG. 1. Sketch of the cold-atom elevator. (a) Protocol for
chiral edge state injection. Setting the reservoir energy on
resonance with the system’s edge modes, particles are contin-
uously injected into edge states in an energy-selective manner,
and chiral edge currents appear in the system without popu-
lating the bulk. (b) Injection protocol for state preparation.
Starting from a trivial state in the reservoirs, the latter are
slowly lifted so as to adiabatically inject particles into the
system until an insulating state, e.g. a quantum Hall (QH)
state, is formed. (c) Cooling protocol for state preparation.
A proper tuning of the reservoir energy can be used to retrieve
excitations (hot atoms) from the system. Removing the parti-
cles from the reservoir, and repeating this lift-removal process
over many cycles, leads to the preparation of the desired in-
sulating (QH) state in the system.

ϵR to a proper position, such that the energy of the par-
ticles in the reservoir becomes resonant with that of the
edge mode in the system. In this way, energy-selective
edge states will be populated in the initially empty sys-
tem, allowing for the observation of chiral transport on
a dark background.

As a concrete example, we consider the Harper-
Hofstadter (HH) model [64], a square lattice with mag-
netic flux ϕ=2πα per plaquette, coupled to reservoirs:

Ĥ =−
∑
⟨ℓℓ′⟩

(
Jℓℓ′e

iϕℓℓ′ â†ℓ âℓ′ + h.c.
)
+
∑
ℓ

ϵℓn̂ℓ, (1)

where âℓ(â
†
ℓ) are the annihilation (creation) operators on

site ℓ and n̂ℓ = â†ℓ âℓ. We consider nearest-neighbor tun-
neling amplitudes Jℓℓ′ and Peierls phases ϕℓℓ′ , and set
ϵℓ = ϵR in the reservoir (zero otherwise). Whether the
reservoir is also subjected to the flux or not does not
qualitatively change our findings [63], hence, for simplic-
ity, we suppose that the entire system-reservoir setting is
described by the HH model: we set Jℓℓ′ = 1 and choose
Peierls phases ϕℓℓ′ = ϕn (resp. 0) for hopping along x
(resp. y), where n is the lattice index along y.
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FIG. 2. Edge state injection in the HH model. (a) Spectrum
as a function of the eigenstate index j. The blue and red dots
correspond to the Hamiltonian describing the reservoir (with
ϵR = 1) and the system, respectively. EF denotes the Fermi
energy. (b) Population of HH eigenstates ρj as a function of
their energy Ej , at time t = 28. (c) Edge-mode population
as a function of ϵR for different initial particle number N in
the reservoir. Snapshots of spatial density distribution for
(d) ϵR = 1, (e) ϵR = 2.5, (f) ϵR = 4 at times t = 7, 21. Here,
a system of size 13 × 12 and with flux ϕ=π/2 per plaquette
is coupled to a reservoir of size 7 × 12. Except for (c), the
number of particles is N = 19. Energy and time are in units
of J and ℏ/J , respectively. The arrows in (d) and (f) are a
guide to the eye for the chiral motion.

The HH Hamiltonian is a paradigmatic model of Chern
insulators (CIs): it hosts topologically nontrivial energy
bands, which are characterized by nonzero Chern num-
bers [65]. Setting open boundary conditions (OBC), the
model hosts chiral edge modes within the bulk energy
gaps [58, 59, 63]. We show the energy spectrum for a
system of size 13 × 12 and a reservoir of size 7 × 12 in
Fig. 2(a); the regions of low density of states (steeper
slopes), correspond to chiral edge states. When setting
the lift energy to the value ϵR=1, the states populated in
the reservoir become resonant with the chiral edge states
located within the lowest bulk gap of the system.

Based on this observation, we show how to populate
edge states in an energy-selective manner. We start with
N=19 particles in the reservoir, which corresponds to a
complete filling of its nearly-flat lowest Bloch band; the
flatness allows for energy-selective population of system
states. We investigate the quench dynamics obtained by
solving the time-dependent Schrödinger equation, using
different values of ϵR. For ϵR=1, a clockwise chiral edge
current is clearly observed in Fig. 2(d), where we plot the
spatial density distribution at different times. When the
box potential is lifted to ϵR = 4, i.e. when the reservoir
is resonant with the edges states located in the upper
gap, an opposite chiral motion occurs [Fig. 2(f)]. Setting
ϵR=2.5, the populated reservoir states are resonant with
the middle Bloch band of the system, in which case bulk
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states are populated in the system [Fig. 2(e)].

To quantify our edge-state injection scheme, we define
the mean occupation ρj(t) of an individual single-particle
eigenstate j in the HH system. As shown in Fig. 2(b), we
find dominant populations in the bulk gaps for ϵR = 1
(lower gap) and ϵR = 4 (upper gap). Furthermore, we de-
fine the total edge-state population Pedge =

∑
j∈Edge ρj ,

where the state index j runs over all edge modes. Fig-
ure 2(c) shows the population Pedge as a function of ϵR at
time t=28 for different particle numbers N . By lowering
the number of fermions in the reservoir, one observes a
smaller edge-mode population. In any case, the peak po-
sitions clearly indicate the energetic location of the edge
modes (strong signal) and bulk modes (weak signal). As
a corollary, our edge-state injection scheme can be used
as a spectroscopic tool for atomic QH systems.

FCI preparation based on particle injection. A natu-
ral question concerns the possibility of using the injection
scheme to form an insulating (QH) ground state within
the bulk of the system. We first explored this scheme
for a system of non-interacting fermions in view of form-
ing a CI, and we present our findings in [63]. Here, we
demonstrate the applicability of this scheme to realize a
fractional Chern insulator (FCI): a lattice analogue of a
fractional QH state [66, 67]. Several schemes have been
proposed for realizing FCIs with cold atoms, based on the
adiabatic variation of various system parameters [68–77].
Such a scheme was recently implemented to form an FCI
state of two strongly-interacting bosons in a 4 × 4 lat-
tice [38]. We now show that an open-system approach,
based on dynamically tuning box potentials, offers an
alternative, potentially simpler and better, approach to
prepare an FCI ground state with hard-core bosons.

We consider the sub-box configuration depicted in
Fig. 1(b): the system is connected to two reservoirs (with-
out flux). The initial state is an easily-prepared trivial
state with all (interacting) particles in the reservoirs. The
system region, which is initially empty, is described by
the Hofstadter-Bose-Hubbard model with hard-core in-
teractions, which is known to host a ν = 1/2 Laughlin-
type ground state [78–83]. We aim at gently injecting
particles from the reservoirs to the system, by slowly lift-
ing the reservoirs energy, in view of building up an FCI
ground state in the system. Here, we set the hopping
Jℓℓ′ = JR < 1 within the reservoirs and the connecting
interface, to limit excitations during preparation.

We first analyze the (static) ground-state properties of
our system-reservoir setup, as a function of the reservoirs’
energy ϵR. Figure 3(c) shows the bulk density nB, as eval-
uated within the central 2× 2 sites. The incompressible
nature of the FCI state clearly manifests as a plateau
in the bulk density. In contrast to more conventional
closed-system schemes, the present system automatically
chooses the ideal number of bosons to form the FCI state
(for the given flux value and number of lattice sites). The
density reaches nB≈0.18 on the plateau, and we verified
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FIG. 3. Preparing a fractional Chern insulator based on injec-
tion. (a) Spatial density distribution of the initial state with
ϵR = −3. (b) Density distribution of the prepared state using
the ramp shown in the inset of panel (d) and τ = 160. (c)
Bulk density and the local Středa marker as a function of ϵR.
The shadow indicates the FCI regime. (d) Many-body energy
gap as a function of ϵR. Inset: the ramping protocol of ϵR(t)
from −3 to −2 within time τ . (e) Bulk density as a function
of ϵR for different τ and for the instantaneous ground state.
(f) Local marker as a function of τ . Inset: linear fit of the
density versus flux at τ = 160, which gives Cstr =0.51. Here,
we consider N =12 hard-core bosons; the system of size 4× 4
is coupled to two reservoirs of size 4× 4, with JR =0.15. The
error bars denote the standard error of the regression slope
used to extract Cstr in Eq. (2).

that it converges towards the thermodynamic prediction
nB=1/8 for increasing system sizes [63]. As another hall-
mark signature of the FCI, we evaluate the fractionally-
quantized Hall conductivity σH, which is encoded in the
density distribution via Středa’s formula [83–87],

Cstr =
∂nB

∂α
=

σH

σ0
, (2)

where σ0 = 1/2π is the conductivity quantum. For a
ν=1/2 Laughlin state, the Středa marker is expected to
take the value Cstr=1/2, which is the many-body Chern
number of the state. In our case, we find Cstr ≃ 0.46
at ϵR=−2, hence indicating the precursor of a fractional
Hall response [Fig. 3(c)]. It is interesting to compare this
result to the value C ′

str = 0.61, which is obtained in the
experimental closed-box configuration of Ref. [38], where
an exact number of bosons (N = 2) is loaded in 4 × 4
sites; this comparison supports the idea that the system
optimizes the formation of an FCI state when coupled to
reservoirs.
The bulk density and the Středa marker both show

an interesting behavior across the transition that occurs
within the system, as particles enter the system and even-
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tually form the FCI state. Indeed, in the vicinity of
ϵR ≈ −2.5, one notices an abrupt increase in nB and a
breakdown of Středa’s formula [Fig. 3(c)], accompanied
with a sudden drop in the many-body gap [Fig. 3(d)].
The minimal many-body gap associated with this transi-
tion is ∆=0.016, which suggests a realistic ramping time
τ ∼100 for adiabatic state preparation, compatible with
recent experiments [38].

We now analyze how an FCI ground state can be dy-
namically prepared by slowly ramping up the reservoir
energy to the ideal value ϵR ≈ −2. To optimize adia-
batic preparation, we adjust the ramp according to the
many-body gap; see the inset in Fig. 3(d). By tracking
the bulk density during the ramp [Fig. 3(e)], one recovers
the formation of a plateau for a sufficiently long ramping
time τ , in agreement with the adiabatic-limit prediction
of Fig. 3(c). As further confirmed by the local Středa
marker, an FCI ground state with Cstr≈0.5 is prepared
for adiabatic times τ ≳ 140 [Fig. 3(f)]. The comparison
with a less efficient, linear ramp is presented in Ref. [63].

State preparation via repeated cleaning. So far, we
have discussed a protocol by which particles are injected
from a reservoir into an empty system. Motivated by the
ability of easily preparing an empty reservoir (a trivial
zero-entropy state), we now explore the possibility of us-
ing the reservoir as a vacuum-cleaning resource in view
of preparing ground states in the system. As sketched
in Fig. 1(c), one considers a ‘dirty’ (excited) initial state
within our system. The cleaning cycle is then as fol-
lows: (i) we slowly lower the reservoir energy, such as
to retrieve excitations (hot atoms) from the system in
a controlled manner; (ii) after this cleaning process, one
rapidly lifts the reservoir until it becomes decoupled from
the system; and (iii) one completely empties the reser-
voir. This cleaning cycle is then repeated ncyc times,
until convergence is reached towards a target insulating
(QH) state within the box. The advantage of this scheme
is two-fold: the empty reservoir state can be viewed as
a perfect and easy-to-prepare zero-temperature state of
holes; the difficulty in removing particles that are located
deep in the bulk is compensated by several repetitions.

We apply this scheme to a concrete preparation se-
quence, designed to prepare Chern insulators in atomic
HH systems. Inspired by Ref. [88], we start from a triv-
ial metal realized by loading non-interacting fermions in a
square lattice at half-filling in the presence of a staggered
potential [63]. We then ramp up the flux in the lattice to
the value ϕ=π/2, while reducing the staggered potential,
hence changing the topological nature of the bands: at the
end of this sequence, the target lowest band has a Chern
number C = 1. Due to the occupation of higher bands
in the initial metallic state, the target (lowest) band re-
mains perfectly filled during the whole duration of this
sequence, despite the gap closing (C = 0→ 1). The (ir-
regular) band populations, obtained at the end of this
sequence, are shown by blue dots in Fig. 4(b).

(a) (b)

(c) (d)
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FIG. 4. Preparing a Chern insulator by using the lift-removal
strategy. (a) Energy spectrum of the HH model coupled to a
trivial reservoir. Here, we partition a lattice of size 20 × 20
into a target 12 × 12 system (central box) and a surrounding
reservoir. EF denotes the Fermi energy. We set a flux ϕ =
π/2 in the system only. Inset: Simplified three-level model;
⟨E0⟩ and ⟨E1⟩ denote representative energies of the lowest
two bands. (b) Population in HH eigenstates ρj for different
ncyc. Inset: the HH orbital entropy versus ncyc. We set
JR = 0.15 and τ = 90 per cycle. (c) The local Středa marker
of the evolved state at ncyc = 16, as a function of the site
index along the middle row. Inset: the corresponding spatial
density distribution of the evolved state. (d) The local marker
as a function of τ for different cycles ncyc. The local marker is
averaged over a disk at the center with a radius of r=2. The
error bars denote the standard error of the regression slope
used to extract Cstr.

Our aim is to remove atoms from higher bands, while
leaving the lowest Chern band (C = 1) almost perfectly
filled, in view of forming a CI in the system. To achieve
this goal, we now apply our vacuum-cleaning protocol by
dynamically tuning the reservoir energy ϵR. During each
cycle of duration τ , we vary ϵR(t) with a saturation func-
tion [63], using a large initial value ϵiR = 4. At the end of

this first cycle, ϵR(t) reaches the value ϵ
f
R=−1.14, which

is located right below the first excited Bloch band of the
system. After lowering the reservoir to the final value
ϵfR, we then quickly lift it up until it becomes effectively
decoupled from the system; we then empty the reservoir
and complete one cycle. We then repeat this cleaning
sequence, but for the sake of efficiency, we progressively
increase the final value ϵfR at each cycle to properly ad-
dress all the higher bands [63]. We note that this cleaning
scheme can be understood through a simplified 3-level toy
model [inset of Fig. 4(a)], which can serve as a guide in
view of optimizing the control parameters [63].
Figure 4(b) demonstrates the efficient depletion of the

excited bands (and the resulting decrease of entropy) as
a function of the cycle number ncyc. In this process, the
bulk states of the lowest band remain almost perfectly
filled, and we find that a satisfactory CI ground state
is formed after 16 cycles of duration τ = 90. We plot
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the local (single-site) Středa marker in Fig. 4(c), which
confirms the topological nature of the bulk, Cstr≈1. We
plot Cstr as a function of the ramping time per cycle for
different ncyc in Fig. 4(d). This shows that an efficient
cleaning is reached for ncyc ≈ 12 cycles of duration τ ≳
200, and for ncyc≈16 cycles of duration τ≳50.

Concluding remarks. This work explored different
possibilities offered by the design of tunable boxes in cold-
atom experiments, setting the focus on the realization of
topological states. This approach offers substantial ad-
vantages: it relies on the preparation of a simple initial
state in the reservoir and the ability to dynamically tune
the latter’s energy relative to the system region. In this
sense, our open-system approach does not require any
fine-tuning nor complicated time-dependence of the sys-
tem parameters, and it is readily applicable to create a
broad class of (bosonic or fermionic) many-body states
of interest, including exotic Mott insulators and antifer-
romagnetic states in Hubbard-type models. While we
considered a spatial separation between the system and
reservoir regions on the 2D plane, we note that a double-
layer configuration could also be envisaged to further en-
hance the transfer of particles between the two regions;
this could be realized using a bilayer optical lattice or by
exploiting two laser-coupled internal states of an atom.
Finally, it would be interesting to combine the injection
and cleaning schemes presented in this work, in view of
realizing large FCI states or to explore quantum thermo-
dynamics.
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Supplementary Material

I. BRIEF REMINDER OF THE HARPER-HOFSTADTER BAND STRUCTURE:
EDGE STATES AND CHERN NUMBERS

In this work, we illustrate the cold-atom elevator scheme using the paradigmatic Harper-Hofstadter (HH) model,
which describes hopping of particles on a two-dimensional square lattice with a homogenous magnetic flux ϕ per
plaquette. The HH Hamiltonian can be written in the Landau gauge as

Ĥ = −J
∑
m,n

(
e−iϕnâ†m+1,nâm,n + â†m,n+1âm,n+h.c.

)
, (S1)

where the operators âm,n (â†m,n) annihilate (create) a particle on the lattice site ℓ = (m,n), where m and n denote
the site indices along the x and y directions, respectively. The uniform flux per plaquette ϕ = 2πα is defined modulo
2π. For a rational flux α = p/q, with (p, q) prime numbers, the single-particle spectrum splits into q subbands. When
represented as a function of the flux α, these energy bands form a fractal structure known as the Hofstadter butterfly.

The finite (uniform) flux per plaquette ϕ breaks time-reversal symmetry, hence leading to non-trivial topological
properties: the Hofstadter bands are associated with a non-zero (first) Chern number. Considering the flux α = 1/4
as an example, the HH model exhibits 4 subbands, with the middle two bands touching at singular (Dirac) points
[Fig. S1(a)]. The lowest and the highest bands share the same Chern number C = 1; while the middle degenerate
band is associated with the Chern number C = −2.

Under open boundary conditions, the model hosts chiral edge modes whose energies are located within the bulk
energy gaps; these edge states can be identified in the red spectrum displayed in Fig. S1(b), where a steeper slope
reflects the low density of (edge) states within the bulk gaps. Considering the flux α = 1/4 (main text), the two bulk
gaps each hosts a single edge mode. The chirality of these two edge modes are opposite: the edge mode located in the
lowest (resp. highest) bulk gap propagates in a clockwise (resp. anti-clockwise) manner; see also Fig. 2(d) and (f) in
the main text, where these two opposite chiral motions are revealed using the elevator scheme.

(e)

(f)

C=1

C=1

C=-2

d=16, t=10

d=4, t=15

d

d=4, t=30

d=16, t=30(a)

(b) (d)

(c)

E
F

ýEdge 

ýEdge 

FIG. S1. Edge state injection with a trivial reservoir. (a) Energy spectrum as a function of quasimomenta kx and
ky. We set the lattice constant a = 1. The Chern numbers of the separated bands are C = 1,−2, 1, respectively. (b) Energy
spectrum as a function of the state indices. The blue and red dots correspond to the Hamiltonian describing the trivial reservoir
(with chemical potential ϵR = 1.5) and the Hofstadter system, respectively. We consider a trivial reservoir of size 7× 16 which
is coupled to a system of size 16 × 16 with flux ϕ = π/2 per plaquette. A high wall (one site wide) is placed between the
reservoir and the system [blue lines in (f)], which leaves a door of width d open in the middle. (c) Population of HH eigenstates
ρj as a function of their energy Ej for different door width d, at time t = 40. (d) Number of the injected particles in the edge
as a function of the time for different door width d. Inset: The number of particles in the edge as a function of d at t = 100.
Snapshots of spatial density distribution for (e) d = 16, (f) d = 4. The green dashed line indicates the region used to count
the number of particles at the edge, and the blue bonds represent the high wall. Initially there are N = 10 particles in the
reservoir, and the on-site potential in the reservoir is suddenly lifted to the value ϵR = 1.5. Energy and time are in units of J
and ℏ/J , respectively. The arrows in (e) and (f) are a guide to the eye for the chiral motion.
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II. EDGE-STATE INJECTION USING A TRIVIAL RESERVOIR

In the main text, we have shown that chiral edge states can be populated in an energy-selective manner, using
a system-reservoir setting immersed in a uniform magnetic flux. In this Appendix, we show that a trivial reservoir
(i.e. a reservoir without flux) can also be used to inject particles into the edge states of a quantum Hall system.

Similarly to the sketch in Fig. 1(a) in the main text, we couple a system described by the HH model to a reservoir
without magnetic flux. Initially, the reservoir is filled with free fermions, and the system is empty. Suddenly lifting
the reservoir on-site potential ϵR, such that the energy of the particles in the reservoir becomes resonant with an edge
mode of the system [Fig. S1(b)], is found to generate chiral edge currents in the system [Fig. S1(e)]. Even though only
a small fraction of particles are injected into the edge states in this case, we find that applying a high wall between
the reservoir and the system, but leaving a small door open in the middle of the wall, can improve the efficiency. In
Fig. S1(f), we plot the snapshots of density distributions of the time-evolved state using a small door opening of width
d=4, from which we observe stronger chiral edge currents appearing in the system. We attribute the better efficiency
of the door-opening configuration to the fact that a wider range of quasi-momenta is offered by a smaller door width,
thus allowing for the population of more edge states in the system; see Fig. S1(c) where we plot the population of HH
eigenstates for different d.

By monitoring the number of particles Nedge injected in a specific region of the edge [depicted by the dashed lines
in Fig. S1(f)], we find that tuning the door width d manifests as a way of controlling the number of particles injected
into the edge states, as shown in Fig. S1(d). In the inset of (d), we plot Nedge as a function of the door width d at
time t = 100, and the optimal fraction of injected particles is found at a door width of intermediate size.

III. CHERN INSULATOR PREPARATION USING THE INJECTION SCHEME

Here, we investigate the possibility of preparing a CI based on injecting particles from a reservoir into an empty
system. As an example, we partition a large box of size 12 × 12 into a sub-box of size 8 × 8 at the center (the
“system”) and we define the rest as a trivial reservoir (without magnetic flux). The middle sub-box is our target
system, described by the HH model with flux ϕ = π/2 per plaquette. We first analyze the ground-state properties
of such a system-reservoir setup. Figure S2(c) shows the bulk density nB as a function of the reservoir potential ϵR.
The incompressible nature of the CI ground state manifests as a plateau in the bulk density. Its topological nature
can be confirmed from the local Středa’s marker shown by the red dots in Fig. S2(c), which forms a plateau around
1 in the region with bulk density saturation, which is in agreement with the Chern number C = 1 of the occupied
lowest band.

Based on this ground-state property, one can envisage to adiabatically prepare a CI by slowly ramping up the
reservoir potential ϵR. In our setup, such an adiabatic limit will be determined by the energy gap δE just above the
Fermi level. A typical avoided-crossing is shown in the inset of Fig. S2(a), and the energy gap δE as a function of
ϵR is plotted in Fig. S2(b). We find that, in order to build up a CI by ramping up ϵR, one has to pass through an
energy gap as small as δE = 0.0013, which complicates the preparation in practice. The bulk density is plotted in
Fig. S2(d) for different ramping times τ , upon using a linear ramping up of ϵR. It shows that thousands of tunneling
times (∼ 1/δE) would be required to approach the adiabatic limit for this system size; see also the scaling shown in
the inset of Fig. S2(b).

As regards the preparation of a large CI through particle injection, another difficulty concerns the presence of
isolated eigenstates deep in the bulk of the system. Taking a box of size 20× 20 as an example, we partition it into
a target HH system of size 12 × 12 and define the rest as the reservoir. Considering an improved ramp (based on a
saturation function), we obtain the eigenstate populations ρj displayed in Fig. S2(e). From the zoom-in plot in the
inset, we identify several dips in the eigenstate populations: those dips correspond to eigenstates that are located deep
in the bulk, and which are essentially isolated from the reservoir. The spatial density distribution of such a typical
isolated eigenstate is shown in Fig. S2(e), with the red box indicating the boundary between the target system and
the reservoir.

The existence of eigenstates located deep in the bulk, which are essentially decoupled from the reservoir, complicate
the perfect filling of the target topological band. This issue can be solved by improving the system-reservoir coupling
(e.g. by increasing the system-reservoir interface or considering a double-layer configuration), or by considering systems
with (strong) interactions; see main text and Section IV below.
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FIG. S2. Preparing a Chern insulator based on injection. (a) Energy spectra of the entire setup as a function of ϵR.
The red line indicates the Fermi level. Considering a box of size 12 × 12 with a target system being a 8 × 8 sub-box at the
center, the Fermi level corresponds to the 80th eigenvalue. (b) Energy gap (difference between the 80th and 81st eigenvalues)
for JR =0.2. The minimal energy splitting is found to be δEM =0.0013. Inset: the minimal energy splitting δEM as a function
of the system length Lsys; here, we consider square boxes of increasing size L × L, and keep the ratio L/Lsys ≃ 1.6 constant.
(c) The bulk density and the local Středa marker as a function of ϵR. The bulk density is evaluated within the central 2 × 2
sites. The shadow indicates the regime of Chern insulator ground states in the system. (d) The bulk density as a function of
ϵR for different τ . The black dashed line is the ground state density shown in (c), which represents the adiabatic limit. Here we
linearly ramp up ϵR from −4 until 0 within time τ , with the initial state being a fully filled trivial reservoir. (e) The population
of the eigenstates of the Hofstadter model. Here we consider a bigger box of size 20 × 20 partitioned into the target system of
size 12 × 12 and a reservoir. We ramp up ϵR from −4 until −2.5 by using a saturation function with time τ . Inset: zoom-in of
heavy depletion region indicated by the dashed box. (f) The spatial density distribution of a typical isolated bulk state with
index j = 3. Here, the tunneling strength is JR = 0.2.

IV. FRACTIONAL CHERN INSULATOR PREPARATION USING THE INJECTION SCHEME

A. Using a linear ramp

Despite the difficulties mentioned above, injecting particles into an empty system can still be used to prepare a
strongly-correlated FCI state, as demonstrated in Fig. 3 in the main text. The reasons are twofold. First, considering
a small FCI droplet, the many-body gap across the injection process can potentially remain (reasonably) large due
to finite size effects. Second, the strong interactions potentially prevent the isolation of bulk states, as previously
illustrated in Figs. S2(e)-(f). As a further demonstration, here we show that a linear ramp of ϵR can also be used to
prepare a small FCI droplet.

We start from a trivial state with 6 hard-core bosons in each reservoir, as shown in Fig. S3(a), leaving the system
empty. After linearly ramping up the reservoir potential ϵR(t) from −3 until −2 within a duration τ , we track the
bulk density, as evaluated within the central 2× 2 sites, as a function of ϵR(t); see Fig. S3(d). One observes that the
bulk density approaches the adiabatic-limit prediction for a sufficiently long ramping time. The sudden increase of
the bulk density indicates a transition. As further confirmed by the local Středa marker in Fig. S3(e), the obvious
dip (breakdown) of Cstr indicates a change in the topological properties. By using sufficiently long ramping times,
Cstr gets close to the expected value 1/2. The final Středa marker as function of total ramping time is plotted in
Fig. S3(f), with the inset showing that a ramping time τ = 180 leads to the marker’s value Cstr ≈ 0.59.
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FIG. S3. Preparing a fractional Chern insulator by using a linear ramp. The spatial density distribution of (a)
the initial state with ϵR = −3, (b) the target state with ϵR = −2 and (c) the prepared state at time t = τ = 200. (d) The
bulk density as a function of ϵR for different τ . The black dashed line corresponds to the adiabatic limit. (e) The local Středa
marker Cstr(t) as a function of ϵR(t) for different τ . (f) The final Středa marker as a function of τ . Inset: linear fit of the
density versus flux at τ = 180, which gives Cstr ≈ 0.59. Here, we consider N = 12 hard-core bosons, and the system of size
4 × 4 is coupled with two reservoirs with JR = 0.15, each of which has size 4 × 4.The error bars denote the standard error of a
regression slope.

B. Finite size effects

After demonstrating the validity of our injection scheme for the preparation of a small FCI, we now analyze how
the efficiency of this scheme scales with the size of the reservoir, as well as with the size of the target system. Focusing
on the sub-box configuration introduced in Fig.3(a) of the main text, we consider a target system of size LS × LS

coupled with two identical reservoirs of size LR×LS , where LS and LR denote the lengths of the system and reservoir,
respectively.

We first investigate the effects of the reservoir length LR by fixing LS=4 and the total particle number N=12. We
calculate the many-body gap ∆E as a function of the reservoir energy ϵR, within the range −3 ≤ ϵR ≤ −2, where a
transition is known to occur (see Fig. 3 in the main text). From this, we extract the minimal many-body gap ∆EM ,
which sets the time-scale for adiabatic state preparation. The resulting quantity ∆EM is plotted as a function of
LR in Fig. S4(a). We find that for LR ≥ 3, the minimal gap ∆EM linearly decreases with LR. Besides, by fixing
LS=LR=4, we find a non-linear increase of ∆EM as a function of the total particle number N ; see Fig. S4(b). Since
the value of the minimal gap ∆EM determines the time scale for a possible adiabatic state preparation, the results
presented here indicate that it is favorable to consider a reservoir of small size with many particles.

We now analyze how the size of the system LS influences the efficiency of the scheme, by fixing the reservoir length
LR=4 and the particle number N=12. As shown in Fig. S4(c), the minimal gap decreases with LS , which signals the
potential difficulty of preparing an FCI in a substantially larger lattice system. This limitation could be circumvent
by optimizing the reservoirs (see above), or possibly, by combining the injection scheme with the cleaning method
described in the main text. Another route for improvement could be offered by a double layered system-reservoir
configuration; in practice, this could also be realized using two different internal states of an atom for the system and
reservoir, respectively.

Last but not least, we analyze the (ideal) particle density expected within the bulk of the system nB as a function
of the system size LS , for a fixed reservoir energy ϵR=−2; see Fig. S4(d). It is interesting to note that the particle
density nB already approaches its thermodynamic-limit value nB = να = 1/8 (expected for a ν=1/2 Laughlin state)
for a system size LS ≳ 8. Specifically, we find nB ≃ 0.127 and nB ≃ 0.124 for LS=8 and LS=10, respectively.
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FIG. S4. Finite size effects in the FCI-reservoir setup. (a) The minimum gap ∆EM as a function of the length of each
reservoir LR for a fixed total number of particles N = 12. Inset: The many body gap ∆E as a function of ϵR for LR=3 (blue)
and 4 (orange). (b) The minimum gap ∆EM as a function of particle number N for a fixed LR = 4. Inset: ∆E as a function
of ϵR for N=4 (blue) and 12 (orange). In (a,b) we fix the system length LS = 4. (c) The minimum gap ∆EM as a function
of the system length LS for fixed LR = 4, N = 12. Inset: ∆E as a function of ϵR for LS=4 (blue) and 5 (orange). (d) The
bulk density nB as a function of LS at ϵR = −2 for LR = 4, N = 12. Inset: nB as a function of ϵR for LS = 4 (blue) and
LS = 8 (orange). The dotted line indicates the expected n = 1/8 in the thermodynamic limit. The bulk density is averaged
over a disk of radius r = 1 at the center of the system. In (a-d), we choose the width of the whole setup to be W = LS and
use JR = 0.15, α = 1/4. The dashed lines are the guide to the eye.

V. STATE PREPARATION VIA REPEATED CLEANING

A. Rabi cycles

The aim of this Appendix is to estimate optimal parameters for the vacuum-cleaning scheme, by analyzing a
simplified few-level model.

In Fig. 4(a) of the main text, we presented a sketch of a simplified 3-level toy model for our system-reservoir
setup. Our aim is to gain more intuition on our repeated cleaning protocol by analyzing the Rabi oscillations that
occur between these levels upon coupling them. To be specific, we introduce the Level-0, Level-1, and Level-R to
denote our (target) lowest Chern band, the first excited band and the reservoir band, respectively. The corresponding
characteristic energies are represented by E0, E1 and ϵR in Fig. 4(a). Level-0 and Level-1 have the same coupling
strength JR with Level-R.

Starting from the situation where both the lowest and the excited bands are fully occupied, we aim to activate a
coupling that keeps the lowest band occupation essentially unaffected, while cleaning off the population in the excited
bands as much as possible. Specifically, in terms of the 3-level toy model, we analyze the occupation in Level-0 when
the transition from Level-1 to Level-R is maximal. Here, we treat the 3-level toy model as two independent two-level
systems: one describing the coupling of the reservoir to Level-0 and the other describing the coupling of the reservoir
to Level-1.

In a two-level quantum system, it is well-known that the Rabi formula describes the transition from one level to
the other. Starting from a state initially occupying the first level (denoted by a), the transition probability to the
second level (denoted by b) reads

Pab(t) =
γ2

γ2 + (Ea − Eb)2/4
sin2

(√
(Ea − Eb)2

4
+ γ2t

)
, (S2)

where Ea, Eb represent the level energies and γ is the strength of coupling between these two levels.
We first analyze the transition from Level-1 to Level-R, and we establish its optimal regime by finding the maximal

value PMax
1R = P1R(t

∗) using Eq. S2; the time t∗ will denote the optimal duration of the coupling. We plot PMax
1R for

different values of ϵR, JR in Fig S5(a). When ϵR becomes resonant with E1 ≃ −0.6, which is taken as the mean value
of the excited Hofstadter band, the transition probability P1R can take a value as large as 1. In order to study the
remaining population in the Level-0 when P1R is maximal, we plot 1− P0R at time t = t∗ in Fig S5(b).
Now, to identify an optimal regime for our control parameters, we define a figure of merit P as

P = 1− P0R + P1R. (S3)

In the ideal case where the population in Level-1 is completely removed (P1R = 1) while Level-0 remains perfectly
unaffected (P0R = 0), one has the maximal value P = 2; vice versa one has the minimal value P = 0. As shown in
Fig. S5(c), it is preferable to set ϵR close to resonance with the excited band E1 and to use a small coupling strength
JR, in order to empty the Level-1 while protecting the Level-0.
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FIG. S5. Rabi oscillations and quench dynamics. (a) The maximal transition PMax
1R , (b) the transition left in Level-0

1 − P0R at t = t∗, and the characteristic population P of the simplified 3-level toy model. (d) The excited band transition
PHH
1R , (e) the remaining lowest band population 1 − PHH

0R , and the characteristic population PHH of the quench dynamics of
our system-reservoir configuration at t = 100.

To make a further step towards our cleaning protocol, we now check the above-mentioned optimal parameter regime
for a quench dynamics of our system-reservoir setup. Considering an initial state with 1/2-filling per site within the HH
system (the central sub-box), we investigate the quench dynamics by suddenly setting ϵR to a given value. Similarly,
we now define the figure of merit PHH for our HH system as,

PHH = 1− PHH
0R + PHH

1R , (S4)

where we can express the possibility of transition from band i to the reservoir in terms of the eigenstate populations
ρj as

PHH
iR =

Ni∑
j=1

(1− ρj)/Ni, (S5)

with i = 0, 1 and Ni being the number of bulk states belonging to band i. By plotting the figure of merit PHH for
different values of JR, ϵR in Fig. S5(f), one identifies an optimal parameter regime, where ϵR is close to the mean
energy value E1 of the excited band and where the coupling JR is relatively weak. In contrast, when ϵR is set close
to the mean energy of the lowest band E0 ≃ −2.7, a small PHH is found due to a heavy depletion of the lowest band.
When ϵR is set to a very large value (off resonance), no transition takes place between the system and the reservoir,
and thus PHH saturates to 1. This analysis shows a qualitative agreement with the simplified Rabi model [Fig. S5(c)].

B. Dynamical cleaning scheme and scaling

Despite the identification of an optimal parameter regime (see above), a simple quench dynamics does not lead
to a satisfactory preparation of the CI, i.e. a complete depletion of the excited bands while leaving the lowest band
perfectly filled. This is essentially due to the finite dispersion of the HH bands. To solve this issue, we consider tuning
ϵR in a time-dependent fashion, as we now explain.
We choose to dynamically tune the reservoir potential according to a saturation function,

ϵR(t) = ϵiR − (ϵiR − ϵfR)t/(
√
cτ2 + t2), (S6)

with the initial value ϵiR = 4, a constant parameter c = 0.02 and the total ramping time τ . As shown in Fig. S6(a),

after reaching the final value ϵfR, we quickly lift ϵR to a high value. Since the system is now almost completely
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FIG. S6. Preparing a Chern insulator based on cleaning. (a) The repeated ramping protocol for ϵR according to a
saturation function. The red dashed line is the guide to the eye. (b) Population in HH eigenstates for different ncyc with τ = 70
per cycle. (c) The local Středa marker of the evolved state with ncyc = 10, τ = 70 as a function of lattice indices along the
middle row. Inset: the corresponding spatial density distribution of the evolved state. (d) The characteristic population PHH

as a function of τ for different cycles ncyc. (e) The local marker as a function of τ for different cycles ncyc and LS . The local
marker is averaged over a disk at the center with a radius of r = 2. The error bars denote the standard error of a regression
slope. (f) The typical time τ∗ as a function of the system length LS . During the scaling, we consider square boxes and keep
the length ratio between the whole set up and the system as L/LS ≃ 1.6. For (b-e), we partition a lattice of size 20 × 20 into
a target 12 × 12 system (central box) and a surrounding reservoir with particle number N = 72. We set a flux ϕ = π/2 in the
system and ϕ = 0 in the reservoir, and use JR = 0.15, ξ = 3.

decoupled from the reservoir, one can easily remove the particles from the reservoir. The ability of preparing such an
empty reservoir makes it possible to have several cycles. To increase the efficiency, one can design the final value of
ϵfR for each cycle ncyc as

ϵfR(ncyc) = ϵfR(1) + JRξ
ncyc − 1

Ncyc − 1
, (S7)

with ncyc = 1, · · · , Ncyc and Ncyc is the total cycle number. The coefficient ξ controls the final value of ϵR. For the

very first cycle, we take ϵfR(1) = −1.14 which is located right below the excited band.
Considering a many-body state at 1/2-filling as our initial state, we now apply our repeated cleaning protocol to

prepare a CI in the system: we aim at removing the higher band populations but leaving the lowest Chern band
almost perfectly filled. As shown in Fig. S6(b), we find an efficient depletion of the excited bands with the increase of
the cycle number. During the ramp, the bulk states of the lowest band remain almost perfectly filled. This already
points towards the realization of a CI state in the system. To further confirm its topological nature, we plot the local
Středa marker (averaged over the surrounding 4 sites) for ncyc = 10 with τ = 70 per cycle in Fig. S6(c), which shows
a uniform bulk with Cstr ≈ 1. By plotting the figure of merit PHH , and the Středa marker in Fig. S6(d) and (e),
respectively, we find an efficient cleaning for τ ≳ 70 and ncyc ≈ 10 cycles, or τ ≳ 100 and ncyc ≈ 8 cycles. This
illustrates how using more cycles would help reducing the total preparation time. Besides, in order to appreciate the
scaling behavior, we plot a typical time τ∗ corresponding to a figure of merit PHH above 1.95 in Fig. S6(f). We find
that the typical time per cycle increases more slowly with the system size as one increases the number of cycles.

C. Full preparation protocol using the cleaning scheme

In the main text, we apply our repeated cleaning protocol to a realistic state, which has been prepared starting
from a trivial metal (i.e. starting from a band structure with zero Chern numbers). Here we give more details about
the full ramping protocol.
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FIG. S7. Full protocol for preparing CI based on cleaning (a) The full protocol for ramping system parameters. The
flux is linearly increased from 0 to π/2 within τ1, and then we decrease the staggered potentials δ from 20 to 0 within τ2.
After that, we apply our cleaning protocol cycle by cycle with τ being the ramping time per cycle. (b-d) The spatial density
distributions at t = 0, τ1 and τ1 + τ2, respectively. Here, we use time τ1 = τ2 = 100 for tuning ϕ and δ.

We start from a trivial metal in the presence of a large staggered potential, δℓ = [(−1)m + (−1)n]δ/2, with (m,n)
being the lattice indices along x and y direction, respectively. We then linearly ramp up the flux in the lattice from 0 to
the value of π/2. Since the system is still within a trivial regime (guaranteed by the large staggered potentials δ = 20),
one can ramp up the flux rather quickly. After that, we slowly reduce the staggered potential in order to change the
topological nature of the bands; this transition generates excitations in the higher bands for a realistic quasi-adiabatic
ramp; see the sequence in Fig. S7(a). The density distribution of the evolved state, across the topological phase
transition, is shown in Fig. S7(b)-(d); this latter situation corresponds to the blue dots in the band populations shown
in Fig. 4(b) in the main text.

With this realistic (but highly excited) state in hand, we now apply our repeated cleaning protocol. In order to

progressively address the higher bands at each cycle, we set ϵfR(1) = −1.14 and ξ = 14 for the final value of ϵfR defined

in Eq. (S7); see also Fig. S7(a). In this case, the final value of ϵfR in the last cycle reads 0.94, which is located near the

top of the excited band. Note that even though we only consider a linear increase of ϵfR at each cycle (for simplicity),

a more efficient protocol could be designed by fine tuning ϵfR within each cycle, e.g. by means of optimal control or
even machine learning.
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