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Conventional topological insulators exhibit ex-
otic gapless edge or surface states, as a result
of non-trivial bulk topological properties. In
periodically-driven systems the bulk-boundary
correspondence is fundamentally modified and
knowledge about conventional bulk topological
invariants is insufficient. While ultracold atoms
provide excellent settings for clean realizations of
Floquet protocols, the observation of real-space
edge modes has so far remained elusive. Here
we demonstrate an experimental protocol for re-
alizing chiral edge modes in optical lattices, by
creating a topological interface using a potential
step that is generated with a programmable op-
tical potential. We show how to efficiently pre-
pare particles in these edge modes in three dis-
tinct Floquet topological regimes that are realized
in a periodically-driven honeycomb lattice. Con-
trolling the height and sharpness of the potential
step, we study how edge modes emerge at the
interface and how the group velocity of the parti-
cles is modified as the sharpness of the potential
step is varied.

Topological and geometrical properties of wave func-
tions are at the heart of many intriguing electronic prop-
erties of materials [1]. The most prominent examples
are topological insulators, superconductors, and super-
fluids [2–4]. A remarkable concept regarding their prop-
erties is the bulk-boundary correspondence, which links
the topological properties of the bulk to the existence of
exotic gapless states at the edge or surface of the system.

The manifestation of the bulk-boundary correspon-
dence is most easily understood from the integer quan-
tum Hall effect [5, 6], whose characteristic transport
properties exhibit two main features: a precise quanti-
zation of the transverse Hall conductivity determined by
the Chern number [7, 8] – a topological invariant char-
acterizing the bulk energy bands – and the existence of
robust chiral edge modes at the boundary. According to
the bulk-boundary correspondence [9–14], knowledge of
the bulk Chern numbers is sufficient to predict the num-
ber and chirality of the edge modes.

Synthetic quantum systems have emerged as promis-
ing experimental routes for exploring the rich properties
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of topological systems [15–17]. While many of the con-
cepts described above are well understood both in theory
and experiment, engineered quantum systems offer new
possibilities for generating exotic topological states that
a priori have no analogue in solid-state systems. This
was recently demonstrated in periodically-driven systems
with photonic waveguides [18, 19], resonator arrays [20–
22] and with cold atoms [23]. There, due to the time-
periodic nature of the Hamiltonian, a generalized form
of the bulk-boundary correspondence predicts the exis-
tence of chiral edge modes even in situations where the
Chern number of the bulk band vanishes [24, 25].

The generalized bulk-boundary correspondence
strongly motivates the development of experimental
techniques that enable both the study of bulk and edge
topological properties in synthetic quantum systems to
reveal their connection. In cold atoms a large variety of
techniques has been developed to study bulk geometrical
properties using interferometric or state-tomography
techniques [26–29], transport measurements [30–32],
as well as methods based on spectroscopy or quench
dynamics [33, 34].

The observation of edge modes in photonic devices is
facilitated by a natural sharp boundary [17, 35, 36]. With
cold atoms, their observation was enabled by the concept
of synthetic dimensions [37, 38]. There, one real-space di-
mension is replaced by internal degrees of freedom, and
the finite number of coupled internal levels naturally cre-
ates a well-defined boundary [39–41]. In real-space 2D
systems, however, the edges of the system are typically
smooth, hindering the observation of edge modes. In or-
der to overcome this limitation, several strategies have
been proposed [42–44], but their observation with cold
atoms has so far remained elusive.

In this work, we generate a topological interface in a
2D real-space Floquet system [23] by creating a poten-
tial step. We demonstrate the presence of topological
edge modes by preparing a localized Bose-Einstein con-
densate (BEC), which after release into the lattice near
the edge exhibits a chiral motion characteristic of topo-
logical edge modes. We further study the preparation of
these edge modes in three distinct topological regimes as
a function of the initial-state parameters, and show how
the edge modes emerge as the parameters of the interface
are modified.

The experimental setup consists of a BEC of 39K
atoms. The optical honeycomb lattice is formed by
three propagating, s-polarized, blue-detuned laser beams
(wave vector kL = 2π/λL, with λL = 745 nm), which in-
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Figure 1. Preparation and observation of anomalous Floquet topological edge states. a, Sketch of the modulation
scheme, where the hopping rate between neighboring sites is varied periodically in a chiral manner (arrows) with modulation
period T = 2π/ω. The thick (thin) lines in the three snapshots indicate larger (smaller) tunnel coupling. The lattice spacing
is a = 287 nm. b, Phase diagram of the amplitude-modulated honeycomb lattice. The different topological regimes are
characterized by the tuple of winding numbers (W0,Wπ) of the two quasienergy gaps. The hexagons mark the modulation
parameters used in this work [m = 0.25, green: ω/(2π) = 16 kHz, blue: ω/(2π) = 7 kHz and orange: ω/(2π) = 5 kHz]. c,
Illustration of the optical potential and the generation of the initial state. A potential step (gray cylinder) is applied on a
selected region of the system to block the motion of particles in the modulated lattice (arrows), generating a sharp edge. The
initial state is prepared by trapping a cloud of atoms (BEC, indicated in dark blue) in an optical tweezer (red) near the edge.
After releasing the cloud, the atoms exhibit a chiral motion along the edge, illustrated by the different blue shadings. d, Time-
evolution of the atoms after releasing the atoms from the tweezer into the modulated lattice (κ = +1), close to a disk-shaped
potential with radius 5.8 µm (≈ 20a) represented by the dashed line; OD denotes optical density. The inset illustrates the shape
of the repulsive potential, which is shown in black. e, Difference image ∆OD = ODκ=+1−ODκ=−1 between the time evolution
shown in d with κ = +1 and the evolution under the opposite chirality (κ = −1) of the lattice modulation. f, Same as e for a
straight edge (dashed line). The corresponding potential is shown in the inset. The evolution times of d-f are indicated at the
top of each column, the tunnel coupling of the static lattice is J0 = h× 1.1(1) kHz (tunnelling time τ = ~/J0 = 145 µs) and the
modulation parameters are ω = 2π × 7 kHz and m = 0.25 (blue marker in b). All absorption images are averages of 100− 300
individual experimental realizations. The scale bar represents a length of 10a. The position of the dashed lines is calculated
from the programmed pattern on the DMD.

terfere in the xy-plane at relative angles of 120° [23]. An
additional harmonic confinement is provided by an opti-
cal dipole trap at 1064 nm generated by two laser beams
that cross at 90° in the xy plane, resulting in a radial
trapping frequency of ωr = 2π × 17(1) Hz, and a vertical
trap frequency of ωz = 2π × 330(30) Hz.

The periodic modulation is realized by modulating the
intensity Ii (i = {1, 2, 3}) of the individual lattice laser
beams according to Ii(t) = I0(1 −m + m cos(ωt + φi)),
where ω denotes the modulation frequency, m the modu-
lation amplitude, φi = κ× 2π

3 i the phase for the ith beam
and κ = ±1 the chirality. This results in a chiral modu-

lation of the tunnel couplings in the honeycomb lattice,
as illustrated in Fig. 1a. The periodic modulation breaks
time-reversal symmetry and results in a rich phase dia-
gram with several topological regimes [23], as shown in
Fig. 1b. The modulated lattice realizes an effective two-
band model similar to Ref. [24]. The corresponding bulk
topological properties have been studied experimentally
in Ref. [23] using local Hall deflection measurements with
large BECs.

A full characterization of the topological properties in
driven systems is given by the winding number in each
gap, which determines both the number and chirality of
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the edge modes in the respective gap [24, 25]. The wind-
ing number is computed by taking the full time evolu-
tion of the system into account. Here, we denote the two
winding numbers as W0 and Wπ, and the respective en-
ergy gaps as 0- and π-gap; the latter is located at the edge
of the Floquet Brillouin zone at quasienergy ε = ±~ω/2;
~ = h/(2π) is Planck’s constant. The conventional Chern
numbers are linked to the winding numbers according
to C± = ±(Wπ −W0), where C−(+) denotes the Chern
number of the lower (upper) energy band [C−+ C+ = 0].
The three regimes studied in this work are displayed in
Fig. 1b. All of them exhibit topological edge modes, even
in the anomalous regime where the Chern number of the
bulk bands vanishes.

The experimental scheme used to probe topological
edge states is schematically depicted in Fig. 1c. The po-
tential edge is realized by illuminating a selected area of
the lattice with a programmable, binary, repulsive op-
tical potential derived from an incoherent light source
with a wavelength centered around 638 nm, and shaped
with a digital micromirror device (DMD), as described
in the Methods. The width of the potential edge has a
lower bound of ≈ 0.7 µm [45], which is set by the numer-
ical aperture of the imaging system (see Methods). The
actual width in the atomic plane is most likely slightly
larger due to residual aberrations. To prepare an initially
localized wave packet about 200 atoms are adiabatically
transferred from a BEC generated in the crossed dipole
trap to a tightly focused optical tweezer [λT = 1064 nm;
radial trap frequency ω⊥ = 2π×2.0(1) kHz]. The tweezer
beam propagates perpendicular to the lattice plane and
its position is controlled by an acousto-optic deflector
(AOD). Residual atoms outside the tweezer are expelled
from the trap. The scattering length of the atoms is
tuned to as = 6a0 utilizing the Feshbach resonance at
403 G, here a0 denotes the Bohr radius.

After the preparation of a tightly-confined BEC in the
tweezer, the programmable repulsive potential is ramped
up to its final height in 30 ms and subsequently the opti-
cal lattice is ramped up to a depth of 6Er in 30 ms, where

Er =
~2k2L
2mK

= h×9.23 kHz is the recoil energy of the lattice

and mK denotes the mass of a 39K atom. Finally the am-
plitude of the modulation is increased during the first five
modulation periods. Once the modulation has reached its
final amplitude, the optical tweezer is abruptly switched
off and the evolution of the atoms is observed. We sepa-
rately confirmed that the evolution of the wave packet is
coherent after releasing it into the static lattice without
the edge potential, and that the initial localization of the
wave packet is sufficient to occupy high quasi-momentum
states in the Brillouin zone (see Methods).

We start by studying the evolution of the localized
wave packet in the anomalous regime (blue marker in
Fig. 1b), where edge modes are expected to exist, al-
though the bands exhibit Chern numbers C± = 0. We
generate a disk-shaped repulsive potential with a height
of V0 = h×16.7(3) kHz > ~ω. The position of the tweezer
relative to the edge of the potential was optimized in

order to maximize the fraction of atoms in the edge
mode. After releasing the atoms from the tweezer we ob-
serve that the wave packet propagates along the potential
boundary, following its curvature, as is characteristic for
chiral edge states (Fig. 1d). Furthermore, even though
the potential is repulsive, the atoms remain close to the
edge, propagate over more than 10a and do not scatter
into the bulk of the system, indicating a good overlap
of the initial wave packet with the edge mode. In addi-
tion, the wave packet disperses while propagating, due
to the non-linear dispersion relation of the edge mode, as
a result of the finite width of the edge [43, 46, 47]. To
highlight the chiral nature of the edge state, the modu-
lation direction is inverted, thus changing the sign of the
winding numbers and therefore the chirality of the edge
state. Figure 1e depicts the difference between the im-
ages taken for the two chiralities. Apart from the change
in the propagation direction, we observe no difference.

The programmable repulsive potential offers almost ar-
bitrary control over the shape and orientation of the edge.
In Fig. 1f we show experimental results for a repulsive
potential that creates a straight line along a zigzag-type
edge of the honeycomb lattice. Similar to Fig. 1e we show
the difference image for the two chiralities, demonstrat-
ing unidirectional propagation along the edge and little
scatter into the bulk. For the longest evolution times
(t = 10 ms), the center-of-mass position of the cloud trav-
els approximately 17a, and the fastest 20% of the atoms
travel more than 30a. This underlines the potential of our
experimental protocol for probing the topological prop-
erties of Floquet topological systems, where knowledge
about the Chern numbers is insufficient, or where con-
ventional methods for detecting bulk geometric proper-
ties are not applicable, e.g., in the presence of disorder.

While we observe a robust, large overlap of the ini-
tial wave packet in the anomalous regime, this is not
the case in the Haldane regime [48]. To achieve a good
overlap of the initial wave packet with the edge modes,
both the phase profile along the edge and the transverse
extension of the initial wave packet have to match the
one of the edge state [44]. To gain more insight into the
structure of the eigenmodes of the system, we perform
numerical simulations with a step-wise modulated tight-
binding model [24] where the nearest-neighbour tunnel
couplings are amplitude-modulated in a chiral manner
between a large and a small value, denoted as J1 and J ′1
respectively. The numerical system is a semi-infinite strip
with infinitely sharp walls along x (zigzag termination)
and periodic boundary conditions along y; the size of the
unit cell is Ly =

√
3a (see Methods for details). In Fig. 2

we show the quasienergy spectrum in the first Floquet
Brillouin zone for parameters in the anomalous (Fig. 2a)
and Haldane regime (Fig. 2b). To further understand the
properties of the edge modes, we display exemplary wave
functions in both regimes. We find that in the anoma-
lous regime, the edge state in the π-gap does not exhibit
any phase gradient along the edge, while in the Haldane
regime the edge state exhibits a phase gradient of π/Ly
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Figure 2. Preparation and observation of edge states in the Haldane regime. a, Band structure of the tight-binding
model in the anomalous regime with (W0,Wπ) = (1, 1) and the corresponding wave function of the edge state in the π-gap at
qy = 0, as highlighted by the gray circle; ε denotes the quasienergy. The spectrum is plotted for the first Floquet Brillouin
zone −~ω/2 < ε ≤ ~ω/2. b, Same as a for the Haldane regime with (W0,Wπ) = (1, 0). The right panel shows the wave
function of the edge state in the 0-gap at qy = π/Ly = π/(

√
3a) ≈ 0.58π/a, as highlighted by the gray circle. For the panels

on the right in a and b, the color shade of the arrows indicates the modulus square of the wave function and their direction
indicates the complex phase. c, Fraction of atoms in the edge mode after a time evolution of 1.5 ms as a function of the phase
gradient applied to the initial wave packet (see Methods). The data points are averaged from 4-5 realizations and the error
bars represent the propagation of the background noise of the absorbtion image to the population fraction. The gray vertical
line indicates the edge of the Brillouin zone, where qy = π/Ly. The insets show averaged absorption images (88-90 realizations)
of the atomic cloud after a time evolution of 3 ms in the Haldane regime. The color bar below is common to all insets.

along the edge. Since the initial wave packet has a flat
phase profile, it has a good overlap with the former, but
not with the latter.

To optimize the overlap with the edge mode in the
Haldane regime with regards to the spatial extent and
the phase profile of the initial wave packet, we imprint a
phase gradient by applying a kick with the tweezer (see
Methods) and adjust the size by varying the radial trap
frequency ω⊥. In order to evaluate the fraction of atoms
in the edge mode, we let the wave packet evolve for a time
long enough to separate atoms near the edge from those
scattered into the bulk modes (insets of Fig. 2c). The
fraction of atoms in the edge state is then evaluated (see
Methods) as a function of the imprinted phase gradient.
For small ω⊥ (light green data points), we observe an
overall poor overlap with the edge mode, which however
increases as we increase the phase gradient close to the
theoretical optimum of 0.58π/a. Decreasing the initial
spatial extent of the cloud with a tighter tweezer further
reduces scattering into the bulk (dark green data points).
In this regime, the phase gradient likely does not play a
significant role, since primarily one site is significantly

populated, ensuring a large overlap with the edge mode.

In the anomalous regime instead we find an extremely
robust behavior, where the fraction of atoms in the edge
mode is largely independent of the properties of the ini-
tial wave packet. In this regime, the initial wave packet is
projected onto both edge modes, one in the 0-gap and one
in the π-gap, for each quasi-momentum (Fig. 2a). Vary-
ing the parameters of the initial state should only affect
the relative weight between the two modes, which we
cannot independently resolve in the experiment.

In our experimental setup the topological interface is
generated by a potential step. In order to understand
the characteristic energy scale of the potential needed
for an edge mode to emerge at the interface, we inves-
tigate the maximum velocity vmax of the edge state as
a function of the height of the potential V0 (Methods).
We study three distinct topological regimes as indicated
by the colored hexagons in Fig. 1b: the Haldane regime
with (W0,Wπ) = (1, 0) [48], which exhibits a conven-
tional topological edge mode around zero energy and
Chern numbers C± = ∓1; the anomalous regime with
(W0,Wπ) = (1, 1) [23, 24], which exhibits an additional
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Figure 3. Emergence of edge states with increasing potential height V0. a, Measured maximum edge state velocity
vmax. The modulation parameters for the three distinct topological regimes are indicated in Fig. 1b. Each data point is the
average of three data sets that have been taken on different days, and the error bars are calculated from their standard deviation
and the uncertainty due to the evaluation of the edge state velocity. b, Numerical simulations of the quasienergy spectrum
using a step-wise modulated tight-binding model on a semi-infinite system as explained in the Methods for the three topological
regimes: Haldane (top row), anomalous (middle row) and Haldane-like (bottom row). In the finite direction, an infinitely sharp
potential step of height V0 is applied in the middle of the system. The spectra show the eigenenergies whose eigenstates have
a significant overlap with this low-potential region (Methods). The potential height is increased from the left to the right with
V0/(~ω) = {0.05, 0.1, 0.5, 1.0, 2.0}. The spectra where the edge modes are clearly visible are highlighted with a bold black
frame.

anomalous edge mode in the π-gap with C± = 0 and
a third Haldane-like regime, with (W0,Wπ) = (0, 1) [23],
with Chern numbers C± = ±1, but where the topological
edge mode is located in the non-trivial π-gap.

In all three topological regimes we find that the group
velocity of the atoms starts to increase as we increase the
height of the potential (Fig. 3a). In the Haldane regime
the maximum velocity is reached for a potential on the
order of ≈ 0.1~ω, which matches the characteristic en-
ergy scale of the energy gap between the two bands. For
larger potential depths the velocity starts to gradually
decrease. Intuitively, one may expect a saturation of the
velocity as soon as the edge mode is established at the
interface. We attribute the gradual slowing down ob-
served in our experiment to potential corrugations and a
smaller slope of the potential edge near the bottom of the
potential, which becomes more significant as we increase

its height. The general trend observed in the anomalous
and Haldane-like regime is similar, but distinctly differ-
ent from the Haldane regime in terms of absolute values.
Here, we find that the characteristic energy scale for the
potential needed to reach the maximum group velocity
is on the order of ≈ 2~ω. For larger values we observe a
saturation behavior.

To support the experimental results, we numerically
investigate a semi-infinite strip geometry, where the po-
tential energy of one half of the strip in the finite direction
is increased by V0. In order to visualize the appearance
of the topological interface, we show the eigenenergies in
the low-potential region in Fig. 3b (see Methods). Similar
to our experimental results we find that in the Haldane
regime, the edge state in the 0-gap emerges at a charac-
teristic energy scale given by the size of the 0-gap, which
is about an order of magnitude smaller than ~ω. For
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Figure 4. Edge state velocity for varying edge width. a,
Measured edge state velocity as the Fourier plane iris is closed
for a repulsive potential with height V0/h = 1.1 kHz in the
Haldane regime (modulation parameters marked in Fig. 1b)
for J0 = 1.1(1) kHz, ω⊥ = 2π×2.0 kHz and a phase gradient of
0.43(1)π/a. The data points are averages of three individual
datasets, and the error bars are evaluated from their standard
deviation and the uncertainty of the evaluation of the velocity
for each dataset. b, Estimated edge width of the pattern as a
function of the diameter d of the iris in the Fourier plane. The
dashed line corresponds to the theoretical resolution limit of
the microscope objective. The edge width measured for an
iris that is fully open (rightmost data point) is thus limited
by the finite resolution of the objective. c, Floquet spectra
simulated with the step-wise modulated tight-binding model
in the Haldane regime (table in methods). The color indicates
the overlap with a region covering the low-potential region.
The height of the edge is fixed at V0/(~ω) = 1.44, and its
width is varied from left to right: `/a = {6, 4, 2, 1, 0.1}

the same potential height there are no clear signatures
of edge modes in the anomalous and the Haldane-like
regimes in any of the two gaps. Instead we find a char-
acteristic energy scale on the order of ~ω for them to ap-
pear. In Fig. 3b we highlight all spectra where we believe
hat edge modes can clearly be identified. This behavior
is qualitatively consistent with our observations.

The finite width of the potential edge has a large im-
pact on the group velocity of the particles in the edge
modes, as the dispersion of the edge mode hybridizes with
the bulk modes, resulting in a significant reduction of the
velocity [43, 46, 47]. We investigate this behavior by tun-
ing the width of the potential edge in the Haldane regime
(Fig. 4a). The width of the edge is controlled by varying
the diameter d of an iris placed in the Fourier plane of the
imaging system that is used to project the DMD potential
into the atomic plane (Methods). Because of the inco-
herent illumination closing the iris leads to a reduction of
the potential height. This is compensated by an increase
of the total power of the beam to ensure the same po-
tential height V0 for all measurements. The width of the
edge is measured by imaging the pattern in an intermedi-
ate plane, fitting the edge profile with an error function

and extracting the characteristic length of this fit [45].
This length is then multiplied by the magnification be-
tween the intermediary plane and the atoms, which was
calibrated independently. Figure 4b shows the resulting
width as a function of the iris diameter d. Note that
the actual experimental value of the edge width at the
atom position is most likely further increased by imper-
fect alignment and residual aberrations. The dashed line
in Fig. 4b illustrates the theoretical resolution limit. We
find that a smoothened edge leads to a significant reduc-
tion of the edge state velocity, as expected [43, 46, 47, 49].
This is further confirmed by numerical simulations us-
ing the simple step-wise modulated tight-binding model
(Fig. 4c).

In conclusion, we have demonstrated an experimental
protocol for the preparation and manipulation of topo-
logical edge modes with ultracold atoms in real space.
We have presented a detailed study on the preparation of
atoms in the edge modes and how the effectiveness of the
protocol depends on the initial-state parameters. Making
use of the unique control over the shape of the potential,
we further investigated how the edge modes emerge at the
topological interface as the height of the potential and its
sharpness is increased. Our study provides an essential
new tool to probe the topological features of different
phases of matter with ultracold atoms, in particular in
slowly-driven systems and in the presence of disorder,
where other techniques are not applicable. We antici-
pate, that his will enable experimental investigations of
the rich phases that can arise in non-interacting disor-
dered systems [50–52] or interacting ones [53, 54]. It also
bridges the gap with techniques routinely used in solid-
states and photonics systems [55–58] to study the coher-
ence and transport properties of these edge states [59].

Note: During completion of this manuscript, we be-
came aware of recent theoretical studies, where wave
packet dynamics in Floquet-driven topological lattices
has been studied [60].
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METHODS

The Methods section contains additional information
about the expansion of the initial wave packet in the
static lattice (Sec. A), calibration measurements for im-
printing the phase gradient (Sec. B), a description of
how the population of atoms in the edge mode is evalu-
ated (Sec. C), details on the numerical simulations using
a semi-infinite strip (Sec. D), an exemplary evaluation
of the edge-state velocity (Sec. E), a calibration of the
height of the potential edge (Sec. F) and a description
of the optical setup for the implementation of the pro-
grammable optical potential (Sec. G). Additional infor-
mation about the tweezer setup, calibration and lifetime
measurements is given in the Supplementary Material.
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Figure 5. Evolution of the initial wave packet in the
bulk of a static lattice. a, Spatial distribution of the
initial wave packet 10µs after release into the lattice. The
wavepacket is prepared at ω⊥/(2π) = 1.3(1) kHz. b, Real-
space distribution of the atoms in the static lattice after an
expansion time of 5 ms. The data shown in a and b are an av-
erage over 302 individual realizations. c, Group velocity dis-
tribution for a uniformly filled lowest band of the honeycomb
lattice. d, Numerical simulation of the expansion dynamics in
a tight-binding model starting from a state occupying a single
site. The resulting probability distribution |ψ(r, t)|2 is binned
to match the number of pixels in b, the scale bar corresponds
to 10a.

A. Expansion dynamics of the initial wave packet
in a static lattice

Figure 5a shows the initial density distribution of the
atoms 10 µs after releasing them from the tweezer into
the static honeycomb lattice. The measured signal is the
convolution of the actual density distribution in the trap
with the point-spread function of the imaging system
(NA=0.5). To demonstrate that our initial wave packet
evolves coherently in the lattice and occupies sufficiently
high quasi-momentum states in the Brillouin zone, we ob-
serve its expansion in the bulk of a static lattice without
any repulsive edge potential (Fig. 5b).

To this end, the tweezer trap is switched off abruptly
and the evolution of the initial wave packet in the static
lattice is monitored. After a short evolution time we
observe a characteristic hexagonal shape, which is ex-
pected to emerge during coherent expansion dynamics
for a homogeneously populated band [61, 62]. This is ex-
plained by the quasi-momentum dependent group veloc-
ities ∂qE(q)/~, as determined by the dispersion relation
of the energy bands in the honeycomb lattice (Fig. 5c). In
contrast, for an incoherent random walk a Gaussian dis-
tribution would be measured [63], and if only the center
of the Brillouin zone was populated, only the quadratic
dispersion relation of the lowest band would be probed,
masking the edges of the hexagonal shape.

Additionally, due to the interference of all the indepen-
dent quasi-momenta, a coherent evolution displays an in-
terference pattern within the hexagonal shape. In Fig. 5d
we show numerical simulations of an initial state that is
fully localized on a single lattice site after 5 ms of expan-
sion. The simulations are performed with a two-band
model whose parameters are close to the experimental
realization. These measurements confirm a sufficient lo-
calization of the initial wave packet and support a coher-
ent evolution in the lattice. We further confirmed that
we observe a similar quality of the expansion dynamics
when letting the atoms evolve in the bulk of the modu-
lated lattice in the three regimes.

B. Initial velocity kick calibration

A phase gradient is provided to the initial cloud by
giving it a kick. To this end the experimental sequence
is slightly modified. Shortly before switching off the
tweezer, it is displaced parallel to the edge to give an ini-
tial velocity to the wave packet, thus imprinting a phase
gradient. The velocity kick is given by applying a linear
ramp to the radio frequency sent to the AOD, resulting
in a linear displacement of the tweezer in the y direction
during a time δt: y

tw(t) = ytwi + (ytwf − ytwi )t/δt. At the
end of the linear ramp, the tweezer is abruptly switched
off. Classically, the center of mass of the atomic cloud
〈y〉(t) obeys the following equations:

mK
d2〈y〉
dt2

= −∇U(y, t), (1)
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Figure 6. Phase gradient induced by the kick. The ve-
locity of the wave packet is measured as a function of the
total displacement of the tweezer for two different in-plane
trapping frequencies: ω⊥/(2π) = 1.3(1) kHz in light blue, and
2.0(1) kHz in dark blue. The dashed lines are the analytic pre-
dictions from the motion of a cloud in a harmonic potential,
and the dotted lines are the interpolation of the measure-
ments with a polynomial of degree five. The inset shows the
averaged measurement of center of mass (CoM) of the atoms
after the kick and a variable evolution time in the optical
dipole trap for the lowest value of ω⊥ and displacements of
0.19 µm (circles), 0.78 µm (squares), 1.36 µm (diamonds), and
1.94 µm (pentagons). The depicted datapoints are an average
of 6 individual realizations. The inset also shows the linear
weighted fits from which the velocity is extracted. The asso-
ciated uncertainty of the slope is used as the error bar for the
main graph, and is smaller than the size of the markers. The
arrow at displacement ≈ 1 µm indicates the phase gradient
that was used in all measurements to populate the edge mode
in the Haldane regime.

where U(y, t) is the optical potential of the tweezer, ap-
proximated by a parabola:

U(y, t) =
mKω

2
⊥

2

(
y − ytw(t)

)2
. (2)

The equation of motion can be integrated with the initial

conditions d〈y〉
dt (0) = 0 and 〈y〉(0) = yi:

〈y〉(t) = ytwi +
ytwf − ytwi
ω⊥δt

[ω⊥t− sin(ω⊥t)] , (3)

which indicates that at the end of the ramp t = δt, the
final velocity of the center of mass of the atoms vy is:

vy(t = δt) =
ytwf − ytwi

δt
[1− cos(ω⊥δt)] . (4)

For a given tweezer frequency ω⊥, the final velocity
can be maximized: the function x 7→ [1− cos(x)] /x
reaches its maximum for x ≈ 2.33, therefore one can
choose δt = 2.33/ω⊥. The amplitude of the displacement
ytwf −ytwi can then be chosen independently, provided that
it does not exceed the scale within which the parabolic
assumption is valid.
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Figure 7. Evaluation of the fraction of atoms popu-
lating the edge mode. Averaged absorption image after
1.5 ms of time evolution, together with the respective regions
of interest used for the evaluation: close to the edge (solid
black lines) and in the bulk (dashed black lines). The two
background regions of half the size are indicated by the gray
lines. This example corresponds to the ω⊥/(2π) = 1.3(1) kHz
data point of Fig. 2 shown in the bottom right inset.

We experimentally measure the final velocity imposed
by the kick by letting the atoms evolve in the dipole trap
after applying the linear ramp and subsequently switch-
ing off the tweezer and the optical lattice. We measure
the position of the center of mass of the cloud as a func-
tion of the evolution time that is varied between 0 and
1 ms. The position in the direction of the kick is lin-
ear with time, and we extract the corresponding velocity
with a linear fit (inset of Fig. 6). The measured velocities
range between 0 and 10 µm/ms, and are converted into a
phase gradient via

∇φ =
mK

~
vy, (5)

as shown in Fig. 6 as a function of the displacement of
the tweezer for two values of ω⊥. The dashed lines corre-
spond to the theoretical prediction derived above, which
is in very good agreement with the measurements for
small displacements. At larger displacements, the mea-
surements depart from this prediction due to the anhar-
monicity of the tweezer, whose waist is on the order of
1 µm. As indicated by the vertical scale of the graph, this
method allows to prepare phase gradients large enough
to engineer a significant phase shift between two neigh-
bouring sites. The value of the phase gradient reported in
Fig. 2 of the main text is obtained by interpolating the
values measured here with a polynomial of order five,
shown here as the dotted lines. Finally, the parameters
used to prepare the cloud with a non-zero phase gradi-
ent to observe edge states – in particular in the Haldane
phase – is indicated by the blue arrow on Fig. 6.
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C. Evaluation of the population fraction in the
edge mode

The edge population fraction, displayed in Fig. 2c, is
determined by integrating the optical density (OD) in
the respective regions of interest (Fig. 7). We prepare
the initial state with varying trap frequency ω⊥/(2π) =
1.3(1) kHz and 2.0(1) kHz of the optical tweezer and dif-
ferent initial phase gradients. In order to ensure the op-
timum spatial overlap of the initial state with the edge
mode, we additionally vary the position with respect to
the edge potential. The fraction of atoms loaded in the
edge mode is evaluated after 1.5 ms evolution in the mod-
ulated lattice, when the atoms in the bulk and on the
edge have spatially separated, ensuring that the two sig-
nals can be distinguished. Several absorption images are
taken with the same experimental parameters and aver-
aged. To determine the size of the region of interest, we
verify that the integrated optical density is unaltered for
small changes in the size of the region of interest. Addi-
tionally, two regions of half the size of the previous ones
are defined separated from the central region to evaluate
the background value of the image (Fig. 7). We inde-
pendently sum the optical density of the edge and bulk
regions of interest and subtract the summed optical den-
sity in the background regions to obtain the signal from
the bulk Sbulk and edge Sedge. These values are then
used to compute the fraction pedge of atoms in the edge
region:

pedge =
Sedge

Sedge + Sbulk
. (6)

The error bar is evaluated using the standard deviation
of the two values of the fraction obtained for the two op-
posite chiralities of the lattice modulation and the noise
of the imaging system that is obtained from the standard
deviation of the optical density in the background region.

D. Numerical simulations of the tight-binding
model on a semi-infinite strip

For the numerical simulations we implement a time-
dependent tight-binding model [24] on a hexagonal lat-
tice with a finite dimension in x and an infinite dimension
in y. The system is represented in the dashed red rect-
angle in Fig. 8a: in the x-direction a system of length
Lx is implemented, and in the y-direction, the minimal
length Ly necessary to create a unit cell is generated.
The hexagonal lattice is oriented such that the edges of
the system at x = ±Lx/2 are zigzag edges, similarly

to the experiment. This leads to Ly =
√

3a, and the
size Lx is chosen equal to 20a, such that the edge effects
cover a region in x smaller that Lx, while keeping the
total number of sites in the unit cell Ns = 52 relatively
small to ensure fast numerical calculations. In this lat-
tice only nearest-neighbour hoppings are considered, and
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Figure 8. Numerical simulations. a, Geometry of the lat-
tice. The system consists of the sites located in the dashed
red rectangle. In the y-direction the system is periodic, as
indicated by the repetition of the system in pale colours. The
three types of links between sites are indicated by the three
shades of blue. The links that are weighted by a complex
phase are those that cross the dashed lines. b, Potential en-
ergy applied in the x-direction. The position of the edge is
chosen in the center of the system, and its width ` and its
height V0 are free parameters. In this example, ` = a. The
shaded region is an example of a zone that can be used to
selectively filter the spectrum. c, Full quasienergy spectrum
of the system with J ′1/J1 = 0.1, ~ω = 2π × 1.5J1, ` = a and
V0 = J1/2. The system is in the anomalous regime, i.e., two
pairs of edge states are visible, linking the two bulk energy
bands in the two gaps of the model. The gray circle indicates
the eigenstate whose wavefunction is represented in e. d, Ex-
emplary quasienergy spectrum. For this example, the same
spectrum as in c is plotted with a color scale that represents
the overlap with the shaded region of graph b. e, Wavefunc-
tion of the eigenstate at qy = ±π/Ly and at energy ε = 0
corresponding to a numerical edge state. The position of the
sites is represented as the black dots and the tunnelling bonds
are shown in gray. Around these dots, the color indicates the
modulus square of the wavefunction, and the direction of the
arrow indicates its phase.

three types of links are distinguished depending on their
orientation (see the three colours in Fig. 8).

Variables Haldane Anomalous Haldane-like
J ′1/J1 0.1 0.1 0.1
~ω/J1 9π 3π 2π

Table I. Variables used in the numerical simulations

The time-periodic Hamiltonian with period T = 2π/ω
is implemented by dividing each drive period into three
steps of equal duration described by a Hamiltonian Ĥi

(i = {1, 2, 3}). During each of them, one of the three
links has a large hopping amplitude J1, while the two
others have a low hopping amplitude J ′1. The hopping
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amplitude from site i to site j is associated with an addi-
tional phase factor e±iqyLy if the corresponding hopping
links two neighboring unit cells, where the sign depends
on the direction of the link along y; qy denotes the quasi-
momentum along y. This leads to three Hamiltonians
that can be expressed in the form of Ns × Ns matrices
with entries that depend on the quasi-momentum. The
order in which the links are switched from a low to a
high amplitude during one period defines the two chiral-
ities of the modulation. Finally, a potential offset can be
applied on each of the sites, which is described by the
Hamiltonian V̂ .

The evolution operator Û(T ) during one period is then
calculated as a function of qy:

Û(T ) = e−i(Ĥ3+V̂ ) T
3~ e−i(Ĥ2+V̂ ) T

3~ e−i(Ĥ1+V̂ ) T
3~ . (7)

This operator is diagonalized to obtain its eigenvalues λµ
and eigenstates |ψµ〉, for µ = {1, . . . , Ns}. The associated
quasi-energies εµ are then calculated as [25]:

εµ =
~ω
2πi

ln(λµ). (8)

The potential energy is modelled as

V (x) =
V0
2

[
erf

(
2(x0 − x)

`

)
+ 1

]
, (9)

where erf(x) is the error function, x0 is the position of
the edge, chosen here in the middle of the system, and
` encodes the width of the edge [45], as illustrated in
Fig. 8b. The spectrum {εµ(qy)} is plotted as a function
of the quasi-momentum qy in Fig. 8c, where the simula-
tion is performed with a value of ω and V0 such that the
system is in the anomalous regime and the potential V0
is large enough to create an edge state in the center of
the system. We find that each of the two bands of the
model is duplicated: the first one represents the left part
of the system, and the second one the right part of the
system, shifted by V0 in energy, with respect to the first
one.

Additionally, if a region S is defined on the lattice,
the projection P(µ,S) of each of the eigenstates on this
region can be calculated according to:

P(µ,S) =
∑
site j

1S(j) 〈j|ψµ〉 , (10)

where 1S(j) = 1 if site j belongs to the region S and
0 otherwise. For example, the shaded area of Fig. 8b
is chosen to filter the spectrum of Fig. 8c. The same
spectrum is shown in Fig. 8d, where each point has a
color that represents the projection P(µ,S). For clarity
the points with an overlap smaller than 1/20th of the
maximal overlap are not shown. In this figure one can
see that the bands corresponding to the high part of the
potential energy are removed, as well as the edge states
on the (numerical) left edge. Only the edge state at the
potential edge in the center of the system remains.
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Figure 9. Determination of the edge state velocity. a,
Insitu images of atoms in the optical tweezer. The position of
the tweezer is varied from top to bottom by steps of 0.48 µm in
the x direction (perpendicular to the orientation of the edge),
as emphasized by the vertical dashed line. The pictures are
an average of five individual experimental realizations, per-
formed without the edge potential in order to better see the
displacement of the tweezer. The scale bar corresponds to
10a. b-c, Evolution of the cloud for the two chiralities. The
first line shows the average of the absorption images after an
increasing evolution time, displayed with the same colorscale.
The second line shows the result of the Gaussian fit that is
performed on the averaged images. On these fits, the center of
the Gaussian is indicated as a black dot. The error bar, which
stems from a bootstrap analysis, is smaller than the marker.
d, The absolute distance ∆r between the center-of-mass posi-
tions of the time-evolved clouds with the two different chiral-
ities is plotted as a function of the time. The three different
markers correspond to the three initial positions, and the cor-
responding solid lines are linear fits. e, The slope of the fit
is divided by a factor of two to obtain the average velocity of
the edge state. The measured velocity is plotted as a function
of the initial position, and the final value that is selected is
the maximum value of these points. For the leftmost tweezer
position the error bar is very large: the atoms are released
on top of the potential step and no reliable velocity can be
extracted.

Finally, the wavefunction of any of the eigenstates can
be retrieved and displayed. In Fig. 8e we show the wave-
function of the (numerical) edge state at qy = −π/Ly
and at energy ε = 0, where the information about the
amplitude (color shading) and phase (arrow orientation)
of the wavefunction is indicated. This is the edge mode
of the 0-gap in the anomalous phase, which has the same
phase gradient along the edge as the edge mode of the
Haldane phase.



11

E. Velocity measurement

We measure the velocity of the edge state by maximiz-
ing the spatial overlap of the initial cloud and the edge
mode. To this end, the initial position of the tweezer is
varied with respect to the edge by steps of approximately
0.5 µm (Fig. 9a). We then release the cloud and observe
its subsequent evolution for various durations, and for
the two opposite chiralities of the modulation scheme.
The top rows of figures 9b and c show the evolution for
the two chiralities in the anomalous regime and with an
edge height of V0 = h × 19 kHz, where each picture is
the average of Nim experimental images. The position of
the center of mass of these observed clouds are evaluated
by fitting the averaged images with a Gaussian function
with its center, its amplitude, its two sizes, its offset and
the orientation of its eigenaxes as free parameters. The
error bars of these fitted parameters are estimated with
a bootstrap method: Among the Nim experimental im-
ages, a random draw with replacement of Nim of these
images is performed. The chosen images (with possible
repetition) are averaged and the resulting image is fitted
with the same Gaussian function. This random draw-
ing, averaging and fitting procedure is repeated 20 times,
thus providing as many estimates for the parameters of
the Gaussian. The error bar for the fitted parameters is
given by the standard deviation of these obtained values.

Figure 9d shows the distance ∆r between the center of
mass of the wavepacket for the two chiralities plotted as
a function of the time of evolution. The separation of the
two clouds is linear with time: with one chirality of the
modulation the cloud moves with average velocity +v in
the y-direction, and for the other chirality it moves with
velocity −v. The slope of ∆r as a function of evolution
time is extracted by a linear fit, and is divided by a factor
of two to obtain the average velocity of the edge state.
The error is estimated by taking the error of the linear fit.
This velocity is extracted for all the initial positions of the
tweezer with respect to the edge, as shown in Fig. 9e, and
displays a maximum when the overlap of the initial wave
packet with the edge mode is maximized. The observable
that is reported in the main text is thus the maximal
velocity that has been measured, along with its error bar.

F. Edge height calibration

In order to calibrate the height of the repulsive poten-
tial V0, we abruptly switch on a chequerboard pattern
on the DMD in order to study the diffraction of a large
BEC as a function of the hold time thold during which
the DMD beam is on, for a given beam intensity. The
period of the chequerboard pattern is denoted as 2dsq.
We detect the diffracted atoms after an evolution time of
10 ms in the optical dipole trap (see inset of Fig. 10a), and
measure the population in the zeroth and first diffrac-
tion orders. The first-order diffraction orders appear at
positions corresponding to the wave-vector k1 ∝ 1/dsq,
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Figure 10. Calibration of the height of the repulsive
potential. a, Measurement of the summed optical density in
the regions corresponding to the zeroth (circles) and the first
(diamonds) diffraction orders. The error bars correspond to
the standard deviation of the population in the respective or-
der for images taken with the same parameters. The solid
lines show the sinusoidal fits from which the frequency is ex-
tracted. The inset shows an exemplary image, where the dif-
ferent regions of interest for evaluating the optical density are
indicated (light blue box: first diffraction order; dark blue
box: zeroth order). b, Height of the repulsive potential eval-
uated using sinusodial fits as shown in a as a function of the
voltage used to control the laser intensity for three values
of dsq: 1.0 µm (circles), 1.3 µm (diamonds) and 1.7 µm (pen-
tagons). The error bars correspond to the uncertainty of the
fit, and the dashed black line is a weighted linear fit of all the
measured points, which has a slope of 11.12(3) kHz/V.

associated with the kinetic energy ER = ~2k21/(2mK).
In our experiments, this kinetic energy does not exceed
h × 1 kHz. For hold durations thold ≈ V0/~, and for
V0 > ER, the diffraction experiments are in the so-called
Raman-Nath regime [64]. In this regime, the populations
p0 and p±1 in the observed orders are:

p0(thold) ∝ cos2
(
V0thold

2h

)
, (11)

p±1(thold) ∝ sin2

(
V0thold

2h

)
, (12)

where V0 is the height of the potential on the atoms.
We fit these populations as a function of thold with these
functions to extract V0 (Fig. 10a). This procedure is per-
formed for various values of the potential height V0 by
varying the laser intensity, and for three values of dsq to
check the consistency of the method. The value of V0 is
presented in Fig. 10b as a function of the control voltage
of the laser intensity, for the three values of dsq. The
dashed line is a weighted linear fit to these points, which
constitutes the calibration of the potential height.
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Figure 11. Optical setup to vary the edge width. The
DMD is imaged on the atomic plane (p2). An iris of variable
diameter d is added in the Fourier plane to vary the width of
the potential step. The DMD light at 638 nm is overlapped
with the tweezer beam (tw.) at 1064 nm with a dichroic plate
and focused with a microscope objective. The imaging beam
(img.) at 767 nm is propagating in the opposite direction and
passing through the dichroic plate to reach the camera (not
shown).

G. DMD light source and optical setup

The DMD (ViALUX V-7000) is illuminated with an
incoherent light source centered at 638 nm with a 3 dB
bandwidth of 1 nm derived from four laserdiodes (Ushio
HL63623HD) that are combined with a beam combiner
module from Lasertack. The synthesized beam is inten-
sity stabilized using an acousto-optic modulator (Crys-
tal Technology 3200-125) correcting for intensity fluctua-
tions behind a square-core fiber (Thorlabs FP150QMT).
The square-core fiber maps the temporal incoherence
into rapidly varying spatial incoherence thus reducing the
speckle contrast to ≈ 3 %.

For the measurements shown in Fig. 1-3, the illumi-
nated DMD is imaged onto the atomic plane with a sin-
gle telescope that consists of one lens with focal length
1000 mm, and the microscope objective with focal length
f4 = 25 mm. This setup images a single pixel of the
DMD (edge length 13.7 µm) onto a hypothetical patch
with length 0.33 µm in the plane of the atoms. The theo-
retical resolution limit of the imaging system (NA = 0.5)
is λ/(2NA) = 638 nm. We thus average several DMD
pixels for every point spread function of the objective.
With this setup, the Fourier plane of the DMD pattern
is close to the microscope objective. Since this objective
is also used to focus the tweezer beam and to image the
atoms onto the camera, reducing the sharpness with this
setup is not feasible.

For the measurements presented in Fig. 4 we there-
fore use a modified two-telescope setup, as illustrated in
Fig. 11. The DMD pattern is now imaged onto the atomic
plane (p2) via an additional telescope. The first one has
lenses with focal lengths f1 = 150 mm and f2 = 100 mm.
To vary the sharpness of the projected pattern, an iris
with diameter d is introduced in the Fourier plane af-
ter the DMD behind lens f1. The resulting image can

be monitored in the image plane (p1 in Fig. 11) with a
camera. This intermediate image is then projected onto
the atoms with a lens of focal length f3 = 750 mm and
a microscope objective of focal length f4 = 25 mm. For
large diameters d of the iris, the finite aperture of the
objective cuts the highest Fourier components and limits
the sharpness of the displayed pattern.
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Figure 12. Optical potential created by the DMD and
edge width evaluation. a, Optical potential in the inter-
mediate plane (p1 in Fig. 11) generated with the DMD and
recorded with a camera. The diameter of the iris, and thus
the Fourier plane, is slightly larger than the corresponding
size of the objective. The gray rectangle indicates the area
integrated for the curve shown in c. b, Same as a, but the
diameter of the iris is closed as much as possible. The brown
rectangle indicates the area integrated for the curve shown
in c. The scale bar in a and b is 10a in the atomic plane
p2. c, Resulting edge width. The edge width is extracted for
a position close to the atomic cloud. We show the data of
the integrated signal highlighted by the rectangles in a and b
together with the corresponding fit. The iris diameter corre-
sponds to a diameter slightly larger than the diffraction limit
(a) and the smallest iris diameter from Fig. 4b (b).

Two of the resulting potentials are shown as exam-
ples in Fig. 12a and b. We image the potential in the
intermediate plane with a CMOS-camera (exposure du-
ration 44.8 µs) and scale the image with the demagnifi-
cation of this plane. The extracted edge width ` is il-
lustrated in Fig. 12c, showing the image integrated along
the edge which is highlighted by the rectangles in Fig. 12a
and b [45]. The iris diameter is set such that it is
slightly larger than the size corresponding to the objec-
tive aperture in Fig. 12a and closed as much as possible
in Fig. 12b. We extract the width by fitting Eq. 9 to
the data, extracting ` = 1.8a = 0.51 µm (Fig. 12a) and
` = 10.5a = 3.0 µm (Fig. 12b) after multiplying with the
demagnification from the intermediary plane to the plane
of the atomic cloud. The observed resolution in Fig. 12a
is slightly smaller than the diffraction limit after the ob-
jectiv, as the iris diameter was slightly larger than the
corresponding size of the objective.
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Joannopoulos, M. Soljačić, H. Chen, L. Lu, Y. Chong,
and B. Zhang, Probing topological protection using a de-
signer surface plasmon structure, Nat. Commun. 7, 11619
(2016).

[22] S. Afzal, T. J. Zimmerling, Y. Ren, D. Perron, and
V. Van, Realization of Anomalous Floquet Insulators
in Strongly Coupled Nanophotonic Lattices, Phys. Rev.
Lett. 124, 253601 (2020).

[23] K. Wintersperger, C. Braun, F. N. Ünal, A. Eckardt,
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SUPPLEMENTARY INFORMATION

TWEEZER OPTICAL SETUP

The optical tweezer is produced by deflecting a laser
beam at wavelength λT = 1064 nm with an acousto-
optical deflector (AA Optoelectronic DTSXY-400-1064).
This beam is then expanded with a telescope with lenses
of focal lenses 150 mm and 400 mm to an approximate
waist of 7.5 mm, and focussed on the atomic plane with
our microscope objective. There, its waist is around
1.1 µm, and varying the deflection angle of the beam
changes the position, where the tweezer is projected onto
the atoms.

TRAP FREQUENCY MEASUREMENTS

The frequency of the tweezer in the xy-plane is mea-
sured by loading atoms into the tweezer from a BEC,
applying the same velocity kick as described in the Meth-
ods, and letting the atoms oscillate during a variable
amount of time tosc in the tweezer potential. The tweezer
is then switched off abruptly and the cloud expands in
the optical dipole trap during texp = 0.5 ms for large
tweezer depths and texp = 1 ms for lower depths. The
center-of-mass position of the atomic cloud is measured
by taking absorption images. In order to increase the
signal-to-noise ratio, we average over few experimental
realizations and the center-of-mass position is evaluated
by fitting a Gaussian to the averaged image. Since the
typical oscillation frequency of the tweezer is on the order
of 1-2 kHz, which is comparable to 1/texp, the mapping
from momentum to position is justified and the mean
position of the cloud 〈r〉 is related to its center of mass
velocity 〈v0〉 at the end of the oscillation in the tweezer
via

〈r〉 ≈ 〈v0〉texp sin (ω⊥tosc) . (S.1)

We fit the observed oscillation with a sinusoidal func-
tion, whose frequency determines the in-plane trap fre-
quency ω⊥ of the tweezer. For most of the experi-
ments reported in the main text, the frequency is set to
ω⊥/(2π) = 2.0(1) kHz, where the uncertainty represents
the standard deviation of the different measurements
taken over a few months. The only difference are the di-
amond data points in Fig. 2c, which have been measured
with an in-plane frequency of ω⊥/(2π) = 1.3(1) kHz.

The horizontal trap frequency of the dipole trap can
in principle be determined by observing center-of-mass
oscillations as described above for the tweezer trap. The
trap frequency in this case is, however, modified by
the presence of the lattice beams, which add an anti-
confining potential, thus weakening the overall trap fre-
quency. Therefore, we adopt a slightly different scheme.
We load a large BEC into the static honeycomb lattice
at the Γ-point of the lowest band, let it evolve during a

variable duration, and subsequently perform a bandmap-
ping measurement that allows to observe the momentum
distribution of the cloud. We find that the distribution
remains centered near the Γ-point at all times, and a
residual oscillation in the harmonic trap is observed. This
oscillation has a frequency of ωODT/(2π) = 17(1) Hz.

The vertical frequency of the dipole trap combined
with the optical lattice is measured by observing the ver-
tical oscillation after releasing the cloud from a tweezer
trap that is displaced along the z direction compared to
the dipole trap and lattice. The oscillations in the trap
are measured after 7 ms time of flight, mapping veloc-
ity to position. The position of the center of mass as a
function of time is fitted with a sinusoidal curve and we
extract a vertical frequency of 2π × 330(30) Hz.

CHANGING THE DIRECTION OF THE KICK
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Figure S1. Changing the direction of the kick in the
Haldane regime. Each image a-d shows the evolution of
the atoms with different parameters: the direction of the kick
is indicated by the arrow on the left pointing up or down; the
chirality of the modulation by the direction of the circular
arrow on the top right, corresponding to κ = −1 in a,c, and
κ = 1 in b,d. The black point indicates the initial position
of the cloud. The dashed line indicates, where the edge is
located, and the scale on the bottom left represents a length
of 10a.

When preparing atoms in the edge state of the Hal-
dane phase, a velocity kick is given to the cloud. We ver-
ify here that the direction of this velocity kick does not
change the subsequent dynamics of the cloud, in par-
ticular not its direction of propagation along the edge,
which is solely determined by the chirality of the topo-
logical edge mode. Fig. S1 shows averaged pictures of
the evolution of a cloud of atoms in the Haldane regime
under the two opposite chiralities of the lattice modu-
lation (respectively top and bottom row), and with an
initial velocity kick that is applied in two opposite direc-
tions (respectively left and right column). These pictures
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highlight the fact that the direction of propagation of the
atoms along the edge is only determined by the chirality
of the modulation, i.e., by the chirality of the topolog-
ical edge mode. The direction of the initial kick does
not intervene, since the purpose of this kick is to bring
the cloud of atoms from a quasi-momentum of 0 closer
to the maximum quasi-momentum of +π/Ly with a kick
in one direction or of −π/Ly with a kick in the opposite
direction. Here Ly denotes the length of the unit cell
and thus |π/Ly| is maximum possibile quasi momentum
the wave packet can exhibit as these two quasi-momenta
represent the same quantum state. The trap frequency
of the tweezer is ω⊥ = 2π × 2.0(1) kHz.

ATOM NUMBER CALIBRATION
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Figure S2. Atom number calibration. Each data point
corresponds to an experimental realization of a BEC in the
dipole trap. The two estimated radial sizes of the cloud are
plotted on the horizontal and vertical axes. The horizontal
axis is rescaled in order to match the estimated size of the
cloud in the dilute regime. The solid line has a slope of one,
the vertical error bars represent the error of the fit of the
radius, and the horizontal error is estimated from the back-
ground noise of the absorption image.

We calibrate the observed number of atoms in the edge
mode by estimating the Thomas-Fermi radius of a small
BEC in the optical dipole trap in two ways. The first one
is to fit the density profile of the cloud with an inverted
parabola, and the second one is to calculate it via the
Thomas-Fermi formula:

RTF =

(
15Natas~2ωz

m2
Kω

3
r

)1/5

, (S.2)

where as is the s-wave scattering length of the atoms,
mK is the mass of a potassium atom, and ωz (resp. ωr)
is the vertical (resp. radial) frequency of the optical
dipole trap. In this formula, the number of atoms Nat

is replaced by σscOD, where σsc is the scattering cross-
section of the imaging process, and OD is the summed

optical density of the cloud. The exact value of σsc is
unknown due to the proximity of the 2P3/2 states during
the imaging, and the comparison between the two values
obtained for the Thomas-Fermi radius allows to calibrate
this quantity, and therefore provide the proportionality
factor between the optical density and the number of
atoms.

We take a series of pictures of a small BEC in the opti-
cal dipole trap, and for each picture evaluate the Thomas-
Fermi radius with the two methods above. Fig. S2 shows
the results, where the horizontal axis is rescaled by ad-
justing the value of σsc such that the Thomas-Fermi radii
of the least dense clouds obtained with the two methods
match: the solid line has a slope of one. We obtain a
scattering cross-section of σsc = 0.085× 3λ20/(2π), where
λ0 = 767 nm is the wavelength of the imaging light. This
value is then used to estimate the number of atoms that
are loaded in the edge modes.

LIFETIME OF THE ATOMS IN THE EDGE
STATE
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Figure S3. Lifetime of atoms in the edge state. The
number of atoms in the edge mode is measured in two regimes:
Haldane (green) and anomalous (blue). The error bars cor-
respond to the standard deviation of the atom numbers ob-
tained by the bootstrapping method (see text). The points
are fitted with an exponential decay (solid lines), from which
a lifetime is extracted as the only free parameter. The pre-
sented data is an average over 10-38 averages for the blue
and 27-72 averages for the green data points, the number of
averages is increasing for longer hold times.

We measure the lifetime of the atoms in the edge state
by summing the optical density of averaged pictures for
various evolution times. We evaluate the error on this
sum by averaging different subsets of images and com-
puting the summed optical density on these averages, in
a similar manner to the procedure described by a boot-
strapping method (see Methods section E. The summed
optical densities and their respective error bars are then
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multiplied by the factor determined above to obtain the
atom number. Figure S3 shows the atom number as a
function of hold time for two experiments, one in the
Haldane regime (green), and one in the anomalous regime
(blue). We then fit each dataset with an exponential de-
cay to evaluate the characteristic lifetime. In the Haldane
regime this lifetime is 5 ms, and in the anomalous phase
17 ms. For Reference, the lifetime of a bulk BEC in the
modulated lattice without any edge potential is measured
to be around 100 ms. The reduced lifetime in the edge
mode could be due to spurious dynamics in the vertical
direction: the Rayleigh length associated with the resolu-
tion of the potential edge is around 3 µm, which is smaller
than the vertical extension of the atoms prepared in the

tweezer. As a result, only part of the atomic cloud may
be prepared in the edge mode and the observed loss rate
would then be a combination of heating in the modulated
lattice and losses along the vertical direction. In contrast,
the lifetime of the atomic cloud in the modulated lattice
is measured by preparing a large BEC in the combined
potential formed by the dipole trap and the honeycomb
lattice, which does not suffer from any mismatch of po-
tentials in the vertical direction. The modulation fre-
quency in the anomalous regime is ω = 2π × 7 kHz, in
the Haldane regime ω = 2π × 16 kHz, for both regimes
the modulation amplitude m = 0.25 and the tweezer trap
frequency ω⊥ = 2π × 2.0(1) kHz.
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