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Abstract 40 

Wetlands are the largest natural source of methane (CH4) emissions globally. Northern wetlands 41 
(>45° N), accounting for 42% of global wetland area, are increasingly vulnerable to carbon loss, 42 
especially as CH4 emissions may accelerate under intensified high-latitude warming. However, 43 
the magnitude and spatial patterns of high-latitude CH4 emissions remain relatively uncertain. 44 
Here we present estimates of daily CH4 fluxes obtained using a new machine learning-based 45 
wetland CH4 upscaling framework (WetCH4) that applies the most complete database of eddy 46 
covariance (EC) observations available to date, and satellite remote sensing informed 47 
observations of environmental conditions at 10-km resolution. The most important predictor 48 
variables included near-surface soil temperatures (top 40 cm), vegetation reflectance, and soil 49 
moisture. Our results, modeled from 138 site-years across 26 sites, had relatively strong 50 
predictive skill with a mean R2 of 0.46 and 0.62 and a mean absolute error (MAE) of 23 nmol m-2 51 
s-1 and 21 nmol m-2 s-1 for daily and monthly fluxes, respectively. Based on the model results, 52 
we estimated an annual average of 20.8 ±2.1 Tg CH4 yr-1 for the northern wetland region (2016-53 
2022) and total budgets ranged from 13.7 - 44.1 Tg CH4 yr-1, depending on wetland map 54 
extents. Although 86% of the estimated CH4 budget occurred during the May-October period, a 55 
considerable amount (1.4 ±0.2 Tg CH4) occurred during winter. Regionally, the West Siberian 56 
wetlands accounted for a majority (51%) of the interannual variation in domain CH4 emissions. 57 
Significant issues with data coverage remain, with only 23% of the sites observing year-round 58 
and most of the data from 11 wetland sites in Alaska and 10 bog/fen sites in Canada and 59 
Fennoscandia, and in general, Western Siberian Lowlands are underrepresented by EC CH4 60 
sites. Our results provide high spatiotemporal information on the wetland emissions in the high-61 
latitude carbon cycle and possible responses to climate change. Continued, all-season tower 62 
observations and improved soil moisture products are needed for future improvement of CH4 63 
upscaling. The dataset can be found at https://doi.org/10.5281/zenodo.10802154 (Ying et al., 64 
2024). 65 
 66 
Keywords 67 
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1. Introduction 70 

Methane (CH4) is the second most important greenhouse gas after carbon dioxide (CO2) and 71 
has contributed to around 1/3 of anthropogenic warming (IPCC AR6, 2023). Wetlands are the 72 
largest natural source of CH4 emissions. Northern freshwater wetlands (>45° N) account for 73 
roughly 40% of global wetland area (ranging 1.3 - 8.7 million km2; Z. Zhang et al., 2021) yet the 74 
amount of CH4 emissions from this region is highly uncertain – currently estimated to be 22 – 75 
49.5 Tg CH4 yr-1 (Aydin et al., 2011; Baray et al., 2021; Heimann, 2011; Kirschke et al., 2013; 76 
Peltola et al., 2019; Saunois et al., 2020; Treat et al., 2018; Watts et al., 2023). The 77 
uncertainties in the estimates of wetland CH4 emissions are primarily attributed to challenges in 78 
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mapping vegetated wetlands versus open water leading to double counting, seasonal wetland 79 
dynamics and uncertainties in estimates on flux rates. 80 
Characterized by nutrient, moisture and hydrodynamic conditions, northern freshwater wetlands 81 
are classified to wet tundra in treeless permafrost areas, peat-forming bogs and fens in boreal 82 
biomes, with some exceptions (Olefeldt et al., 2021; Kuhn et al., 2021). Olefeldt et al. (2021) 83 
estimated wetland type areas in the boreal-Arctic region (0.31-0.53 million km2 in wet tundra, 84 
1.38-2.41 million km2 in bogs, and 0.76-1.14 million km2 in fens). Distinct CH4 fluxes have been 85 
observed from wet tundra (Fig. S4, mean ± standard deviation: 13 ±14 nmol m-2 s-1), bogs (22 86 
±26 nmol m-2 s-1) and fens (56 ±88 nmol m-2 s-1). The rates of CH4 emissions may increase at a 87 
faster pace because of intensified warming in the Arctic (Masson-Delmotte et al., 2021; Rawlins 88 
et al., 2010; Rößger et al., 2022; Walsh, 2014; Z. Zhang, Poulter, et al., 2023). 89 
 90 
Northern wetlands may account for a portion of the recent increase in global surface emissions 91 
in 2020 relative to 2019 (6.0 ± 2.3 Tg CH4 yr-1) (S. Peng et al., 2022; Z. Zhang, Poulter, et al., 92 
2023). The responses of high latitude CH4 emissions to a warming climate, with warming soils 93 
and associated permafrost thaw, an extended soil active-layer depth and duration, and 94 
projected increases in precipitation, could enforce the positive carbon-climate feedback 95 
(McGuire et al., 2009; Natali et al., 2019). However, detailed understanding of the spatio-96 
temporal variability of high latitude wetland CH4 emission rates remains limited. 97 
 98 
Field observations of gas fluxes typically measure CH4 exchange between the land and 99 
atmosphere at sub-meter to ecosystem (100s of m to km) scales. Eddy covariance (EC) 100 
provides near-continuous measurements over ecosystem-scale footprints (5 – 100 x 103 m2), 101 
the size of which matches fine to medium resolution satellite remote sensing. Typical EC 102 
measurement system records include carbon, water and energy fluxes along with environmental 103 
conditions half hourly. Long-term EC datasets can support the analysis of daily, monthly, 104 
seasonal, or interannual patterns and drivers of carbon emissions (Baldocchi, 2003). Fluxnet-105 
CH4 represents a first compilation of global CH4 fluxes measured by EC towers (Delwiche et al., 106 
2021; Knox et al., 2019), yet more EC data exists outside the network. Chambers can also 107 
measure CH4 fluxes, though at sub-meter resolution, small spatial coverage area (Kuhn et al., 108 
2021; Bansal et al., 2023). To avoid footprint disagreement between EC and chamber 109 
measurement techniques, we focused on EC-based CH4 upscaling in this study.  110 
  111 
Data-driven upscaling with empirical models, including machine learning (ML) approaches, to 112 
compute CH4 fluxes provide independent estimates (Bodesheim et al., 2018; Jung et al., 2011) 113 
complementing process-based models and atmospheric inversions (Bergamaschi et al., 2013; 114 
Spahni et al., 2011). These approaches have been used to estimate fluxes from various 115 
ecosystems such as northern wetlands (Peltola et al., 2019; Yuan et al., 2024), Finnish tundra 116 
(Virkkala et al., 2023), global reservoirs (Johnson et al., 2021), and global aquatic ecosystems 117 
(Rosentreter et al., 2021). 118 
  119 
Two general classes of methods have been developed for data-driven upscaling. One uses a 120 
look-up table approach and applies emission rates or emission factors via data synthesis to the 121 
corresponding land surface areas, or activity data, over the study region. Emission rates from 122 
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field observations are associated with environmental drivers that have been spatially 123 
characterized and are then applied to the land covers with the same environmental drivers. For 124 
example, Rosentreter et al. (2021) collected 2,601 CH4 flux records measured using various 125 
methods through a literature review and characterized emission rates over 15 aquatic 126 
ecosystem types to upscale global aquatic CH4 emissions. The study provided estimates of total 127 
and per ecosystem emissions but did not produce a spatial distribution and were unable to 128 
generate temporal changes. A similar method was applied to the Boreal-Arctic Wetland and 129 
Lake CH4 Dataset (BAWLD-CH4), where statistical CH4 flux rates by wetland types were 130 
analyzed for emission estimation (Kuhn et al., 2021). This method favors homogeneous 131 
ecosystems and static environments, and the results may be biased for large-scale studies 132 
where spatial heterogeneity is prevalent. 133 
 134 
Another approach uses ML methods to upscale fluxes (Bodesheim et al., 2018; Tramontana et 135 
al., 2016; Yuan et al., 2024). ML models are developed with large training datasets. Generally, 136 
ML models can learn from high-dimensional data by optimizing many statistical parameters and 137 
identifying variables that are closely associated with spatio-temporally varied CH4 emissions. 138 
The efficient computation cost makes it easier to apply the models over large regions at higher 139 
spatial resolutions. Among ML methods, decision-tree-based algorithms have been widely used 140 
in upscaling for the computation efficiency and prediction performance (Beaulieu et al., 2020; 141 
Jung et al., 2020; Virkkala et al., 2021; C. Zhang et al., 2020). Specifically, Random Forests 142 
(RF) was utilized in regional to global wetland CH4 upscaling (Davidson et al., 2017; Feron et 143 
al., 2024; McNicol et al., 2023; Peltola et al., 2019) for the robustness and prevention of 144 
overfitting to noise in the input data. For example, Peltola et al. (2019) used RF and EC 145 
measurements to upscale monthly CH4 fluxes from the Arctic-boreal wetlands at 0.25°- 0.5° 146 
spatial resolution in 2013-2014. Input into ML models are predictor variables that associate with 147 
spatiotemporal variability in CH4 fluxes, or control the biogeochemical processes of CH4 148 
production, oxidation, and transport: for example, direct measurements of vegetation 149 
productivity, meteorological and soil variables; or indirect measurements of the biophysical 150 
environment. 151 
 152 
There has been a growing interest in using remote sensing data to upscale CH4 emissions from 153 
wetlands in recent years (Davidson et al., 2017; Virkkala et al., 2023; Watts et al., 2014, 2023). 154 
This approach involves using satellite products to quantify wetland characteristics and extent. 155 
For example, seasonal average surface reflectance of Landsat 8 images was used with point-156 
based gas trap measurements to estimate CH4 emissions in dry and wet seasons from 157 
Everglades’ freshwater marshes (C. Zhang et al., 2020). Existing ML-based large-scale 158 
upscaling models used MODIS land surface temperature at night (LST) or enhanced vegetation 159 
index (EVI), vegetation canopy height and ancillary environmental variables from remote 160 
sensing products (McNicol et al., 2023; Ouyang et al., 2023; Peltola et al., 2019. Supporting 161 
Materials Text 1 and Table S1 for details). However, soil moisture and soil temperature, two 162 
controlling factors of freshwater wetland CH4 fluxes (Knox et al., 2021; Yuan et al., 2022), were 163 
missing in previous ML-based regional to global upscaling studies. Surface reflectance contains 164 
information about the water-vegetation complex that affects the production and transport of CH4 165 
to the atmosphere (Alonso et al., 2020; Chen et al., 2013; Houborg et al., 2007; Murray-Hudson 166 
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et al., 2015; Z. Wang et al., 2018). Satellite products that provide constraints on the 167 
spatiotemporal variability of soil moisture and vegetation, including Soil Moisture Active Passive 168 
(SMAP) microwave-sensed soil moisture and Moderate Resolution Imaging Spectroradiometer 169 
Nadir Bidirectional Reflectance Distribution Function (BRDF) – Adjusted Reflectance (MODIS 170 
NBAR) data, may help predict the highly variable CH4 fluxes (Entekhabi et al., 2010).  171 
 172 
The goal of this study is to develop a scalable framework to upscale daily CH4 fluxes from EC 173 
observations to northern latitude wetlands (>45° N) using the ensembled RF ML approach with 174 
a suite of reanalysis and remote sensing products representing spatiotemporal environmental 175 
conditions. Our specific objectives are to: 176 

1. compile an updated EC-based CH4 flux dataset that extends the temporal and spatial 177 
coverage of the Fluxnet-CH4 database (Delwiche et al., 2021) for the northern latitudes;  178 

2. build ensemble RF models of CH4 fluxes at site-level based on in-situ measured 179 
variables and then at grid-level on gridded reanalysis inputs and constraints from 180 
satellite remote sensing; and  181 

3. apply grid-level models to produce a 10-km gridded daily distribution of CH4 flux product 182 
for the Arctic-boreal wetlands using bootstrapped models and their derived uncertainties 183 
(Table S1).  184 

2. Materials and methods 185 

2.1 Overview 186 

The scalable framework of upscaling CH4 fluxes from EC observations (referred to as WetCH4 187 
hereafter), traces changes in model performance from site to grid level, is illustrated in Fig. 1. In 188 
situ, reanalysis, and remote-sensing products were compiled as candidate predictors for 189 
modeling (Fig. 1, purple boxes; see section 2.2 for details). We first ran a feature selection, 190 
which uses ensemble RF models to choose important predictors from an extensive list of site-191 
level predictor variables. Gridded versions of selected site variables were taken from Modern-192 
Era Retrospective analysis for Research and Applications (MERRA2) reanalysis to model RF at 193 
grid level. We then added remote-sensing products from MODIS NBAR, SMAP soil wetness 194 
and topographic data, to strengthen the model and provide finer delineation of environment 195 
gradients based on literature and expert knowledge. The predictive performance of grid-level 196 
models with input variables at their native spatial resolution was then evaluated. We also 197 
compared model performance with those from two additional ML algorithms: support vector 198 
machines (SVM) and artificial neural network (ANN) (Fig. 1 pink boxes). The ML algorithm with 199 
the highest mean R2 and lowest daily mean errors in model predictive performance was 200 
selected for bootstrap modeling and upscaling the 0.098° (~10km along longitudes) gridded 201 
time series of daily CH4 fluxes and ensemble uncertainty estimation (Fig. 1 grey boxes). 202 
 203 
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 204 
Fig. 1 Workflow and experimental design: abstract methodological steps are integrated in the 205 
dashed box on the left, while a detailed experimental design is described on the right. Colors on 206 
the right match the associated step on the left. 207 
 208 
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 209 
Fig. 2 Eddy covariance tower sites: distribution (>45° N), class, and data size (site-years) used 210 
in WetCH4. Colored circles represent EC tower locations and land cover classes, with wetland 211 
sites in cyan (wet tundra), yellow (bog) and orange (fen). The circle sizes represent observation 212 
years(n) of available CH4 fluxes at the site (e.g. 1-3 stands for 1<=n<3). The background image 213 
shows the maximum annual fractions of wetland cover in 2011-2020 from WAD2M (Z. Zhang et 214 
al., 2021). 215 
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2.2 Data 216 

2.2.1 Eddy covariance measurements 217 

Daily and half-hourly EC data from the 26 wetland sites located in the Arctic-boreal region (>45° 218 
N) were compiled for analysis from 22 sites in FLUXNET-CH4 (among which 8 sites with 219 
updated data to recent years, Delwiche et al., 2021; Knox et al., 2019) and 4 additional sites 220 
using information provided directly by principal investigators, consisting of 138 site-years data in 221 
total and representing the largest high latitude EC-data compilation to date (Table S2, see 222 
Supporting Materials Text 2). The sites were distributed among wetland types, including 9 fens, 223 
7 bogs, and 10 wet tundra sites (Fig. 2). Half-hourly fluxes acquired from FLUXNET-CH4 were 224 
already gap-filled (see Supporting Materials Text 2; Irvin et al., 2021). Additional half-hourly 225 
fluxes acquired from site PIs were not gap-filled, and we performed per site gap filling following 226 
the FLUXNET-CH4 approach (Irvin et al., 2021; Knox et al., 2019). Gap-filled fluxes were 227 
temporally consistent and agreed with validation data (mean R2 = 0.68 and mean RMSE = 6 228 
nmol m-2 s-1, see Supporting Materials Text 2).  229 

 230 
The mean difference in daily mean fluxes between the gap-filled data and the original data 231 
converged to -0.2 nmol m-2 s-1 when there were more than 11 half-hourly EC tower observations 232 
in a day (Fig. S1). Therefore, daily data entries were only kept when the number of half-hourly 233 
EC tower observations per day was greater than 11. All data were retained on four sites where 234 
only daily, quality-filtered, data were provided by site PIs (Table S2). As a result, we identified 235 
12,784 daily data entries from 26 wetland sites for upscaling models (Table S2), spanning 2015-236 
2021 with seasonal observation distributions of 44.0% in June-July-August (JJA), 29.0% in 237 
March-April-May (MAM), 24.5% in September-October-November (SON), and 2.5% in 238 
December-January-Feburary (DJF) (Fig. S2). 239 
 240 
Site-level candidate predictors were identified and considered to affect CH4 fluxes at multi-day 241 
to seasonal scales during field control experiments, in situ flux synthesis, and process-based 242 
modeling (Bloom et al., 2010, 2017; Knox et al., 2021; Olefeldt et al., 2013, 2017). In situ 243 
candidate predictors that were gap-filled and available in FLUXNET-CH4 included daily 244 
averages of air temperature, soil temperature, air pressure, vapor pressure deficit, relative 245 
humidity, latent heat flux, sensible heat flux, longwave incoming radiation, shortwave incoming 246 
radiation, net radiation, wind speed, and daily total precipitation (Fig. 1 site-level model solid 247 
blue box). We were unable to include water-table depth in our site-level model as it was not 248 
available at many sites. 249 
 250 

2.2.2 Reanalysis data and satellite data products 251 

Reanalysis data were used as the gridded input to replace selected predictors at site level for 252 
training the grid-level models and upscaling. These data provided long-term continuous 253 
estimates of nearly all the candidate predictors of the in situ measured variables (Fig. 1). 254 
MERRA2 is an atmospheric reanalysis of the modern satellite era produced by NASA’s Global 255 
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Modeling and Assimilation Office (Gelaro et al., 2017). We calculated daily means for air 256 
pressure, surface air temperature, latent heat flux, sensible heat flux, downward-incoming 257 
shortwave radiation, downward-incoming longwave radiation, and soil temperature at three 258 
depths (9.88 cm, 19.52 cm, 38.59 cm) (Jiao et al., 2023), and relative humidity using the hourly 259 
average of surface flux diagnostics, land surface diagnostics, and land surface forcings. The 260 
original 0.5° x 0.625° resolution data were resampled to 0.5° grids using a bilinear interpolation 261 
method in the NASA MERRA2 web service tool available on GES DISC. Daily time series of the 262 
nearest 0.5° grid to each EC location were extracted for modeling. The MERRA2 data was 263 
further bilinearly interpolated from 0.5° to 0.098° grids for the 10-km upscaling products. 264 
  265 
To improve the predictive performance of grid-level models, we added remotely sensed 266 
biophysical variables, including SMAP soil wetness, MODIS NBAR bands, and topographic data 267 
(Fig. 1, Table 1). All remote-sensing products were extracted in daily time steps and their native 268 
spatial resolutions at EC tower sites for modeling and aggregated to 0.098° grids over the study 269 
domain for upscaling using Google Earth Engine. We filtered out data gaps in SMAP and 270 
MODIS NBAR time series extracted at the native spatial resolution during model training and 271 
validation. Gaps in MODIS NBAR were negligible when aggregated from 500-m to 0.098° grids. 272 
Gaps in winter SMAP data were filled with zero values to represent frozen soils for upscaling.  273 
 274 
Soil moisture has been identified as one of the important, controlling factors of freshwater 275 
wetland CH4 fluxes (Euskirchen et al., 2024; Voigt et al., 2023). Passive microwave radiometer-276 
measured brightness temperature was merged with estimates from the GEOS Catchment Land 277 
Surface and Microwave Radiative Transfer Model in a soil moisture data assimilation system, to 278 
generate global products of surface and rootzone soil moisture (Reichle et al., 2017). In 279 
WetCH4, we incorporated SMAP soil moisture to drive ML models to upscale wetland CH4 280 
fluxes. For soil moisture, we employed Level-4 daily soil wetness products (SPL4SMGP.007) 281 
from the SMAP mission as proxies for water-table depth in the grid-level model (Reichle et al., 282 
2017). Surface, rootzone, and soil profile wetness are dimensionless variables that indicate 283 
relative saturation for top layer soil (0-5 cm), root zone soil (0-100 cm), and total profile soil (0 284 
cm to model bedrock depth), respectively. These three variables are originally 3-hourly data at 285 
9-km resolution and were converted to daily means. 286 
 287 
Vegetation abundance and composition are influencing factors that were missing in the site-288 
level model. Vegetation indices did not emerge as important for the predictive performance of 289 
the upscaling model in Peltola et al. (2019), probably due to their productivity measure of 290 
vegetation cover rather than vegetation types. Emergent aerenchymatous vegetation was 291 
another important component in the plant-mediated pathway of CH4 transport yet was less 292 
represented in existing upscaling models. Land surface reflectance was utilized to map key 293 
information to emergent vegetation, vegetation composition, and inundation dynamics (Alonso 294 
et al., 2020; Murray-Hudson et al., 2015). Surface reflectance contains information about the 295 
water-vegetation complex that affects the production and transport of CH4 to the atmosphere 296 
(Choe et al., 2021). Thus, we included MODIS NBAR (MCD43A4v061) products as predictor 297 
variables to represent the vegetation layer in the grid-level model in order to enhance our model 298 
predictive performance in vegetated wetlands. The 7 NBAR bands (including red/green/blue, 2 299 
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near infrared, and 2 shortwave infrared) are developed daily at 500-m spatial resolution, using 300 
16 days of Terra and Aqua data to remove view angle effects, and it is temporally weighted to 301 
the ninth day as the best local solar noon reflectance (Schaaf et al., 2002; Z. Wang et al., 2018). 302 
 303 
Static topographic variables were added as additional attributes in the grid-level model. 304 
Elevation information was extracted from a multiple-error-removed improved-terrain digital 305 
elevation model (MERIT-DEM) at 90-m resolution, which significantly improves elevation 306 
estimates in flat terrain over previous DEM products (Yamazaki et al., 2017). We used 307 
topographical slope and indices that represent the water flow from MERIT-DEM based 308 
Geomorpho90m (Amatulli et al., 2020). Two topographic indices were applied: the compound 309 
topographic index (cti) is considered a proxy of the long-term soil moisture availability, and the 310 
stream power index (spi, https://gee-community-catalog.org/projects/geomorpho90/) reflects the 311 
erosive power of the flow and the tendency of gravitational forces to move water downstream. 312 
Although the DEM was significantly linearly correlated with air pressure, we still included DEM 313 
to provide fine spatial resolution gradients for coarse resolution meteorological variables from 314 
MERRA2. 315 
 316 
Table 1. Description of input variables for grid-level upscaling model 317 
 318 

Variable type Name Description Unit Data source 
Native Spatial 
resolution 

Native Temporal 
resolution 

Reanalysis tas 
surface air 
temperature °C MERRA2 0.625°×0.5° 1 hourly 

Reanalysis pa surface air pressure Kpa MERRA2 0.625°×0.5° 1 hourly 

Reanalysis le latent heat W m-2 MERRA2 0.625°×0.5° 1 hourly 

Reanalysis h sensible heat W m-2 MERRA2 0.625°×0.5° 1 hourly 

Reanalysis rsdl 
downward-incoming 
longwave radiation W m-2 MERRA2 0.625°×0.5° 1 hourly 

Reanalysis rsds 
downward-incoming 
shortwave radiation W m-2 MERRA2 0.625°×0.5° 1 hourly 

Reanalysis spfh 
surface specific 
humidity unitless MERRA2 0.625°×0.5° 1 hourly 

Reanalysis ts1 soil temperature ° C MERRA2 0.625°×0.5° 1 hourly 

Reanalysis ts2 soil temperature ° C MERRA2 0.625°×0.5° 1 hourly 

Reanalysis ts3 soil temperature ° C MERRA2 0.625°×0.5° 1 hourly 

Remote Sensing sm_s_wetness surface soil wetness unitless SPL4SMGP.007 9 km 3 hourly 

Remote Sensing sm_r_wetness 
rootzone soil 
wetness unitless SPL4SMGP.007 9 km 3 hourly 

Remote Sensing sm_p_wetness profile soil wetness unitless SPL4SMGP.007 9 km 3 hourly 

Remote Sensing nbar1 red band unitless MCD43A4v061 500 m daily 

Remote Sensing nbar2 near infrared 1 band unitless MCD43A4v061 500 m daily 
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Remote Sensing nbar3 blue unitless MCD43A4v061 500 m daily 

Remote Sensing nbar4 green unitless MCD43A4v061 500 m daily 

Remote Sensing nbar5 near infrared 2 band unitless MCD43A4v061 500 m daily 

Remote Sensing nbar6 
shortwave infrared 1 
band unitless MCD43A4v061 500m daily 

Remote Sensing nbar7 
shortwave infrared 2 
band unitless MCD43A4v061 500 m daily 

Remote Sensing dem altitude m MERIT-DEM 90 m static 

Remote Sensing slope terrain slope radian Geomorpho90m 90 m static 

Remote Sensing spi stream power index unitless Geomorpho90m 90 m static 

Remote Sensing cti 
compound 
topographic index unitless Geomorpho90m 90 m static 

 319 

2.3 Machine learning model 320 

2.3.1 General model design 321 

We used an RF regression algorithm to construct site-level and grid-level ML models (Kim et al., 322 
2020). RF regression builds an assembly of independent trees, each of which is trained from a 323 
random subset of input data and tested against the rest of the data (Breiman, 2001). A tree 324 
grows two leaves when a random selection of subset features reduces the mean squared error 325 
(MSE) of predictions after splitting at a leaf node. Each tree is trained on a bootstrap sample of 326 
input data. Trees constructed in this way are less correlated in the ensemble. The generalization 327 
error converges as the forest grows to a limit to avoid overfitting. Compared to other ML 328 
algorithms, RF has shown to have better accuracy and lower uncertainty (Irvin et al., 2021; Kim 329 
et al., 2020). This approach has been previously applied to upscaling CH4 fluxes in wetlands 330 
and rice paddy (Davidson et al., 2017; Feron et al., 2024; McNicol et al., 2023; Ouyang et al., 331 
2023; Peltola et al., 2019). 332 
 333 
A grid-search hyperparameter tuning for daily models was performed before predictor selection. 334 
We carried out analyses in Python version 3.6 with the ensemble RF regressor in package 335 
‘scikit-learn’ (Pedregosa et al., 2011). With all the predictors and data, hyper-parameters were 336 
set after tuning for optimized model performance, including the number of trees 337 
(n_estimators=100), number of variables to consider when looking for the best split 338 
(max_features=”sqrt”, meaning the square root of the total number of feature variables), the 339 
maximum depth of the tree (max_depth=10), the minimum number of samples required to split a 340 
node (min_sample_split=10), and the minimum number of samples at a leaf node 341 
(min_samples_leaf=4). 342 
 343 
For predictor selection and comparisons between the site-level model using in-situ variables 344 
and the grid-level model using gridded versions of in-situ variables, we built the model across all 345 
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sites and adopted 5-fold cross-validation and ‘out-of-bag’ scores from ensemble trees to 346 
evaluate model performance, because, at this stage, we aimed to find physically reasonable 347 
variables from in-situ measurements and to compare how the differences in scales and 348 
measuring methods between in-situ predictors and gridded proxies affect model learned 349 
temporal variability in CH4 fluxes. A subset of data was bagged to train each tree in the RF 350 
model, with the rest out-of-bag data used as independent validation data to evaluate the 351 
prediction accuracy of each tree, resulting in the average out-of-bag scores of all the trees in the 352 
model. Cross-validation was applied to daily predictions to select variables that can best predict 353 
the daily variability of CH4 fluxes within sites. The changes in model performance after predictor 354 
selection and after switching from site-level variables (in-situ measurements) to grid-level 355 
proxies (reanalysis data) were assessed, which helped quantify differences in model 356 
performance when modeling on in-situ measured predictor variables versus modeling on 357 
substitute variables at grid level.  358 
 359 
A summary of input variables for grid-level modeling is provided in Table 1. To evaluate the 360 
impacts of adding constraint variables from remote sensing products on model performance, we 361 
designed four different model settings by changing predictor variables, including (1) only 362 
variables from MERRA2, (2) only variables from SMAP soil wetness, (3) only variables from 363 
MODIS NBAR, and (4) all predictor variables. Model predictive performance evaluates the 364 
accuracy of a model to predict at a new site without any prior knowledge. For the spatial 365 
predictive performance evaluation of grid-level ML models, we used a nested leave-one-site-out 366 
cross-validation scheme (LOOCV, hereafter). Such a scheme selects one site to use as 367 
independent validation data to evaluate models trained and tested with data from the remaining 368 
sites, repeating the process for all sites. Without any prior knowledge of the validation site 369 
added to a model, the LOOCV scheme can assess the predictive ability of the model in a new 370 
place as well as evaluate the uniqueness of a site in the dataset. Similar forms of spatial 371 
LOOCV have been used to evaluate upscaling models for global or regional CO2 and CH4 372 
(McNicol et al., 2023; Peltola et al., 2019; Virkkala et al., 2021). The validation of the upscaling 373 
model was not only performed with respect to daily predictions, but also on monthly means. The 374 
predictive performance of the upscaling model on monthly variability of CH4 fluxes and spatial 375 
variability across sites is important for studies that vary in temporal and spatial scales. 376 
 377 
Model predictive performance was assessed using three evaluation metrics: mean absolute 378 
error (MAE), root mean squared error (RMSE), and R2 score. Daily modeled CH4 fluxes were 379 
compared to EC observations at each validation site. The three-evaluation metrics were 380 
calculated at daily and monthly scales for each site separately to examine the model 381 
performance by wetland types and for all sites pooled together to evaluate the overall 382 
performance and compare with existing studies. Squared error metrics are more sensitive to 383 
outliers and highly skewed data, which is often the case with CH4 fluxes. Therefore, we selected 384 
both MAE and RMSE to quantify the errors. The mean error (ME) between model predictions 385 
and validation data was calculated, representing systematic bias in predicted fluxes. The 386 
standard deviation of model residuals was also included to measure the spread of the residuals. 387 
This matches RMSE when ME equals zero. 388 
 389 
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Two additional ML algorithms were compared with RF: SVM and ANN. SVM is efficient with 390 
sparse data where the dimension of the input space is greater than the number of training 391 
samples (Kuter, 2021). While the training process of ANN is expensive and time-consuming, it 392 
can develop deep networks with growing training data (Saikia et al., 2020). We used support 393 
vector regression to model CH4 fluxes with the same predictor variables and dataset as used in 394 
ensemble RF regressions. Multilayer perceptron regressor is an implementation of an ANN 395 
model that adjusts the weights of neurons using backpropagation to improve prediction 396 
accuracy. It uses the square error as the loss function and a stochastic gradient-based optimizer 397 
‘adam’ for weight optimization. We used two hidden layers in the ANN model, each with 50 398 
neurons. Data from all variables were normalized to achieve the best model performance of 399 
SVM and ANN. 400 

2.3.2 CH4 fluxes upscaling 401 

We trained 500 ensemble RF models with predictors of grid-level models from the general 402 
model design and with data from all sites for upscaling daily CH4 fluxes. Each RF model was 403 
trained with the same optimized hyper-parameters and different bootstrap samples. Ensemble 404 
models were then applied to 0.098° gridded predictors to produce the upscaling CH4 flux 405 
intensities from the means of the 500 predictions and the prediction uncertainty from the 406 
standard deviations. Given that the CH4 fluxes were modeled with data from the wetland EC 407 
sites, a wetland extent map was also needed to constrain the areas when scaling grid emissions 408 
(see section 2.4). Final CH4 emission and uncertainty maps associated with wetland extents 409 
were the results of multiplying the predicted means and standard deviations of flux intensities 410 
with wetland areas. All wetland maps were resampled to 0.098° x 0.098° resolution for 411 
producing the emission products. 412 

2.4 Wetland extent maps and benchmark estimates of wetland 413 

CH4 emissions 414 

Wetland extent maps were applied to scale the modeled CH4 flux intensities to the region. The 415 
Wetland Area and Dynamics for CH4 Modeling (WAD2Mv2), representing spatiotemporal 416 
patterns of inundated vegetated wetlands at 0.25° resolution, was selected as the reference for 417 
dynamic wetland areas in this study (Z. Zhang et al., 2021). Active and passive microwave 418 
detected inundation combined with static wetlands were used to delineate the monthly dynamics 419 
of wetland inundation between 2000 and 2020. Open water bodies such as lakes, rivers, 420 
reservoirs, coastal wetlands, and rice paddies were excluded. We used monthly mean WAD2M 421 
fractions between 2010 and 2020 to represent seasonal wetland dynamics. Emission 422 
estimations are subject to differences in the wetland extent between maps (Saunois et al., 423 
2020). We used monthly means of the Global Inundation Extent from Multi-Satellites (GIEMS2) 424 
product (Prigent et al., 2020) to represent temporal patterns of the restricted wetland extents at 425 
0.25° resolution. The coarse resolution maps were resampled to 0.098° x 0.098° grids using the 426 
nearest neighbor method. The static Global Lakes and Wetlands Database version 1 (GLWDv1) 427 
Level 3 1-km resolution map excluding classes of lakes, rivers, and reservoirs (Lehner & Döll, 428 
2004) was included to quantify the upper limit of wetland cover, representing the maximum 429 

https://doi.org/10.5194/essd-2024-84
Preprint. Discussion started: 3 April 2024
c© Author(s) 2024. CC BY 4.0 License.



 14 

potential emission surface. For all explicit GLWDv1 wetland classes, we assumed a 100% 430 
wetland coverage in the original pixels, except for ‘intermittent wetland/lake’ for which we 431 
assumed a 50% coverage; for GLWDv1 classes represented as extent ranges, we used the 432 
average value of the range (i.e., 75% for 50-100% wetland, 37% for 25-50% wetland, and 12% 433 
for 0-25% wetland). To support domain emission comparisons, wetland cover was also 434 
extracted from the updated GLWD version 2 dataset (GLWDv2) which provides the spatial 435 
extent of 33 waterbody and wetland classes at 500-m spatial resolution. All freshwater wetland 436 
classes that occur in our study area (classes 8-25) from GLWDv2 were included (i.e., excluding 437 
rivers, lakes, reservoirs and other permanent open water bodies, as well as coastal 438 
saline/brackish wetlands). The original wetland areas per GLWDv2 pixel were summed across 439 
all included classes to derive a total wetland area per pixel. Furthermore, a regional freshwater 440 
wetland distribution dataset was calculated from a permafrost region specific land cover map 441 
(CALU - circum-Arctic landcover units) which classified 23 land covers including 3 wetland 442 
classes and 10 moist to wet tundra classes at 10-m resolution and aggregated to 1km with the 443 
majority class (Bartsch et al., 2023b, 2023a). This regional wetland map was applied for CH4 444 
emission estimation in the North Slope region in Alaska, where seasonal soil saturation was 445 
thought to be underestimated by WAD2Mv2 and GLWDv1. Wetland areas from the finer 446 
resolution maps were aggregated to 0.098° x 0.098° grids for emission calculations.  447 
 448 
We compared WetCH4 emissions with benchmark domain or regional estimates from bottom-up 449 
process models, top-down atmospheric observation-based inversions, and existing upscaling 450 
studies. We acquired data for the study domain from the ensemble mean of bottom-up process-451 
based models from the Global Carbon Project (GCP) (Z. Zhang, Bansal, et al., 2023) and the 452 
extended ensemble of wetland CH4 estimates that were priors for the top-down GEOS-Chem 453 
atmospheric chemical and transport model (WetCHARTs) (Bloom et al., 2017; Friedlingstein et 454 
al., 2022). We also included the atmospheric inversions of northern high latitudes from an 455 
assimilation CarbonTracker-CH4 system (Bruhwiler et al., 2014; update at 456 
https://gml.noaa.gov/ccgg/carbontracker-ch4/carbontracker-ch4-2023/). We compared WetCH4 457 
with existing upscaled products of monthly CH4 wetland fluxes based on Peltola et al. (2019) 458 
and McNicol et al. (2023) for the study domain. For regional wetland hotspots, CH4 flux 459 
estimates were obtained from Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE), 460 
which measured total atmospheric columns of CO2, CH4, and carbon monoxide over North 461 
Alaska in spring, summer, and early fall between 2012 and 2014 (R. Y.-W. Chang et al., 2014; 462 
Miller et al., 2016). We validated our seasonal emissions in the North Slope region with 463 
estimates from CARVE (Zona et al., 2016).  464 

https://doi.org/10.5194/essd-2024-84
Preprint. Discussion started: 3 April 2024
c© Author(s) 2024. CC BY 4.0 License.



 15 

3. Results 465 

3.1 Model validation 466 

3.1.1 Site-level modeling 467 

Site-level modeling used all wetland sites to build a RF model and identified the 10 most 468 
important variables measured in situ that, if left out, decreased the valuation score of the model 469 
by more than 90% based on the mean decrease in impurity (Fig. S3). With bootstrap sampling 470 
and using all candidate predictors (Fig. 1) in the model, the out-of-bag RMSE of the site-level 471 
model was 30.22 nmol m-2 s-1, and the out-of-bag R2 between observed daily means of CH4 472 
fluxes and prediction was 0.73. Modeling with the 10 most important variables at site level 473 
resulted in similar model performance, with an out-of-bag RMSE of 30.43 nmol m-2 s-1 and an 474 
out-of-bag R2 of 0.73. We then tested building separate models according to wetland types. The 475 
out-of-bag R2 (RMSE) was 0.85 (7.2 nmol m-2 s-1) for bog, 0.84 (27.7 nmol m-2 s-1) for fen, and 476 
0.57 (34.3 nmol m-2 s-1) for wet tundra. Modeling with the selected 10 predictors resulted in an 477 
out-of-bag R2 (RMSE) of 0.84 (7.6 nmol m-2 s-1) for bog, 0.84 (27.9 nmol m-2 s-1) for fen, and for 478 
0.53 (36.3 nmol m-2 s-1) wet tundra. Next, we tested whether the inclusion of non-wetland sites 479 
(upland and rice sites) would affect model performance. This resulted in an out-of-bag R2 480 
decrease to 0.56 and RMSE increase to 38.86 nmol m-2 s-1, which suggests that a generalized 481 
ML model over all land cover classes is not practical to reliably predict CH4 fluxes with the 482 
current set of predictors. This is most likely due to the distinctive features of CH4 emissions 483 
between wetlands and non-wetland classes (Fig. S4). 484 

3.1.2 Grid-level modeling and remote sensing constraints 485 

 486 
Substituting in-situ measurements of selected predictor variables with gridded MERRA2 487 
variables slightly reduced model accuracy. For the selected variables at site level, we used 488 
gridded variables from MERRA2 reanalysis data to build a baseline grid-level model for 489 
upscaling. The out-of-bag R2 decreased by 9.6% to 0.66 and RMSE increased by 15% to 35.43 490 
nmol m-2 s-1 compared to the site-level model. The coarse resolution MERRA2 data captures 491 
less spatial variability of the selected physical variables compared to in situ EC measurements.  492 
 493 
Our results suggest that adding predictor variables from remote sensing products significantly 494 
improves model predictive performance compared to using MERRA2 alone (Fig. 3). The 495 
medians in the baseline model of R2, MAE, RMSE under the LOOCV scheme were 0.34, 15.4 496 
nmol m-2 s-1 and 20.1 nmol m-2 s-1, respectively. Modeling only with NBAR or SMAP soil wetness 497 
returned a lower R2 and higher errors than the baseline model, whereas modeling with both 498 
baseline variables and remote sensing variables (the ‘all’ model setting) achieved the highest 499 
median R2 of 0.49 with the lowest median MAE (13.5 nmol m-2 s-1) and RMSE (19.8 nmol m-2 s-500 
1). Including remote sensing constraints improved models’ ability to predict spatial variability in 501 
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wetland CH4 fluxes. These results confirm our selection of predictor variables for the upscaling 502 
model (Table 1). 503 
 504 

505 
Fig. 3 Distribution of R2, RMSE, MAE for all sites (size = 26) in a LOOCV scheme based on 506 
gridded data using four model settings: RF modeled using only MERRA2, MODIS NBAR, or 507 
SMAP soil wetness and with all variables together. 508 
 509 
Daily mean CH4 fluxes exhibited great variability in wetlands across space and time (mean = 35 510 
nmol m-2 s-1, σ = 65 nmol m-2 s-1, Fig. S3). The model predictive performance was calculated for 511 
each site (Fig. 4a) and the average performance on the daily variability in CH4 fluxes was best 512 
at fen sites with a mean R2 of 0.49, followed by bog sites (0.47) and wet tundra sites (0.29). 513 
However, due to the large variability in fen daily fluxes, errors of daily predictions were highest 514 
in fen sites (mean RMSE = 39.8 nmol m-2 s-1  and mean MAE = 31.2 nmol m-2 s-1), followed by 515 
bog sites (mean RMSE = 22.2 nmol m-2 s-1 and mean MAE =17.4 nmol m-2 s-1),  and were 516 
lowest in wet tundra sites (mean RMSE = 15.6 nmol m-2 s-1 and mean MAE =10.1 nmol m-2 s-1). 517 
Pooling all the validation data across wetland types together, our model achieved comparable 518 
R2 (0.46) and MAE (23.4 nmol m-2 s-1) at the daily temporal resolution (Fig. 4b) when compared 519 
with existing ML-based upscaling studies from wetland EC CH4 fluxes that contain similar study 520 
regions (Table 2). It is also noted that model underestimattion of fluxes (ME = -5 nmol m-2 s-1) 521 
was driven by underestimation of fen sites (ME = -17 nmol m-2 s-1) versus slightly overestimation 522 
of bog (ME = 8 nmol m-2 s-1) and wet tundra (ME = 3 nmol m-2 s-1) sites, possibly due to 523 
temperature scale discrepancies between modeling grids (0.5 deg) and EC towers (100-1000 524 
m).  525 
 526 
Model predictive performance on aggregated monthly means of CH4 fluxes increased by 35% 527 
as compared to daily means (R2 = 0.62, Fig. 4c). Performance was higher in fens (mean R2 = 528 
0.62) and bogs (mean R2 = 0.70) and lower in wet tundra sites (mean R2 = 0.37, Fig. S6). 529 
Overall errors in monthly mean predictions were: RMSE = 43.7 nmol m-2 s-1, MAE = 21.6 nmol 530 
m-2 s-1, and ME = -4 nmol m-2 s-1 (Table 2). Prediction residuals of daily and monthly CH4 fluxes 531 
(Fig. S6) showed normal distributions for wet tundra sites, indicating the spread of residuals 532 
were random errors that increased with the flux magnitude. The residuals had a skewed normal 533 
distribution for bog sites indicating likely overestimation. The long-left tails in prediction residuals 534 
indicated that the intense emission fluxes from fens during summer peaks were underestimated 535 
(Fig. S6, Fig. 5b). 536 
 537 
Site-by-site validation of daily flux predictions varied greatly between individual sites (Fig. S7). 538 
For example, US-UAF, an EC site in interior Alaska with mature black spruce cover and full 539 
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understory vegetation and mosses over permafrost (Ueyama, Iwata, et al., 2023), which is the 540 
only one of the five forest bog sites in our dataset that had low CH4 fluxes and weak seasonal 541 
cycles (less than 10 nmol m-2 s-1), was significantly overestimated by our model (RMSE = 35 542 
nmol m-2 s-1 and MAE = 29 nmol m-2 s-1). Permafrost presence and ground water below soil 543 
surface may explain the low fluxes at this site (Iwata et al., 2015; Ueyama, Knox, et al., 2023). 544 
For sites with low model predictive performance, we tested if the model could learn the flux 545 
patterns at these sites if data were included in training. We found that the R2 between daily 546 
predictions and observations improved at US-BZF (fen) and RU-CHE, US-ATQ, US-BEO (wet 547 
tundra) if data from these sites were included in training, which suggests that the unique 548 
relationships between CH4 fluxes and predictors at these sites could not be predicted by the 549 
models trained on data from other sites and thus should be included in modeling to enhance 550 
predictive performance from spatially sparse time series data (see Supporting Materials Text 5).  551 
 552 

 553 
 554 
Fig. 4 Model predictive performance evaluation on RF modeled CH4 fluxes and independent 555 
validations: (a) boxplots of R2, MAE, and RMSE across validation sites by wetland types with 556 
mean values denoted in green triangles; (b) pooled daily means density scatter plot; (c) pooled 557 
monthly means density scatter plot. 558 
 559 
Table 2. Comparison of model predictive performance in CH4 fluxes with existing studies: mean 560 
R2 and MAE of daily and monthly model predictions of all validation sites. Peltola et al. (2019) 561 
present results for the same study area. 562 
 563 

Study Temporal 
resolution 

R2 MAE (nmol CH4 m-2 s-1) ME (nmol CH4 m-2 s-1) 
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Peltola et al. Monthly mean 0.47 22.1 0.5 

McNicol et al.* Weekly mean 0.49 36.5 -1.7 

Yuan et al. Weekly mean 0.55 38.3 / 

This study Daily mean 0.46 23.4 -5.0 

Weekly mean 0.58 23.1 -4.6 

Monthly mean 0.62 21.6 -4.0 

 564 
* Numbers for the weekly evaluation metrics were for all sites from McNicol et al. as no weekly 565 
metrics was found for subregions. 566 
/ The number was not reported in the study. 567 
 568 
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 569 
 570 
Fig. 5 Model predictive performance in seasonal cycles of daily FCH4 at the validation sites of 571 
CA-SCB, CA-ARF, and US-NGB, representing bog, fen, and wet tundra, respectively. 572 
 573 
The average importance of the gridded variables shows their influence on the grid-level model 574 
predictive performance (Fig. 6). Of the 24 total predictors used in the upscaling model, the first 575 
13 variables in the mean importance rank accounted for a 74% reduction in the validation score. 576 
Importance of selected predictors under LOOCV scheme, though slightly varied between 577 
models, agreed in selecting near infrared and shortwave infrared bands (NBAR band 2, 5, and 578 
7), SMAP rootzone and profile wetness (sm_r_wetness and sm_p_wetness), MERRA2 soil 579 
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temperatures (ts1, ts2, and ts3), and DEM as the important variables in predicting daily CH4 580 
fluxes in northern wetlands. Nevertheless, all variables contributed to predicting variability in 581 
CH4 fluxes, suggesting the complexity of environmental factors that would affect the rates of 582 
CH4 production and the process of gas exchange. The mean importance of predictors in all 583 
models ranked DEM as the most important variable and sensible heat flux as the least (Fig. 6 584 
bottom row). The Pearson correlation test between DEM and other predictor variables also 585 
show a significant correlation with surface air pressure (correlation coefficient -0.96). Elevation 586 
may therefore act as a factor in discerning sites or clusters of sites which other predictors could 587 
not differentiate. 588 

 589 
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Fig. 6 Mean variable importance of all models (bottom row) in the LOOCV scheme and at each 590 
site (rows labeled with validation site ID): the values in each row are the means of accumulation 591 
of the impurity decrease when a variable was taken out in the trees of a RF model, representing 592 
the importance of such variable to the model. The variable names and descriptions refer to 593 
Table 1. 594 
 595 

3.2 Upscaled wetland CH4 emissions 596 

3.2.1 Wetland area weighted CH4 emissions 597 

Upscaled daily CH4 fluxes were weighted by wetland fraction to estimate gridded daily CH4 598 
fluxes from northern wetlands based on WAD2Mv2, GIEMS2, and GLWDv1 between 2016 and 599 
2022 (Fig. 7), and GLWDv2 for comparison. The mean annual emissions and RF model 600 
associated uncertainties are summarized with different wetland maps in Table S3. The estimate 601 
from WetCH4 with WAD2Mv2 was 20.8 ±2.1 Tg CH4 yr-1, comparable to UpCH4 (23.5 ±5.8 Tg 602 
CH4 yr-1). With GIEMS2, WetCH4 estimated the minimum annual emission of 13.7 ±1.5 Tg CH4 603 
yr-1. With GLWDv1 and GLWDv2, WetCH4 estimated potential annual emissions of 41.0 ±4.5 Tg 604 
CH4 yr-1 and 44.1 ±1.7 Tg CH4 yr-1 for 2016-2022, respectively. The spatial patterns were similar 605 
to the post 2016 mean annual fluxes from GCP ensemble means of process-based models 606 
(28.6 ±21.6 Tg CH4 yr-1 for 2016-2020), WetCHARTs (29.5 ±30.0 Tg CH4 yr-1 for 2016-2019), 607 
and atmospheric inversions of CarbonTracker-CH4 (40.9 Tg CH4 yr-1 for 2016-2022), highlighting 608 
the intense emission areas in the Hudson Bay Lowlands and West Siberian Lowlands. The 609 
emissions from WetCH4-GIEMS2 were lower in these two hotspots than other estimates. 610 
Differences in the distribution of CH4 emissions between wetland products reflect the influence 611 
of wetland dynamics. Monthly wetland inundations are provided by WAD2Mv2 and GIEMS2, 612 
which set the dynamic limits for the wetland boundaries of the CH4-emitting surface. While 613 
emissions resulting from inundation were captured, saturated or wet subsoil conditions may be 614 
missing in WAD2M and GIEMS2, resulting in low emissions in wet tundra (i.e., Alaska North 615 
Slope). To address this, we incorporated wetland fractions from the CALU high-resolution 616 
wetland map specifically produced for the permafrost region in order to estimate Alaska North 617 
Slope emissions. Wetland fractions from GLWD (both v1 and v2) represent a static maximum 618 
wetland distribution throughout time. Thus, estimates from GLWD represent the upper bounds 619 
for all northern wetlands. 620 
 621 
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 622 
 623 
Fig. 7 Mean annual wetland CH4 fluxes: the top row contains WetCH4 upscaled fluxes between 624 
2016 and 2022 and weighted by wetland fractions for three wetland maps WAD2Mv2, GIEMS2, 625 
and GLWDv1; the bottom row contains bottom-up GCP ensemble mean, WetCHARTs, and top-626 
down estimates of CarbonTracker-CH4 natural microbial emissions. 627 
 628 
We compared spatial distributions of our upscaled fluxes (WetCH4) with two alternative 629 
upscaled datasets. Using the same wetland weights, our product showed similar spatial patterns 630 
to UpCH4 (McNicol et al., 2023) and the upscaled fluxes from Peltola et. al. (2019) (Fig. S9). 631 
Spatially, the maximum mean flux of 2016-2022 for WetCH4 with WAD2Mv2 was 57 mg CH4 m-2 632 
day-1, UpCH4 produced a maximum mean flux between 2016-2018 of 88 mg CH4 m-2 day-1. 633 
While all three products predicted concentrated CH4 exchange in the Hudson Bay Lowlands and 634 
West Siberian Lowlands, and low fluxes in West Canadian Arctic tundra, WetCH4 predicted 635 
lower fluxes in forested wetlands of West Canada than UpCH4 (Fig. S9 a,b). With GLWDv1, 636 
WetCH4 predicted similar fluxes to those of Peltola et al. (2019), with the exception of a number 637 
of potent emitting grids in the West Siberian Lowlands (Fig. S9 c,d) and a maximum mean flux 638 
of 147 mg CH4 m-2 day-1 from WetCH4. 639 

3.2.2 Seasonal cycles of wetland CH4 emissions 640 

Mean seasonal cycles of wetland CH4 emissions were consistent with bottom-up estimates in 641 
the domain and top-down inversions in high latitudes (Fig. 8). The amplitudes of two ML-based 642 
estimates agreed in the domain (WetCH4 and UpCH4 both within WAD2Mv2 wetland areas) and 643 
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were lower than the ensemble means of GCP or WetCHARTs estimates during the growing 644 
season (Fig. 8a). In the northern high latitudes (60° - 90° N), the amplitudes of this study closely 645 
agree with WetCHARTs, and both were lower than the ensemble means of GCP in the growing 646 
season (Fig. 8b). Our emissions in June-July-August were lower than the emissions attributed 647 
by the atmospheric inversion of CarbonTracker-CH4, which does not discriminate between 648 
wetland and open water sources. We did not use comparisons with CarbonTracker-CH4 for 45°-649 
90° due to likely considerable contributions from aquatic systems and other non-wetland  factors 650 
in the inversion estimates. Notably, uncertainties between ML-based approaches with the same 651 
wetland extents showed less variation than those between process-based models, especially 652 
during the growing season. The phase of our estimates (WetCH4) agreed with bottom-up and 653 
top-down models, peaking in July followed by August (Fig. 8a,b), whereas UpCH4 showed a 654 
month lag, probably due to the two- or three-week lag of predictor variables selected in UpCH4 655 
(McNicol et al., 2023) . Peak fluxes in July and August were commonly seen in tower 656 
measurements. 657 
 658 
The seasonality in upscaled wetland CH4 emissions corresponded to the intensities of fluxes 659 
and dynamics of wetland areas. We compared mean seasonal cycles of upscaled products with 660 
different dynamic or static wetland maps to constrain the impacts of wetland areas (Fig. 8c). As 661 
observed in spatial distributions (Fig. 7a,c), emissions from the potential emitting surface 662 
(WetCH4_GLWDv1) were 73% higher than those from reference inundated wetlands 663 
(WetCH4_WAD2Mv2) during the growing season, and doubling in winter. Within the potential 664 
emitting surface, WetCH4 predicted higher emissions than Peltola et al. (2019) in July (21%), 665 
August (21%), December (45%), and January (71%), but 20% lower in October. Reported 666 
emissions (Zona et al., 2016) from the freezing active layer at permafrost areas in October 667 
(zero-curtain period) may not be well captured by our ML model. The differences in wetland 668 
areas between the two dynamic products (WAD2Mv2 and GIEMS2) only affected emissions in 669 
May and June in WetCH4, but significantly affected emission magnitudes in UpCH4. Despite the 670 
differences in wetland areas, the phases of emissions cycles of WetCH4 were consistent with 671 
those from Peltola et al., whereas UpCH4 again lagged a month.  672 
 673 
We compared upscaled seasonal cycles with CH4 fluxes estimated from regional airborne 674 
measurements taken during CARVE campaigns over the Alaska North Slope (Fig. 8d). Given 675 
that WAD2Mv2 underestimated wetland area in this region (Schiferl et al., 2022), we computed 676 
mean seasonal cycles over the land, over freshwater wetlands of CALU, and over WAD2M and 677 
Hydrolakes, representing three different scenarios. The range of our upscaled estimates aligned 678 
with regional emissions derived from CARVE measurements. Chang et al. (2014) estimated 7 679 
±2 mg CH4 m-2 d-1 of mean CH4 fluxes during the growing season in the North Slope from the 680 
column analysis of CARVE data. The mean fluxes (May to September) of WetCH4 with CALU 681 
were estimated at 6.2 ±0.6 mg CH4 m-2 d-1 (4.6 ±0.5 mgC CH4 m-2 d-1), which is within the range 682 
of various CARVE estimations (Miller et al., 2016). The landscape is in the biome of the Arctic 683 
coastal tundra and is covered by sedges, grasses, mosses, and dwarf shrubs. A large number 684 
of lakes and freshwater ponds are scattered across the area. Studies at the West Alaska 685 
lowland of Yukon–Kuskokwim Delta found aquatic fluxes that were about ten times higher than 686 
in wet tundra during September (Ludwig et al., 2023), suggesting that a major source of the 687 

https://doi.org/10.5194/essd-2024-84
Preprint. Discussion started: 3 April 2024
c© Author(s) 2024. CC BY 4.0 License.



 24 

airborne fluxes missing in WetCH4 in the late growing season, can be attributed to open water 688 
fluxes. Emissions from wet soil may double or more if permafrost thaw expands over the land 689 
and the region becomes wetter with rising temperatures. The most remarkable increases could 690 
be in summer and winter, as indicated by the range between the green and the black lines in 691 
Fig. 8d. 692 
 693 

 694 
Fig. 8 Multi-year average seasonal cycles of wetland CH4 emissions: (a) comparison of ML 695 
upscaled mean seasonal cycles in reference wetland areas (WAD2Mv2) with the cycles from 696 
process-based models in the northern mid-high latitudes (45° - 90° N); (b) same comparison for 697 
northern high latitudes (60° - 90° N) and addition of atmospheric CarbonTracker-CH4 attributed 698 
microbial emissions (2016-2022); (c) comparison of three ML upscaled mean seasonal cycles of 699 
CH4 emissions with different wetland area maps; (d) comparison of WetCH4 mean seasonal 700 
cycles over the land (black line), weighted by wetland of the CALU map (olive line), or weighted 701 
by fractions of WAD2Mv2 (green line), with estimates of CH4 fluxes in growing seasons from 702 
CARVE retrievals in North Slope area of Alaska (Zona et al., 2016). 703 
 704 

3.2.3 Interannual variations in wetland CH4 emissions 705 

 706 
The mean annual emissions from ML-based estimates with WAD2M were lower than the GCP 707 
ensemble mean and WetCHARTs, despite over different years from 2016 forward (Fig. 9a). All 708 
products demonstrated similar emission patterns for the domain in the interannual trends and 709 
variations, highest in 2016 and lower for three years from 2017 to 2019 (Fig. 9). The interannual 710 
variations in WetCH4 were driven by the interannual variability in the upscaled fluxes as only 711 
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multi-year mean seasonal dynamics from WAD2Mv2 were used. All products identified 712 
intensified emissions in 2016 as indicated by the variations relative to period means (Fig. 9b). 713 
Higher than period average emissions in 2020 were also modeled by WetCH4 and ensemble 714 
GCP. The recent intensification from wetland emissions was discovered globally with an 715 
important contribution from northern wetlands (S. Peng et al., 2022; Yuan et al., 2024; Z. Zhang, 716 
Poulter, et al., 2023). 717 

 718 
Fig. 9 Wetland CH4 a) annual emissions and associated uncertainties in colored shades and b) 719 
variations relative to multi-year means in the research domain (45° - 90° N). Wetland area data 720 
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applied in WetCH4 and UpCH4 was WAD2Mv2. Time periods of multi-year means: WetCH4 721 
(2016-2022); UpCH4 (2016-2018); Ensemble GCP (2016-2020); WetCHARTs (2016-2019). 722 
 723 
Subregional annual emissions and interannual variability (Fig. 10) of WetCH4 were calculated 724 
for eight subregions in the northern high latitudes (Fig. S11): Siberian tundra, East Siberia, West 725 
Siberia, Fennoscandia, Canadian tundra, East Canada, West Canada, and Alaska. The main 726 
differences in WetCH4 estimated emissions between WAD2Mv2 and GLWDv1 occurred in the 727 
East Siberia, East Canada, West Canada, and Alaska subregions. However, interannual 728 
variabilities were similar. Interannual variations from West Siberia accounted for 51% the 729 
variations in domain emissions (Fig. 10a). The positive change in East Canada canceled the 730 
negative change in West Siberia in 2021, resulting in low variability in the domain emission for 731 
that year (Fig. 9). The relative interannual variability, which was calculated as the percentage of 732 
a variation to the period mean of a subregion, was attributed to those from West Siberia, 733 
Fennoscandia, West Canada, and Alaska (Fig. 10b). 734 
 735 
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 736 
Fig. 10 Interannual variations and variability in subregions predicted by WetCH4 with WAD2Mv2 737 
and GLWDv1, respectively: (a) interannual variations with respect to period means (2016-2022); 738 
(b) relative variability as the percentage of its period mean. Delta in the y axis denotes the 739 
annual emissions minus mean annual emissions in the period 2016-2022. 740 

4. Discussion 741 

This study presents daily scale, data-driven 10-km wetland CH4 fluxes for the northern terrestrial 742 
wetland region, upscaled from EC data. The upscaling framework was driven by MERRA2 743 
meteorological variables and soil temperatures and constrained by satellite products from 744 
SMAP soil moisture and MODIS NBAR, resulting in improved prediction accuracy (R2 = 0.62 745 
and MAE =21 nmol m-2 s-1) in monthly mean fluxes. Predictions of the variability (R2) in monthly 746 
means of CH4 fluxes increased by 30% over previous studies (Peltola et al., 2019; McNicol et 747 
al., 2023). Model agreement performed less at daily and weekly timesteps due to higher 748 
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variability in CH4 fluxes at finer temporal resolutions. In our framework, we applied a rigorous 749 
criterion on the counts of half-hourly observations to control the selection quality of daily gap-750 
filled data, which may filter out errors introduced by the gap-filling process or lack of 751 
observations for calculating daily means. The improvement in model performance can be partly 752 
attributed to the inclusion of soil temperature, MODIS vegetation reflectance, and satellite 753 
assimilation of soil moisture in the framework that incorporates controlling factors of CH4 fluxes 754 
recognized in field experiments and synthesis studies (Fig. 3). 755 
 756 

4.1 Important drivers to improve RF model predictive performance 757 

Soil temperature plays an important role in microbial growth and dormancy (Chadburn et al., 758 
2020), and exponentially affects microbial CH4 emission rates although the temperature 759 
sensitivity (Q10) varies across space and time (Knox et al., 2021; van Hulzen et al., 1999). In 760 
northern wetlands, soil temperature is often more spatially variable relative to air temperature 761 
due to snow insulation and active layer depth (Smith et al., 2022; W. Wang et al., 2016; Yuan et 762 
al., 2022), and thus should be considered in upscaling models. Compared to air temperature or 763 
land surface temperature that were used in previous upscaling studies (Peltola et al., 2019; 764 
McNicol et al., 2023), the inclusion of MERRA2 soil temperatures in WetCH4 likely contributed to 765 
a higher model predictive performance, although the impact of scale mismatch between the 766 
native MERRA2 spatial resolution and the local footprints on the upscaled fluxes were not 767 
quantified. Independent validation studies found significant correlations in the temporal trend 768 
and seasonal cycles between MERRA2 soil temperatures and in situ observations (M. Li et al., 769 
2020; Ma et al., 2021). However, most of the in situ stations were located in the U.S. and mid-770 
latitude Eurasia. Lower correlations with overestimated monthly variability were found in the cold 771 
season in Pan-Arctic (Herrington et al., 2022), suggesting the impact of the uncertainty in 772 
MERRA2 soil temperatures on CH4 fluxes concentrated in winters in this study.  773 
 774 
Emergent vegetation affects the recent substrate availability and the plant-mediated transport of 775 
CH4 (Kyzivat et al., 2022; Melack & Hess, 2023). We used the full land bands of the MODIS 776 
NBAR product rather than higher-level vegetation indices used in previous upscaling studies, as 777 
signals for vegetation and inundation dynamics are retained in remotely sensed land reflectance 778 
(Chen et al., 2013). The near-infrared and shortwave infrared bands (NBAR bands 2, 5, and 7) 779 
presented relatively high importance in our model due to their associations with vegetation 780 
productivity and water table dynamics in northern peatlands (Burdun et al., 2023). Satellite 781 
inputs provide high spatial resolution constraints on the environmental variability and help 782 
improve model spatial predictive performance (Fig. 3), indicating the requirement of high spatial 783 
resolution driving input for accurately modeling wetland CH4 fluxes. 784 
 785 
Surface and rootzone soil moisture also exhibits control on ecosystem anaerobic metabolism. 786 
Low soil moisture implies oxic conditions and allows methanotrophic bacteria to consume CH4, 787 
whereas high soil moisture enables CH4 production and suppresses consumption (Liebner et 788 
al., 2011; Olefeldt et al., 2013; Spahni et al., 2011). Soil wetness estimated at rootzone and the 789 
profile from SMAP measurements may be able to capture water-table dynamics and hence 790 

https://doi.org/10.5194/essd-2024-84
Preprint. Discussion started: 3 April 2024
c© Author(s) 2024. CC BY 4.0 License.



 29 

ranked as important in WetCH4 model performance. Validation of the SMAP level 4 soil moisture 791 
data assimilation product has shown that it meets performance requirements (Colliander et al., 792 
2022). However, the validation sites are mostly located in North American grassland, cropland 793 
and shrubland, requiring more in situ soil moisture observations in high latitude tundra and 794 
peatland. Regional validation studies suggested uncertainties of satellite derived soil moisture 795 
including SMAP at high latitudes were high (Högström et al., 2018; Wrona et al., 2017) and 796 
remained to be addressed. 797 
 798 
Underground processes of CH4 production and oxidation are difficult to model (Ueyama, Knox, 799 
et al., 2023), especially for seasonal cycles in the northern high latitudes. A hysteresis effect 800 
that manifests intra-seasonal variability in the dependence of CH4 fluxes on temperature has 801 
been observed at EC sites (K.-Y. Chang et al., 2021), but it was not reproduced in WetCH4. 802 
Positive hysteresis and the difference in frozen status from topsoil to deep soil during autumn 803 
freeze results in zero curtain periods that have been observed at high latitude tundra (Bao et al., 804 
2021; Zona et al., 2016), the occurrence of which was subsequently underestimated in our 805 
model. The amount of substrate available for methanogenesis, missing in our framework, could 806 
be a controlling factor of the occurrence of this phenomenon. Higher substrate availability 807 
elevates methanogen abundance and activities during autumn freeze (Bao et al., 2021). 808 
However, spatially explicit substrate data are not available. Using proxies such as net primary 809 
production or EVI for substrate availability might be oversimplified (Larmola et al., 2010; T. Li et 810 
al., 2016; Peltola et al., 2019). In addition, the uncertainty of deep soil temperature of training 811 
inputs in late autumn may hinder the model’s ability to capture patterns of high emissions during 812 
zero curtain periods observed at Alaska tundra (Fig. S10). More temporally accurate soil 813 
temperature data is needed to delineate the soil freezing progress and properly constrain 814 
predictions of CH4 emission during the cold season (Arndt et al., 2019). The UpCH4 results 815 
(McNicol et al., 2023) also suggest that simply imposing lags to temporal predictors in RF 816 
cannot capture complex intra-seasonal variability due to the complicated lag effects interacting 817 
with the water table depth (Turner et al., 2021). Without timestamps in predictors, RF treats time 818 
series fluxes independently, which may limit its predictive performance. Deep learning models 819 
designed to account for temporal progress in data, such as Long Short Term Memory (LSTM) 820 
neural networks, may improve modeling accuracy of seasonal cycles (Reichstein et al., 2019; 821 
Yuan et al., 2022). 822 
 823 

4.2 Data limitations in current EC CH4 observations 824 

Data deficiency in winter and in under-represented areas limited the RF model’s extrapolation 825 
ability. Data abundance and representativeness across space, time, and wetland types drives 826 
model performance and ability to extrapolate for the data-driven approach. The 26 wetland EC 827 
sites included in this study are largely located in Fennoscandia, East Canada and Alaska (Fig. 828 
2), leaving some emission hotspots under-represented. For instance, Western Siberian 829 
Lowlands, the large wetland complex and the major contributor of interannual variations of CH4 830 
in the region, has limited data that is compiled from a single site (RU-VRK, not included in this 831 
study due to the observations before our study period). Cold season emissions could contribute 832 

https://doi.org/10.5194/essd-2024-84
Preprint. Discussion started: 3 April 2024
c© Author(s) 2024. CC BY 4.0 License.



 30 

a substantial fraction of the Arctic tundra annual CH4 budget (Mastepanov et al., 2008; Mavrovic 833 
et al., 2024; Zona et al., 2016). But after filtering, 23% of the EC data in high latitudes (>60° N) 834 
were recorded between November and March, which could be insufficient for accurately 835 
modeling zero curtain period fluxes. 836 
 837 
Ten bog and fen sites used for modeling contain all season daily flux records with half-hourly 838 
observations more than 11, all from Fennoscandia and Canada. Although Alaska is represented 839 
by 11 wetland sites, sufficient winter observations with good quality are still needed. West 840 
Siberian Lowlands are underrepresented by EC CH4 sites. Missing data in MODIS NBAR due to 841 
snow cover or gaps in SMAP reduced training data by 31% and 48% in the study domain, 842 
respectively. Filling data of MODIS NBAR to account for snow cover information and gap-filling 843 
SMAP soil moisture products can make full use of available EC observations and help improve 844 
model performance in cold seasons. Many wetland sites in the study are located in areas with 845 
peatland presence, with 35% of sites in peatland-rich areas with >50% peatland cover (Hugelius 846 
et al., 2020). More tower CH4 measurements over mineral wetlands need to be included in 847 
future upscaling studies. Wetlands with soil materials containing less than 12% organic carbon 848 
by weight are considered mineral wetlands. High-emitting marshes, though covering only 5% of 849 
the total wetland area in the boreal-Arctic domain, need to be considered when deploying new 850 
EC sites (Kuhn et al., 2021; Olefeldt et al., 2021). This study identified CH4 emission hotspots 851 
and areas undergoing strong interannual variations, which are yet not part of the current 852 
FLUXNET network. The wall-to-wall flux maps also provide spatially continuous information for 853 
effectively further developing the CH4 flux tower network. 854 
 855 

4.3 Budget comparison 856 

WetCH4 estimated annual and seasonal mean emissions that were comparable to existing data-857 
driven products in the study domain (Table S3). With the dynamic WAD2Mv2 map, our 858 
estimation was 2.7 Tg CH4 yr-1 smaller than UpCH4 due to a larger bias in WetCH4 and the 859 
mean seasonal cycles between 2010 and 2020 from WAD2M applied in our estimation. With the 860 
same static GLWDv1 map, our estimation was about 10% larger than the estimate from Peltola 861 
et al. (37.5 ±12 Tg CH4 yr-1 for 2013-2014) despite the different periods. This is attributed to 862 
higher fluxes estimated by WetCH4 in DJF and JJA seasons. With two versions of the static 863 
GLWD maps, we estimated potential annual emissions between 41.0 and 44.1Tg CH4 yr-1. 864 
Compared to GLWDv1, version 2 of GLWD mapped smaller wetland fractions in the Hudson 865 
Bay Lowlands with intense CH4 fluxes and more wetlands in the northwest of the Ural 866 
Mountains, Eastern Siberia, and the Sanjiang Plain, where CH4 intensities were weaker, 867 
resulting in a larger estimate of the annual emission (Fig. S13). The wide range of data-driven 868 
estimates was driven by the differences in wetland maps. While WAD2M provides crucial 869 
information on wetland inundation dynamics controlling interannual and inter-seasonal changes 870 
in CH4 emitting areas, areas with saturated soil in the Arctic tundra in summer are 871 
underestimated (Fig. 8d), requiring more accurate maps in delineating the dynamic wet tundra. 872 
Overall, accurate and dynamic wetland maps in high spatial resolution are needed to tackle the 873 
uncertainty in the wetland emission budget. Bottom-up estimates on wetland CH4 emissions 874 
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from data-driven, GCP ensemble means and WetCHARTs are smaller than the top-down 875 
CarbonTracker-CH4 estimate on natural microbial emissions because the latter includes 876 
emissions from aquatic systems. CH4 emissions were estimated at 4.7 Tg CH4 yr-1 from rivers 877 
and streams (Rocher-Ros et al., 2023) and 9.4 Tg CH4 yr-1 from lakes (Johnson et al., 2022) in 878 
the Arctic and boreal region (>50°N). The total emissions estimated from wetlands and open 879 
water are comparable to the CarbonTracker-CH4 estimate. The amplitudes of WetCH4 seasonal 880 
mean fluxes align with bottom up and top down estimates. Differences in the seasonal dynamics 881 
of wetland maps are the major source of upscaling uncertainty and result in various 882 
uncertainties between regional estimates. While atmospheric inversion models need bottom-up 883 
estimates as priors, data-driven upscaled CH4 products offer alternatives to process-based 884 
estimates to assist with inversion models in regions where data-driven models perform well 885 
(Bloom et al., 2017; Melton et al., 2013). 886 
 887 

4.4 Future directions 888 

The future development of EC network in the northern high latitudes will provide more 889 
observations, which can enable monitoring and modeling changes in CH4 fluxes. Deploying new 890 
sites in under-represented areas will not only benefit flux upscaling efforts but also our 891 
understanding of how ecosystem metabolism responds to the changing climate (Baldocchi, 892 
2020; Pallandt et al., 2022; Villarreal & Vargas, 2021). With the availability of long-term predictor 893 
variable data, it is possible to expand our WetCH4 upscaling framework for longer periods (e.g., 894 
2000 to current), when adequate flux observations in 2000-2010 from chambers are compiled 895 
since 96% of the data were recorded after 2010 in FLUXNET-CH4 (McNicol et al., 2023). 896 
 897 
Several data products exist for the meteorological predictor variables. Quantifying measurement 898 
uncertainties between products of predictor variables and how the uncertainties propagate to 899 
upscaling products need to be addressed in future work. The mismatch of spatial scales 900 
between tower footprints and predictor variables may cause underestimation of abruptly high 901 
fluxes measured at tower landscapes when environmental conditions are averaged over half-902 
degree grids (Chu et al., 2021; McNicol et al., 2023). Therefore, downscaling predictor variables 903 
for developing higher-resolution products is needed, especially for the Arctic region where 904 
thermokarst development is shaping permafrost landscapes with fragments of wetlands, 905 
thermokarst ponds, and forests (Miner et al., 2022; Osterkamp et al., 2000; Wik et al., 2016). 906 
For example, Fang et al. (2022) have downscaled global SMAP surface soil moisture to 1-km 907 
resolution, and Optical/Thermal and microwave fusion methods have been developed to 908 
downscale soil moisture (J. Peng et al., 2017). Nevertheless, downscaled products for rootzone 909 
or profile soil moisture are needed for upscaling CH4 fluxes as are soil temperature products.  910 
 911 
Beyond the ML-based upscaling framework, hybrid modeling of the data-driven approach and 912 
process-based models is a promising but also challenging direction of future study (Reichstein 913 
et al., 2019). One practice constrained regional data-driven fluxes with top-down estimates via 914 
auto-learned weights on per pixel fluxes in a region (Upton et al., 2023). Another practice 915 
pretrained a time-dependent ML algorithm with initialization from process-based synthetic data 916 
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and then fine-tuned the model with observations (Liu et al., 2022). Finally, leveraging physical 917 
constraints to increase the interpretability of data-driven models and computation efficiency is 918 
still an important factor to consider in all hybrid modeling. 919 

5. Code and data availability 920 

The daily CH4 flux intensities in the northern wetlands at a spatial 921 
resolution of 0.098° x 0.098°and associated uncertainties, along with daily 922 
emissions weighted by WAD2M, GIEMS2, and GLWDv1, can be accessed through 923 
https://doi.org/10.5281/zenodo.10802154 (Ying et al., 2024). Source code of 924 
ML modeling and upscaling is publicly available at 925 
https://github.com/qlearwater/WetCH4.git. Half-hourly EC data is available 926 
for download at https://fluxnet.org/data/fluxnet-ch4-community-product/ 927 
(Delwiche et al., 2021). 928 

6. Conclusions 929 

We developed an ML framework (WetCH4) to upscale daily wetland CH4 fluxes of mid-high 930 
northern latitudes at 10-km spatial resolution combining EC tower measurements with satellite 931 
observations and climate reanalysis. WetCH4 is novel in that it is the first upscaling framework to 932 
introduce SMAP soil moisture and MODIS reflectance in modeling wetland CH4 fluxes to 933 
improve accuracy (R2 = 0.62). The remote-sensing products provided high spatial resolution 934 
constraints associated with the abiotic controllers of CH4 fluxes, indicating the importance of 935 
using high spatial resolution inputs in models for accurately simulating the spatiotemporally 936 
variable CH4 emissions from heterogeneous northern wetland landscapes. The framework 937 
highlights the importance of soil temperature, vegetation, and soil moisture for modeling CH4 938 
fluxes in a data-driven approach. Using WetCH4, an average annual CH4 emissions of 20.8 ±2.1 939 
Tg CH4 yr-1 with WAD2Mv2 was estimated and ranged between 13.7 ±1.5 Tg CH4 yr-1 with 940 
GIEMS2 and 44.1 ±1.7 Tg CH4 yr-1 with GLWDv2 from vegetated wetlands (>45° N) for 2016-941 
2022, approximately 13-30% of the global wetland CH4 budget (Saunois et al., 2020). 942 
Differences in estimates of wetland CH4 emissions due to different wetland maps applied, 943 
highlighting the need for high resolution wetland maps and accurate delineation of wet soil 944 
dynamics. Emissions were relatively lower in 2017-2019 and intensified in 2016, 2020 and 945 
2022, with the largest interannual variations coming from West Siberia. Spatio-temporal 946 
distributions of CH4 fluxes find emission hotspots and regions of intensified interannual 947 
variations that are not currently measured with EC. Comparing with current EC sites, we 948 
suggest a need for tower observations in wetlands of West Siberia and West Canada and 949 
diversified observations across wetland types. More site observations in soil water related 950 
variables are needed for improved understanding of flux controls in northern wetland 951 
ecosystems. Future wetland CH4 upscaling work could benefit from improved soil moisture 952 
products and hybrid modeling. 953 
 954 
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