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Abstract

Auditory tasks such as understanding speech and listening to music rely on the ability to
track sound sequences and adjust attention based on the temporal cues they contain. An
entrainment approach proposes that internal oscillatory mechanisms underlie the ability to
synchronize with rhythms in the external world. Here, we aimed to understand the factors
that facilitate and impede rhythm processing by investigating the interplay between the
properties of external and internal rhythms. We focused on two key properties of an
oscillator: its preferred rate, the default rate at which it oscillates in the absence of input, and
flexibility, its ability to adapt to changes in rhythmic context. We hypothesized that flexibility
would be diminished with advancing age. Experiment 1 was a two-session duration
discrimination paradigm where we developed methods to estimate preferred rate and
flexibility and assessed their reliability. Experiment 2 involved a shorter version of this
paradigm and a paced tapping task with matched stimulus conditions, in addition to a
spontaneous motor tempo (SMT) and two preferred perceptual tempo (PPT) tasks that
measured motor and perceptual rate preferences, respectively. Preferred rates, estimated as
the stimulus rates with the best performance, showed a harmonic relationship across
sessions (Experiment 1) and were correlated with SMT (Experiment 2). Interestingly,
estimates from motor tasks were slower than those from the perceptual task, and the degree
of slowing was consistent for each individual. To challenge an individual’s oscillator
flexibility, we maximized the differences in stimulus rates between consecutive trials in the
duration discrimination and paced tapping tasks. As a result, performance in both tasks
decreased, and performance on individual trials indicated a gravitation toward the stimulus
rate presented in the preceding trial. Critically, flexibility, quantified as an individual’s ability
to adapt to faster-than-previous rates, decreased with age. Overall, these findings show
domain-specific rate preferences for the assumed oscillatory system underlying rhythm
perception and production, and that this system loses its ability to flexibly adapt to changes
in the external rhythmic context during ageing.
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eLife assessment

This valuable study has practical implications for understanding rhythm perception
and production in human cognition. The evidence for individual frequency
preferences and a deterioration in frequency adaptation with age is solid. These
findings may inform existing models of rhythm perception and production, and the
reported effects of age may have clinical implications.

Auditory tasks such as understanding speech and listening to music rely on our ability to allocate
and adjust attention to rhythmic cues in complex auditory signals. However, listeners’ tracking of
and attention to rhythmic cues can fail when the signal is temporally disorganized1     , or with
advancing age2     . These failures of attention might result in reduced speech comprehension2      as
well as in diminished ability to solve the “cocktail party problem”3     . However, speech
perception4      and production of musical sequences are improved when stimuli are presented at
specific rates5     ,6     , indicating that these abilities might be “restored” in certain conditions. Here,
we aimed to understand factors that facilitate and impede auditory rhythm processing from two
different perspectives: those factors that arise from stimulus properties in the external world and
those that stem from individual differences (the perceiver). Specifically, we tested how stimulus
and the rhythmic context, in which a stimulus is presented, affects perception and production, and
how temporal adaptation abilities change with advancing age. We found (1) a range of rates
specific for each individual that yielded best performance, and (2) deteriorating performance
when switching between stimulus rates that was further amplified by age.

Two main theoretical approaches explain how we perceive time and rhythm. A timekeeper
account proposes that the duration between two events is represented by the count of
accumulated pulses that are generated by an internal pacemaker7     . An entrainment account, the
Dynamic Attending Theory (DAT) proposes that biological systems consist of internal oscillations,
i.e., rhythms, that adjust their phase and period to the temporal regularities of an external
signal8     –10     . Synchronization between internal and external rhythms, termed entrainment, is
the underlying mechanism for time and rhythm perception. Predictions of DAT have been
confirmed in a number of studies that reported rhythmic facilitation effects, where a rhythmic cue
improves perceptual timing of subsequent targets, with the highest accuracy for targets aligning
with the entraining attentional oscillator’s peaks11     –18     .

The current study did not test whether timing abilities are governed by entrainment or timekeeper
mechanisms. We rather adopt an entrainment approach as well as common assumptions of
entrainment models19      that derive from the general properties of limit-cycle oscillators:

Assumption 1: Oscillations are self-sustaining; they persist even when no stimulus is present. They
induce series of periodic expectations at the peaks of this oscillation.

Assumption 2: Oscillators are adaptive; they respond to timing perturbations (e.g., changes in
stimulus rate) by correcting their phase and period.

Assumption 3: Each oscillator has an intrinsic period20      at which it oscillates in the absence of
any input (see Assumption 1) and is most stable against perturbations.

Assumption 4: Oscillators can respond to stimulus rates with integer-ratio relationships (i.e., in
nested hierarchies).
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Two key properties of internal oscillators that were the focus of the current study, are their
preferred rate and their flexibility. Preferred rate, also termed as natural frequency or
eigenfrequency in different literatures, refers to the intrinsic period of the oscillator (Assumption
3), or group of nested oscillators19     , in the absence of any input (Assumption 1). Oscillators
accomplish synchronization to periodicities in the external signal better when the signal’s rate is
similar to the oscillator’s preferred rate (or harmonics of the preferred rate14     ) than when it is
dissimilar21     . The range of rates around the oscillator’s preferred rate for synchronization is
referred to as the entrainment region22     . Theoretically, knowing the preferred rate of an
individual’s internal oscillator would allow predicting the rates at which they would most
successfully interact in a real-world listening situation.

One common method to estimate the preferred rate is the spontaneous motor tapping task, where
participants are asked to tap their finger22     –24      or a drumstick20     , on a desk or a sensor at a
“comfortable rate”. The preferred rate estimate, spontaneous motor tempo (SMT), measured as the
mean or median of the intervals between the individual taps, tends to cluster around 500-600 ms
in adults22     . One potential short-coming of using SMT as a direct measure of an internal
oscillator’s preferred rate is that SMT reflects a “preference” for producing periodic movements in
the absence of any interaction with the environment. Although this is indeed the definition of
preferred rate, a stronger test of the degree to which SMT reflects the preferred rate of an internal
oscillator would be to observe successful synchronization within – but not outside of – an
entrainment region. SMT does predict timing preference and performance in other tasks:
participants tend to prefer stimulus rates (i.e., preferred perceptual tempo, PPT22     ) closer to their
SMT22     , drift back to their SMT during continuation tapping in synchronization-continuation
paradigms5     , and over-and-underproduce stimuli that are faster and slower than their SMT,
respectively5     ,6     . However, in paradigms that involve comparison of individuals’ rate
preferences22      and tapping performance5     ,25      across stimulus rates, stimulus conditions are
tailored to individuals’ SMT and are low in number. This results in a resolution that is too poor to
observe an entrainment region, and often confounds SMT with the global mean stimulus rate in an
experiment26     . We have previously proposed a synchronization-continuation paradigm where
individuals’ tapping behavior on a finely-sampled broad range of stimulus rates was assessed. We
estimated the preferred rate as the stimulus rate with minimum tapping errors during
continuation tapping27     . However, estimating preferred rates based on a tapping paradigm
cannot disentangle preferred rates of an auditory oscillator, a motor oscillator, or a coupled
oscillatory system whose preferred rate would be influenced by the preferences and coupling
strengths of its components1     . Thus, here we applied the fine rate sampling to a perceptual
paradigm (Experiment 1     ), estimated preferred rates in perceptual and motor versions of the
paradigm with same stimulus rate conditions (Experiment 2     ), and compared the estimates to
individuals’ SMT and PPT (Experiment 2     ).

Based on Assumption 2, we defined flexibility as the internal oscillator’s ability to adapt to rate
changes in the external sound signal27     . The logic is as follows: upon encountering a new rate,
the oscillator gradually updates its phase and period to each upcoming interval. From a dynamical
systems perspective, flexibility can be conceptualized as a complement to “stiffness”, and might be
quantified based on the presence of hysteresis, which refers to a system’s tendency to stay in a
previous state despite changes in stimulus parameters28     . An inflexible oscillator would exhibit
hysteresis and continue to respond in a way that reflects the properties of previously entrained
stimuli. A fully flexible oscillator would not exhibit hysteresis as it would completely update its
phase and period to the new stimulus, resulting in no discrepancy between the current stimulus
and its internal representation. Thus, the extent to which timing performance would be affected
by the stimulus history is inversely related to the underlying oscillator’s flexibility.

Prior research reveals effects of preceding context (also referred to as serial dependence29     ,30     

and carryover effects31     ) on timing behavior in tasks with and without a motor synchronization
component. Within individual trials of synchronized tapping paradigms, changes in stimulus rate
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(period perturbation), and stimulus onset times (phase perturbation) result in increased
asynchronies between stimulus and tap onsets. This effect is more pronounced for phase than
period perturbations32     ,33     , and for sequences that speed up than those that slow
down25     ,33     . Across trials, the tapping rate in each trial is biased toward the previous trial’s
stimulus rate27     ,30     . Temporal judgments in the absence of motor synchronization are also
affected by the stimulus properties presented in a preceding trial31     ,34     ,35      and throughout the
experiment34     ,36     , suggesting effects of local and global temporal contexts on duration
perception. The majority of studies that revealed individual differences in proneness to history
effects29     ,37      have not aimed to explicitly estimate the extent and source of these individual
differences, or have done so in shorter temporal contexts, using different operational definitions
of flexibility than the one used here6     . Finally, similar to methods proposed to estimate preferred
rate5     ,6     ,22     ,27     ,38     , previous attempts to measure flexibility6     ,25     ,27      involved only
motor responses. Thus, we presented the same stimulus history to participants in two tasks, one
with and one without the motor demands of synchronize-continue tapping. This design allowed
assessing the effects of the same predictor (trial-to-trial rate change) on performance in different
tasks, and thereby performing systematic comparisons of oscillator flexibility across perceptual
and motor domains.

From the perceiver’s side, we chose to focus on how properties of internal oscillators change with
advancing age. Studies assessing age-related changes in timing abilities show that older, as
compared to younger individuals, produce slower tapping rates when asked to tap at a
comfortable rate22     ,39      at the fastest rate40      they can maintain; show worse performance in
temporal-order judgments41     , gap detection42     , and discrimination and reproduction of time
intervals43     ; and tend to prefer slower stimulus rates22     , which manifests in a breakdown in
understanding fast speech. From an entrainment perspective, these results suggest that internal
oscillators of older individuals have slower preferred rates, reduced flexibility, or both. While the
current study did not incorporate neural measures, it is worth noting that literature on neural
entrainment can offer insights into the dynamics of attention. This is particularly relevant as these
physical measures often align with the predictions of the dynamic attending theory. (see
Refs.44     ,45      for reviews). Neural entrainment to external auditory signals is aberrant46     –48     ,
and less responsive to top-down attention in older than younger adults49     . Moreover, older
adults exhibit reduced neural adaptation50      and sensory gating51     , suggesting an age-related
decline in neural inhibition50      that leads to a reduced capacity of the auditory system to adapt
based on context. Based on the behavioral findings converging on reduced temporal abilities and
evidence for impaired neural entrainment in older individuals, we hypothesized that older adults
would exhibit stronger hysteresis than younger adults, which should result in smaller estimates of
oscillator flexibility.

The aim of the current study was to estimate individuals’ preferred rate and flexibility in rhythmic
tasks with and without a motor synchronization component, and in both preference and
performance contexts: here, preference refers to SMT and PPT, whereas performance refers to
tasks that require listeners to either synchronize with or make a perceptual judgment about
rhythmic stimuli. Moreover, we aimed to assess how internal oscillator properties, specifically
oscillator flexibility, change with advancing age.

We conducted two experiments. The main goal of Experiment 1      was to develop methods to
estimate preferred rate and flexibility in a paradigm without a motor synchronization component,
as a complement to our recent tapping study27     . The task was a duration discrimination
paradigm where participants compared the duration of a single comparison interval to the
duration of intervals making up a standard stimulus. We assessed the effect of stimulus history on
responses by comparing performance across two sessions with the same finely-sampled pool of
stimulus rates, one where we maximized and the other where we minimized the amount of rate
change across trials. Experiment 2      involved shorter versions of the duration discrimination
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(Experiment 1     ) and paced tapping27      tasks with matched stimulus rates and histories, unpaced
tapping tasks including SMT, and two tasks where individuals’ rate preferences (PPT) were
measured.

In line with the preferred period hypothesis22     , if SMT captures the preferred rate of common
mechanisms underlying rhythm perception and production, we should see better performance
around an individual’s SMT, as has previously been observed for motor tasks5     ,6     ,22     ,52     .
However, we did not necessarily expect a one-to-one correspondence between preferred rate
estimates across tasks with and without a motor component, as individual differences in motor
contributions to synchronization abilities are well documented53     .

We hypothesized that larger trial-to-trial changes in stimulus rate would lead to poorer
performance due to hysteresis, in that both tapping and duration-discrimination responses should
reflect the properties of the preceding stimuli. Thus, we expected that larger changes between
consecutive trials’ stimulus rates should decrease discrimination accuracy and increase tapping
errors. We expected that the strength of these effects – the degree of inflexibility – should increase
with age.

Experiment 1

Methods

Participants

Participants (N = 31) were recruited from the participant pool of Max Planck Institute for
Empirical Aesthetics laboratories in Frankfurt, Germany. Written informed consent was obtained
from all participants. The procedure was approved by the Ethics Council of the Max Planck Society
and the Research Ethics Board at Toronto Metropolitan University in accordance with the
Declaration of Helsinki. Out of 31 (age: M = 33, SD = 11) individuals who were recruited for the
study, 27 participants (age: M = 33, SD = 12) completed both sessions. Upon completion of each
session, participants received 7 euros for every 30 minutes of their participation (21 euros per
session on average). Two participants volunteered to complete the study without compensation.
Prior to the experimental sessions, participants completed an online survey. All participants self-
reported normal hearing and proficiency in English.

Procedure

The study consisted of an online background survey that participants completed at home, and
then two experimental sessions. During the in-lab experimental sessions, participants completed
two types of tasks. A series of unpaced tapping tasks, consisting of SMT54      and a ‘forced’ motor
tempo (FMT) task, which was used to assess the range of free tapping rates within the participants’
motor abilities. The main task was duration discrimination, where participants judged whether a
comparison interval was ‘shorter’ or ‘longer’ than the intervals making up a standard sequence.
Details of all tasks are provided below. Sessions were separated by 4-19 days. A single session
started with the SMT and FMT tasks. Participants then set the sound volume to a level that they
found comfortable for completing the task. Then, participants were presented with instructions on
a computer screen that explained the main task with text and figures. A practice block, simulating
the duration discrimination task, followed the instructions (details below). All instructions were in
English. Once participants indicated that they understood the task, the main task blocks were
initiated. Finally, unpaced tapping tasks were repeated in the same order. Participants were
debriefed upon their request, only after the second session. An individual session lasted 90
minutes on average.
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Duration discrimination task

The main task was a duration discrimination paradigm, where participants judged whether a
comparison interval was longer or shorter than the intervals making up an isochronous standard
sequence, by pressing either the L (longer) or S (shorter) key on a computer keyboard. The task
procedure is illustrated in Figure 1     . In each experimental session, 400 unique trials of this task
were presented, each consisting of a combination of the three main independent variables: the
inter-onset interval, IOI; amount of deviation of the comparison interval from the standard, DEV,
and the amount of change in stimulus IOI between consecutive trials, ΔIOI. We explain each of
these variables in detail in the next paragraphs.

Stimuli were made up of 50-ms woodblock sounds; first, an isochronous standard sequence and
then a comparison interval, separated by a silent gap. The interval between the 5 woodblock
sounds making up the ‘standard’ isochronous stimulus sequence is referred to as IOI. Each trial’s
IOI was drawn (without replacement) from a pool of all possible stimulus rates, linearly spaced
between 200 to 998 ms in 2-ms steps. The silent interval between the last stimulus onset of the
standard sequence and the first stimulus onset of the comparison pair was 6 times the standard
IOI.

The comparison interval on each trial was longer or shorter than the standard IOI. DEV refers to
the magnitude of the comparison interval’s deviation from the standard IOI. DEV took on one of
ten levels, which were proportional to IOI: ± 2%, 7%, 11%, 16%, 20%. Each DEV level was presented
40 times in each session. Since IOI was unique on each trial, IOI and DEV were not fully crossed
factors. Instead, the IOI dimension was divided into 40 bins, each consisting of 10 consecutive IOIs.
The 10 DEV levels were randomly assigned to the 10 IOI values in each bin. The correspondence
between IOI and DEV pairs was unique for each participant.

While the mean (M = 599 ms), standard deviation (SD = 231 ms) and range (200, 998 ms) of the
presented stimulus IOIs were identical between the sessions, the way IOI changed from trial to
trial was different. Change in IOI between consecutive trials was referred to as ΔIOI. In one
session, the ‘linear-order’ session, ΔIOI was always ±4 ms. In one half of the session, ΔIOI was fixed
at +4 ms. That is, IOI was 200 ms in the first trial, 204 ms in the second, and so on. In the other half
of the session, ΔIOI was fixed at –4 ms. On the first trial, IOI was 998 ms, 994 in the second, and so
on. The starting point, either 200 ms or 998 ms (in fast-start and slow-start conditions,
respectively), was counterbalanced across participants.

In the other session, the ‘random-order’ session, ΔIOI was maximized, and the direction of the
change (i.e., whether a trial was faster or slower than the previous) alternated on every trial. That
is, if the stimulus IOI on one trial was faster than the previous (-ΔIOI), it would be slower (+ΔIOI) in
the following trial, and vice versa. Note that stimulus IOI was stable within the standard sequence,
and only changed between trials. Session order, that is, whether a participant experienced the
linear-order or random-order session first, was counterbalanced across participants. An example
trajectory of stimulus IOI within linear-order and random-order sessions across trials is illustrated
in Figure 1     .

In each session, participants completed 407 trials, presented in 8 blocks with 50 trials in the first
block, and 51 trials in the remaining 7 blocks. Except for the first block, the first trial of each block
repeated the IOI that was presented as the last trial of the preceding block and was discarded from
further analyses; this enabled preservation of the between-trial histories across blocks between
which participants were allowed to take short breaks. Before the main task, participants were
instructed about the task, and practiced the task for at least 6 trials. Instructions included two
example trials with IOI of 500 ms, one with DEV of +.3 and another with DEV of -.3, illustrating
‘comparison longer’ and ‘comparison shorter’ conditions, respectively. DEV was fixed at -.2 in half
of the practice trials, and at +.2 in the other half. Two practice trials each were presented at fast,
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Figure 1

Design of the duration discrimination task in Experiment 1     .

Each trial consisted of an isochronous standard sequence of five sounds (four intervals), followed by silence and another pair
of sounds. The comparison duration was either shorter or longer than the standard intervals and took on one of ten values
(DEV) that were proportional to the inter-onset interval (IOI) between tones making up the standard sequence. The task was
to press the S or L key to indicate whether the comparison interval was shorter or longer than the standard IOI. Over the
course of 400 unique trials of a single session, IOI ranged from 200 to 998 ms. In random-order sessions, change in stimulus
rate between a given trial n and immediately preceding trial n-1 (ΔIOI) was maximized, and the distribution of ΔIOI ranged
from -778 ms to +770 ms. In linear-order sessions, IOI increased in each trial in the first 200 trials and decreased in the other
half of the trials (or vice versa, counterbalanced across participants) in steps of 4 ms.
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medium, and slow IOIs; randomly selected from ranges of [300 - 500 ms], [501 - 700 ms] and [701 -
900 ms], respectively. If participants failed on more than 3 of the first 6 practice trials, they
completed another round of 6 practice trials. Both example and practice trials were randomly
ordered within their respective blocks in each session.

The dependent variables were accuracy and bias. Accuracy coded whether a response on a trial
was correct or not (1 = correct, 0 = incorrect). Bias, on the other hand, could take on one of three
values per trial: if the response was correct, bias was 0. If the comparison interval in a trial was
longer, and the participant’s response was ‘shorter’, bias in that trial was -1. Similarly, if
participant’s response was ‘longer’ in a trial where comparison interval was shorter, bias was +1.

Unpaced tapping tasks

Unpaced tapping tasks consisted of a single SMT trial and two FMT trials, one each to estimate the
‘slowest’ and ‘fastest’ rates at which participants could maintain steady tapping. The unpaced tasks
were repeated in the same order before and after completion of the duration discrimination task
in both sessions. In the SMT task, participants were instructed to ‘tap on the desk at a rate that is
comfortable to maintain’. In the FMT tasks, the instruction was ‘tap at the slowest rate that is
comfortable to maintain’ (FMT-slowest) and to ‘tap at the fastest rate that is comfortable to
maintain’ (FMT-fastest). Participants tapped for 30 seconds in the SMT task and FMT-fastest task,
and 45 seconds in the FMT-slowest task. For all unpaced tapping tasks, the dependent measures
were tapping rate (median of the produced intervals) and coefficient of variation.

Apparatus

Stimuli were generated and presented on a Windows desktop computer, using the Psychophysics
Toolbox extensions55     ,56      for Matlab. Auditory stimuli were presented via Beyerdynamics 880
Pro headphones. The audio signal was presented and recorded by an RME Fireface UC soundcard.
All instructions were presented on an ASUS VG24QE LCD screen. Keypress responses for the
duration discrimination task were collected on a USB keyboard. Tapping responses for the
unpaced tapping tasks were recorded via a Schaller Oyster S/P contact microphone at a sampling
rate of 44100 Hz. The contact microphone was attached on the right half of the desk by default.
Prior to the sessions, participants were asked to specify if they would like the microphone to be
moved to the left half of the desk. None of the participants requested a relocation of the
microphone.

Background survey

Prior to the first experimental session, participants completed an online survey. The survey
consisted of two parts: the first part included questions about participants’ demographics,
language skills, hearing abilities, and psychological disorders. The second part was ‘The
Goldsmiths Musical Sophistication Index’, ‘Gold-MSI’57     . The survey language was English by
default, with an option to change the language to German. One question in the Gold-MSI was
removed from the analyses due to contrasting Likert coding between the different languages in
which the survey was completed.

Analysis

Data cleaning and exclusion criteria

The raw format of the tapping data was audio, since tapping responses were collected by a
microphone. Individual taps were extracted from the audio files after visual inspection of the
soundwave of each trial to set the noise floor for the recording on that trial. All peaks that
exceeded the noise floor were retained. Inter-tap intervals (ITIs) were calculated as the difference
between neighboring taps’ timestamps. We developed an automated procedure that detects and
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removes single-trial ITI outliers while accounting for drift that may have occurred within tapping
trials. The script first marked the ITIs whose deviation from the median ITI exceeded 3x the
median absolute deviation (MAD) of all ITIs in the respective trial. Then, it fitted a linear
regression to the unmarked ITIs as a function of tap count. Finally, it removed any ITI that was
smaller than half or larger than 1.5 times the predicted ITI.

Exclusion criteria for the main task were (1) a decrease in accuracy with increasing absolute DEV,
and (2) chance level performance for both deviation directions (trials where comparison interval
was shorter, and those where it was longer). To assess the first criterion at the participant level, we
fitted separate models to each individual’s single-session data where accuracy was predicted by
absolute deviation of the comparison interval for either shorter (|-DEV|) or longer (|+DEV|)
comparison conditions. The models were fitted using Matlab’s fitglm function, with the response
variable distribution specified as ‘binary’, and link function specified as ‘logit’, since the response
variable, accuracy, was binary. Next, we compared the slopes (β) obtained from the separate
models where either or predicted accuracy against zero, using one-tailed one-sample t-tests. All
participants had positive slopes for both directions in both session types, indicating that the
probability of correct response increased with |DEV| in all conditions. To test for chance level
performance, for each session type, we split all trials into negative and positive DEV conditions
and compared each group of trials’ accuracy against a mean of .5, using one-sample t-tests. Results
showed that none of the participants had chance-level performance for both deviation directions.
Finally, before applying group-level statistics such as t-tests and correlations, any datapoint that
fell outside of the interquartile range was excluded from the respective distributions.

Preferred rate estimates

We conceptualized individuals’ preferred rates as the stimulus rates where duration-
discrimination accuracy was highest. To estimate preferred rate on an individual basis, we
smoothed response accuracy across the stimulus-rate (IOI) dimension for each session type, using
the smoothdata function in Matlab. Estimates of preferred rate were taken as the smoothed IOI
that yielded maximum accuracy. Details of the smoothing procedure are provided in the
Supplementary Information     .

To compare the preferred rate estimates between session types, we first conducted a paired-
samples t-test. Then, we assessed the correspondence between the estimates. However,
conventional correlation methods are not able to capture possible harmonic relationships
between variables. Thus, we used a permutation test27      that accounted for the harmonic
structure in data, in addition to the assessment of one-to-one correspondence between the
datapoints. The test first calculates the perpendicular distance of the data points to the closest line
among the y = x, y = 2*x and y = x/2 theoretical lines (referred to as residuals here, as in Ref.27     )
whose sum quantifies how much the datapoints deviate from a total harmonic correspondence.
Then, the test shuffles the Y-axis values with respect to the X-axis values 1000 times and calculates
summed residuals for each permutation. The p-value is the percentage of summed residuals
smaller than the initial value computed from original data. To validate the results obtained from
this test, we ran additional analyses using circular and modular approaches. Details of these
analyses and their results are provided in the Supplementary Information     .

In addition to estimating the preferred rate as stimulus rates with peak performance, we
investigated whether accuracy increased as a function of detuning, namely, the difference
between stimulus rate and preferred rate, as predicted by the entrainment models8     ,58     ,59     .
We tested this prediction by assessing the slopes of logistic regression models, fitted to conditions
where stimulus rates, faster or slower than an individual’s preferred rate estimate, predicted
accuracy. The model was fitted to datasets from all participants and sessions, where IOIs that were
faster and slower than the participant’s preferred rate estimates were separately z-scored, and the
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direction (i.e., whether stimulus IOI was faster or slower than the preferred rate estimate) was
coded as categorical. We expected a systematic increase in performance towards the preferred
rate, which should result in an interaction between IOI and direction.

Flexibility estimates

We hypothesized that larger trial-to-trial changes in stimulus rate would reduce accuracy. To test
this hypothesis, we first compared participants’ average accuracy between session types, using a
paired-sample t-test. Then, we assessed the effect of absolute rate change (|±ΔIOI|) on accuracy for
each individual. To do so, we fitted generalized linear models to each participant’s random-order
session data and obtained slopes (β) that quantified the strength of the |±ΔIOI| effect for each
participant. The models were fitted using Matlab’s fitglm function, with the distribution of the
response variable specified as ‘binary’, and link function specified as ‘logit’, since the response
variable, accuracy was binary. We also fitted separate models for trials where the stimulus was
faster or slower than the previous trial’s stimulus, where the predictor was either |-ΔIOI| or
|+ΔIOI|, respectively. The model formula was P(Y=1|X) = e(α+βx) / e(α+βx)+1, where Y is binary
accuracy and X is the amount of rate change in trials that were faster than previous (|-ΔIOI|) or in
trials that were slower (|+ΔIOI|). Next, using one-tailed one-sample t-tests, we tested whether
models’ β were smaller than zero, which would confirm a decrease in accuracy as a function of |-
ΔIOI| or |+ΔIOI|. The β values, which quantified individuals’ ability to adapt to changes in
stimulus rate from one trial to the next, served as our single-individual estimate of oscillator
flexibility. Finally, to investigate whether responses were affected by the previous trial’s stimulus,
we computed participants’ average bias in trials where stimulus was faster than the previous one
(|-ΔIOI|), and in trials where it was slower (|+ΔIOI|). We compared the distribution of average
bias values against zero, using one-sample t-tests. Non-zero positive bias indicated that
participants incorrectly responded as ‘comparison interval was longer’ in trials where comparison
interval was in fact shorter than the standard interval; and non-zero negative bias indicated the
opposite.

Results
We first assessed whether accuracy increased with increasing DEV. Comparison of the distribution
of slopes (β) against zero showed that for both DEV directions, β were greater than zero.
Descriptive and inferential statistics are shown in Table 1     . Next, we compared participants’
average accuracies from ‘comparison shorter’ (|-DEV|) and ‘comparison longer’ (|+DEV|)
conditions. Although average accuracy from the latter conditions was higher in both sessions,
these differences were nonsignificant for both sessions.

Preferred rate estimates

We expected that accuracy should depend on IOI differently for each participant, and estimated
individuals’ preferred rate as the IOI where smoothed accuracy was maximum. Between-session
comparisons showed that estimates did not significantly differ between sessions (p = .129). When
we directly compared preferred rate estimates from the two session types (Fig. 2A     ), we found
that for most participants, the estimates were numerically close to each other. Interestingly, for
some participants, estimates from one session were close to double or half of those from the other
session, suggesting a harmonic relationship between the estimates. We applied a permutation test
that accounted for the harmonic structure of the data and found a significant relationship
between estimates from two session types (p=.008, Fig. 2A     ). Logistic models assessing a
systematic increase in accuracy towards the preferred rate estimate revealed a significant main
effect of IOI (β= 0.195, p < .001), and a significant interaction between IOI and direction (β= -.378, p
< .001), indicating that accuracy increased in fast rates toward the preferred rate and decreased in
slow rates. Figure 2B      illustrates the preferred rate estimation method on an example
participant’s dataset, and shows the slices of regression surface, namely, predicted accuracy, given
the model for each direction (i.e., with stimulus rates faster and slower than the preferred rate).
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Table 1

Descriptive statistics and test results for comparison of Beta
estimates against null distributions in Experiment 1      analyses.
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Figure 2

Main findings of Experiment 1     .

A Left: Each circle represents a single participant’s estimate from random-order session (x axis) and linear-order session (y
axis). The histograms across the axes show the distributions of estimates for each session type. The dotted and dashed lines
respectively represent 1:2 and 2:1 ratio between the axes, and the solid line represents one-to-one correspondence. Right:
permutation test results. The distribution of summed residuals (distance of data points to the closest y=x, y=2*x and y=x/2
lines) of shuffled data over 1000 iterations, and the summed residual from original data (dashed line) which fell below .008 of
the permutation distribution. B Left: Illustration of the preferred rate estimation method from one participant’s random-
order (purple) and linear-order (orange) session datasets. Estimates were obtained by the stimulus rates where smoothed
accuracy (curved lines) was maximum (arrows). Green and blue lines respectively represent the stimulus rates that were
faster and slower than the linear-order session estimate. Right: Slices of the regression surface, calculated from the model
where accuracy was predicted by normalized IOIs that were faster than a participant’s preferred rate estimate (green), and
by those that were slower (blue). Solid lines show predicted accuracy given the model, and dotted lines represent 95%
confidence intervals. C Average accuracy from random-order (left, purple) and linear-order (right, orange) sessions. Each
circle represents a participant’s average accuracy. D Flexibility estimates. Each circle represents an individuals’ slope (β)
obtained from logistic models, fitted separately to conditions where |-ΔIOI| (left, green) or |+ΔIOI| (right blue) predicted
accuracy, with greater values (arrow’s direction) indicating better oscillator flexibility. The distribution of β from both
conditions were smaller than zero, indicating a negative effect of between-trial absolute rate change on accuracy. E
Participants’ average bias from |-ΔIOI| (left, green), and |+ΔIOI| (right, blue) conditions in both session types. Box plots in C-
E show median (black vertical line), 25th and 75th percentiles (box edges) and extreme datapoints (whiskers). In C and E,
empty circles show outlier values that remained after data cleaning procedures.
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Flexibility estimates

Average accuracy (Figure 2C     ) was higher in linear-order (M = 0.834, SD = 0.039) sessions than in
random-order (M = 0.695, SD = 0.072) sessions (t(24) = 12.5964, p < .001). β from models where |
±ΔIOI| predicted accuracy was significantly smaller than zero for both |-ΔIOI| and |+ΔIOI|
conditions and we found no significant differences between β from the former and latter
conditions, showing that the probability of giving a correct response decreased with the amount of
rate change across trials, regardless of whether a stimulus was faster or slower than the previous
trial. Descriptive and inferential statistics are provided in Table 1     . The distributions of β from
individual fits are shown in Figure 2D     . To investigate the source of the negative relationship
between |±ΔIOI| and accuracy, we analyzed how rate change affected bias. In both session types,
participants’ average bias from faster-than-previous (|-ΔIOI|) conditions was significantly smaller
than zero (random-order session: M = -0.179, SD = 0.144, t(26) = -6.4487, p < .001; linear-order
session: M = -0.065, SD = 0.078, t(26) = -4.3159, p < .001); and average bias from slower-than-
previous (|+ΔIOI|) conditions was significantly greater than zero (random-order session: M =
0.195, SD = 0.096, t(26) = 10.5406, p < .001; linear-order session: M = 0.063, SD = 0.046, t(23) = 6.6472,
p < .001), as shown in Figure 2E     . These results indicate that participants perceived longer
comparison intervals as shorter on the trials where stimulus was faster than the previous trial;
and vice versa on trials where stimulus was slower.

Unpaced tapping

Individuals completed a series of unpaced tapping tasks in the beginning and in the end of each
session. Here, we focused on tapping rate from the spontaneous motor tempo (SMT) task. We first
compared individuals’ SMT before and after sessions. For both random- and linear-order sessions,
SMT from before and after the session correlated and were not significantly different. Given the
consistency of the measure, we averaged participants’ SMT within sessions and compared the
mean SMT across session types. We found a strong correlation between tapping rates from the
random- and linear-order sessions. Test results of the unpaced tapping analyses are provided in
Table 2     .

Discussion
The results of Experiment 1      showed that discrimination accuracy systematically increased with
the difference between standard and comparison intervals (DEV) and decreased with the
difference in stimulus rate between consecutive trials (|±ΔIOI|). Accuracy showed a nonlinear
relationship with IOI: we observed improved accuracy at an individual-specific range of stimulus
rates and in cases at their (sub)harmonics (IOI).

For most participants, estimates from random-order sessions were close to double the estimates
from the linear-order sessions (see Figure 2A     ). Correspondence between estimates from the two
session types shows the reliability of the paradigm and robustness of the methods we developed
for the preferred rate estimation, since we were able to obtain similar estimates in repeated
measurements, and under conditions with major differences in stimulus history and task
difficulty. The current findings support three key predictions of the entrainment account. First,
similar estimates of preferred rate under different temporal contexts and repeated measurements
as well as a systematic increase in accuracy towards the preferred rate suggest improved timing
abilities in situations with smaller detuning between the oscillator’s preferred rate and the
stimulus rate21     . Second, that the estimates from the more challenging random-order session
were narrower while preserving the correspondence to those from other conditions indicates that
the internal oscillators were able to adaptively14     ,59      entrain to the range of rates around their
preferred rate, i.e., their entrainment region22     . Finally, the harmonic relationship between the
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Table 2

Descriptive statistics of unpaced tapping measures in first and
second experiments, and test results for pairwise comparisons.
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estimates from the two session types suggest the oscillator’s ability to respond to multiple nested
rates, either due to the circular nature of oscillators59      or by involvement of multiple nested
oscillators in rhythmic entrainment19     .

Two sets of results confirmed the presence of history effects on timing performance. Accuracy was
lower in random-order sessions where absolute rate change (|±ΔIOI|) was maximum, than in
linear-order sessions where it was minimum. Moreover, accuracy in random-order sessions
decreased as rate change increased. The difference in discrimination accuracy between sessions
cannot be attributed merely to the effects of the global context, given that the global context was
identical across session types. If the duration representations were drawn towards the mean of the
rates presented in the session (‘the central tendency effect60     ’), accuracy would be similar
between the sessions with identical global means. Instead, we observed a drastic decrease in
accuracy in the random-order session, which suggests a stronger influence of local than global
context in the current paradigm. The analyses of bias confirmed this explanation by showing that
internal duration representations on a given trial were biased towards the previous stimulus rate.
Interestingly, rate change across trials affected bias even when it was small and fixed.

Experiment 2

Methods

Participants

32 participants were recruited from the participant pool of Max Planck Institute for Empirical
Aesthetics laboratories. The procedure was approved by the Ethics Council of the Max Planck
Society and the Research Ethics Board at Toronto Metropolitan University and was in accordance
with the Declaration of Helsinki. Participants signed an informed consent prior to the session and
received 21 euros on average as compensation after completing the session. Prior to the
experimental sessions, they also completed an online survey. We targeted a uniform age
distribution (M = 50, SD = 17): within the range of 20-80 years of age, we recruited 5 or 6
participants from each 10-year age bin.

Procedure

The study consisted of an online background survey; a series of unpaced tapping tasks including
the SMT, two PPT tasks, a duration discrimination and a paced tapping task. Participants’ hearing
thresholds were measured using standard pure-tone audiometry. Participants were not excluded
based on hearing threshold. The experiment procedure is illustrated in Figure 3A     . Details of all
tasks are provided below.

Participants completed an online survey prior to the session. The lab session started with the SMT
and FMT tasks, respectively. Then, participants were asked to set the sound volume to be used in
the auditory tasks throughout the experiment using a slider that they clicked with a mouse. The
experiment proceeded with the slider PPT task, the keypress PPT task, then the duration
discrimination and paced tapping tasks; and finally, with repetitions of the SMT, FMT and slider
tasks. The order of the keypress, duration discrimination and paced tapping tasks was pseudo-
randomized for each participant and all 6 order combinations were counterbalanced. Prior to
each task, participants were presented with instructions on the screen. Short breaks were allowed
between tasks. Upon completion of the experiment, participants were moved to another booth in
the laboratory room to complete a pure-tone audiometry measurement. An individual session
including audiometry lasted 90 minutes on average. Instructions (see Appendix A     ) were in
German.
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Figure 3

Experiment 2      (A) timeline, and illustrations of the (B) duration
discrimination, (C) paced tapping, (D) slider and (E) keypress tasks.
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Duration discrimination task

The stimuli for the duration discrimination task were the same as in Experiment 1     . The
conditions differed from Experiment 1      random-order sessions in in three aspects: here, the
pool of stimulus rates was linearly spaced between 200 to 1000 ms in 10-ms steps, comparison
interval deviated from standard IOI at a fixed amount of DEV = ±13%, and there were two
repetitions of each stimulus rate. For determining the spacing for IOI, we performed a
bootstrapping analysis on data from our previous study, from which the current paced tapping
paradigm was adapted27     . The analysis revealed that 10 ms was the optimum step size that
produced similar values to the original preferred rate estimates, while also preserving the
between-session harmonic correlation. Details of the bootstrapping analysis are provided in
Supplementary Information     .

We selected the fixed deviation for comparison intervals as follows. First, we estimated thresholds
for negative and positive deviations from Experiment 1     . To do so, for each participant’s (N=27)
random-order session data, we averaged the accuracy at each deviation level, separately for
negative and positive deviations. We fitted psychometric curves to the mean values and obtained
the deviation amount that yielded 75% predicted accuracy from the fitted curve. From the
resulting distributions of thresholds for negative and positive deviations, we removed outliers by
excluding any value that exceeded 3x the median absolute deviation (MAD) of all threshold values
in the respective distribution. Finally, we took the mean threshold value across participants and
deviation directions. We then piloted the task on a small sample to confirm that the value of 13%
was appropriate to be used in the duration discrimination task in Experiment 2      that would give
an approximate accuracy of 75%.

The task (Fig. 3B     ) consisted of two blocks with complementary DEV conditions. Participants
were presented with all 81 stimulus rates in the same order in each block. However, if the
comparison interval for a given stimulus rate was longer in the first block, it was shorter in the
second, and vice versa. As in Experiment 1      random-order sessions, the change in IOI between
consecutive trials (ΔIOI) was maximized, and the direction of the change alternated on every trial.
For each participant, we generated a unique stimulus order which was constant across the blocks
and was also used in the paced tapping task.

The instructions of the task included two example trials, and participants practiced the task for at
least 6 trials. The properties and the procedure of the example and practice trials were identical to
those in Experiment 1     .

Paced tapping task

The task (Fig. 3C     ) was a shorter version of the synchronization-continuation paradigm we
developed in a previous study27     . On each trial, participants were presented with an isochronous
stimulus sequence of 5 sounds, followed by silence. Sound stimuli were the woodblock samples
used in Experiment 1     . Participants were instructed to start tapping to the stimulus as soon as
possible, and to continue tapping at the same rate once the sounds ceased, until the end of the
trial, which was signaled by a change in the screen color. For each participant, the stimulus rates
as well as their order were identical to those generated for the duration discrimination task. In
these matched stimulus conditions, IOI ranged from 200 ms to 1000 ms in 10-ms steps. Allowed
duration for continuation tapping was 6 times the stimulus IOI for fast (IOI < 300 ms) stimuli, and
7 times the IOI for slow (IOI > 300 ms) stimuli. Prior to the task, participants completed 6 practice
trials, with specifications described in Ref.27     .
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Unpaced tapping tasks

The procedure for the spontaneous motor tempo (SMT) task and ‘forced’ motor tempo (FMT) tasks
were identical to those in Experiment 1     .

Slider task

The slider task was a PPT task where participants dynamically adjusted the rate of stimulus
sequences comprising the same woodblock samples used in Experiment 1     . Each trial started
with an isochronous stimulus sequence, and participants were presented with the instructions at
the top of the screen. A horizontal slider (Fig. 3D     ) was displayed with labeled endpoints
“schnell” (fast) and “langsam” (slow). Moving the mouse changed the indicator of the slider,
marked in red; and each left-click produced an isochronous stimulus sequence with the selected
rate. A right mouse click saved the final rate and terminated the trial. Participants completed two
blocks of 8 trials of the task. In each block, the start-rate of the stimulus sequence was 200 ms in
half of the trials and 1000 ms in the other half. The location of the labels also differed between
trials, and the “fast” label was on the left end in half of the trials, and vice versa in the other half.
Label locations and start-rates were counterbalanced within each block, and their combinations
were ordered randomly.

Keypress task

The keypress task was also a PPT task where participants indicated their preferred rates by
stopping stimulus sequences with dynamically changing rates. Stimulus samples making up the
sequences were the woodblock samples used in Experiment 1     . Each trial started with a
stimulus sequence, and participants were presented with the instruction text on the top, and a
dynamic figure on the middle of the screen that indicated the time left to respond. If no response
was given during the stimulus, the trial was repeated. Stimuli started fast (IOI = 200) in half of the
trials and slow (IOI = 1000) in the other half and increased or decreased by 10 ms in each interval,
depending on the start-rate. That is, the stimulus got slower in each interval on fast-start trials, and
vice versa on slow-start trials. Participants completed 6 trials of the keypress task. The order of the
stimulus conditions was randomized. Figure 3E      illustrates a fast-start condition of the keypress
task.

Design

The stimulus IOIs presented in all tasks that involved an auditory stimulus ranged from 200 ms to
1000 ms. Thus, IOI was an independent variable, on which rate preferences and performances
were assessed to be compared across tasks. The order of stimulus IOI, and thus ΔIOI, was matched
between duration discrimination and paced tapping tasks, from which independent variables of
+ΔIOI| and |-ΔIOI| were derived. Other independent variables were DEV direction (i.e., whether
comparison interval was shorter or longer than the standard) in duration discrimination task,
repetition for SMT, FMT and slider tasks; and start rate for slider and keypress tasks.

Dependent variables were the tapping rate in SMT and FMT, selected rate in slider and keypress,
accuracy and bias in duration discrimination, and signed or absolute values of tempo-matching-
errors, TME, in paced tapping tasks.

Apparatus

Apparatus for the presentation of sound stimuli, and collection of tapping and keyboard responses
were identical to those of Experiment 1     . Additionally, participants used a mouse for giving
responses in the slider task, and for setting the desired sound volume. The background survey was
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a German translation of the survey used in Experiment 1     . We conducted Experiment 2      in
German given that the participant sample consisted of older individuals who were less likely to
fluently speak English than the mostly-student sample we recruited in Experiment 1     .

Analysis

Data cleaning and exclusion criteria

As Experiment 2      involved multiple tasks, participants were excluded from only the respective
tasks where their performance met the exclusion criteria.

The duration discrimination task in Experiment 2      had two exclusion criteria: (1) chance-level
performance in both DEV directions, as in Experiment 1      and (2) ceiling performance in overall
response accuracy (average accuracy > .95). Two participants were excluded based on the first
criterion; one participant was excluded based on the second.

On the trial-level, the paced tapping task had two exclusion criteria: first, any ITI that was smaller
than half or bigger than 1.8 times the stimulus IOI was excluded. From the remaining ITIs, outliers
were detected by the script described in data cleaning and exclusion criteria for unpaced tapping
tasks under Experiment 1 Methods      section. On the participant-level, criteria were
incompatibility between stimulus rate and tapping rate, and low number of tapping intervals on
average. To test the first criterion, we fitted models to overall task data where the tapping rate (i.e.,
the median of all intervals in each trial after trial-level data cleaning) was predicted by stimulus
IOI and obtained slopes. 2 participants were excluded as they had slopes smaller than .5. One
participant was excluded based on the second criterion, as the average number of intervals they
produced across trials was smaller than 7.

The data cleaning procedure of unpaced tapping tasks was identical to that described for
Experiment 1     . In the slider task, we recorded whether participants listened to the different
stimulus rates by clicking on the different locations on the slider. Exclusion criterion was not
testing the stimulus rates on more than 75% of the trials by producing a minimum of one mouse
click, which suggested that the participant did not engage with the task. One participant was
excluded from the slider task based on this criterion. From the remaining participants’ data, any
trial without a mouse click was removed from further analyses. No exclusion criterion was
defined for the keypress task.

Finally, before applying group-level statistics such as t-tests and correlations, any datapoint that
fell outside of the interquartile range was excluded from the respective distributions.

Outcome measures

The outcome measures from the duration discrimination task were accuracy and bias. Response
coding was same as in Experiment 1     . Since the duration discrimination task in Experiment 2     
included two repetitions of each IOI (presented in different blocks with different DEV directions),
accuracy and bias were averaged across IOI repetitions.

For each trial in the paced tapping task, we calculated the tempo-matching error, TME, following
the analysis in our previous study27     . TME was the difference between tapping rate (median
inter-tap interval of all taps in a trial) and stimulus IOI, normalized by stimulus IOI, described by
TMEk = ((median [ITI1, ITI1,…, ITIn,])—IOIk)/IOIk where k is the trial index and n is the maximum
number of intervals in a single trial. A positive TME indicated that the tapping rate was slower
than stimulus rate, and a negative TME indicated that it was faster. For the unpaced tasks, the
outcome measure from each trial was the tapping rate, calculated as the median ITI after trial-
level data cleaning. From each trial of the SMT task, we also obtained the coefficient of variation
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(CV), calculated as the standard deviation of all intervals divided by their mean. We further
compared SMT across repetitions of the same task throughout the experiment using Pearson
correlations and paired-samples t-tests.

The slider task had two start-rate conditions and two repetitions throughout the experiment
(before and after main tasks). The dependent measure for each trial was the median of all final
responses. We assessed the main effects and interactions of start-rate and repetition on slider
responses across participants, using a repeated measures ANOVA. We calculated the rate
preference on each trial of the keypress task as the presented stimulus’ rate at the time of the
keypress. The summary measure for each start-rate was the median of all rate preferences in trials
with same start-rate.

Preferred rate estimates

Experiment 2      involved various tasks by which we aimed to estimate individuals’ preferred rate.
For the SMT task, we estimated preferred rate as median tapping rate; for the slider and keypress
tasks (PPT), we averaged participants’ indicated preference across conditions and repetitions. For
both the duration discrimination and paced tapping tasks, we estimated preferred rate as the
stimulus IOI yielding peak performance as follows.

Best-performance rates in the duration discrimination task were calculated by smoothing
accuracy as a function of stimulus rate, as in Experiment 1     . After excluding the study-specific
outliers on the participant level, for each participant, we smoothed accuracy using ‘gaussian’
method in smoothdata function in Matlab. Following the optimization procedure used in
Experiment 1     , we assessed the window size that revealed a single-point maximum accuracy for
each participant. The optimum window was 13 samples, which was used to smooth both the
accuracy and IOI values in each participant’s dataset.

The dependent measure in paced tapping task was TME, which was a signed, proportional error
measure. Best-performance rates in this task were the conditions where participants tapped with
the least errors, quantified by the absolute TME, |TME|. Since the paced tapping task shared the
stimulus rate conditions with duration discrimination task, we used the optimum window size
obtained for the duration-discrimination task for smoothing |TME| so that the estimates would be
maximally comparable across tasks.

Flexibility estimates

Experiment 1      in the current study and the findings of our previous study27      showed robust
effects of stimulus history on rhythm perception and production. As in those analyses, flexibility in
Experiment 2      was defined as the ability to adapt to changes in the rhythmic context.

In the duration discrimination task, we assessed flexibility by fitting logistic models to each
participant’s data where accuracy was predicted either by |-ΔIOI| or |+ΔIOI|, as in Experiment
1     . A negative slope obtained from the models indicated that the probability of giving a correct
response decreased as the |±ΔIOI| increased. Similarly, in the paced tapping task, we fitted linear
models where |TME| was predicted either by |-ΔIOI| or |+ΔIOI|. A positive slope from the models
indicated that the absolute tempo-matching error increased with |±ΔIOI|. However, as a final step,
we inversed the slopes obtained from the paced tapping so that more negative beta estimates
indicated less flexibility.

We tested the hypothesis of a decrease in oscillator flexibility with advancing age by correlating
age and slopes from each |±ΔIOI| condition (flexibility estimates) in duration discrimination and
paced tapping tasks (Pearson correlation, one-tailed). Since these analyses involved multiple
comparisons, we controlled for the false discovery rate (FDR), using The Benjamini–Hochberg
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method61     ,62     . To test whether overall performance decreased with age, we ran another series
of correlations between age and average accuracy in duration discrimination task, and average
|TME| in the paced tapping task, and FDR-corrected the p- values.

Additionally, we explored the relationship between individuals’ age and preferred rate estimates,
by separate correlation analyses between age and preferred rate estimated from each condition
and measurement of the slider and keypress (PPT) tasks, and preferred rate estimates from
duration discrimination and paced tapping tasks. Since we defined no hypothesis for preferred
rate and age relationships, we used two-tailed Pearson correlation and no correction.

Results

Unpaced tapping

Tapping rates from ‘fastest’ and ‘slowest’ FMT trials showed no difference between pre- and post-
session measurements and were additionally correlated across repeated measurements. Given the
consistency of the measures, rates from each FMT task from first and second measurements were
averaged for further analyses. Tapping rates from SMT task were also correlated across
measurements. However, rates from the second measurement were significantly slower than
those from the first measurement. SMT CV did not correlate across measurements (p = .072), and
CV from the second measurement (M = 0.070, SD = 0.033) was significantly higher (t(26) = -2.5116, p
= 0.019 than CV from first measurement (M = 0.055, SD = 0.023). The results of the pairwise
comparisons between tapping rates from all unpaced tapping tasks across measurements are
provided in Table 2     .

Preferred rate estimates

Individuals’ PPT was measured by the slider and keypress tasks. In the slider task, rate preferences
from the same start-rate conditions were significantly correlated and showed no systematic
differences across repeated measurements. Within the first measurement block, rates from slow-
start conditions (M = 0.732, SD = 0.165) were slower than those from fast-start conditions (M =
0.658, SD = 0.167) (t(25) = -2.109, p = 0.045), although they were significantly correlated (r(24)
=0.691, p < .001). Rate preferences from the second measurement showed no difference between
the start rate conditions (p=.709) and were significantly correlated (r(27) =0.521, p = 0.004). A
repeated-measures ANOVA revealed no main effects of start-rate (p = 0.169) or repetition (p =
0.865), and no interaction (p = 0.067). In the keypress task, rate preferences from the fast-start
condition (M = 0.467, SD = 0.092) were significantly faster than those from the slow-start condition
(M = 0.840, SD = 0.111) (t(28) = -13.8046, p < 0.001), and we found no correlation between rate
preferences across conditions (p = .803). The distributions of rate preferences from separate
conditions of the slider and keypress tasks are shown in Figure 4A     . Preferred rate estimates
from both the duration discrimination and paced tapping tasks, measured by the stimulus rates
with best performance, correlated significantly with SMT (Fig. 4A     ). Moreover, we found no
significant differences between estimates from either task or SMT. However, estimates did not
correlate between duration discrimination and paced tapping tasks, and were slower (t(26) =
-2.7817, p = 0.099) in the latter (M = 0.641, SD = 0.173) than in the former task (M = 0.541, SD =
0.175). In Figure 4B     , estimates from the two performance tasks and SMT (first measurement)
are illustrated. In general, estimates from both the paced and unpaced tapping tasks were slower
than those from the duration discrimination task. However, the nonparallel nature of the lines
that connect single-participant preferred rates for each task (Fig. 4B     , left) indicates that the
amount of “slowing” in the tapping tasks relative to the discrimination task varied across
individuals. We reasoned that if the degree of slowing for each individual arises from a common
source for both tasks, which we will call ‘the motor component’, the differences between estimates
for the discrimination versus both tapping tasks should be consistent. We quantified the
contribution of the motor component to preferred rates each tapping task by subtracting the
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duration discrimination task estimates, which yielded two difference scores (paced tapping –
duration discrimination and SMT – duration discrimination). These difference scores were
significantly positively correlated, confirming that each individual had a consistent motor
component contribution that slowed their preferred rate estimate in different tapping tasks in a
similar manner.

Rate preferences in the slider task correlated with SMT only in fast-start conditions from the first
measurement, and in slow-start conditions from the second measurement. Rate preferences from
the keypress task only correlated with those from slider task conditions (i.e., within PPT tasks), but
not with any SMT measurement or estimates from the performance tasks.

Flexibility estimates

We hypothesized negative effects of stimulus history on performance in both perceptual and
motor tasks. We found similar effects of stimulus history in both tasks. β obtained from the
separate models quantifying the effect of |-ΔIOI| and |+ΔIOI| on accuracy in the duration
discrimination task were both significantly smaller than zero, indicating that accuracy decreased
as |±ΔIOI| increased, both in trials where the stimulus was faster and slower than previous (Fig.
5A     ). In the paced tapping task, β from models where |TME| was predicted either by |+ΔIOI| or
|-ΔIOI| were significantly greater than zero, indicating that tempo-matching errors increased as a
function of |±ΔIOI| (Fig. 5B     ). Paired-samples t-tests revealed no significant differences between
the strength of the effect of |-ΔIOI| vs |+ΔIOI| in either task. However, β from models where
|+ΔIOI| predicted |TME| were numerically smaller, and significantly more variable than those
models where |-ΔIOI| predicted |TME|; the difference in variability was assessed using a Brown-
Forsythe test (F(1,54) = 5.867, p = .019). Descriptive statistics and test results for comparison of β
estimates against zero are provided in Table 3     .

To investigate the direction of history effects on performance, we compared perceptual and motor
biases in trials with negative and positive rate change. In conditions where the stimulus on the
current trial was faster than the previous one, average bias (M = -0.166, SD = 0.094) was
significantly smaller than zero (t(28) = -9.4985, p < .001, Fig. 5A     ); and average TME (M = 0.014, SD
= 0.021) was greater than zero (t(27) = 10.587, p < .001, Fig. 5B     ). The opposite was the case in
conditions with slower-than-previous stimulus, as average bias (M = 0.217, SD = 0.108) was greater
(t(27) = 10.587, p < .001, Fig. 5A     ) and average TME (M = -0.013, SD = 0.018) was smaller (t(26) =
-3.7556, p < .001, Fig 5B     ) than zero.

In the duration discrimination task, we also assessed the differences in responses to shorter versus
longer comparison intervals as an indicator of how individuals responded to phase perturbations,
by comparing accuracy in trials with |-DEV| and |+DEV|. Participants’ average accuracy from the
latter conditions (M = 0.746, SD = 0.070) were higher (t(25) = -2.5536, p = 0.017) than those from the
former conditions (M = 0.694, SD = 0.116).

Age-related changes in oscillator flexibility

One of the main goals of Experiment 2      was to compare the estimates of preferred rate and
flexibility across individuals to assess the age-related changes in oscillator properties. We
recruited our participant sample to have a flat age distribution, with participants ranging in age
from 20 to 76 years old.

The results revealed significant correlations (FDR-corrected for multiple comparisons) only
between individuals’ age and flexibility estimates from |-ΔIOI| conditions. β from logistic fits
where |-ΔIOI| predicted accuracy in the duration discrimination task negatively correlated with
age (r(27) = -0.525, p = 0.002, Fig. 5C     ). Similarly, we found a significant negative correlation
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Figure 4

Results of Experiment 2      preferred rate analyses.

A Top: Estimates of preferred rate from each task condition. Box plots show median (black vertical line), 25th and 75th

percentiles (box edges) and remaining data range (whiskers). Vertical lines above the box plots represent within-participants
pairwise comparisons. The horizontal dashed lines represent the minimum and maximum stimulus rates presented in the
experiment. Bottom: Pairwise correlations between preferred rates across tasks. For the slider and keypress tasks, boxes are
colored to indicate fast-start (blue) and slow-start (pink) conditions. Correlations and p-values are reported for significant
correlations only. B Relationship between the preferred rate estimates from the paced tapping, duration discrimination, and
SMT (first measurement) tasks. Left: Participants’ estimates from the three tasks. Each circle represents an individual’s
preferred rate estimate, connected by lines between the tasks. Both circles and lines are color-sorted by individuals’ SMT,
ranging from fast (pink) to slow (blue). Right: Correlation between the difference scores. Each circle represents a single
participant’s difference score, namely, how different the estimates from SMT (x axis) and paced tapping (y axis) tasks were
than those from the duration discrimination task. Solid black line represents the regression line, dashed lines represent 95%
confidence intervals.
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Figure 5

Results of Experiment 2      flexibility analyses.

A-B Effects of between-trial absolute rate-change (|±ΔIOI|) on performance in Experiment 2      (A) duration discrimination
and (B) paced tapping tasks. In the top panels, each circle represents an individuals’ slope (β) obtained from models, fitted
separately to conditions where |-ΔIOI| (left, green) or |+ΔIOI| (right, blue) predicted (A) accuracy in the duration
discrimination or (B) |TME| in the paced tapping task. The arrow direction indicates better flexibility. In the bottom panels,
box plots show (A) average bias in duration discrimination and (B) average TME in paced tapping tasks, from |-ΔIOI| (left,
green) and |+ΔIOI| (right, blue) conditions. In all panels, box plots show the median (black vertical line), 25th and 75th

percentiles (box edges) and extreme datapoints (whiskers). C-D Correlations between individuals’ age and the flexibility
estimates from (C) duration discrimination and (D) paced tapping tasks. Solid black lines represent the regression line,
dashed lines represent 95% confidence intervals. Histograms above each plot show the distribution of participant ages after
outlier corrections.

Table 3

Descriptive statistics and test results for comparison of Beta
estimates against null distributions in Experiment 2      analyses.
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between the inversed β from models where |-ΔIOI| predicted |TME|, and age (r(24) =-0.389, p =
0.025, Fig. 5D     ). The findings indicate that the ability to adapt to faster-than-previous rates
decreased with increasing age.

Discussion
The results of Experiment 2      revealed correspondences between preferred rate measures from
various tasks, and effects of stimulus history on performance that were stronger for older
individuals. The findings on preferred rate are consistent with previous research assessing
tapping behavior at stimulus rates near to or far from individuals’ SMT. During synchronization
to6      or continuation of5     ,22     ,52      a rhythmic stimulus, individuals overproduce stimulus rates
that are faster, underproduce those that are slower than their SMT. During continuation tapping,
produced intervals have also been also shown to drift back towards individuals’ SMT5     ,63     .
However, these previous paradigms have generally used a rough sampling of stimulus rates (e.g.
3)22     ,52     ,63     , or those that predefine conditions around SMT5     ,6     . Here, we used a wide and
finely-sampled range of stimulus rates that were unrelated to individuals’ SMT. Thus, that we
found SMT to be the anchor rate with optimal rhythmic performance further supports the idea
that perception and production of rhythms are governed by a common mechanism which
responds similarly to a range of stimulus rates across various tasks. Most work comparing
individuals’ timing performance across stimulus rates with respect to their SMT has made use of
paradigms that involve a rhythmic motor component. The current study is the first that compared
individuals’ duration discrimination abilities across intervals of a rhythmic stimulus with respect
to their SMT.

Preferred rates from the preference tasks with and without a rhythmic motor component (SMT
and PPT, respectively) were more similar than preferred rate estimates from performance tasks
(duration discrimination and paced tapping) with and without rhythmic movement. Rate
preferences from the same start-rate conditions of the slider task showed strong correspondence
across repeated measurements. Interestingly, rates from the fast-start conditions showed the
strongest correlation across measurements, and with SMT. We interpret this difference between
the fast- and slow-start conditions as being in line with the scalar property of time perception64     ,
in that absolute timing accuracy is generally more accurate for faster rates and shorter intervals.
Moreover, this finding is supported by similar findings of increased discrepancy between SMT and
PPT at slow, as compared to fast stimulus rates65     . Preferred rates from the keypress task showed
large differences between start-rate conditions, although rates from slow-start trials were
correlated with those from most slider task conditions. Given that the keypress task involved no
dynamical adjustment of stimulus rate, preferences may have been constrained to a smaller range
of stimulus rates around the start rate; nonetheless, individual differences were still observable,
and preferred rates were still consistent with those measured in the other PPT (slider) task.

Analyses focused on flexibility revealed that both duration discrimination and paced tapping
performance were worse when rate change from one trial to the next was large, regardless of the
direction of the change (i.e., whether stimulus was faster or slower than the previous one). In
cases where stimulus in each trial was faster than the previous, slower stimulus, participants
tended to perceive longer comparison intervals as shorter and tap slower than the stimulus. In the
opposite cases, they tended to perceive shorter comparison intervals as longer and tap faster than
the stimulus. Thus, non-zero biases and signed tapping errors observed in response to rate
changes suggest that internal representations and behavior in each trial reflected the properties of
the preceding trial; we will return to this point in the General Discussion. These findings are
mostly in line with findings of Experiment 1      (current study) and those from our previous
tapping study27     , and further emphasize the presence of history effects on timing performance.
The finding of signed tapping errors supports the idea that oscillators gradually adjust their phase
and period to a newly encountered stimulus, resulting in discrepancy between the stimulus
interval and oscillator period during synchronization to a rhythmic stimulus14     ,33     ,59     .
However, in our previous study27     , tapping performance was especially affected when stimulus
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rates were faster than the preceding trial. In that study, |TME| was calculated from only
synchronization tapping for the flexibility analysis. Here, we calculated |TME| from all taps from
both the synchronization and continuation segments of each trial due to the lower number of
trials. That is, in our previous study, we focused only on the first produced intervals on each trial,
whereas here we included intervals that were produced after participants had a longer period to
adapt to the new stimulus rate.

A critical finding from the current study was that flexibility, estimated inversely from the strength
of the effect of |-ΔIOI| on performance in both tasks with and without a motor component,
decreased with age. Reduced performance in timing tasks for ageing individuals is a common
finding across perceptual41     ,43     ,49      and motor40     ,66      tasks. However, overall timing
performance measures, namely, task averages of duration discrimination accuracy and tapping
errors showed no systematic relationships with individuals’ age, suggesting that age-related
changes in rhythm perception might be specific to adaptive mechanisms rather than general
timing abilities.

In addition to focusing on deviations in stimulus rate between trials, we also assessed how
participants responded to within-trial deviations, that is, how much comparison interval deviated
from the stimulus IOI. As in Experiment 1     , however, significantly here, accuracy was marginally
higher in conditions with longer compared to shorter comparison intervals. That this difference
reached significance only in the current study may be due to the age of the participant sample,
given the finding that adapting to faster, but not slower stimulus was more challenging for older
individuals.

Of note is that the paradigm in Experiment 2      was derived from two multi-session experiments
through a series of reliability and bootstrapping analyses. The longer versions of the duration
discrimination (Experiment 1     , current study) and paced tapping (synchronization-continuation
paradigm in Ref.27     ) involved around 400 trials in each of the two sessions, between which the
estimates of preferred rate and flexibility were also consistent. Thus, the current paradigm can be
used to assess internal oscillator properties in clinical settings or with participant samples where
concerns for task difficulty or fatigue may arise.

General Discussion

The goal of the current set of studies was to highlight factors that impact auditory rhythm
processing. To this end, we conducted two experiments, investigating the interplay between the
properties of the external world (the stimulus) and the individual responding to the stimulus (the
perceiver). Adopting an entrainment perspective that considers internal oscillators as the
underlying mechanism for rhythm processing11     ,67     , we aimed to capture this interplay by
characterizing the properties of internal oscillators, and to assess how they change with advancing
age. Specifically, we estimated oscillators’ preferred rates and flexibility for each individual in
perceptual and motor tasks, assessed the relationship between rate preferences and optimal
stimulus rates for timing performance, and tested the hypothesis that oscillator flexibility
diminishes as we age.

Experiment 1      was a perceptual paradigm, where individuals’ ability to discriminate between
stimulus intervals over a wide range of finely-sampled stimulus rates was assessed in two
temporal contexts: one that required rapid temporal adaptation, challenging oscillator flexibility,
and one without such requirement. In Experiment 2     , we combined shorter versions of the
duration discrimination paradigm (Experiment 1     ) and a paced tapping paradigm (adapted from
Ref.27     ), using matching stimulus conditions. Experiment 2      also involved a common measure
of preferred rate, the ‘spontaneous motor tempo’ (SMT) task, and two ‘preferred perceptual tempo’
(PPT) tasks (slider, keypress) where individuals’ rate preferences were assessed. From the

https://doi.org/10.7554/eLife.90735.2


Ece Kaya et al., 2024 eLife. https://doi.org/10.7554/eLife.90735.2 27 of 58

performance paradigms, we estimated preferred rate as the stimulus rates with best performance,
indexed by maximum accuracy in the duration discrimination tasks, and minimum tempo-
matching errors in the paced tapping task. We defined flexibility as the ability to adapt to changes
in stimulus rate, which was inversely related to how much single-trial performance was affected
by trial-to-trial changes in stimulus rate.

Preferred rate estimates
In the rhythmic entrainment literature, preferred rate is typically estimated by SMT. However, two
main aspects of the SMT task motivated us to question its explanatory power for predicting
individuals’ perceptual abilities in real-world listening situations. First, given that the task
involves periodic motor actions, the relative contributions of an internal timekeeper versus
constraints or resonances of an individual’s motor system to the produced tapping rate cannot be
separated. Second, SMT is a preference measure, since it measures the rate at which individuals
prefer to tap at, without introducing any interaction with a stimulus. Although there is evidence
for positive relationships between SMT and rates yielding best timing abilities in paced tapping
tasks5     ,6     ,63     , rate preferences obtained from SMT task may not necessarily predict how
individuals would perform at other auditory tasks, especially those that don’t involve periodic
motor actions. Here, we aimed to bridge this gap and understand the potential predictive power of
SMT for perceptual performance situations with higher ecological validity, by directly comparing
SMT to ‘performance’ measures of preferred rate both with and without motor component.

The results of Experiment 2      revealed that the stimulus rates for which individuals showed
better timing performance were indeed correlated with SMT. However, we did not find one-to-one
correspondences between SMT and preferred rate estimates from the performance tasks, and
estimates were not correlated across the performance tasks. SMT was more variable across
participants than preferred rates estimated from either of the performance tasks, and preferred
rates estimated from tasks involving a motor component (SMT, paced tapping) tended to be slower
than those estimated from the duration discrimination task. We discuss two possible primary
dimensions along which these tasks differ and how these might preclude directly predicting
performance on one task based on the rate preference for another: involvement of the motor
system and indicating preference versus interacting with an environmental rhythm.

Both the unpaced (SMT) and paced tapping tasks required rhythmic motor responses, as compared
to the duration discrimination task where perceptual judgments were assessed. We found that
preferred rate estimates from both motor tasks were slower than for those obtained via duration
discrimination. Interestingly, we found that the degree of ‘slowing down’ in the motor compared to
the discrimination tasks was consistent within an individual: the degree of slowing from
discrimination to SMT was correlated with the degree of slowing from discrimination to paced
tapping. This suggests that the contribution of the ‘motor component’ to preferred rate is
individually specific and quantifiable. This finding is in line with the proposal that perception and
production of rhythms is governed by a system of multiple coupled oscillators1     ,53     , with the
observed preferred rate in any task being jointly influenced by preferred rate of a perceptual (in
this case, auditory) oscillator, preferred rate of a motor oscillator, and the coupling strength
between these two nodes. Indeed, similar discrepancies between preferred rates of auditory and
motor oscillators were observed in speech comprehension and were attributed to individual
differences in auditory-motor coupling68     . Under this assumption, we propose that the
differences between preferred rate estimates from tasks with and without tapping (motor)
responses, i.e., the degree of slowing when the motor component is added, will increase with the
difference in eigenfrequencies of the perceptual and motor oscillators (their detuning), and
decrease with increasing coupling strength.

The other difference between the tasks by which preferred rate was estimated was the
requirement to interact with a stimulus rhythm in the performance tasks, whereas the SMT and
PPT tasks only involved indicating a preference. Jones and McAuley argue that in the presence of a
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stimulus, the preferred rate can be ‘pushed around’ by the temporal context, given that the
oscillators are adaptive and can perform within their entrainment regions34     . Results of
Experiment 1      confirmed this prediction by revealing an effect of temporal context on preferred
rate: the distribution of estimates from the temporally-challenging condition was narrower than
that from the condition that required minimal temporal adaptation. Thus, stimulus presentation in
Experiment 2      duration discrimination and paced tapping tasks as opposed to SMT task may
have contributed to the differences in preferred rate estimates. Additionally, in the paced tapping
task, participants synchronized to the stimulus, which is shown to improve performance in
tapping precision69     ,70      and perceptual judgments71     ,72     , and thus may have contributed to
the estimate differences.

Flexibility estimates
Another goal of the current study was to investigate the circumstances that negatively impact
timing abilities. Specifically, we focused on trial-to-trial changes in stimulus rate, and to what
extent individuals were able to adapt to such changes, which was our definition of oscillator
flexibility. In line with previous literature which reveals effects of stimulus history on
perceptual31     ,34     -36      and motor25     ,27     ,30     ,32     ,33      responses, results of the current study
showed that performance in duration discrimination and paced tapping tasks decreased as trial-
to-trial changes in stimulus rate increased. Moreover, single-trial responses were biased such that
they reflected the properties of the stimulus from the preceding trial. This set of findings is in line
with predictions of oscillator models59     . In a changing rhythmic context, the oscillator adapts to
the newly encountered stimulus rate by gradually updating its phase and period14     . The extent
and time course of adaptation, however, will depend on the oscillator’s flexibility, which might be
modeled via error correction parameters in commonly used models of interval timing14     ,59      or
synchronized tapping33     . An inflexible oscillator’s period would adjust more slowly to a new
rate, and so would continue to reflect the previously entrained rate, due to hysteresis. For the
duration discrimination task, any comparison interval that is shorter than the oscillator’s period
would be classified as ‘shorter’, and vice versa, regardless of whether the interval was indeed
shorter than the intervals making up the standard, isochronous rhythm. This means that when the
previous trial was faster than the current one, the oscillator period would be relatively short, and
participants would be biased to judge comparisons as “longer”. Conversely, when the previous
trial was slower than the current one, the oscillator period would be relatively long, and “shorter”
responses would be more likely. The analysis of bias indicated that this was exactly the case for the
current data. Similarly, tapping rates gradually updated from the preceding stimulus rate to a
current one, resulting in tempomatching errors in the direction of the previous stimulus rate. That
is, when the previous trial was faster than the current one, tapping rates would underestimate the
stimulus rate, and when the previous trial was slower than the previous one, tapping rates would
overestimate the stimulus rate. Again, the TME analysis confirmed this to be the case.

Age-related changes in oscillator flexibility
A critical finding of the current study was an age-related decline in a specific ability: temporal
adaptation to faster-than-previous stimulus. In trials where the stimulus was faster than the
previous one, accuracy in the duration discrimination task decreased, and tempo-matching errors
in the paced tapping task increased as a function of the amount of rate difference between trials,
more so for older individuals.

The timing literature reveals age-related changes in time perception, such as a decrease in the
accuracy of temporal estimates73     , and slower tapping rates in spontaneous22     ,39     ,74      or
forced40      unpaced tapping tasks. These changes are generally attributed to slowing of the
internal timekeeper mechanisms39     ,41      or a reduction of attentional resources75     . Moreover,
studies comparing older and younger individuals’ preferences and performances in paced tapping
paradigms reveal mixed results66     . In the current study, we did not observe age-related changes
in overall performance measures such as perceptual accuracy or tapping errors, and contrary to
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previous work we did not find a slowing of preferred rate no matter how it was estimated. Instead,
these findings rather point to age-related changes in adaptive mechanisms underlying temporal
processing. Studies assessing temporal adaptation abilities show that older individuals adapt their
movements to temporal perturbations more slowly and less efficiently than younger
individuals76     ,77      and with less error correction78     . We observed an age-related decline in
temporal adaptation during both perception of and synchronization with auditory stimuli,
suggesting a common source that affected the two means of responding.

Previous work has revealed age-related differences in neural entrainment to auditory rhythms.
Most studies have focused on neural entrainment to amplitude modulated sounds, of which
metronomic stimuli like those we used here are a special case and found that older adults entrain
more strongly and in a more stereotyped (less flexible) way46     –48     . A similar pattern was
observed for entrainment to the amplitude envelope of speech79     ,80     . A mixed pattern of results
has been reported for frequency modulated sounds; however, the existing data suggest that these
differences might depend on parameters such as modulation rate and depth49     ,81     , which we
will not further address here. Moreover, older adults show less neural adaptation than younger
adults in temporal contexts where stimulus rate changes gradually and predictably47     . Another
functional difference between younger and older brains, potentially relevant here, are findings on
“neural noise”. Variability in brain activity as measured in the BOLD signal using functional
magnetic resonance imaging is higher in younger than older brains, again suggesting inflexible
and stereotyped neural activity. Indeed, neural noise is associated with faster and more consistent
performance across a variety of cognitive tasks82     ,83     . Similarly, 1/f noise measured with EEG,
associated with predictive processing in a lexical task, was lower for older than younger
individuals84     . Taken together, these results suggest that poorer performance in temporal tasks
that involve prediction and adaptation might reflect less flexible, overly stereo-typed neural
responses in older adults. This might indicate a loss of flexibility in the generating oscillator(s).

An interesting aspect of the current findings was that adaptation to faster, but not slower stimulus
rates was more difficult for older individuals. Oscillator models predict this asymmetry, with
increased tapping asynchronies to speeding up compared to slowing down stimuli due to the
‘period adaptation function’ of the oscillator33     . This was the case for the paced tapping
paradigm (current study), as the effect of rate change on tapping errors was smaller and
significantly more variable when stimuli slowed down as opposed to sped up, paralleling previous
findings27     . In the duration discrimination tasks, although the magnitude of the effect of rate
change was similar for both rate-change directions, only adaptation to faster stimuli worsened
with age. Though evidence shows reduced adaptation to time-compressed85      or artificially
speeded2      speech in older individuals, further research is needed to address the sources of
adaptation to fast versus slow stimuli in ageing.

Individual differences in internal oscillator properties
One advantage of the current approach is its focus on individual variability. Previous work on
rhythm perception and production, as well as aging, has largely used traditional statistical
approaches involving group or condition comparisons of central tendency measures. In these
cases, variability is attributed to measurement error or noise. In the current work, we opted to
view variability as potentially attributable to individual differences in internal oscillator
properties that may in future work be shown to have predictive power for successful outcomes in
real-world listening situations. Taking this approach focused on individual differences revealed
several novel findings that would have otherwise not been accessible. First, we found
correspondence between the rates individuals prefer to tap their finger at, listen to, and perform
perceptual and motor tasks most accurately, all pointing to preferred rates of potentially coupled,
perceptual and motor internal oscillatory systems. Second, we observed harmonic relationships
between the preferred rates estimated from the duration discrimination paradigm under two
different temporal contexts (Experiment 1     ); this is in line with the assumption that oscillators
are capable of entraining to multiple stimulus rates within a temporal hierarchy59     ,86     , and
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further strengthens our choice to adopt an entrainment approach here. Finally, we found that
oscillator flexibility decreased with age; this finding is supported by evidence from neural
entrainment research and adds to the narrative regarding the effects of ageing on the auditory
system.

The pared-down versions of the duration discrimination and paced tapping paradigms described
in Experiment 2      were carefully designed based on the analyses of their correspondence
between Experiment 1      and our previous tapping study27      in terms of their main results. That
is, we designed the Experiment 2      tasks to be the streamlined versions that would yield the same
main results as their longer counterparts. The reasons for minimizing the duration of the tasks
were (1) it allowed us to test and compare perception and production in a within-participant
manner in a single session, and (2) it improved suitability for testing older adults, who we did not
want to subject to an overly long or multi-session experiment. That the results of Experiment 2     
replicated those from Experiment 1      and Ref.27      independently confirmed the robustness of the
designs. Thus, we would propose that these minimized designs could be used in a more diagnostic
capacity in future work to measure and test predictions about internal oscillator properties of
older adults or a clinical population of interest.

Conclusion
To summarize, we adopted an entrainment approach to rhythm perception and production, which
proposes that these abilities are governed by internal oscillatory mechanisms. We then developed
a paradigm to estimate individuals’ internal oscillator properties based on the common
assumptions of the entrainment models. Performance in both duration discrimination and
synchronized tapping tasks was best at a range of stimulus rates that was specific to each
individual – their preferred rate – and was broadly consistent with preferred rates estimated from
preference tasks (SMT). One important departure from this consistency was that involving a motor
requirement slowed preferred rates, and we were able to quantify the contribution of this motor
component, which was consistent within individuals across different tasks. Performance
decreased as a function of change in stimulus rate between consecutive trials. The extent to which
individuals were able to adapt to the changes – oscillator flexibility – decreased with age, in
accordance with research on neural entrainment and neural noise.

Several aspects of the current findings speak against alternative explanations of timekeeper
models. First, an increase in performance at certain stimulus rates that show consistency across
multiple measurements (Experiment 1     ) and tasks with and without a motor component
(Experiment 2     ) is predicted by entrainment models (Assumption 3), but not timekeeper theories
as the latter models assume a flat performance profile across stimulus rates, following ‘the Weber
law’7     ,87     . Second, best-performance rates (i.e., preferred rate estimates) showed harmonic
relationships across multiple measurements, which is compatible with the properties of oscillator
models (Assumption 4), and not predicted by timekeeper models. Finally, studies adopting a
timekeeper approach suggest that timing responses should gravitate towards the mean of the
presented stimulus rates in a given experimental session60     , which should have resulted in
similar patterns of results in the two sessions of Experiment 1     , where only the trial order
differed. We found significant accuracy and bias differences between the sessions that cannot be
solely attributed to the gravitation toward the mean as the temporal statistics for the stimuli were
identical across sessions.

Overall, these findings support the general hypothesis of dynamic attending theory that an
oscillatory system with a stable preferred rate underlies rhythm perception and production. We
further show that this system loses its ability to flexibly adapt to changes in the external rhythmic
context as we age.
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Appendix A

Experiment 2 instructions
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Supplementary Information

Smoothing procedure to obtain preferred
rate estimates from Experiment 1      datasets
By default, the smoothdata function in Matlab outputs the moving average of the neighboring data
points within a specified window size. Here, we used ‘gaussian’ as the method for smoothing that
calculates the Gaussian-weighted moving average over each window. Both moving average and
gaussian smoothing are forms of convolution, where each data point in a given window (number
of elements) is multiplied by the specified array of numbers, namely, the ‘mask’ (Smith, 1997     ). In
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moving average method, the mask is flat, giving the weight of 1 to each element. Gaussian-
weighted moving average gives higher values into the midpoint of the window, which enhances
the fluctuations in the data that are the focus of the current analysis.

As we were interested in a single-point maximum accuracy for each individual and session, we
optimized the window size for each session type such that the smoothed data revealed a single
global maximum. Starting from a window size of 10 samples for each window size, we recorded
the IOIs with the maximum accuracy value in each dataset. An illustration of the optimization for
an example participant’s dataset is shown in Supplementary Figure S1A     . For small windows,
smoothed data included IOI multiple values where accuracy was 1, especially in the linear-order
sessions. The optimization procedure revealed that, to obtain a single global maximum for each
individual’s dataset, accuracy should be smoothed by windows of 26 samples in the random-order
sessions and 48 samples in linear-order sessions, as shown in Supplementary Figure S1B     . To
equalize the smoothing across the variables of accuracy and IOI, we also smoothed IOI with the
same window size. Estimates of preferred rate were taken as the smoothed IOI that yielded
maximum accuracy.

Additional analyses for assessment of harmonic
relationships between the preferred rate estimates
obtained from two sessions of Experiment 1     
The harmonic correspondence between the preferred rate estimates obtained from random- and
linear-order sessions of Experiment 1      was analyzed by a permutation test, which tested
whether the observed pattern where estimates from one session was duplicate (Y = 2*X) or half (Y
= X/2) of the one from the other session, was due to chance. We ran additional analyses to validate
this method. The first analysis involved a circular approach. We first normalized each
participant’s estimates by rescaling the slower estimate with respect to the faster one and
converting the values to radians, using max(X)_radian = 2*pi*max(X)/min(X) where X represents a
vector with a single participant’s estimates from both sessions. Supplementary Figure S2A     
shows the normalized estimates. We reasoned that values with integer-ratio relationships should
correspond to the same phase on a unit circle. Then, we assessed whether the resulting
distribution of normalized values, shown in Supplementary Figure S2B     , differed from a
uniform distribution, using Rayleigh’s test. Test statistic (p = .004) was significant, indicating that
the distribution (Supplementary Fig. S2B     ) was not uniform. The circular mean of the
distribution was 43.77 (SD = 53.42) degrees (M = 0.764, SD = 0.932 radians), indicating that the
slower estimates were slightly slower than the fast estimate or its duplicates. This was an expected
outcome since the normalization procedure that involved rescaling the maximum to minimum
was biased towards a positive value, which rendered tests to compare the resulting distribution
against zero inapplicable. Thus, we ran a second test, which was a modular approach, to assess
integer-ratio relationships between the preferred rate estimates. We first calculated how much the
slower estimate diverts, proportionally from the faster estimate or its multiples (i.e.,
subharmonics) by normalizing the estimates from both sessions by the faster estimate. The
outcome measure was the modulus of the slower, with respect to the faster estimate, divided by
the faster estimate, described as mod(max(X)/min(X))/min(X) where X represents each
participant’s estimates from the two sessions. Since the resulting distribution was non-normal, we
used ‘median’ as the statistic summarizing the central tendency for percentage diversion of slow
from fast preferred rate estimates. Then, we ran a permutation test where linear-order session
estimates were shuffled over 1000 iterations, and median percentage diversion values for each
iteration (Supplementary Fig. S2C     ) was retrieved. Test statistic was significant (p = .004),
indicating that the harmonic relationships we observed in the estimates were not due to chance or
dependent on the assessment method.
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Supplementary Figure S1

Illustration of the optimization procedure and parameter
choices for smoothing accuracy in Experiment 1     .

A Bottom: An example participant’s linear-order session dataset. Each color represents an output of the smoothing function
that uses a window size, ranging from 10 (yellow) to 50 (dark blue). Top: The number of maximum values on the smoothed
accuracy for each window size. B Participants’ average number of curve maxima for random-order (pink) and linear-order
(blue) sessions. Arrows show the optimized window sizes for the session types, where each individual’s dataset had only one
curve maximum (dashed line).

Supplementary Figure S2

Result of the analyses of harmonic relationships in Experiment 1      preferred rate estimates.

A In circular analyses, each participant’s slower estimates, regardless of whether they were obtained from either random-
order (purple) or linear-order (orange) sessions, were normalized by the faster estimate. Mean vector angle (arrow) was 43
degrees. B Resulting distribution of normalized estimates from the circular analyses. C Permutation test results from the
modular approach. The histogram shows the distribution of median percentage divergence, obtained from 1000 iterations,
and the dashed line represents the median percentage divergence from original data.
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Details of the bootstrapping analyses
for Experiment 2      paradigm
The experiment in Kaya & Henry (2022) was a longer version of the paced tapping paradigm from
Experiment 2      (current study). The IOI of the isochronous stimulus sequences were sampled
from a range of 200 ms to 1000 ms with a step size of 2 and varied in each trial. We estimated up to
3 preferred rates for each individual by fitting curves to continuation tapping tempo-matching
errors (|TMEcontinuation|) and obtaining the IOIs at the curves’ local minima. Estimates from two
identical sessions that each participant completed showed strong correspondence and harmonic
relationships, as measured by the permutation test described in Experiment 1 methods      section.

For the bootstrapping analysis, we first downsampled each participant’s single-session data, with
each even step size between 4 and 20 ms. That is, for the respective step size, we filtered data
where IOI corresponded to the spacing value added to the smallest (200 ms) to the largest (1000
ms) IOI. (e.g., trials with IOI = 200, 204, 208 ms and so on, for step size of 4 ms). We performed the
preferred rate estimation procedure for each downsampled dataset, used in the experiment
analyses. To assess the optimum step size that would represent the experiment’s findings, we
assessed the correspondences between (1) preferred rate estimates from the original and
downsampled datasets for each session and (2) estimates from downsampled datasets between
sessions. In both steps, the correspondence between estimates was quantified by their harmonic
difference (i.e., the sum of the datapoints Euclidian distances to the closest line among y=x, y=2x
and y=x/2 lines). A smaller difference value indicated that the estimates subject to comparison
were similar, or close to doubles or halves of each other. Harmonic differences obtained from the
first and seconds steps of the bootstrapping analysis are shown in Supplementary Figure S3a     
and S3b     , respectively. Together, the bootstrapping analyses showed that the average harmonic
difference between estimates from original versus downsampled datasets was smallest at the step
size of 10, where harmonic difference between downsampled sessions’ estimates was also small.
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Supplementary Figure S3

Results of the bootstrapping analysis.

In A, each circle shows harmonic difference between preferred rate estimates from the original and downsampled datasets
for session 1 (blue) and session 2 (pink) and their average (dotted black line) at the respective step size. In B, each circle
shows harmonic difference between preferred rate estimates from the downsampled session 1 and session 2 datasets at the
respective step size.
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Reviewer #1 (Public Review):

Summary:

This study assumes but also demonstrates that auditory rhythm processing is produced by
internal oscillating systems and evaluates the properties of internal oscillators across
individuals. The authors designed an experiment and performed analyses that address
individuals' preferred rate and flexibility, with a special focus on how much past rhythms
influence subsequent trials. They find evidence for such historical dependence and show that
we adapt less well to new rhythms as we age. While I have some doubts about the
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entrainment-based interpretation of the results, this work offers a useful contribution to our
understanding of individual differences in rhythm processing regardless.

Strengths:

The inclusion of two tasks -- a tapping and a listening task -- complement each other
methodologically. By analysing both the production and tracking of rhythms, the authors
emphasize the importance of the characteristics of the receiver, the external world, and their
interplay. The relationship between the two tasks and components within tasks are explored
using a range of analyses. The visual presentation of the results is very clear. The age-related
changes in flexibility are useful and compelling.

The paper includes a discussion of the study assumptions, and it contextualizes itself more
explicitly as taking entrainment frameworks as a starting point. As such, even if the
entrainment of oscillators cannot be decisively shown, it is now clear that this is nevertheless
adopted as a useful theoretical lens.

Weaknesses:

The newly included analyses that justify an entrainment or oscillator-based interpretation of
the result could be presented in a clearer manner so that readers can parse their validity
better. For example, in line with an entrainment interpretation, the regression lines in Figure
2B show accuracy increases as the IOI moves towards the preferred rate -- but then beyond
the preferred rate, accuracy appears to increase further still. Furthermore, the additional
analyses on harmonic relationships could be enriched with justification and explanation of
each of its steps.

https://doi.org/10.7554/eLife.90735.2.sa1

Reviewer #2 (Public Review):

Summary:

The current work describes a set of behavioral tasks to explore individual differences in the
preferred perceptual and motor rhythms. Results show a consistent individual preference for
a given perceptual and motor frequency across tasks and, while these were correlated, the
latter is slower than the former one. Additionally, the adaptation accuracy to rate changes is
proportional to the amount of rate variation and, crucially, the amount of adaptation
decreases with age.

Strengths:

Experiments are carefully designed to measure individual preferred motor and perceptual
tempo. Furthermore, the experimental design is validated by testing the consistency across
tasks and test-retest, what makes the introduced paradigm a useful tool for future research.
The obtained data is rigorously analyzed using a diverse set of tools, each adapted to the
specificities across the different research questions and tasks.
This study identifies several relevant behavioral features: (i) each individual shows a
preferred and reliable motor and perceptual tempo and, while both are related, the motor is
consistently slower than the pure perceptual one; (ii) the presence of hysteresis in the
adaptation to rate variations; and (iii) the decrement of this adaptation with age. All these
observations are valuable for the auditory-motor integration field of research, and they could
potentially inform existing biophysical models to increase their descriptive power.

Weaknesses:

https://doi.org/10.7554/eLife.90735.2
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To get a better understanding of the mechanisms underlying the behavioral observations, it
would have been useful to compare the observed pattern of results with simulations done
with existing biophysical models. However, this point is addressed if the current study is read
along with this other publication of the same research group: Kaya, E., & Henry, M. J. (2024,
February 5). Modeling rhythm perception and temporal adaptation: top-down influences on a
gradually decaying oscillator. https://doi.org/10.31234/osf.io/q9uvr

https://doi.org/10.7554/eLife.90735.2.sa0

Author Response

The following is the authors’ response to the original reviews.

General response:

We thank the reviewers for their thorough evaluation of our manuscript. Working on the
raised concerns has improved the manuscript greatly. Specifically, the recommendations to
clarify the adopted assumptions in the study strengthened the motivation for the study;
further, following up some of the reviewers’ concerns with additional analyses validated our
chosen measures and strengthened the compatibility of the findings with the predictions of
the dynamic attending framework. Below, you will find our detailed point-by-point responses,
along with information on specific revisions.

The reviewers pointed out that study assumptions were unclear, some of the measures we
chose were not well motivated, and the findings were not well enough explained considering
possible alternatives. As suggested, we reformulated the introduction, explained the common
assumptions of entrainment models that we adopted in the study, and further clarified how
our chosen measures for the properties of the internal oscillators relate to these assumptions.

We realized that the initial emphasis on the compatibility of the current findings with
predictions of entrainment models might have led to the wrong impression that the current
study aimed to test whether auditory rhythmic processing is governed by timekeeper or
oscillatory mechanisms. However, testing these theoretical models to explain human
behavior necessitates specific paradigms designed to compare the contrasting predictions of
the models. A number of studies do so by manipulating regularity in a stimulus sequence or
expectancy of stimulus onsets, or assessing the perceived timing of targets that follow a
stimulus rhythm. Such paradigms allow testing the prediction that an oscillator, underlying
perceptual timing, would entrain to a regular but not an irregular sequence. This would
further lead to stronger expectancies at the peak of the oscillation, where 'attentional energy'
is the highest. These studies report 'rhythmic facilitation', where targets that align with the
peaks of the oscillation are better detected than those that do not (see Henry and Herrmann
(2014) and Haegens and Zion Golumbic (2018) for reviews). Additionally, unexpected endings
of standard intervals, preceded by a regular entraining sequence, lead to a biased estimation
of subsequent comparison intervals, due to the contrast between the attentional oscillator's
phase and a deviating stimulus onset (Barnes & Jones, 2000; Large & Jones, 1999; McAuley &
Jones, 2003). Even a sequence rate that is the multiple of the to-be-judged standard and
comparison intervals give rise to rhythmic facilitation (McAuley & Jones, 2003), and the
expectancy of a stimulus onset modulates duration judgments. These findings are not
compatible with predictions of timekeeper models as time intervals in these models are
represented arbitrarily and are not affected by expectancy violations.

In the current study, we adopted an entrainment approach to timing, rather than testing
predictions of competing models. This choice was motivated by several aspects of
entrainment models that align better with the aims of the current study. First, our focus was
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on understanding perception and production of rhythms, for which perception is better
explained by entrainment models than by timekeeper models, which excel at explaining
perception of isolated time intervals (McAuley, 2010). Moreover, we wanted to leverage the
fact that entrainment models elegantly include parameters that can explain different aspects
of timing abilities, and these parameters can be estimated in an individualized manner. For
instance, the flexibility property of oscillators can be linked to the ability to adapt to changes
in external context, while timekeeper or Bayesian timing approaches lack a specific
mechanism to quantify temporal adaptation across perceptual and motor domains. Finally,
that entrainment is observed across theoretical, behavioral, and neural levels renders
entrainment models useful in explaining and generalizing behavior across different domains.
Nevertheless, some results showed partial compatibility with predictions of the timekeeper
models, such as the modulation of 'bestperformance rates' by the temporal context, observed
in Experiment 1’ random-order sessions, where stimulus rates maximally differed across
consecutive trials. However, given that the mean, standard deviation, and range of stimulus
rates were identical across sessions, and timekeeper models assume no temporal adaptation
in duration perception, we should have observed similar results across these sessions.
Conversely, we found significant accuracy differences, biased duration judgments, and
harmonic relationships between the best-performance rates. We elaborate more on these
results with respect to their compatibility with the contrasting models of human temporal
perception in the revised discussion.

Responses to specific comments:

(1.1) At times, I found it challenging to evaluate the scientific merit of this study from
what was provided in the introduction and methods. It is not clear what the experiment
assumes, what it evaluates, and which competing accounts or predictions are at play.
While some of these questions are answered, clear ordering and argumentative flow is
lacking. With that said, I found the Abstract and General Discussion much clearer, and I
would recommend reformulating the early part of the manuscript based on the structure
of those segments.

Second, in my reading, it is not clear to what extent the study assumes versus
demonstrates the entrainment of internal oscillators. I find the writing somewhat
ambiguous on this count: on the one hand, an entrainment approach is assumed a priori
to design the experiment ("an entrainment approach is adopted") yet a primary result of
the study is that entrainment is how we perceive and produce rhythms ("Overall, the
findings support the hypothesis that an oscillatory system with a stable preferred rate
underlies perception and production of rhythm..."). While one could design an
experiment assuming X and find evidence for X, this requires testing competing accounts
with competing hypotheses -- and this was not done.

We appreciate the reviewer’s concerns and suggestion to clarify the assumptions of the study
and how the current findings relate to the predictions of competing accounts. To address
these concerns:

• We added the assumptions of the entrainment models that we adopted in the Introduction
section and reformulated the motivation to choose them accordingly.

• We clarified in the Introduction that the study’s aim was not to test the entrainment models
against alternative theories of rhythm perception.

• We added a paragraph in the General Discussion to further distinguish predictions from the
competing accounts. Here we discussed the compatibility of the findings with predictions of
both entrainment and timekeeper models.
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• We rephrased reasoning in the Abstract, Introduction, and General Discussion to further
clarify the aims of the study, and how the findings support the hypotheses of the current
study versus those of the dynamic attending theory.

(1.2) In my view, more evidence is required to bolster the findings as entrainment-based
regardless of whether that is an assumption or a result. Indeed, while the effect of
previous trials into the behaviour of the current trial is compatible with entrainment
hypotheses, it may well be compatible with competing accounts as well. And that would
call into question the interpretation of results as uncovering the properties of oscillating
systems and age-related differences in such systems. Thus, I believe more evidence is
needed to bolster the entrainment hypothesis.

For example, a key prediction of the entrainment model -- which assumes internal
oscillators as the mechanism of action -- is that behaviour in the SMT and PTT tasks
follows the principles of Arnold's Tongue. Specifically, tapping and listening performance
should worsen systematically as a function of the distance between the presented and
preferred rate. On a participant-by-participant, does performance scale monotonically
with the distance between the presented and preferred rate? Some of the analyses hint at
this question, such as the effect of 𝚫IOI on accuracy, but a recontextualization, further
analyses, or additional visualizations would be helpful to demonstrate evidence of a
tongue-like pattern in the behavioural data. Presumably, non-oscillating models do not
follow a tongue-like pattern, but again, it would be very instructive to explicitly discuss
that.

We thank the reviewer for the excellent suggestion of assessing 'Arnold's tongue' principles in
timing performance. We agree that testing whether timing performance forms a pattern
compatible with an Arnold tongue would further support our assumption that the findings
related to preferred rate stem from an entrainment-based mechanism. We rather refer to the
‘entrainment region’, (McAuley et al., 2006) that corresponds to a slice in the Arnold tongue at
a fixed stimulus intensity that entrains the internal oscillator. In both representations of
oscillator behavior across a range of stimulus rates, performance should systematically
increase as the difference between the stimulus rate and the oscillator's preferred rate,
namely, 'detuning' decreases. In response to the reviewer’s comment, we ran further analyses
to test this key prediction of entrainment models. We assessed performance at stimulus rates
that were faster and slower than an individual's preferred rate estimates from in Experiment
1. To do so, we ran logistic regression models on aggregated datasets from all participants and
sessions, where normalized IOI, in trials where the stimulus rate was faster than the
preferred rate estimate, and in those where it was slower, predicted accuracy. Stimulus IOIs
were normalized within each direction (faster- versus slower-than-preferred rate) using z-
score transformation, and the direction was coded as categorical in the model. We reasoned
that a positive slope for conditions with stimulus rates faster than IOI, and a negative slope
from conditions with slower rates, should indicate a systematic accuracy increase toward the
preferred rate estimate. This is exactly what we found. These results revealed significant
main effect for the IOI and a significant interaction between IOI and direction, indicating that
accuracy increased towards the preferred rate at fast rates and decreased as the stimulus rate
diverged from the preferred rate at slow rates. We added these results to the respective
subsections of Experiment 1 Methods and Results, added a plot showing the slices of the
regression surfaces to Figure 2B and elaborated on the results in Experiment 1 Discussion. As
the number of trials in Experiment 2 was much lower (N = 81), we only ran these additional
analyses in Experiment 1.

(1.3) Fourth, harmonic structure in behaviour across tasks is a creative and useful metric
for bolstering the entrainment hypothesis specifically because internal oscillators should
display a preference across their own harmonics. However, I have some doubts that the
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analyses as currently implemented indicate such a relationship. Specifically, the main
analysis to this end involves summing the residuals of the data closest to y=x, y=2*x and
y=x/2 lines and evaluating whether this sum is significantly lower than for shuffled data.
Out of these three dimensions, y=x does not comprise a harmonic, and this is an issue
because it could by itself drive the difference of summed residuals with the shuffled data.
I am uncertain whether rerunning the same analysis with the x=y dimension excluded
constitutes a simple resolution because presumably there are baseline differences in the
empirical and shuffled data that do not have to do with harmonics that would leak into
the analysis. To address this, a simulation with ground truths could be helpful to justify
analyses, or a different analysis that evaluates harmonic structure could be thought of.

We thank the reviewer for pointing out the weakness of the permutation test we developed to
assess the harmonic relationship between Experiment 1’s preferred rate estimates.
Datapoints that fall on the y=x line indeed do not represent harmonic relationships. They
rather indicate one-to-one correspondence between the axes, which is a stronger indicator of
compatibility between the estimates. Maybe speaking to the reviewer’s point, standard
correlation analyses were not significant, which would have been expected if the
permutation results were being driven by the y=x relationship. This was the reason we
developed the permutation test to include integer-ratio datapoints could also contribute.

Based on reviewer’s comment, we ran additional analyses to assess the harmonic
relationships between the estimates. The first analysis involved a circular approach. We first
normalized each participant’s estimates by rescaling the slower estimate with respect to the
faster one by division; and converted the values to radians, since a pair of values with an
integer-ratio relationship should correspond to the same phase on a unit circle. Then, we
assessed whether the resulting distribution of normalized values differed from a uniform
distribution, using Rayleigh’s test, which was significant (p = .004). The circular mean of the
distribution was 44 (SD = 53) degrees (M = 0.764, SD = 0.932 radians), indicating that the
slower estimates were slightly slower than the fast estimate or its duplicates. As this
distribution was skewed toward positive values due to the normalization procedure, we did
not compare it against zero angle. Instead, we ran a second test, which was a modular
approach. We first calculated how much the slower estimate deviated proportionally from
the faster estimate or its multiples (i.e., subharmonics) by normalizing the estimates from
both sessions by the faster estimate. The outcome measure was the modulus of the slower,
relative to the faster estimate, divided by the faster estimate. Then, we ran a permutation test,
shuffling the linear-order session estimates over 1000 iterations and taking the median
percent deviation values for each iteration. The test statistic was significant (p = .004),
indicating that the harmonic relationships we observed in the estimates were not due to
chance or dependent on the assessment method. We added these details of additional
analyses to assess harmonic relationships between the Experiment 1 preferred rate estimates
in the Supplementary Information.

(2.1) The current study is presented in the framework of the ongoing debate of oscillator
vs. timekeeper mechanisms underlying perceptual and motor timing, and authors claim
that the observed results support the former mechanism. In this line, every obtained
result is related by the authors to a specific ambiguous (i.e., not clearly related to a
biophysical parameter) feature of an internal oscillator. As pointed out by an essay on
the topic (Doelling & Assaneo, 2021), claiming that a pattern of results is compatible with
an "oscillator" could be misleading, since some features typically used to validate or
refute such mechanisms are not well grounded on real biophysical models. Relatedly, a
recent study (Doelling et al., 2022) shows that two quantitatively different computational
algorithms (i.e., absolute vs relative timing) can be explained by the same biophysical
model. This demonstrates that what could be interpreted as a timekeeper, or an
oscillator can represent the same biophysical model working under different conditions.
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For this reason, if authors would like to argue for a given mechanism underlying their
observations, they should include a specific biophysical model, and test its predictions
against the observed behavior. For example, it's not clear why authors interpret the
observation of the trial's response being modulated by the rate of the previous one, as
an oscillator-like mechanism underlying behavior. As shown in (Doelling & Assaneo,
2021) a simple oscillator returns to its natural frequency as soon as the stimulus
disappears, which will not predict the long-lasting effect of the previous trial.
Furthermore, a timekeeper-like mechanism with a long enough integration window is
compatible with this observation.

Still, authors can choose to disregard this suggestion, and not testing a specific model,
but if so, they should restrict this paper to a descriptive study of the timing phenomena.

We thank the reviewer for their valuable suggestion of to include a biophysical model to
further demonstrate the compatibility of the current findings with certain predictions of the
model. While we acknowledge the potential benefits of implementing a biophysical model to
understand the relationships between model parameters and observed behavior, this goes
beyond the scope of the current study.

We note that we have employed a modeling approach in a subsequent study to further
explore how the properties and the resulting behavior of an oscillator map onto the patterns
of human behavior we observed in the current study (Kaya & Henry, 2024, February 5). In
that study, we fitted a canonical oscillator model, and several variants thereof, separately to
datasets obtained from random-order and linear-order sessions of Experiment 1 of the
current submission. The base model, adapted from McAuley and Jones (2003), assumed
sustained oscillations within the trials of the experiment, and complete decay towards the
preferred rate between the trials. We introduced a gradual decay parameter (Author
response image 1A) that weighted between the oscillator's concurrent period value at the
time of decay and its initial period (i.e., preferred rate). This parameter was implemented
only within trials, between the standard stimulus sequence and comparison interval in
Variant 1, between consecutive trials in Variant 2, and at both temporal locations in Variant 3.
Model comparisons (Author response image 1B) showed that Variant 3 was the best-fitting
model for both random- and linear-order datasets. Crucially, estimates for within- and
between-trial decay parameters, obtained from Variant 3, were positively correlated,
suggesting that oscillators gradually decayed towards their preferred rate at similar
timescales after cessation of a stimulus.

Author response image 1.

(A) Illustration of the model fitted to Experiment 1 datasets and (B) model comparison results.
In each trial, the model is initialized with a phase (ɸ) and period (P) value. A At the offset of
each stimulus interval i, the model updates its phase (pink arrows) and period (blue arrows)
depending on the temporal contrast (C) between the model state and stimulus onset and
phase and period correction weights, Wɸ and Wp. Wdecaywithin updates the model period
as a weighted average between the period calculated for the 5th interval, P5, and model’s
preferred rate, P0. C, calculated at the offset of the comparison interval. Wdecaybetween
parameter initializes the model period at the beginning of a new trial as a weighted average
between the last period from the previous trial and P0. The base model’s assumptions are
marked by asterisks, namely sustained oscillation during the silence (i=5), and complete
decay between trials. B Left: The normalized probability of each model having the minimum
BIC value across all models and across participants. Right: AICc, calculated from each model’s
fit to participants’ single-session datasets. In both panels, random-order and linear-order
sessions were marked in green and blue, respectively. B denotes the base model, and V1, V2
and V3 denote variants 1, 2 and 3, respectively.
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Although our behavioral results and modeling thereof must necessarily be interpreted as
reflecting the mechanics of an attentional, but not a neural oscillator, these findings might
shed light on the controversy in neuroscience research regarding the timeline of entrainment
decay. While multiple studies show that neural oscillations can continue at the entrained rate
for a number of cycles following entrainment (Bouwer et al., 2023; Helfrich et al., 2017;
Lakatos et al., 2013; van Bree et al., 2021), different modeling approaches reveal mixed results
on this phenomenon. Whereas Doelling and Assaneo (2021) show that a Stuart-Landau
oscillator returns immediately back to its preferred rate after synchronizing to an external
stimulus, simulations of other oscillator types suggest gradual decay toward the preferred
rate (Large, 1994; McAuley, 1995; Obleser et al., 2017) or self-sustained oscillation at the
external stimulus rate (Nachstedt et al., 2017).

While the Doelling & Assaneo study (2021) provides insights on entrainment and behavior of
the Stuart-Landau oscillator under certain conditions, the internal oscillators hypothesized by
the dynamic attending theory might have different forms, therefore may not adhere to the
behavior of a specific implementation of an oscillator model. Moreover, that a phase-coupled
oscillator does not show gradual decay does not preclude that models with period tracking
behave similarly. Adaptive frequency oscillators, for instance, are able to sustain the
oscillation after the stimulus ceases (Nachstedt et al., 2017). Alongside with models that use
Hebbian learning (Roman et al., 2023), the main implementations of the dynamic attending
theory have parameters for period tracking and decay towards the preferred rate (Large,
1994; McAuley, 1995). In fact, the u-shaped pattern of duration discrimination sensitivity
across a range of stimulus rates (Drake & Botte, 1993) is better explained by a decaying than a
non-decaying oscillator (McAuley, 1995). To conclude, the literature suggests that the
emergence of decay versus sustain behavior of the oscillators and the timeline of decay
depend on the particular model used as well as its parameters and does therefore not offer a
one-for-all solution.

Reviewer #2 (Recommendations For The Authors):

Are the range, SD and mean of the random-order and linear-order sessions
different? If so, why?

Information regarding the SD and mean of the random-order and linear-order sessions was
added to Experiment 1 Methods section.

“While the mean (M = 599 ms), standard deviation (SD = 231 ms) and range (200, 998 ms) of
the presented stimulus IOIs were identical between the sessions, the way IOI changed from
trial to trial was different.“ (p. 5)

Perhaps the title could mention the age-related flexibility effect you demonstrate,
which is an important contribution that without inclusion in the title could be
missed in literature searches.

https://doi.org/10.7554/eLife.90735.2


Ece Kaya et al., 2024 eLife. https://doi.org/10.7554/eLife.90735.2 54 of 58

We have changed the title to include age-related changes in oscillator flexibility. Thanks for
the great suggestion.

Is the statistical analysis in Figure 4A between subjects? Shouldn't the analyses be
within subjects?

We have now better specified that the statistical analyses of Experiment 2’s preferred rate
estimates were across the tasks, in Figure 4 caption.

"Vertical lines above the box plots represent within-participants pairwise comparisons." (p.
17)

It says participants' hearing thresholds were measured using standard puretone
audiometry. What threshold warranted participant exclusion and how many
participants were excluded on the basis of hearing skills?

We have now clarified that hearing threshold was not an exclusion criterion.

"Participants were not excluded based on hearing threshold." (p. 11)

"Tapping rates from 'fastest' and 'slowest' FMT trials showed no difference
between pre- and postsession measurements, and were additionally correlated
across repeated measurements" - could you point to the statistics for this
comparison?

Table 2 includes the results from both experiments’ analyses on unpaced tapping. (p. 10)

“The results of the pairwise comparisons between tapping rates from all unpaced tapping
tasks across measurements are provided in Table 2.” (p. 15)

How was the loudness (dB) of the woodblock stimuli determined on a participant-
by-participant basis? Please ignore if I missed this.

Participants were allowed to set the volume to a comfortable level.

"Participants then set the sound volume to a level that they found comfortable for completing
the task." (p. 4)

Please spell out IOI, DEV, and other terms in full the first time they are mentioned
in the manuscript.

We added the descriptions of abbreviations before their initial mention.

"In each experimental session, 400 unique trials of this task were presented, each consisting
of a combination of the three main independent variables: the inter-onset interval, IOI;
amount of deviation of the comparison interval from the standard, DEV, and the amount of
change in stimulus IOI between consecutive trials, 𝚫IOI. We explain each of these variables in
detail in the next paragraphs." (p. 4)

Small point: In Fig 1 sub-text, random order and linear order are explained in
reverse order from how they are presented in the figure.

We fixed the incompatibility between of Figure 1 content and caption.
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Small point: I found the elaborate technical explanation of windowing methods,
including alternatives that were not used, unnecessary.

We moved the details of the smoothing analysis to the Supplementary Information.

With regard to the smoothing explanation, what is an "element"? Is this a
sample? If so, what was the sampling rate?

We reworded ‘element’ as ‘sample’. In the smoothing analyses, the sampling rate was the size
of the convolution window, which was set to 26 for random-order, 48 for linear-order
sessions.

Spelling/language error: "The pared-down", "close each other", "always small (+4
ms), than".

We fixed the spelling errors.

Reviewer #3 (Recommendations For The Authors):

My main concern is the one detailed as a weakness in the public review. In that
direction, if authors decide to keep the mechanistic interpretation of the
outcomes (which I believe is a valuable one) here I suggest a couple of models
that they can try to adapt to explain the pattern of results:

a. Roman, Iran R., et al. "Hebbian learning with elasticity explains how the spontaneous
motor tempo affects music performance synchronization." PLOS Computational Biology
19.6 (2023): e1011154.

b. Bose, Amitabha, Áine Byrne, and John Rinzel. "A neuromechanistic model for rhythmic
beat generation." PLoS Computational Biology 15.5 (2019): e1006450.

c. Egger, Seth W., Nhat M. Le, and Mehrdad Jazayeri. "A neural circuit model for human
sensorimotor timing." Nature Communications 11.1 (2020): 3933.

d. Doelling, K. B., Arnal, L. H., & Assaneo, M. F. (2022). Adaptive oscillators provide a hard-
coded Bayesian mechanism for rhythmic inference. bioRxiv, 2022-06

Thanks for the suggestion! Please refer to our response (2.1.) above. To summarize, although
we considered a full, well-fleshed-out modeling approach to be beyond the scope of the
current work, we are excited about and actively working on exactly this. Our modeling take is
available as a preprint (Kaya & Henry, 2024, February 5).

Since the authors were concerned with the preferred rate they circumscribed the
analysis to extract the IOI with better performance. Would it be plausible to
explore how is the functional form between accuracy and IOI? This could shed
some light on the underlying mechanism.

Unfortunately, we were unsure about what the reviewer meant by the functional form
between accuracy and IOI. We interpret it to mean a function that takes IOI as input and
outputs an accuracy value. In that case, while we agree that estimating this function might
indeed shed light on the underlying mechanisms, this type of analysis is beyond the scope of
the current study. Instead, we refer the reviewer and reader to our modeling study (please
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see our response (2.1.) above) that includes a model which takes the stimulus conditions,
including IOI, and model parameters for preferred rate, phase and period correction and
within- and between-trial decay and outputs predicted accuracy for each trial. We believe
that such modeling approach, as compared to a simple function, gives more insights
regarding the relationship between oscillator properties and duration perception.

Is the effect caused by the dIOI modulated by the distance to the preferred
frequency?

We thank the reviewer for the recommendation. We measured flexibility by the oscillator's
ability to adapt to on-line changes in the temporal context (i.e., effect of 𝚫IOI on accuracy),
rather than by quantifying the range of rates with improved accuracy. Nevertheless, we
acknowledge that distance to the preferred rate should decrease accuracy, as this is a key
prediction of entrainment models. In fact, testing this prediction was recommended also by
the other reviewer, in response to which we ran additional analyses. These analyses involved
assessment of the relationship between accuracy and detuning. Specifically, we assessed
accuracy at stimulus rates that were faster and slower than an individual's preferred rate
estimates from in Experiment 1. We ran logistic regression models on aggregated datasets
from all participants and sessions, where accuracy was predicted by z-scored IOI, from trials
where the stimulus rate was faster than the preferred rate estimate, and in those where it
was slower. The model had a significant main effect of IOI and an interaction between IOI
and direction (i.e., whether stimulus rate was faster or slower than the preferred rate
estimate), indicating that accuracy increased towards the preferred rate at fast rates and
decreased as the stimulus rate diverged from the preferred rate at slow rates. We added
information regarding this analysis to the respective subsections of Experiment 1 Methods
and Results, added a plot showing the slices of the regression surfaces to Figure 2B and
elaborated on the results in Experiment 1 Discussion. As the number of trials in Experiment 2
was insufficient, we only ran these additional analyses in Experiment 1. We agree that a
range-based measure of oscillator flexibility would also index the oscillators’ adaptive
abilities. However, the current paradigms were designed for assessment of temporal
adaptation. Thus, comparison of the two approaches to measuring oscillator flexibility, which
can be addressed in future studies, is beyond the scope of the current study.

Did the authors explore if the "motor component" (the difference between the
motor and perceptual rates) is modulated by the participants age?

In response to the reviewer’s comment, we correlated the difference between the motor and
perceptual rates with age, which was nonsignificant.

Please describe better the slider and the keypress tasks. For example, what are
the instructions given to the participant on each task, and how they differ from
each other?

We added the Experiment 2 instructions in Appendix A.

Typos: The caption in figure one reads 2 ms, while I believe it should say 200.
Page 4 mentions that there are 400 trials and page 5 says 407.

We fixed the typos.
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