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We consider the optimal control problem in a two-qubit system with bounded amplitude. Two
cases are studied: quantum state preparation and entanglement creation. Cost functions, fidelity
and concurrence, are optimized over bang-off controls for different values of the total duration,
respectively. For quantum state preparation problem, three critical time points are determined
with high precision, and optimal controls are obtained for different durations. A better estimation
of the quantum speed limit is obtained, so is the time-optimal control. For entanglement creation
problem, two critical time points are determined, one of them is the minimal time to achieve maximal
entanglement (unit concurrence) starting from the product state. In addition, the optimal control
to reach the unit concurrence is found.

I. INTRODUCTION

Quantum optimal control (QOC) is crucial to quantum
information processing tasks, such as quantum computa-
tion and quantum communication. In these tasks com-
plex quantum systems are engineered and manipulated,
e.g. to achieve target quantum gates and target quantum
states [1–4]. In certain cases, the adiabatic operations,
which are generally executed very slowly, are desired in
experiments, because we wish to avoid heating the sam-
ple and to guarantee the target gate/state is prepared
with perfect fidelity [5]. However, in experiments the de-
coherence and noise from the environment often make
such slow operations impossible. Therefore, speedup the
time evolution by applying fast and robust controls is
sensible [6, 7].

Quantum optimal control theory, which is proposed
to solve the problems mentioned above, has been widely
applied in various physical systems such as NMR [8],
Bose-Einstein condensate [9], cold atoms in optical lat-
tices [10, 11]. One of the important topics in QOC theory
is to search the time-optimal control with which the tran-
sitions are finished in the minimal time. In the context of
QOC the minimal time is generally called the quantum
speed limit (QSL) [12]. And the temporal shape of the
corresponding control field is called time-optimal control.
Analytic solutions are available for several cases where
the quantum systems considered are in low-dimensional
[13–23]. For multiple-level quantum systems where ana-
lytical results are absent, one has to perform numerical
optimization.

Roughly speaking, we rely on two classes of optimiza-
tion: local optimization algorithms, like Krotov [24],
GRAPE [8], CRAB [25], GROUP [26] and GOAT [27], as
well as global ones such as differential evolution (DE) and
covariance matrix adaptation evolution strategy (CMA-
ES) [10, 28]. Machine learning techniques, especially re-
inforcement learning is another promising method [29].

In real experiments the range of tuning parameters
of apparatus are finite, thus constraints in general ex-

ist on the control field, e.g., the amplitude is bounded.
In such cases the appearance of local suboptimal traps in
the quantum control landscape makes the QOC problem
nontrivial [30, 31].

The time-optimal problem of two-qubit system with
unbounded amplitude is studied in Ref. [32]. In this
paper we consider the optimal problem in a two-qubit
system with bounded amplitude. We consider two prob-
lems: quantum state preparation and entanglement cre-
ation. For the first one, one wants to achieve the target
quantum state with QSL, and to find the temporal shape
of time-optimal control. For latter, we are interested in
the problem that for given total duration, how large the
maximal entanglement can be obtained.

In Ref. [33] a systematic scenario is proposed to esti-
mate QSL and the time-optimal control by optimizing
over the bang-off controls, and the two-level quantum
system is considered as an example. Employing the sce-
nario proposed, we optimize over the bang-off controls
to estimate the optimal controls. We show in this paper
that physics of two-qubit systems is much richer than
that of two-level systems.

II. MODEL

We consider the symmetrically coupled two-qubit
Hamiltonian studied in Ref. [34], which is described in
the following:

H(t) = −2gSz1S
z
2 − hz(Sz1 + Sz2 )− hx(t)(Sx1 + Sx2 ) (1)

where g = hz = 1 are the interaction strength and static
magnetic field along the z direction, and hx(t) is the time-
dependent control field along the x direction. Sz1 = σz/2
is spin-1/2 Pauli operators for the first spin, and so on.
The bounded control field hx(t) is a real function under
constraint |hx(t)| ≤ M . The dynamics of the system is
governed by the Hamiltonian d|ψ(t)〉/dt = −iH(t)|ψ(t)〉,
where we set h̄ = 1, starting from the initial state |ψi〉.
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FIG. 1. Maximal fidelity F as a function of the total duration
T obtained with different number of switches from Ns = 0
to Ns = 5. Three critical time points are Tc = 0.37037,
Tsb = π/2, TQSL ≈ 2.775. For T ∈ [0, Tc], the optimal control
field is PT/2NT/2. For T ∈ (Tc, Tsb), the optimal control field
is Pt10T−2t1Nt1 . For T = Tsb, the optimal control is 0π/2.
For T ∈ (Tsb, TQSL], the best F increases as Ns increases.
When Ns ≥ 6, however, the increment of F is too little, thus
are not shown in this figure.

For the quantum state preparation problem, we set the
cost function to be the fidelity F defined as follows:

F (hx(t), T ) = |〈ψt|T exp(−i

∫ T

0

H(t)dt|ψi〉|2 (2)

= |〈ψt|ψf 〉|2.

where T is the time-ordering operator. T is the total
duration of time evolution, and |ψf 〉 is the final state.
The initial state |ψi〉 is prepared in the ground state of
Hamiltonian (1) with hx = −2, and the target state |ψt〉
is set to be the ground state of Hamiltonian with hx = 2.

For the entanglement creation problem, we use con-
currence to measure the entanglement of two-qubit pure
state. A general two-qubit pure state can be expressed
as |ψ〉 = a|00〉 + b|01〉 + c|10〉 + d|11〉, where a, b, c,
d are complex numbers with normalization condition
|a|2 + |b|2 + |c|2 + |d|2 = 1. The concurrence of two-qubit
pure state is defined in the following:

C(|ψ〉) = 2|ad− bc|. (3)

Specially, we denote C((hx(t), T ) ≡ C(|ψf 〉) the concur-
rence of final state following the Schrödinger evolution
with control field hx(t) [35].

For quantum state preparation problem (entanglement
creation problem), we want to find the control field hx(t)
which maximizes the fidelity F (hx(t), T ) (C((hx(t), T ))

for given T . We refer to such hx(t) as the optimal control
for T . Particularly, for quantum state preparation prob-
lem, we wish to estimate the quantum speed limit TQSL

with which the target state is obtained with unit fidelity
F = 1. For entanglement creation problem, we want to
calculate the minimal time τmin such that the unit con-
currence C = 1 is reached. Notice that different from the
quantum state preparation problem, the number of two-
qubit pure states with unit concurrence is infinite, while
there is, in general, only one target state for quantum
state preparation problem.

We emphasize that Pontryagin’s principle does not
necessarily mean that the optimal control is always of
bang-bang type when the Hamiltonian is linear in the
controls. The case of of singular controls exists [18, 36].
The Hamiltonian (1) is linear in control hx(t), and is
called bilinear Hamiltonian [37]. Therefore, it is sensi-
ble to employ the family of bang-off controls, (or bang-
singular controls), to optimize the cost functions.

Employed the same scenario in Ref [33], we optimize F
and C over bang-off control. The bang-off control refers
to a finite concatenation of bang controls P and N , and
off control 0, which is also called singular control [18].
P (N) is short for Positive (Negative) where hx(t) = M
(hx(t) = −M) and 0 is hx(t) = 0. The control field
is represented by the type–a sequence of P , N and 0–
and vector of durations t = [t1, t2, ...]. For example, one
control field Pt10t2Nt3 is defined in the following

hx(t) =

{
M 0 ≤ t < t1
0 t1 ≤ t < t1 + t2
−M t1 + t2 ≤ t ≤ t1 + t2 + t3,

(4)

where the order of letter sequence is from left to right.
For the example above, the switch number is two Ns = 2,
and the bang-off control is of type P0N which is switched
from bang (P ) to off (0), then to bang (N). The number
of possible types Ntype is at most 3 × 2Ns for a given
number of switches Ns. For certain initial/target quan-
tum states, Ntype can be further reduced. Here we take
M = 4 such that |hx(t) ≤ 4|.

For given T , we optimize F (and C) starting fromNs =
0. For each type with given Ns we optimize the vector
of durations t using quasi-Newton method. We denote
Fi the maximal fidelity using control fields with Ns = i,
and the difference of maximal fidelity ∆Fi ≡ Fi+1 − Fi.
Similar notations are defined for C.

Once ∆F (∆C) is zero or vanishing small as Ns in-
creases, we stop the optimization and estimate the op-
timal control with the corresponding optimized control
field.

III. QUANTUM STATE PREPARATION

In Ref. [34] the two-qubit Hamiltonian (1) is investi-
gated from the view point of quantum control phase tran-
sition. Three critical time points Tc, Tsb and TQSL are
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FIG. 2. The optimal control is PT/2NT/2 for T ∈ [0, Tc]. (a)
∆F = F2 − F1 versus the total duration T . FNs is the best
fidelity obtained with number of switch Ns. ∆F = 0 when
T ≤ Tc. However, ∆F > 0 when T > Tc. Tc = 0.37037
is indicated by an arrow. (b) The fidelity as a function of
t1 for all 6 types of Ns = 1 control with duration vector
t = [t1, T − t1] where T = 0.2. The best fidelity is obtained
with control P0.1N0.1 (c) The quantum control landscape of
fidelity as a function of [t1, t3] for Ns = 2 control Pt10t2Nt3
with t1 + t2 + t3 = 0.3. The maximal fidelity is indicated by a
blue pentagram whose location is [t1, t3] = [0.15, 0.15], which
means t2 = 0 and the Ns = 2 control is reduced to Ns = 1
control P0.15N0.15.
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FIG. 3. The optimal control is of type Pt10T−2t1Nt1 for T ∈
(Tc, Tsb]. (a) The quantum control landscape of fidelity as
a function of [t1, t3] for Ns = 2 control Pt10t2Nt3 with t1 +
t2 + t3 = 0.8. The maximal fidelity is indicated by a red
pentagram whose location is [t1, t3] = [0.1648, 0.1648]. (b) t1
as a function of the total duration T for the optimal control
Pt10T−2t1Nt1 . t1 = 0 when T = π/2, thus the optimal control
is 0π/2.

estimated by studying the behavior of several physical
quantities, such as correlation. Numerically the bang-
bang protocol is optimized using stochastic descent (SD)
method to approximate the optimal control fields and to
estimate QSL. However, the values of these critical time
points are not accurate by optimizing bang-bang control
using SD. The optimal controls in different phase regions
are approximated by averaging the optimized bang-bang
control. However, the optimal controls obtained do not
behave like bang-bang control at all.

To overcome the problems mentioned above, we em-
ploy the bang-off controls instead. We obtain the values
of three critical time points by observing the behavior of
∆Fi. In addition, we find that the optimal controls in
overconstrained phase (T ∈ (0, Tc]) and correlated and
glassy phase (T ∈ (Tc, Tsb]) are indeed bang-off controls.
The values of critical time points are more accurate than
those obtained using bang-bang control [34]. They are
Tc = 0.37037, Tsb = π/2, and TQSL ≈ 2.775; cf.Fig. 1.
In addition, we find that the optimal types found with
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FIG. 4. (a) The differences of best fidelity ∆F obtained with
switch number from Ns = 6 to Ns = 9 as a function of total
duration T , where ∆F6 = F7 − F6 and so on. (b) The infi-
delity 1 − F as a function of total duration T with optimal
control protocol of Ns = 4 (black solid line), Ns = 6 (magenta
dotted line), and Ns = 9 (blue dashed line). The estimation
of quantum speed limit is marked by a vertical asymptotic
line (blue dashed line), where two vertical lines (red solid line
and black dash-dotted line) are the estimation of quantum
speed limit obtained by GRAPE T ≈ 2.775 (red solid line)
and by symmetric ansatz (black dash-dotted line) T ≈ 2.907
obtained in Ref. [34], respectively.

different Ns is of type P...N . This might result from the
fact that the initial sate is the ground state of Hamilto-
nian with negative value hx = −2, while the target state
is that of positive value hx = +2. The details are in the
following.

A. Time-optimal control for T ∈ (0, Tc]

For T ∈ (0, Tc], the optimal control protocol is
PT/2NT/2 in the overconstrained region. The best fidelity
obtained with larger Ns is equal to that with PT/2NT/2
for T ∈ (0, Tc]. In addition, the optimal control fields
with larger Ns reduce to PT/2NT/2.

In Fig. 2(a) we show ∆F = F2 − F1, which is the
difference between the best fidelity obtained with Ns = 2

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

FIG. 5. Concurrence C of the optimal control as a function of
total duration T . Two critical time points are τc = 0.380181,
and τmin ≈ 1.778635.
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FIG. 6. ∆C0 ≡ C1 − C0 versus the total duration T . The
critical time point is τc = 0.380181. ∆C0 = 0 when T ≤ τc,
and ∆C0 > 0 when T > τc. For T ∈ [0, τc], the optimal
control field is PT and NT .

and that with Ns = 1. It is observed that ∆F = 0 for
T ≤ 0.37037, whereas ∆F > 0 for T > 0.37037. The
same result holds for Ns ≥ 3. In such way we locate the
value of Tc = 0.37037 which is more accurate than the
one obtained in [34] where Tc is approximately equal to
0.38.

In Fig. 2(b) we show that the maximal fidelity is ob-
tained with control PT/2NT/2 for T = 0.2, within all six
types of bang-off control with Ns = 1. The same conclu-
sion is true for all T ∈ (0, Tc]. In Fig. 2(c) we further
demonstrate that the optimal control is P0.1500N0.15,
which is one of twelve types of Ns = 3 control, for
T = 0.3. Notice that P0.1500N0.15 is in fact P0.15N0.15,
thus belongs to the type PT/2NT/2. Same result holds
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FIG. 7. (a) Inconcurrence 1 − C as a function of total du-
ration T for Ns = 2 and Ns = 3 with the initial state |00〉.
The unit concurrence is obtained by the optimal control field
Pt10t2Nt30t4 which is shown in (b). The estimation of mini-
mal time to reach unit concurrence is τmin ≈ 1.778635.

for Ns ≥ 4.
Therefore, we have numerically demonstrate that the

optimal control is PT/2NT/2 for T ∈ (0, Tc] with Tc =
0.37037.

B. Time-optimal control for T ∈ (Tc, Tsb]

For T ∈ (Tc, Tsb], the optimal control protocol is of
Ns = 2 type Pt10t2Nt1 with 2t1+t2 = T . In addition, the
optimal control fields with Ns ≥ 3 reduce to Pt10t2Nt1 .

For Ns = 2, we have numerically checked that the
optimal control is of type P0N within all 12 types when
T ∈ (Tc, Tsb]. Moreover, the best fidelity is obtained
with a special control field Pt10T−2t1Nt1 , i.e., the first
duration being equal to the last one t3 = t1. In Fig. 3(a)
it is shown that the quantum control landscape of control
field Pt10T−t1−t3Nt3 with T = 0.8. The maximal fidelity

is obtained with t1 = t3 = 0.1648. Similar results hold
for T ∈ (Tc, Tsb]. Therefore, the optimal duration vector
is [t1, T − 2t1, t1]. The value of t1, shown in Fig. 3(b), is
determined numerically. Notice that t1 = 0 when T =
Tsb, thus the optimal control field reduces to 0π/2.

In Ref. [34] the temporal shape of optimal control for
T ≤ Tsb is obtained by averaging the optimized bang-
bang controls, which turns out to be approximately bang-
off type. Considering the above results and the ones ob-
tained here, we conjecture that the optimal controls for
T ∈ (0, Tsb] are bang-off controls.

C. Time-optimal control for T ∈ (Tsb, TQSL]

In the symmetry-broken phase region T ∈ (Tsb, TQSL],
the double degeneracy of optimal control field is displayed
by two optimal control fields of same type, but with du-
ration vectors where one is the flipped vector of another,
i.e. hopt1 (t) = −hopt2 (T − t).

For T ∈ (Tsb, TQSL), in general, the best fidelity ob-
tained increases as Ns increases. See Fig. 1. When
Ns ≥ 4, the increment is smaller than 10−4. In Fig. 4(a)
we show ∆F as a function of T for switch numbers from
Ns = 6 to Ns = 9. We observe that while the difference
∆F6 and ∆F7 is of order 10−5, ∆F8

<∼ 10−10 is vanish-
ingly small. Therefore, we estimate the optimal control
in the symmetry-broken phase region by using bang-off
control with Ns = 9.

In Ref. [34] the quantum speed limit is esti-
mated by optimizing the three-pulse symmetric anstaz,
which is in fact bang-off control of one special type
Pt10t2Pt30t4Nt30t2Nt1 with Ns = 6. The estimation
of quantum speed limit obtained using this anstaz is
T ≈ 2.907, while another estimation using GRAPE is
TGRAPE ≈ 2.775. In fact, the estimation of TQSL can be
better if the bang-off control is not restricted to be sym-
metric. From Fig. 4(b) we observe that the estimation of
TQSL using Ns = 4 bang-off controls is better than the
anstaz.

In Fig. 4(b) we show the infidelity 1− F as a function
of T obtained using the bang-off control. The optimal
control protocol with Ns = 9 is of type P0N0NP0P0N .
The unit fidelity is reached F = 1 − O(10−15)
with two optimal duration vectors: t∗ =
[0.232, 0.244, 0.561, 0.317, 0.017, 0.093, 0.858, 0.044, 0.241,
0.173], and another one which is the flipped vector of t∗.
The estimation of QSL TQSL ≈ 2.775 by using bang-off
control with Ns = 9 is indicated by the vertical asymp-
tote which is equal to the one obtained with GRAPE,
and less than the one obtained using bang-bang controls
or variational ansatz which in fact belongs to one type
of Ns = 6 bang-off controls [34]. While the control fields
obtained using GRAPE are continuous, the temporal
shape of bang-off control is much simpler than the
former.
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FIG. 8. The optimal trajectory obtained using the optimal control shown in Fig.7(b). (a) The trajectory of reduced density
matrix obtained using the optimal control on the Bloch sphere by tracing one qubit. The initial state on the north pole is
marked by the blue square, and the final state which is on the centre is marked by a red pentagram. The optimal trajectory is
shown in black solid line. (b) The corresponding Cartesian coordinate shown in (a). (c) The coefficients in Eq. (5) with respect
to three Bell states which span the triplet subspace of two-qubit Hilbert space.

IV. ENTANGLEMENT CREATION

In this section we investigate the optimal control prob-
lem of entanglement creation. For given T , we maximize
C starting from the initial state |00〉 which is a prod-
uct state with C = 0. Similar to the quantum state
preparation problem, two critical time points are found:
τc = 0.380181, and τmin ≈ 1.778635. See Fig. 5 for illus-
tration.

A. Time-optimal control for T ∈ [0, τc]

For T ∈ [0, τc] the optimal control is PT and NT . This
is numerically confirmed by two steps. First, we calcu-
late ∆Ci ≡ Ci+1 − Ci, where Ci is the maximal concur-
rence obtained with Ns = i, for various values of switch
number. All these ∆Ci are zero when T ≤ 0.380181.
However, C1 > C0 when T > 0.380181. Second, when
T ∈ [0, τc], we find that C0 is obtained with the con-
trol field PT and NT , and Ci’s (i ≥ 1) are obtained
with PT and NT , too. Therefore, the first critical time
point is τc = 0.380181, and the optimal control is PT for
T ∈ [0, τc].

In Fig. 6 we show ∆C0 as a function of T for example.
Following the terminology in Ref. [34], we call the region
with T ∈ [0, τc] the overconstrained phase, because the
optimization is easy, even though the number of global
optima is double, rather than single.

B. Time-optimal control for T ∈ (τc, τmin]

We have numerically calculate the concurrence C with
different values of Ns for T > τc. We find that C stops
increasing when Ns is larger than three. In addition, the
optimized time vectors found by different Ns (Ns ≥ 3)

are very close to each other. Therefore, we conjecture
that the optimal control belongs to the control field with
Ns = 3 for T > τc.

In Fig. 7(a) we show the inconcurrence 1 − C as a
function of T for number of switches Ns = 2 and Ns = 3.
The data for Ns ≥ 4 is not shown, because the values
obtained with Ns ≥ 4 are equal to those with Ns =
3. The unit concurrence is obtained with the optimal
control when T = 1.778635, while for T < 1.778635 the
unit concurrence cannot be reached. See Fig. 7(a) for
illustration. Therefore, the minimal time to reach the
unit concurrence is estimated to be τmin ≈ 1.778635. The
corresponding optimal control estimated with Ns = 3
control field is Pt10t2Nt30t4 with the optimal time vector
being t = [0.40858, 0.52057, 8.1384 × 10−3, 0.84135]; cf.
Fig. 7(b).

In Fig. 8(a) we show the trajectory of reduced density
matrix on the Bloch sphere by tracing one qubit. The
initial state is indicated by the blue square, and the final
state in the centre of Bloch sphere is indicated by a red
pentagram, which means the final state of two-qubit state
is one of maximally entangled two-qubit state, i.e. C = 1.
In Fig. 8(b) we further show the Cartesian coordinate
[x(t), y(t), z(t)] of the optimal trajectory on the Bloch
sphere.

We have studied the time evolution of optimal trajec-
tory in a single-qubit picture. Now we investigate it in
the full two-qubit picture. Notice that the initial state
|00〉 is inside the Hilbert subspace of triplet manifold,
and that the Hamiltonian (1) is invariant by exchang-
ing the two qubits [34]. Therefore, the time evolution of
two-qubit system is inside the Hilbert subspace of triplet
manifold. The time evolving state is the superposition
of three Bell states, i.e., |Φ+〉 = (|00〉+ |11〉)/

√
2,|Φ−〉 =

(|00〉− |11〉)/
√

2, and |Ψ+〉 = (|01〉+ |10〉)/
√

2. We mon-
itor the three coefficients with respect three Bell states

|ψ(t)〉 = C1(t)|Φ+〉+ C2(t)|Φ−〉+ C3(t)|Ψ+〉. (5)
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In Fig. 8(c) we show the squared coefficients |Ci(t)|2 of
the quantum state following the optimal trajectory. From
Fig. 8(c) we show that the final state with unit concur-
rence is not Bell state, because all coefficients are not
zero.

V. CONCLUSIONS

In this paper we investigate the optimal control prob-
lem in a symmetrically coupled two-qubit system with
bounded amplitude. By optimizing over the family of
bang-off controls, the problems of quantum state prepa-
ration and entanglement creation are studied. Given the
initial states, the cost functions, fidelity and concurrence,
are optimized for various durations for the problems men-
tioned above. By studying the difference of best cost
function obtained with different types of control field,
optimal controls and critical time points are determined
more accurately than the previous work.

For the quantum state preparation problem, we have
shown that for durations before symmetry-broken phase
occurs, the optimal control fields are indeed of type bang-
off, which is taken as an ansatz in the previous work. For
durations in the symmetry broken phase, we estimate
the optimal control using bang-off controls up to Ns =
9. As the number of switch increases, the increment of
best fidelity is decreasing and approaching vanishingly
small. Therefore, we estimate the optimal control field in

the symmetry-broken phase with bang-off controls with
Ns = 9. Furthermore, we estimate the quantum speed
limit and time-optimal control field using the same bang-
off controls. The QSL obtained is equal to that obtained
with GRAPE, but the temporal shape of time-optimal
control field is simple.

For the entanglement creation problem, we start from
the product state and maximize the concurrence using
bang-off controls for different durations. Two critical
time points are obtained. For durations in the overcon-
strained phase, the optimal control is simple: the control
field takes either the maximal value or the minimal. As
the duration increases, the optimal control is of bang-off
type with Ns = 3. The minimal duration to reach the
unit concurrence is estimated, and time-optimal control
is obtained. The optimal trajectory is also shown us-
ing different methods, e.g., the trajectory of the reduced
density matrix on a Bloch sphere, and the coefficients of
time-evolving with respect the basis of triplet states.

In the previous work it has been proved that the time-
optimal control with a bilinear Hamiltonian in a two-level
quantum system with bounded amplitude is indeed bang-
off control. Considering the results in the previous work
and the ones in this paper, it is interesting to ask whether
the same conclusion holds for the two-qubit system with
bounded amplitude. An analytical proof is desired.
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