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The fission of a string connecting two charges is an astounding phenomenon in confining gauge
theories. The dynamics of this process have been studied intensively in recent years, with plenty of
numerical results yielding a dichotomy: the confining string can decay relatively fast or persist up
to extremely long times. Here, we put forward a dynamical localization transition as the mechanism
underlying this dichotomy. To this end, we derive an effective string breaking description in the light-
meson sector of a confined spin chain and show that the problem can be regarded as a dynamical
localization transition in Fock space. Fast and suppressed string breaking dynamics are identified
with delocalized and localized behavior, respectively. We then provide a further reduction of the
dynamical string breaking problem onto a quantum impurity model, where the string is represented
as an “impurity” immersed in a meson bath. It is shown that this model features a localization-
delocalization transition, giving a general and simple physical basis to understand the qualitatively
distinct string breaking regimes. These findings are directly relevant for a wider class of confining
lattice models in any dimension and could be realized on present-day Rydberg quantum simulators.

Introduction.—The efficient implementation of gauge
theories is a central target in quantum simulation [1–6],
with some remarkable experimental realizations achieved
in recent years [7–18]. However, the intrinsic structure of
gauge theory still poses formidable technical challenges.
Simultaneously, quantum spin chains, which are more
amenable to quantum simulation, have been shown to
be a versatile platform to emulate lattice gauge theory
phenomenology. This has led to recent intensive efforts
to investigate the structure of the gauge vacuum and out-
of-equilibrium transport properties under the influence of
confinement in this setting [19–40]. Yet, various aspects
of such phenomena remain to be elucidated. In partic-
ular, numerical studies of dynamical string breaking—
where a string connecting two charges decays due to pair
production [41, 42]—suggest a dichotomy for the fate of
the confining string: its fission can occur relatively fast
or be substantially delayed.

In this Letter, we discuss how these observations can
be interpreted in terms of an underlying dynamical lo-
calization transition. In this picture, the localized phase
corresponds to a regime with a long-lived (prethermal)
string, while the delocalized phase to fast string break-
ing. First, we show via exact diagonalization in quan-
tum Ising chains that two qualitatively different string
dynamics are separated by a sharp threshold in the long-
time behavior of dynamical quantities. In particular, we
study the survival probability and the half-chain entan-
glement entropy, with the former quantity serving as a
direct diagnostics of string breaking. We then derive an
effective model for the breaking of a short string by pro-
jecting onto a reduced subspace that captures resonant
decay channels in the limit of vanishing transverse field.
Within this effective description, string breaking can be

understood as a dynamical localization problem in Fock
space. Next, this description is heuristically generalized
to a quantum impurity model, where the string is ef-
fectively represented by a few-level system coupled to a
meson bath. We show that this model features a dynami-
cal localization-delocalization transition, with both sides
of the transition explaining the observed string breaking
regimes. This description, independent of microscopic
details, provides a general and simple physical basis to
understand dynamical string breaking. Finally, we dis-
cuss how our results can be applied to a wider class of
confining lattice models in any dimension, and potential
implementations with Rydberg quantum simulators.

String dynamics in quantum Ising chains.—We con-
sider the quantum Ising model in both transverse (hx)
and longitudinal (hz) fields, whose Hamiltonian for L
spins on the ring reads

Ĥ = −J
L∑

i=1

σ̂z
i σ̂

z
i+1 − hx

L∑
i=1

σ̂x
i − hz

L∑
i=1

σ̂z
i , (1)

where σ̂
x/z
i are the Pauli matrices at site i, and J > 0 is

the strength of a ferromagnetic coupling. The model (1)
is of paramount importance in various fields—from sta-
tistical mechanics and condensed matter [43, 44] to high-
energy physics [45–47]. Further, it can be naturally real-
ized in present-day Rydberg quantum simulators [48–53],
and solid-state materials [54]. Both integrability and Z2

symmetry are broken by a finite hz, which induces a con-
fining potential between pairs of domain wall (DW) ex-
citations (provided that hx < J). In this scenario, pairs
of DWs form bound, mesonlike states. String breaking
dynamics can then be probed by studying the stability
of one such object under the unitary evolution generated
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FIG. 1. String breaking dynamics in quantum Ising chains.
(a) [hz = J ] Fast and (b) [hz = 1.1J ] suppressed string break-
ing dynamics in quantum Ising chains [Eq. (1)], in terms of
the spatiotemporally resolved domain wall density νi(t). In
both cases, L = 24, hx = 0.2J and ℓ = 4 (initial string
length). Long-time behavior of (c) the survival probability
[Eq. (2)] and (d) half-chain entanglement entropy [Eq. (3)],
for various values of the magnetic fields and L = 16, ℓ = 4.
A sharp threshold, defined by the point h⋆

z/J where P = 0.5
[dotted lines and inset in (c)], separates the two string break-
ing regimes. Results obtained via exact diagonalization.

by the Hamiltonian (1). Below, we review the main as-
pects of this process (see also Ref. [24]), in the confining
regime with controlled quantum fluctuations hx ≪ J .

A dichotomy between distinct string breaking dynam-
ics is revealed in a simple experimentally feasible quan-
tum quench protocol. The system is initially prepared
in a state with an Ising electric-field string of ℓ ↓-spins
(in the σz basis) that connects two DWs, on top of the
vacuum, i.e., |ψstring(ℓ)⟩ ≡ | · · · ↑↓i0↓ · · · ↓↓(i0+ℓ−1)↑ · · ·⟩.
Next, the real-time evolution of the system in Eq. (1) is
studied at finite hx/J and hz/J . Two qualitatively dif-
ferent dynamical string breaking scenarios are illustrated
in Figs. 1(a) and 1(b), for an initial string of length ℓ = 4.
The dynamics are shown in terms of the local DW den-
sity, νi(t) = 1

2 ⟨Î − σ̂z
i (t)σ̂

z
i+1(t)⟩, defined on the bonds

between consecutive lattice sites. In Fig. 1(a), a rapid
production of new DW pairs occurs inside the string,
eventually leading to its decay and emission of lighter
mesons. A subsequent proliferation of DW pairs through-
out the whole chain eventually restores translation invari-
ance, in agreement with the fact that the system (1) is er-
godic and thermalizing at late times [55]. This fast string
breaking dynamics can be understood as a consequence
of underlying resonances that arise for commensurable
(J, hz) [24, 56]. In sharp contrast, the rapid string break-
ing dynamics is surprisingly absent in Fig. 1(b), up to the
accessed long time O(102J−1), which is also beyond the

timescale for light meson kinetics t ≫ J/h2x. Based on
general thermalization arguments (as mentioned above),
the latter regime must be understood only as a prether-
mal phenomenon [34].
The scenarios above have been observed in both quan-

tum spin models [21, 24, 25] and low-dimensional lattice
gauge theories [57–62]. However, a general picture of how
these systems cross from one regime over to the other re-
mains to be provided. As a first step in this quest, we
study the long-time behavior of the string survival prob-
ability

P (t) = |⟨ψstring|ψ(t)⟩|2, (2)

and the half-chain entanglement entropy

S(t) = S(ρ̂A(t)) = −TrA[ρ̂A(t) ln ρ̂A(t)], (3)

where |ψ(t)⟩ is the time-evolved many-body wave func-
tion and ρ̂A(t) = TrB [|ψ(t)⟩⟨ψ(t)|] is the reduced den-
sity matrix computed on one half of the chain (cutting
through the middle of the string and the opposite point
on the periodic chain). We compute long-time averages

as O = 1
tf−ti

∫ tf
ti
O(t)dt. In our calculations we take

Jtf = 104, and Jti = 3Jtsb, where Jtsb ≡ π
2(hx/J)2

is

a typical timescale for string breaking [24]. The long-
time averages of the quantities in Eqs. (2) and (3) are
shown in Figs. 1(c) and 1(d), for various values of hz/J
and hx/J . We observe a sharp threshold—defined by the
point where P = 0.5—, which roughly scales linearly with
(hx/J)

2 [inset in Fig. 1(c)], and separates a regime where
the string breaks (P ∼ 0) from one in which it persists
up to the accessed timescales (P ∼ 1). The behavior of
S shows that string breaking is characterized by a signif-
icant amount of entanglement, while in suppressed string
breaking dynamics entanglement production is strongly
diminished.
String breaking as a localization problem in Fock

space.—We now derive an effective description of the
above phenomenology. Let us fix ℓ = 4, as before. For the
considered parameter regime hx ≪ hz ∼ J , one can sys-
tematically project out sectors of the Hilbert space that
do not participate in resonant decay channels, by apply-
ing a Schrieffer-Wolff transformation [63, 64] to (1), see
Ref. [65] for details. Here, the relevant physical subspace
is formed by the direct sum of the “string” sector and the
“1-meson pair” sector, see Fig. 2(a). The former sector
is spanned by the kets |Sj⟩ = | · · · ↑↑↓j↓↓↓↑↑ · · ·⟩, with
a string of size ℓ = 4, labelled by the site index j of the
first ↓-spin. The second sector comprises configurations
with exactly two 1-meson particles: |j, d⟩ = | · · · ↑↑↓j↑
· · · ↑↓(j+d)↑↑ · · ·⟩, where 2 ≤ d ≤ L/2 (L even), is the
relative distance between the two ↓-spins.
The resulting effective model reads:

Ĥeff = Ĥstring + Ĥmesons + Ĥλ, (4)
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FIG. 2. Effective graph model for string breaking dynamics. (a) Schematic of the effective model for a short string (ℓ = 4).
Spin configurations in yellow represent string states (rest mass m4 = 12J), whereas configurations in blue represent 1-meson
pairs with energy 2m1 and hopping amplitude v = h2

x/3J (red bonds). These are the configurations involved, to leading order,
in the resonant decay of the string (green bonds). For illustration, confined DW pairs are depicted in some configurations as
red dots joined by a wiggly line. String breaking can thus be thought of as a diffusion problem in the Fock-space graph. (b),(c)
Energy spectrum of the effective model for hz = J and hz = 1.02J , respectively. In (b) all bands have a similar energy, while
in (c) there is a gap between the “string” band and the continuum of 1-meson pairs. Colorbar shows the IPR of individual
eigenstates [Eq. (5)], exhibiting a strong localization of the string modes in the latter case. (d),(e) Time evolution of the
survival probability [Eq. (2)], for the respective parameters, both in the effective and full Ising model. Note the log scale in the
horizontal axis and the time in unit of v. Parameters: L = 16, hx = 0.1J .

where Ĥstring gives the string rest mass [Es ≡ m4 = 12J ];

Ĥmesons contains terms for hopping [v = h2x/(3J)], mass
[2m1 = Es − 2v], and repulsive contact interaction [U =
9v/2] of the 1-meson particles; and Ĥλ couples the two
relevant sectors with amplitude λ = −3v; see Fig. 2(a)
and Ref. [65] for details. The latter term is responsible
for the processes of pair creation and recombination, and
therefore, crucial for string breaking.

The energy spectrum of this model is shown in
Figs. 2(b) and 2(c), for different choices of parameters. In
Fig. 2(b) all bands are close in energy, while in Fig. 2(c)
a large gap separates an isolated band (associated to
string modes) from the rest. In the latter case, string
modes are strongly localized. This is quantified by the
colorbar in Figs. 2(b) and 2(c), which shows the value of
the inverse participation ratio (IPR) of individual energy
eigenstates:

IPR(n) =
∑
a

|⟨a|n⟩|4, (5)

where {|n⟩} are eigenstates of Ĥeff and {|a⟩} preferen-
tial basis states. Localized behavior of |n⟩ occurs when
IPR(n) ≃ 1, while IPR(n) vanishes as 1/D in the maxi-
mally delocalized case, where D is the Hilbert space di-
mension [66].

The evolution of the survival probability [Eq. (2)], cor-
responding to the two cases above, is shown in Figs. 2(d)
and 2(e). While in the former case, the string eventually
breaks (P ∼ 0), in the latter it survives (P ∼ 1) up to
long times. The spectra in Figs. 2(b) and 2(c) are hence

identified with fast and suppressed string breaking dy-
namics, respectively. String breaking can thus be seen
as a dynamical localization problem in the Fock-space
graph in Fig. 2(a), where the string localizes if it is not
resonantly coupled to the continuum of 1-meson pairs.
Quantitative agreement with the dynamics in the full
Ising model is also observed in Figs. 2(d) and 2(e), which
can be systematically improved by decreasing hx/J [65].
Quantum impurity model picture.—The above picture

resembles localization phenomena in quantum impurity
models (QIMs) [67–69]. This is the basis for a fur-
ther reduction of the string breaking problem. Let
us consider an elementary string breaking/fusion pro-
cess: (· · · ↑↑↓↓↓↓↓↑↑ · · · )i ←→ (· · · ↑↑↓↓↓↑↓↑↑ · · · )ii ←→
(· · · ↑↑↓↓↓↑↑ · · · ↑↓↑ · · · )iii, where a string (i) gets cut
near its edges via pair creation, yielding a metastable
configuration (ii), and eventually, a shorter string plus a
1-meson (iii) [58, 62]. We encode the different configura-
tions of this basic process in the internal states of a spin-1
system (“impurity”). Concretely, we map the symmetric
and antisymmetric string states 1√

2
[|ψstring⟩ ± |ψmeta⟩],

onto the impurity states |Sz = ±1⟩, respectively, and the
state where the string has been cut and a lighter me-
son radiated onto |Sz = 0⟩. The impurity is also locally
coupled to a meson bath in analogy to the picture in
Fig. 2(a). This motivates a QIM with Hamiltonian

ĤQIM = Ĥimp + Ĥbath + Ĥcoup, (6)

where Ĥimp = (M − µ)(Ŝz)2 + ΛŜz, contains the string
mass term M , a chemical potential µ accounting for



4

−µ0

(E
−
M

)/
T

0 5 10
Λ/T

10−2

10−1

100

IP
R

(Λ
)

N = 100

N = 200

N = 400

N = 800

−50 0 50

(Λ− Λc)N
1/ν

0

50

100

N
ζ
/ν

IP
R

(Λ
)

N = 100

N = 200

N = 400

N = 800

0 5 10
Λ/T

0.0

0.5

1.0

M
(Λ

)

Bath

Impurity

vac

2T
Λ

(a) (b)

(c) (d)

FIG. 3. Localization-delocalization transition in the QIM. (a)
Minimal string breaking/fusion as a three-level system (im-
purity), coupled to a bath. The impurity-bath coupling may
or may not be resonant, yielding hybridization (as depicted
here)—corresponding to string decay—or localization, respec-
tively. (b) IPR of the impurity mode as a function of Λ/T , for
various system sizes, displaying a localization-delocalization
transition. (c) Data collapse of the data in (b) using a stan-
dard finite-size scaling ansatz within the package pyfssa [71],
yielding Λc/T = 1.41(1) and critical exponents ζ = 1.02(5),
ν = 1.00(5). (d) Long-time average of the spin autocorre-
lation function M(Λ), as a function of Λ/T with N = 800.
The dashed line indicates the transition point Λc/T ≈ 1.41.
Parameters: M/T = 10, µ/T = 2.

higher-order corrections, and a Λ > 0 term, directly
related to string breaking/fusion; Ĥbath =

∑N
j=1

[
−

T (b̂†j b̂j+1 + h.c.) + (M − 2T )b̂†j b̂j
]
, describes a bath of

light mesons represented by hard-core bosons with cre-
ation (annihilation) operators b̂†j (b̂j), on a chain with N
sites, with hopping amplitude −T and maximal kinetic
energyM−2T ; and Ĥcoup = −T

[(
1−(Ŝz)2

)
Ŝxb̂†1+h.c.

]
,

couples the impurity with the bath such that if |Sz = 0⟩
a meson at site 1 is created, and whenever |Sz = ±1⟩ a
meson at that site is annihilated [70].

A schematic of this mapping is shown in Fig. 3(a) for
a short string that can decay into two shorter strings.
The latter can be emitted into a meson bath, if the
impurity-bath coupling is resonant, leaving the impurity
in its “vacuum” state. Otherwise, the shorter strings can
recombine back into a longer string, avoiding its decay.
This QIM picture thus offers a distilled abstraction of
the effective graph model in Fig. 2(a). We note, how-
ever, that the mapping between these two models is not
exact. Yet, as shown below, both models have significant
similarities both in the behavior of their eigenstates as
well as in the dynamics of the impurity and the string.

The QIM in Eq. (6) features a localization-
delocalization transition, explicitly shown in the single-

meson limit. In this limit the spin can be replaced by
two hard-core bosons, and due to particle number con-
servation, exact diagonalization is possible for large sys-
tem sizes [65]. Focusing on the IPR of individual eigen-
states, we see that the impurity mode can abruptly local-
ize when varying Λ/T above a critical Λc/T , see Fig. 3(b),
while the IPR of bulk eigenstates always vanishes (not
shown). A standard finite-size scaling analysis [72], see
Fig. 3(c), yields Λc/T = 1.41(1) and critical exponents
ζ = −1.02(5), ν = 1.00(5), for the considered parame-
ters.
Such localization-delocalization transition underlies

and governs two qualitatively different spin dy-
namics, see Fig. 3(d). Here we plot the long-
time averaged spin autocorrelation function M(Λ) =

limt→∞
1
t

∫ t

0
dt′⟨Ŝz(t′)Ŝz(0)⟩Λ, where ⟨·⟩Λ denotes the

expectation value at a given Λ/T . This quantity plays
an equivalent role to the survival probability for the spin
chain [Eq. (2)], and likewise, it vanishes on the delocal-
ized side of the transition, while it approaches unity as
we ramp up Λ/T , above the localization transition point.
Our conclusions are restricted to the lattice as we have

only considered a bounded spectrum of excitations. We
expect our observations to hold beyond the limit hx ≪ J ,
as long as there exist values of hz/J for which certain
decay channels lead to faster dynamics than in other
regimes. We note that our effective descriptions are valid
only within the prethermal timescale of the localized
regime. Also, further localization transitions may occur
around other resonance points of the spin chain, which
could involve longer decay paths [24, 32], and hence,
would require to consider an impurity with more inter-
nal levels. Regarding the Fock-space graph model, we
note that adding higher-order corrections could reshape
the transition path and change the criticality. Never-
theless, as the effect of such higher-order terms is just
a renormalization of hopping amplitudes [25], we expect
the physics to remain qualitatively unaltered far from the
localization transition point and deep in the two phases.
Discussion and outlook.—We expect our main results

to be relevant for a wider class of confining theories in
one and higher dimensions. In effect, what seems to be
crucial in the applicability of the QIM picture is that the
system retains rotational symmetry, with the radial co-
ordinate effectively defining a one-dimensional problem,
when integrating out the rotation degree of freedom [68].
Fermionic bound states (e.g., baryons) could also be ac-
counted for by changing the statistics of the bath [68, 69].
Finally, our observations can be experimentally realized
with current quantum technologies. In particular, Ryd-
berg atoms offer a well suited platform, in which both
the initial string states and the target unitary dynamics
can be implemented in a highly controllable way [48–53].
Data availability. The data shown in the figures is

available on Zenodo [73].
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Greiner, Vladan Vuletić, and Mikhail D. Lukin, “Prob-
ing many-body dynamics on a 51-atom quantum simula-
tor,” Nature 551, 579–584 (2017).

[49] Matteo Marcuzzi, Ji ř́ı Minář, Daniel Barredo, Sylvain
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[59] P. Sala, T. Shi, S. Kühn, M. C. Bañuls, E. Demler, and
J. I. Cirac, “Variational study of u(1) and su(2) lattice
gauge theories with gaussian states in 1 + 1 dimensions,”
Phys. Rev. D 98, 034505 (2018).

[60] Daniel Spitz and Jürgen Berges, “Schwinger pair pro-
duction and string breaking in non-abelian gauge the-
ory from real-time lattice improved hamiltonians,” Phys.
Rev. D 99, 036020 (2019).

[61] Giuseppe Magnifico, Marcello Dalmonte, Paolo Facchi,
Saverio Pascazio, Francesco V. Pepe, and Elisa Erco-
lessi, “Real Time Dynamics and Confinement in the Zn

Schwinger-Weyl lattice model for 1+1 QED,” Quantum
4, 281 (2020).

[62] Titas Chanda, Jakub Zakrzewski, Maciej Lewenstein,
and Luca Tagliacozzo, “Confinement and lack of thermal-
ization after quenches in the bosonic schwinger model,”
Phys. Rev. Lett. 124, 180602 (2020).

[63] A. H. MacDonald, S. M. Girvin, and D. Yoshioka, “ t
U

ex-
pansion for the hubbard model,” Phys. Rev. B 37, 9753–
9756 (1988).

[64] Cheng-Ju Lin and Olexei I. Motrunich, “Quasiparti-
cle explanation of the weak-thermalization regime under
quench in a nonintegrable quantum spin chain,” Phys.
Rev. A 95, 023621 (2017).

[65] Supplemental material for details on the perturbative
derivation of the effective graph model and the solution of
the quantum impurity model in the single-meson sector.
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Supplemental Material

PERTURBATION THEORY FOR THE EFFECTIVE MODEL IN THE FOCK-SPACE GRAPH

In this section, we give a detailed derivation of the effective model in Eq. (4). We restrict ourselves to the limit of
weak transverse fields, hx ≪ J . In this limit, it is convenient to write the Hamiltonian (1) as

Ĥ = Ĥ0 + Ĥ1, (S1)

where

Ĥ0 = −
L∑

i=1

(
Jσ̂z

i σ̂
z
i+1 + hzσ̂

z
i

)
, Ĥ1 = −hx

L∑
i=1

σ̂x
i , (S2)

and regard Ĥ1 as a small perturbation. Within this setting, we can perform a Schrieffer-Wolff (SW) transforma-

tion [63], i.e., a unitary transformation eŜ to eliminate off-diagonal terms that do not preserve Ĥ0, order by order in
the strength of the perturbation.

By choosing the generator of the transformation Ŝ = Ŝ1 + Ŝ2 + · · · , such that [Ŝ1, Ĥ0] = −Ĥ1, we get the following
second-order Hamiltonian [32, 64]:

Ĥ2 = −
∑
i

{
∆+P̂

↑
i−1σ̂

z
i P̂

↑
i+1 +∆−P̂

↓
i−1σ̂

z
i P̂

↓
i+1 +∆0

(
P̂ ↑
i−1σ̂

z
i P̂

↓
i+1 + P̂ ↓

i−1σ̂
z
i P̂

↑
i+1

)
− (∆+ −∆0) P̂

↑
i−1(σ̂

+
i σ̂

−
i+1 + h.c.)P̂ ↑

i+2 − (∆0 −∆−) P̂
↓
i−1(σ̂

+
i σ̂

−
i+1 + h.c.)P̂ ↓

i+2

− (∆− −∆0) P̂
↓
i−1(σ̂

+
i σ̂

+
i+1 + h.c.)P̂ ↓

i+2

}
, (S3)

where P̂
↑(↓)
i = (1̂ ± σ̂z

i )/2 is the projector onto ↑ (↓) at site i, and σ̂±
i = (σ̂x

i ± iσ̂y
i )/2, are spin- 12 raising and

lowering operators. We have also introduced a succinct notation for the relevant energy scales: ∆0 ≡ h2x/(2hz),
∆± ≡ h2x/(2hz ± 4J).
The ℓ-meson energies (with respect to the Ising vacuum energy), are obtained, to leading order, from the unper-

turbed Hamiltonian Ĥ0 and the diagonal terms on the r.h.s. of Eq. (S3). We get

m1 = 4J + 2hz + 2(2∆+ −∆0) +O(h4x/J3), (S4)

mℓ≥2 = 4J + 2ℓhz + (ℓ+ 2)∆+ + (ℓ− 2)∆− +O(h4x/J3). (S5)

We now focus on the situation of interest considered in the main text. Namely, hx ≪ hz = J and an initial
string of size ℓ = 4. The breaking of the string will necessarily yield the formation of two lighter mesons. Within the
description above, the resonant decay channel (neglecting for a moment perturbative (hx/J)

2 corrections) is into states
with exactly two 1-meson particles, as it can be easily verified from Eqs. (S4) and (S5), for the relevant parameters.
Hence, to the leading order, we can project the parent Hamiltonian onto the subsector of states with a single 4-meson
particle (“string”) and the subsector of two 1-meson states. By doing this, we get the effective model illustrated in
Fig. 2 of the main text. Let us now explicitly write down the different terms of the this effective model. In the first
place, we have the string and the 1-meson energies, which are given by

m1 ≈ 4J + 2hz −
h2x
3J

= 6J − h2x
3J
, Es ≡ mℓ=4 ≈ 4J + 8hz = 12J. (S6)

The latter term gives the first contribution in Eq. (4). Namely,

Ĥstring|Sj⟩ = Es|Sj⟩, (S7)

with the same notation for the ket |Sj⟩ as in the main text. On the other hand, the 1-meson energy gives the diagonal

part of Ĥmesons in Eq. (4), namely, Ĥdiag
mesons|j, d⟩ = 2m1|j, d⟩. We note however that this term has to be modified so as
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FIG. S1. Convergence of the effective model in the localized regime. Absolute error of the time-integrated string survival
probability. The effective model becomes more accurate as hx/J is reduced and hz/J approaches 1, with hz−1
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= 10 kept fixed.

The values of the confining field hz/J are such that they lead to localized string dynamics. Both hx and hz are in units of J .
In all plots, we use L = 14 and ℓ = 4.

to include a hardcore repulsive interaction between 1-meson particles, which arises from the second and third terms

on the r.h.s. of Eq. (S3), namely, U ≡ (2∆0 −∆−) =
3h2

x

2J .
Next, we have to consider the off-diagonal terms on the r.h.s. of Eq. (S3). The first one of them, proportional to

∆+ −∆0, acts as a hopping term for the 1-meson particles. This energy scale, therefore, defines the kinetic energy of

such particles, v ≡ −(∆+ −∆0) =
h2
x

3J . Hence, Ĥmesons in Eq. (4), acts on a 1-meson pair ket |j, d⟩, as follows:

Ĥmesons|j, d⟩ = (2m1 + δd,2U)|j, d⟩ − v
[
|j, d+ 1⟩+ |j + 1, d− 1⟩+ |j, d− 1⟩+ |j − 1, d+ 1⟩

]
. (S8)

The last term on the r.h.s. of Eq. (S3), plays a crucial role in our description, for it describes the decay of a string
of length ℓ = 4 into a 1-meson pair, with a relative distance d = 3 and the position of the first ↓-spin in the latter
configuration coinciding with that of the first ↓-spin in the former string configuration. This term also describes
the reverse process of particle recombination into a single 4-meson particle. These two process are schematically
illustrated by the green bond in Fig. 2(a). The numerical coefficient in front of this term thus sets the energy scale

for the coupling Ĥλ, namely, λ ≡ (∆− −∆0) = −h2
x

J = −3v.
We note that the fifth term on the r.h.s. of Eq. (S3), yields no contribution when projecting onto the physically

relevant subsectors for the case at hand. Furthermore, even though the derivation above holds strictly for hz = J , it
is possible to readily adjust the expressions above for hz ∼ J , by adding a straightforward hz-dependent correction.
Since the system is translationally invariant, it is convenient to work in Fourier space. Using |k, d⟩ =

1√
L

∑L
j=1 e

−ik(j+ d
2 )|j, d⟩, our effective model in momentum representation reads

Ĥ = EsÎ +
∑
k,d

(−2v + δd,2U)|k, d⟩⟨k, d| − 2v
∑
k,d

cos
(k
2

)
(|k, d⟩⟨k, d+ 1|+ |k, d⟩⟨k, d− 1|)

− 3v
∑
k,d

δd,3 (|Sk⟩⟨k, d|+ |k, d⟩⟨Sk|) , (S9)

where k can take L possible values in the Brillouin zone −π < k ≤ π, and the Kronecker delta in the last term is
needed to appropriately couple a string configuration with the relevant state with two 1-mesons, as pointed out above.

While the effective model derived in this section is asymptotically exact as we let hx/J → 0 for the point hz = J ,
it also yields accurate results for hz ̸= J . This is not only illustrated in Fig. 2(e) in the main text, but also in Fig. S1,
which displays the absolute error (w.r.t. the full Ising model) of the time-integrated string survival probability for
values of hz/J that lead to localized string dynamics. We can see that our reduced model shows systematic convergence
towards the exact dynamics in the Ising model, as we decrease hx/J and let hz/J → 1 (while keeping the ratio hz−1

h2
x

fixed).
Let us also note that when we apply the SW transformation to rotate the Hamiltonian in order to eliminate

off-diagonal terms, we should also rotate the initial state:

|ψeff
0 ⟩ = eŜ |ψ0⟩ = (1− hx

∑
i

σ̂x
i + · · · )| · · · ↑↓↓↓↓↑ · · · ⟩. (S10)
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Using |ψ0⟩ ≡ |ψstring⟩ = | · · · ↑↓↓↓↓↑ · · · ⟩ as initial state for simulating the dynamics in the effective model will,
instead, give us a O(hx/J)-error. This error however is negligible when the survival probability is P ∼ 1, but becomes
more important when P is small. Nonetheless, for the considered timescales, we still obtain a very good agreement
with the exact dynamics in the full Ising model.

EXACT SOLUTION OF THE QUANTUM IMPURITY MODEL IN THE DILUTE MESON LIMIT

Here we show how to solve the quantum impurity model in Eq. (6), in the single-meson limit. The single-meson

sector is given by
{
|Sz = 0⟩ ⊗ |b†jbj = δj,j0⟩, |Sz = ±1⟩ ⊗ |b†jbj = 0⟩

}
, for all j and for some 1 ≤ j0 ≤ N . The

projected Hamiltonian is thus PĤQIMP ≡ ĤQIM. One can easily see that under this projection, the spin-1 degree

of freedom representing the impurity can be replaced by two hard-core bosons with creation operators â†I , â
†
II, with

the identification nI = 1 ↔ Sz = +1 and nII = 1 ↔ Sz = −1 (ns being the eigenvalue of the occupation number
n̂s = â†sâs; s = I, II). Therefore, we can consider a chain of N + 2 sites, with the extra two sites having labels I, II.
This yields,

ĤQIM = (M − µ)(â†I âI + â†IIâII) + Λ(â†I âI − â†IIâII) +
N∑
j=1

[
− T (b̂†j b̂j+1 + h.c.) + (M − 2T )b̂†j b̂j

]
− T√

2

[(
â†I + â†II

)
b̂1 + h.c.

]
. (S11)

Furthermore, due to particle number conservation, the bilinear form above can exactly diagonalized for very large
system sizes, and we can explicitly derive analytical expression for observables of interest. To show this, let us write
this Hamiltonian in a compact way:

ĤQIM =
∑
i,j

ĉ†iHi,j ĉj , (S12)

with ĉi = âi, b̂i, and where H is a Hermitian matrix (of dimension N+2), and hence, can be diagonalized by a unitary
transformation U :

ĉ†i =

N+2∑
l=1

α̂†
l (U†)li, ĉj =

N+2∑
l=1

Ujlα̂l. (S13)

Thus, Ĥ0 simply reads

ĤQIM =

N+2∑
l=1

ϵlα̂
†
l α̂l. (S14)

One can readily find that the creation/annihilation operators α̂†
l , α̂l evolve according to the following equations:

α̂†
l (t) = eiϵltα̂†

l , α̂l(t) = e−iϵltα̂l. (S15)

The initial string state in the quantum impurity model is given by |ψ0⟩ ≡ 1√
2
[|Sz = +1⟩ + |Sz = −1⟩] ⊗ |0⟩bath,

where |0⟩bath is the vacuum state for the meson bath subsystem. In the language of the hard-core boson operators,
this string state becomes:

|ψ0⟩ =
1√
2

[
â†1|0⟩imp + â†2|0⟩imp

]
⊗ |0⟩bath, (S16)

where |0⟩imp is the vacuum state of the impurity.

Thus, using the transformation in Eq. (S13) and the fact that Ŝz = â†1â1−â†2â2, we arrive at the following expression
for the spin-spin autocorrelation function:

⟨ψ0|Ŝz(t)Ŝz(0)|ψ0⟩ =
1

2

[
u+(1, 1)u−(1, 1)− u+(1, 1)u−(1, 2) + u+(2, 1)u−(1, 1)− u+(2, 1)u−(1, 2)

− u+(1, 2)u−(2, 1) + u+(1, 2)u−(2, 2)− u+(2, 2)u−(2, 1) + u+(2, 2)u−(2, 2)

]
, (S17)
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free parameter B modulating the strength of the coupling term in our phenomenological description [last term in Eq. (S11)].
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Fig. 3(a).

where u+(a, b) :=
∑

l Ua,leiϵlt(U†)l,b and u−(a, b) :=
∑

m Ua,me−iϵmt(U†)m,b. This expression is used in the computa-
tion of the long-time averageM(Λ).

As a final remark, we comment on how the localization-delocalization transition depends on the value of the coupling
term in Eq. (S11). This is illustrated in Fig. S2, where we introduce a new parameter B modulating the strength of
the said term. As the coupling between the impurity and the bath is decreased, we observe that the critical value of
Λ/T approaches 2 (for the specific parameters used here, in particular, µ/T = 2). Further, the transition becomes
sharper and sharper. This can be easily understood from the cartoon picture drawn in Fig. 3(a), which precisely
illustrates the limiting case of B/T →∞. At any rate, the overall qualitative result remains unaltered.
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