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We introduce a family of SO(n)-symmetric spin chains which generalize the transverse-field Ising
chain for n = 1. These spin chains are defined with Gamma matrices and can be exactly solved
by mapping to n species of itinerant Majorana fermions coupled to a static Z2 gauge field. Their
phase diagrams include a critical point described by the Spin(n)1 conformal field theory as well as
two distinct gapped phases. We show that one of the gapped phases is a trivial phase and the other
realizes a symmetry-protected topological phase when n ≥ 2. These two gapped phases are proved
to be related to each other by a Kramers-Wannier duality. Furthermore, other elegant structures in
the transverse-field Ising chain, such as the infinite-dimensional Onsager algebra, also carry over to
our models.

I. INTRODUCTION

Quantum spin chains have long been a fascinating area
of research in physics, with some exactly solvable exam-
ples offering invaluable insights into many-body physics.
One such model is the transverse-field Ising (TFI) chain,
which is widely studied as an exemplary model for in-
vestigating quantum phase transitions and critical phe-
nomena [1–3]. The TFI chain exhibits several intrigu-
ing properties from a theoretical perspective, such as
the Kramers-Wannier duality [4] that maps between or-
dered and disordered phases, and the Onsager algebra [5],
which has played a key role in Onsager’s epoch-making
solution of the two-dimensional classical Ising model [6]
(that is equivalent to the quantum TFI chain in certain
limit [7, 8]) and ensures the integrability [9].

While some of the TFI chain’s desirable properties
are retained in certain generalizations (such as Zn clock
chains [10]), duality and other beautiful structures are
more often only present in the low-energy limit, rather
than at the lattice level. An example is the spin-1
bilinear-biquadratic chain near the Takhtajan-Babujian
(TB) point [11, 12]. The TB point is critical and its
low-energy effective theory is the SU(2)2 Wess-Zumino-
Witten (WZW) model [13] (up to marginally irrelevant
terms), which can be formulated in terms of three mass-
less Majorana fermions [14, 15]. The adjacent Haldane
and dimerized phases are gapped, and the phase transi-
tion, occurring at the TB point, can be understood as a
sign change of the Majorana fermion masses [where three
masses are locked to be the same by the SO(3) symme-
try] [14–17]. At the field theory level, this is similar to
the situation in the TFI model where the transition be-
tween ordered and disordered phases is described by a
sign change of a single Majorana fermion mass. How-
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ever, the duality between Haldane and dimerized phases
is no longer manifest on the lattice [18]. A similar sit-
uation also arises in spin-1/2 ladders [19, 20] and the
SO(n)-symmetric bilinear-biquadratic chain [21–25].

In this work, we present a solution of the TFI chain
using the Majorana fermion representation of spin-1/2
Pauli operators [26] and generalize it to derive a class of
exactly solvable Gamma-matrix chains. This is largely
inspired by a recent work [27] generalizing the Kitaev’s
honeycomb model to exactly solvable Gamma-matrix
models realizing the Kitaev’s sixteenfold way of anyon
theories in two dimensions. The Gamma-matrix chains,
which we shall introduce in this work, possess an exact
SO(n) symmetry and can be represented by n species of
free itinerant Majorana fermions that are simultaneously
coupled to a static Z2 gauge field. The phase diagram
of these models includes a critical point described by the
Spin(n)1 conformal field theory (CFT), as well as two dis-
tinct gapped phases. One of these two gapped phases is a
symmetry-protected topological (SPT) phase (for n ≥ 2),
while the other is a trivial phase. The phase transition
is indeed described by the sign change of n Majorana
fermion masses in the low-energy, long-wavelength limit
and, at the same time, the appealing properties of the
TFI chain, including the Kramers-Wannier duality and
the Onsager algebra, are retained at the lattice level.

The rest of this paper is structured as follows. In
Sec. II, we introduce the exactly solvable SO(n) spin
chains and present their solutions. In Sec. III, we show
that the critical point of these SO(n) spin chains is de-
scribed by the Spin(n)1 CFT. In Sec. IV, we turn to
the two gapped phases separated by the Spin(n)1 critical
point. The emphasis will be given to two limiting cases
whose ground states are fixed-point wave functions with
zero correlation length. In Sec. V, we show the presence
of exact Kramers-Wannier duality and the Onsager al-
gebra in our models. Sec. VI summarizes this work and
gives some outlook. Appendix A provides explicit repre-
sentations of the Gamma matrices forming the Clifford
algebra Cl2n+1,0(R).
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II. MODELS

A. Transverse-field Ising chain

We begin with the familiar spin-1/2 TFI chain, of
which the Hamiltonian reads

HTFI = −
N∑
j=1

(
Jσz

jσ
z
j+1 − hσx

j

)
, (1)

where σα (α = x, y, z) are Pauli matrices and J , h are
real parameters. In (1) and throughout this work, we
assume that N is even and impose periodic boundary
condition (e.g., σz

N+1 ≡ σz
1 for the TFI chain). It is well-

known that this model can be solved exactly by using
the Jordan-Wigner transformation, under which (1) is
mapped to a Hamiltonian of free fermions [28]. While the
Jordan-Wigner transformation involves the introduction
of nonlocal string operators, here we follow a different
approach that is purely local and easily generalized to
the SO(n) case, as we shall see below.

Our approach takes inspiration from the solution of
the celebrated Kitaev’s honeycomb model [26], where the
Pauli matrices are represented by four Majorana opera-
tors bx, by, bz and c as follows:

σα = ibαc, α = x, y, z. (2)

Using the algebraic relations satisfied by the Majorana
operators,

{bα, bβ} = 2δαβ , {bα, c} = 0, c2 = 1, (3)

where α, β = x, y, z, it is easy to verify that σx, σy, σz de-
fined by (2) indeed satisfy the algebra expected for Pauli
matrices. However, a constraint bxbybzc = 1 needs to
be imposed to remove unphysical states, since four Ma-
jorana operators span a four-dimensional Hilbert space,
whereas the (“physical”) Hilbert space of a spin-1/2 is
two-dimensional.

In the physical subspace defined by bxbybzc = 1, one
can also represent the Pauli operators as σz = −ibxby

and σx = −ibybz. For the TFI Hamiltonian (1), we use
σx = −ibybz (σz = ibzc) in the transverse-field (Ising
coupling) term and obtain

HTFI = i

N∑
j=1

(
Juj,j+1b

y
j b

z
j+1 + hbzj b

y
j

)
(4)

with uj,j+1 ≡ ibxj cj+1, as depicted in Fig. 1(a). Obvi-
ously, the operators uj,j+1 commute among themselves
and [HTFI, uj,j+1] = 0, and the eigenvalues of uj,j+1 are
±1. Thus, uj,j+1 can be interpreted as a static Z2 gauge
field; the signs of uj−1,j and uj,j+1 are flipped by the
action of “gauge transformation” Dj ≡ bxj b

y
j b

z
j cj , and the

unphysical states are removed by the projector
∏

j [(1 +

Dj)/2]. The “Z2 flux” w ≡ u1,2u2,3 · · ·uN−1,NuN,1,

ℎ
𝐽

(a) (b)

𝑛 = 1 𝑛 = 2

𝐽
ℎ

FIG. 1. Schematics of (a) the TFI chain (n = 1) and (b) the
n = 2 model in the Majorana representation. The blue links
represent the Majorana fermions from two neighboring sites
which form the static Z2 gauge field. The green and red links
represent the couplings of itinerant Majorana fermions at two
neighboring sites and the same site, respectively.

which is well-defined for a periodic chain, is gauge-
invariant and has eigenvalues ±1 since w2 = 1. In fact,
w can be expressed in terms of the spin operators as w =

−
∏N

j=1 σ
x
j and is hence the global Z2 symmetry of the

TFI chain. All configurations of the gauge field with the
corresponding w = +1 (or −1) form an equivalent class
modulo gauge transformations. Without loss of general-
ity, we choose uj,j+1 = uN,1 = 1 with j = 1, . . . , (N − 1)
as the representative of the class with w = +1, and
uj,j+1 = 1 for j = 1, . . . , (N − 1) and uN,1 = −1 as
that with w = −1. In both cases, the Hamiltonian (4)
can be collectively written as

HTFI = i

N∑
j=1

(
Jbyj b

z
j+1 + hbzj b

y
j

)
(5)

with the definition cN+1 ≡ wc1. Because of the periodic
boundary condition of spins (σz

N+1 ≡ σz
1), the “itinerant”

and “gauge” Majorana fermions (bz and c, respectively)
must have the same boundary condition, which is peri-
odic when w = +1 and antiperiodic when w = −1. We
have seen that after this “gauge-fixing” procedure, (1) re-
duces to a Hamiltonian of free Majorana fermions (also
known as the “Kitaev chain” [29]), which can readily be
diagonalized by usual techniques of Fourier transforma-
tion.

B. SO(n)-symmetric spin chains

Inspired by the Majorana representation (2) of Pauli
matrices, it is natural to define for a generic positive in-
teger n the following Majorana representation of (2n+1)
Gamma-matrices [27, 30–37]:

Γα = ibαc, α = 1, 2, . . . , (2n+ 1), (6)

where b1, . . . , b2n+1 and c are Majorana operators.
These Gamma-matrices generate the Clifford alge-
bra Cl2n+1,0(R) with the anticommutation relation
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{Γα,Γβ} = 2δαβ . The (generalized) spin operators are
represented in terms of the Gamma-matrices as well as
their commutators Γαβ ≡ i

2 [Γ
α,Γβ ] = ibαbβ , and the

spin-chain Hamiltonian is defined as [38]

H =

N∑
j=1

n∑
α=1

(
JΓ2α−1,2n+1

j Γ2α
j+1 − hΓ2α,2α−1

j

)
. (7)

For the sake of definiteness, we make the assumption that
J > 0, h > 0 throughout this work. Similar to the
case of the TFI chain, the dimension of the local Hilbert
space spanned by the Majorana operators (2n+1) has to
be reduced by half to obtain that of the physical subspace
(2n); this can be achieved by restricting the local fermion
parity

Qj = (ib1jb
2
j ) · · · (ib2n−1

j b2nj )(ib2n+1
j cj)

= inΓ1
jΓ

2
j · · ·Γ2n+1

j (8)

to be Qj = +1 or Qj = −1 (note that Q2
j = 1).

In the Majorana representation, the Hamiltonian (7)
is rewritten as

H = −i

N∑
j=1

n∑
α=1

(
Juj,j+1b

2α−1
j b2αj+1 + hb2αj b2α−1

j

)
, (9)

where the example with n = 2 is shown in Fig. 1(b).
Here, uj,j+1 ≡ ib2n+1

j cj+1 is again a static Z2 gauge field
whose eigenvalues uj,j+1 = ±1 label subspaces of the
(extended) Hilbert space; the gauge-invariant “loop” op-
erator

w ≡

N−1∏
j=1

uj,j+1

uN,1 = −
N∏
j=1

Γ2n+1
j (10)

is a Z2 symmetry of the Hamiltonian (7). In fact, from
the Majorana representation (9), it is clear that when
n > 1 the Hamiltonian also exhibits a global SO(n) sym-
metry, which is associated with the “rotation” among Ma-
jorana operators b1j , b3j , . . . , b

2n−1
j as well as b2j , b4j , . . . , b2nj .

This symmetry transformation is generated by the opera-
tors Mαβ ≡

∑N
j=1(Γ

2α−1,2β−1
j +Γ2α,2β

j ), 1 ≤ α < β ≤ n,
which form the so(n) Lie algebra (up to a normalization
constant) and commute with w in (10). In Appendix A it
is shown that, by suitably choosing the Gamma-matrices
generating Cl2n+1,0(R), the model defined by (7) is equiv-
alent to the TFI chain (1) when n = 1 and reduces to a
spin-1/2 bond-alternating XY chain when n = 2.

The total fermion parity of the whole chain is given by

Qtotal =

N∏
j=1

Qj = QitinerantQgauge, (11)

where

Qgauge =

N∏
j=1

(
ib2n+1

j cj
)
= −w (12)

is the total parity of gauge fermions and

Qitinerant =

N∏
j=1

[(
ib1jb

2
j

)
· · ·
(
ib2n−1

j b2nj
)]

(13)

is that of itinerant fermions. For either choice (Qj =
+1 or Qj = −1) of the local fermion parity, we have
Qtotal = 1 since N is even. Thus, the parities of the itin-
erant and gauge fermions are bounded to be the same,
Qgauge = Qitinerant = −w, which intimately relate to
the boundary condition of Majorana fermions. Follow-
ing the terminology used in CFT, we call the subspaces
with w = +1 and w = −1 the Ramond (R) sector and
Neveu-Schwarz (NS) sector, respectively. As we shall see
in Sec. III, projecting into sectors with definite eigenval-
ues of Qitinerant is crucial for revealing the nature of the
quantum criticality.

III. Spin(n)1 CRITICALITY

As in the case of TFI chain, the Hamiltonian (9) is
bilinear in the fermion operators after the “gauge fixing”:

H = −i

N∑
j=1

n∑
α=1

(
Jb2α−1

j b2αj+1 + hb2αj b2α−1
j

)
(14)

for both the R sector (with w = +1) and the NS sector
(with w = −1). To diagonalize this Hamiltonian and
obtain the full energy spectrum, let us first perform an
“unfolding” transformation by relabeling the Majorana
operators as

dαl =

{
b2αj ,

b2α−1
j ,

l = 2j − 1

l = 2j
, (15)

in which α = 1, . . . , n and l = 1, 2, . . . , 2N ; note that
the length of the chain is doubled. We then proceed by
transforming into Fourier space:

dαl =
1√
N

∑
k

d̃αk e
ikl, (16)

where the momenta are quantized according to the
boundary condition dα2N+1 ≡ wdα1 as

k =

{
± π

2N ,± 3π
2N , . . . ,± (2N−1)π

2N , NS sector
0,± 2π

2N ,± 4π
2N , . . . ,± (2N−2)π

2N , π, R sector
.

(17)
With the inverse transformation

d̃αk =
1

2
√
N

2N∑
l=1

dαl e
−ikl, (18)

it is straightforward to verify {d̃αk , (d̃
β
k′)†} = δαβδkk′ and

(d̃αk )
† = d̃α−k (note that modes with k = π and k = −π
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are identified). In particular, d̃α0 and d̃απ are Hermitian
and satisfy (d̃α0 )

2 = (d̃απ)
2 = 1/2.

In terms of the Fourier modes (18), the Hamilto-
nian (14) is diagonalized via a unitary rotation in the
space spanned by these modes. Let us postpone the dis-
cussion of the physics at generic J and h to Sec. IV and
focus in this Section on the case J = h, for which the
Hamiltonian is already diagonalized without further ro-
tation. Indeed, the Hamiltonian for both sectors now
reads

H(NS/R) =

n∑
α=1

∑
k∈K(NS/R)

ε(k)(d̃αk )
†d̃αk + E

(NS/R)
0 , (19)

where K(NS) ≡ { π
2N , 3π

2N , . . . , (2N−1)π
2N }, K(R) ≡

{ 2π
2N , 4π

2N , . . . , (2N−2)π
2N }, the dispersion ε(k) = 4J sin k,

and the “vacuum” energies in both sectors are

E
(NS)
0 = − 2nJ

sin π
2N

, E
(R)
0 = −2nJ cot

π

2N
. (20)

It is worth emphasizing that the modes d̃α0 and d̃απ in
the R sector do not appear in (19); one could combine
them as fα

0 ≡ (d̃α0 − id̃απ)/
√
2 to obtain n fermionic “zero

modes”.
The complete thermodynamic properties of these mod-

els at temperature T are encoded in the partition func-
tion, which is defined as Z(T ) = Tr(e−H/T ) (the Boltz-
mann constant is set to unity). In the path integral pic-
ture, this amounts to considering a periodic evolution of
the quantum Hamiltonian with “imaginary time” 1/T ,
resulting in a torus in the spacetime. According to the
discussions above, the full partition function is the sum
of contributions in the NS and R sectors, Z = ZNS +ZR.
In the definition of ZNS, the trace is taken over all en-
ergy eigenstates in the NS sector. However, as discussed
in Sec. II, the parity of the itinerant fermions must be
restricted to Qitinerant = +1 (resp. −1) in the NS (resp.
R) sector. Thus, each of the energy eigenstates in the NS
sector is labeled by a configuration {Fα

k }k∈K(NS) , where
Fα
k = 0, 1 is the occupation number of the mode (d̃αk )

†;
the parity constraint for the itinerant fermions requires
that F (NS) ≡

∑n
α=1

∑
k∈K(NS) Fα

k is even. As the en-
ergy of this configuration is E(NS)({Fα

k }) = E
(NS)
0 +∑n

α=1

∑
k∈K(NS) Fα

k ε(k), the partition function from the
NS sector reads

ZNS =
∑
{Fα

k }

1 + (−1)F
(NS)

2
e−E(NS)({Fα

k })/T

=
1

2
e−E

(NS)
0 /T

[ ∏
k∈K(NS)

(
1 + e−ε(k)/T

)n
+

∏
k∈K(NS)

(
1− e−ε(k)/T

)n ]
. (21a)

The partition function from the R sector can be com-
puted similarly, except that one needs to take the zero

modes into account. Denoting the occupation num-
ber of the zero mode (fα

0 )
† as Fα

0 = 0, 1, the parity
constraint for the itinerant fermions now requires that
F (R) ≡

∑n
α=1(F

α
0 +

∑
k∈K(R) Fα

k ) is odd. The energy of
a generic configuration in the R sector is E(R)({Fα

k }) =
E

(R)
0 +

∑n
α=1

∑
k∈K(R) Fα

k ε(k), and the partition function
reads

ZR =
∑
{Fα

k }

1− (−1)F
(R)

2
e−E(R)({Fα

k })/T

= 2n−1e−E
(R)
0 /T

∏
k∈K(R)

(
1 + e−ε(k)/T

)n
. (21b)

From the expression of dispersion relation obtained
above, it is clear that all the n branches of fermionic
modes are gapless at the point J = h, which is therefore
a quantum critical point of the model (7). To characterize
the effective field theory governing the low-temperature
regime above this critical point, let us consider the con-
tinuum limit, which is defined as the limit N → ∞ and
a → 0 while keeping L = Na constant; here, a de-
notes the lattice spacing (before “unfolding”) and L the
length of the chain. Apparently, the low-energy modes
are those adjacent to the Fermi points k = 0 and k = π,
at which the dispersion is linearized as ε(k) ∼ 4Jk and
ε(k) ∼ 4J(π − k), respectively. Linear dispersions near
the Fermi points indicate that the low-energy physics of
the critical system is described by a CFT; the latter, as
we shall see next, can be identified by studying the par-
tition function contributed by these linearized modes in
the continuum limit. Furthermore, the “vacuum” ener-
gies (20) can be expanded as

E
(NS)
0 = −2nJ

(
2N

π
+

π

12N
+O(N−3)

)
, (22a)

E
(R)
0 = −2nJ

(
2N

π
− π

6N
+O(N−3)

)
, (22b)

where the leading terms in N are divergent in the con-
tinuum limit. These terms can be dropped, however, as
they are the same for both sectors and can be absorbed
by an overall shift in energy. Keeping only the subleading
terms in (22) and substituting into (21), one finds that
the partition functions in the continuum limit can be suc-
cinctly represented in terms of certain special functions:

Z̃NS =
θn3 (τ) + θn4 (τ)

2ηn(τ)
, Z̃R =

θn2 (τ)

2ηn(τ)
, (23)

where τ ≡ iv/LT with v ≡ 2Ja being the “velocity” of the
gapless modes. Here, the special functions (q ≡ e2πiτ )

θ2(τ) ≡ 2q1/8
∞∏
r=1

(1− qr)(1 + qr)2, (24a)

θ3(τ) ≡
∞∏
r=1

(1− qr)(1 + qr−1/2)2, (24b)
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θ4(τ) ≡
∞∏
r=1

(1− qr)(1− qr−1/2)2 (24c)

are known as (standard) Jacobi’s theta functions [39] and

η(τ) ≡ q1/24
∞∏
r=1

(1− qr) (25)

is the Dedekind eta function.
In the context of rational CFTs [40, 41], the torus par-

tition function is given by certain modular-invariant com-
bination of a finite number of holomorphic and antiholo-
morphic characters associated with irreducible highest-
weight representations of the underlying chiral algebra
(e.g., the Virasoro algebra for minimal models [42, 43] or
affine Lie algebras for WZW models [44]), which are in
one-to-one correspondence with the primary fields {a}
of the theory. It turns out that the above-computed
partition function, Z̃ = Z̃NS + Z̃R =

∑
ν=2,3,4

θn
ν (τ)

2ηn(τ) ,
is nothing but the modular-invariant partition function
of the Spin(n)1 rational CFT [45]. To make the con-
nection clear, let us briefly recall some basic facts perti-
nent to this theory [46, 47]. For the Spin(n)1 CFT with
odd n, there are three primary fields, a = 1,v, s; for
the case of even n, the theory has four primary fields,
a = 1,v, s+, s−. Here, 1 is the identity field and v
belongs to the vector representation of the Lie algebra
so(n), to which the corresponding characters read

χ1(q) =
θ

n
2
3 (τ) + θ

n
2
4 (τ)

2η
n
2 (τ)

, χv(q) =
θ

n
2
3 (τ)− θ

n
2
4 (τ)

2η
n
2 (τ)

;

(26a)
the primary field(s) s (or, s+ and s−), on the other hand,
belongs to the spinor representation(s) of so(n):

χs(q) =
θ

n
2
2 (τ)√
2η

n
2 (τ)

(for odd n)

or, χs+
(q) = χs−(q) =

θ
n
2
2 (τ)

2η
n
2 (τ)

(for even n). (26b)

We note that by choosing n = 1, the above results reduce
to those of the Ising CFT. With (26), one can easily ver-
ify that Z̃ =

∑
a |χa(q)|2 for both cases. In particular,

the representations associated with 1 and v (resp. s or,
s+ and s−) reside in the NS (resp. R) sector of the
whole Hilbert space. Remarkably, the degeneracy of the
“vacuum” in the R sector resulting from the zero modes
agrees with the prediction by representation theory. In
the case of odd n, the dimension of the spinor represen-
tation is given by the coefficient of the leading term (that
is, the term qn/24) in the expansion of χs(q) in powers
of q, which is equal to 2(n−1)/2. Likewise, the dimension
of each of the two spinor representations, s±, of so(n)
with even n is 2(n−2)/2. In both cases, the corresponding
coefficient in |χs(q)|2 or |χs+

(q)|2 + |χs−(q)|2 is 2n−1, in
agreement with the number of different ways to fill an

odd number of zero modes out of n ones. The degen-
eracies at higher energy levels can similarly be checked
against the representation theory.

To summarize, we have computed exactly the partition
function of the spin chain (7) at the point J = h, thus
identifying the latter as a conformal critical point de-
scribed by the Spin(n)1 CFT. We conclude this Section
by noting that several different approaches to realizing
lattice models with the Spin(n)1 CFT being the low-
energy effective theory were proposed in the literature.
In Refs. [48–50], a series of solvable spin-1/2 chains with
Spin(n)1 critical points were constructed by using the
“anyon condensation” mechanism. It would be interest-
ing to see whether a particular Gamma-matrix choice in
our Hamiltonian (7) can reproduce their models. Other
examples include the Reshetikhin model [51, 52] (a criti-
cal point in the SO(n) bilinear-biquadratic chain [21–23])
and the SO(n) generalization [53] of the Haldane-Shastry
model [54, 55].

IV. GAPPED PHASES

In this Section, we analyze the ground-state phase di-
agram of our model (7). We have seen in Sec. II that
the TFI chain is mapped to Kitaev’s Majorana chain af-
ter gauge-fixing (see also Ref. [56] for the equivalence
through Jordan-Wigner transformation), in which one
finds a topological phase as well as a trivial one that
corresponds to the ordered and disordered phases of the
TFI chain, respectively. In fact, the form (14) makes it
manifest that our models are generalizations of Kitaev’s
Majorana chain for n = 1, where J and h are, respec-
tively, the inter- and intra-site couplings between the Ma-
jorana fermions. As the only quantum phase transition
occurs at the critical point with h/J = 1 considered in
Sec. III, the nature of the gapped phases on both sides
of this transition can be revealed by considering two lim-
iting cases h/J → 0+ and h/J → ∞. In what follows,
we first conduct a simple semi-quantitative analysis of
these limiting cases using the Majorana representation.
Subsequently, we focus on the model with h = 0 and
derive the ground state(s) as certain fixed-point matrix
product states (MPSs) with zero correlation length. We
then proceed to construct SO(n + 1)-symmetric parent
Hamiltonians for these states and briefly comment on
the connection with the existing classification scheme of
SPT phases.

A. Phase diagram

Let us first look at the case h/J → ∞. In this limit, the
intra-site couplings dominate over the inter-site ones and
the sites become independent of each other. One could
recombine b2α−1

j and b2αj to obtain a fermionic operator
fα
j = (b2αj − ib2α−1

j )/2 for α = 1, . . . , n, and the unique
ground state is simply given by the fully empty state



6

𝒉/𝑱
𝟏𝟎

𝒏 = 𝟏 (TFI)

𝒉/𝑱
𝟏𝟎

Even 𝒏

𝒉/𝑱
𝟏𝟎

Odd 𝒏 (𝒏 > 𝟏)

Ordered

Disordered

Trivial

SPT (two-fold degenerate)

Trivial

SPT (unique)

(a)

(b)

(c)

FIG. 2. Schematic ground-state phase diagrams of the Hamil-
tonian (7). The model with n = 1 reduces to (a) the TFI
chain, where an ordered phase (0 ≤ h/J < 1) and a disor-
dered phase (h/J > 1) are separated by a critical point de-
scribed by the Ising CFT. For models with n > 1, the ordered
and disordered phases are replaced by an SPT phase and a
trivial one, respectively; the ground state in the SPT phase is
unique for (b) the even n case, whereas for (c) the odd n case
there are two-fold degenerate ground states arising from the
spontaneous breaking of a Z2 symmetry. The critical point
at h/J = 1 is described by the Spin(n)1 CFT for n > 1.

annihilated by all fα
j (note that we have chosen h > 0),

which is also a product state in the spin basis. As the gap
does not close for h/J > 1, we come to the conclusion
that the system is in a trivial phase when h/J > 1.

More interesting is the case 0 ≤ h/J < 1. According
to the representation (9) of the Hamiltonian in terms of
Majorana fermions coupled to a static Z2 gauge field, the
candidates for the ground state(s) admit the following
form:

|Ψ(±)⟩ = P |ΨF({u±
0 })⟩ ⊗ |{u±

0 }⟩. (27)

Here, {u±
0 } denotes an arbitrary configuration of the Z2

gauge field such that w = ±1 and |ΨF({u±
0 })⟩ is the

ground state of the Hamiltonian after gauge-fixing, which
is quadratic in the itinerant Majorana fermions; P is the
projector enforcing the local parity constraint at each
site, after the action of which the states become gauge-
invariant. To survive projection, the total fermion parity
of the unprojected state in (27) must be even:

|ΨF({u±
0 })⟩ ⊗ |{u±

0 }⟩
= Qtotal|ΨF({u±

0 })⟩ ⊗ |{u±
0 }⟩

= Qitinerant|ΨF({u±
0 })⟩ ⊗Qgauge|{u±

0 }⟩
= −wQitinerant|ΨF({u±

0 })⟩ ⊗ |{u±
0 }⟩. (28)

After the gauge-fixing, n decoupled Kitaev chains of itin-
erant fermions admit the same dispersion, which in par-
ticular implies that they have the same fermion parity in
|ΨF({u±

0 })⟩. For even n, it follows immediately from (28)
that w must be −1 (due to Qitinerant = +1 in the ground
state), i.e., the unique ground state resides in the NS

sector. For odd n, on the contrary, both w = +1 and
w = −1 are allowed by the parity constraint, which in-
dicates a spontaneous breaking of the global Z2 symme-
try (10). In the latter case, a more detailed analysis
shows that the lowest-energy states in both sectors are
quasi-degenerate with an energy splitting that is expo-
nentially small in the system size. Instead of carrying out
this analysis explicitly, we briefly summarize the above
results in Fig. 2 and focus in the remainder of this Sec-
tion on the model with h = 0, for which the degeneracy
becomes exact.

B. Fixed-point MPS and SO(n+ 1)-symmetric
parent Hamiltonian

We shall see that for all n ≥ 2, the ground states at
h = 0 can be neatly expressed as fixed-point MPSs by
“splitting” each physical site into two auxiliary ones (c.f.
Fig. 3 below). This is achieved using the fact that the
representation of the Clifford algebra Cl2n+1,0(R) with
n = 2k or n = 2k − 1 can be constructed utilizing two
copies of that of Cl2k+1,0(R) (see Appendix A), which
is generated by Λα, α = 1, 2, . . . , (2k + 1). An explicit
representation is given in (A1), where the Λα are 2k-
dimensional matrices. It can be readily verified that their
commutators Λαβ ≡ i

2 [Λ
α,Λβ ] with 1 ≤ α < β ≤ (n+1)

generate the Lie algebra so(n + 1); the representation
of the latter induced by (A1) is nothing but the spinor
representation that we mentioned in Sec. III. For n = 2k,
this representation is irreducible and denoted as Dk; for
n = 2k−1, however, it is reducible due to the existence of
Λ2k+1 that commutes with all the Λαβ (1 ≤ α < β ≤ 2k)
and hence decomposes into two irreducible ones, which
are denoted as Dk,+ and Dk,− [57]. In both cases, the
Hamiltonian after this “splitting” reads

Hh=0 = J

N∑
j=1

n∑
α=1

Λα,n+1
2j Λα,n+1

2j+1

=
J

2

N∑
j=1

n∑
α=1

[(
Λα,n+1
2j + Λα,n+1

2j+1

)2
− 2

]
, (29)

which is a sum of mutually commuting local terms. As
the bond between auxiliary sites 2j and 2j + 1 is just
the physical bond between sites j and j + 1 in the orig-
inal model, the ground state(s) is given by the tensor
product of the “bond singlets” that are annihilated by
(Λα,n+1

2j +Λα,n+1
2j+1 ). In fact, it is straightforward to verify

that the 2k × 2k matrix R ≡ σy
1 ⊗σx

2 ⊗σy
3 ⊗σx

4 ⊗ · · · sat-
isfies the relation R−1Λα,n+1R = −(Λα,n+1)T [58]; thus,
the singlet between physical sites j and j + 1 is repre-
sented in an orthonormal basis {|x⟩}2kx=1 of the spinor
representation as

|(0)⟩j,j+1 =

2k∑
x,y=1

Rxy|x⟩2j |y⟩2j+1. (30)
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𝐷𝑘 𝐷𝑘 𝐷𝑘 𝐷𝑘 𝐷𝑘 𝐷𝑘

| ۧ0 𝑗−1,𝑗 | ۧ0 𝑗,𝑗+1

𝐷𝑘,+ 𝐷𝑘,+ 𝐷𝑘,+ 𝐷𝑘,+

𝐷𝑘,− 𝐷𝑘,− 𝐷𝑘,− 𝐷𝑘,−

𝐷𝑘,+ 𝐷𝑘,− 𝐷𝑘,+ 𝐷𝑘,−

𝐷𝑘,− 𝐷𝑘,+ 𝐷𝑘,− 𝐷𝑘,+

(I) (I)

(II) (II)

(b)

𝑗 − 1 𝑗 𝑗 + 1

(a) 𝒏 = 𝟐𝒌

(c)
𝒏 = 𝟐𝒌 − 𝟏 (even 𝒌) 𝒏 = 𝟐𝒌 − 𝟏 (odd 𝒌)

FIG. 3. Structure of the fixed-point MPSs. Each auxiliary
site carries a Hilbert space that is given by an irreducible
spinor representation of the Lie algebra so(n + 1). The SPT
phase has a unique ground state for (a) the n = 2k case and
two-fold degenerate ground states for the n = 2k−1 case with
(b) even k and (c) odd k, respectively.

For n = 2k, the (unique) ground state is therefore given
by |Ψh=0⟩ =

∏N
j=1 |(0)⟩j,j+1 [Fig. 3(a)]. Complications

appear in the case n = 2k − 1 due to the reducibility
of the corresponding spinor representation; here, the ir-
reducible representation Dk,± at auxiliary site l is ob-
tained by acting with the projector P±

l ≡ (1±Λ2k+1
l )/2.

As one can easily show, these projectors are related
to the local fermion parity by P+

2j−1P
+
2j + P−

2j−1P
−
2j =

[1+(−1)kQj ]/2, P
+
2j−1P

−
2j+P−

2j−1P
+
2j = [1−(−1)kQj ]/2.

By choosing the eigenvalue of Qj to be +1 at each phys-
ical site j without loss of generality, this decomposition
results in two degenerate ground states [Fig. 3(b)]:

|Ψ(I)
h=0⟩ =

N∏
j=1

[
P+
2jP

+
2j+1|(0)⟩j,j+1

]
, (31a)

|Ψ(II)
h=0⟩ =

N∏
j=1

[
P−
2jP

−
2j+1|(0)⟩j,j+1

]
(31b)

for even k, or [Fig. 3(c)]

|Ψ(I)
h=0⟩ =

N∏
j=1

[
P−
2jP

+
2j+1|(0)⟩j,j+1

]
, (32a)

|Ψ(II)
h=0⟩ =

N∏
j=1

[
P+
2jP

−
2j+1|(0)⟩j,j+1

]
(32b)

for odd k, in agreement with our semi-quantitative anal-
ysis using the Majorana representation.

At h = 0, the “bond-singlet” form of the ground
state(s) indicates that the latter admits parent Hamil-
tonian with symmetry enhanced to SO(n + 1). In-
deed, as the SO(n + 1)-singlet given in (30) satis-
fies Λαβ

2j Λ
αβ
2j+1|(0)⟩j,j+1 = −|(0)⟩j,j+1, 1 ≤ α <

β ≤ (n + 1), |(0)⟩j,j+1 minimizes the eigenvalue of an
SO(n + 1)-symmetric Heisenberg interaction K2j,2j+1 ≡∑

1≤α<β≤(n+1) Λ
αβ
2j Λ

αβ
2j+1. Thus, a parent Hamiltonian

of the ground state |Ψh=0⟩ =
∏N

j=1 |(0)⟩j,j+1 for n = 2k
is given by

H̃ =

N∑
j=1

K2j,2j+1 =

N∑
j=1

∑
1≤α<β≤(n+1)

Γ2α−1,2β−1
j Γ2α,2β

j+1 ,

(33)
where we have “grouped” two auxiliary sites back to get
a physical one, and used the convention Γ2α,2n+2 ≡ Γ2α.
For n = 2k − 1, as discussed above, one can project into
the subspace with Qj = +1, j = 1, . . . , N , and conclude
that |Ψ(I)

h=0⟩ and |Ψ(II)
h=0⟩ are degenerate ground states of

H̃.
Finally, let us remark on how the above results fit

into the general framework for the classification of SPT
phases. For one-dimensional bosonic systems such as the
spin chains we are considering, the classification is done
by using the group cohomology theory [59–62]. More
precisely, for Hamiltonians that commute with the ac-
tion of a simple Lie algebra g, the SPT phases that
the ground states belong to are in one-to-one corre-
spondence with the elements of the cohomology group
H2(G/G′,U(1)) ∼= G′. Here, G is the simply connected
Lie group associated with g, and G′ is the largest cen-
tral subgroup of G that acts trivially on the local Hilbert
spaces. Evidently, G′ depends on the specific represen-
tation of g at each site. According to the discussions in
the last paragraph, the relevant Lie algebra in our case
is g = so(n + 1) with the associated simply connected
Lie group given by G = Spin(n+ 1). For our models, we
shall show that G′ is just the very largest central sub-
group of G, that is, the center Z(G) itself. To this end,
let us invoke the mathematical fact that each element
of H2(G/Z(G),U(1)), which is the projective class of a
linear representation of G (hence also a representation
of g) with highest weight λ, is labeled by the congru-
ence class [λ] of λ. For the case n = 2k, it turns out
that Z(G) is represented by ρλ = (−1)[λ]I with [λ] an
element of Z2 [63]. As the local Hilbert space at each
physical site consists of the tensor product Dk ⊗Dk [c.f.
Fig. 3(a)], one can see that Z(G) acts trivially on it since
ρDk⊗ρDk = I. The situation is slightly more complicated
for n = 2k − 1, where [λ] = [[λ]1, [λ]2] with [λ]1 ∈ Z2

and [λ]2 ∈ Z4; for the two irreducible spinor representa-
tions Dk,+ and Dk,−, the congruence classes are given by
[1, k − 2 (mod 4)] and [1, k (mod 4)], respectively [64].
If k is even, it is easily seen that these congruence classes
form the group Z2 × Z2: [1, 0] + [1, 0] = [1, 2] + [1, 2] =
[0, 0], [1, 0] + [1, 2] = [1, 2] + [1, 0] = [0, 2]. In fact, it is
known that the elements in Z(G) corresponding to the
two Z2 subgroups are represented by ρ

(1)
λ = (−1)[λ]1I

and ρ
(2)
λ = e

iπ
2 [λ]2I, respectively [63]; in particular, both

of them act trivially on Dk,+ ⊗ Dk,+ or Dk,− ⊗ Dk,−

[c.f. Fig. 3(b)]. If k is odd, on the other hand, the con-
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gruence classes form the group Z4 [63], [1, 1] + [1, 1] =
[1, 3] + [1, 3] = [0, 2], [1, 1] + [1, 3] = [1, 3] + [1, 1] = [0, 0],
and the center is represented by ρλ = e

iπ
2 [λ]2I that acts

trivially on Dk,+ ⊗Dk,− or Dk,− ⊗Dk,+ [c.f. Fig. 3(c)].
Summarizing all the cases above, one comes to the con-
clusion that the center of Spin(n + 1) always acts triv-
ially on the local Hilbert spaces; for n = 2k there are two
distinct topological phases classified by Z2, whereas for
n = 2k − 1 there are four phases which are classified by
Z2×Z2 (resp. Z4) if k is even (resp. odd). These results
can be understood physically in terms of the edge modes,
as the latter transform in a projective representation of
G that belongs to a congruence class. This information is
made manifest by the structure of the fixed-point MPSs
(c.f. Fig. 3) since an arbitrary entanglement cut gives
rise to a pair of virtual edge modes carrying the represen-
tation at an auxiliary site and the representation conju-
gate to it. These fixed-point MPSs are the representative
states for the corresponding SPT phases, and those for
all the other phases can be obtained by “stacking” these
states (which amounts to taking tensor products of the
representations).

V. KRAMERS-WANNIER DUALITY AND
ONSAGER ALGEBRA

The renowned Kramers-Wannier (KW) duality relates
the physics of the same model at different couplings.
The power of KW duality has been demonstrated in the
context of two-dimensional Ising model (or TFI chain),
where the transition temperature between ordered and
disordered phases was identified as the self-dual point [4].
It is remarkable that this is an exact result which predates
Onsager’s exact solution [6]; the latter, in its original
form, was based on an infinite-dimensional Lie algebra
which now bears the name of Onsager and turns out to
be closely related to the KW duality [9]. The aim of
this Section is to show that our models given by (7), as
natural generalizations of the TFI chain, also enjoy these
elegant structures.

To this end, the Hamiltonian (7) is rewritten as

H =

N∑
j=1

n∑
α=1

√
2
(
hE

(α)
2j−1 + JE

(α)
2j

)
(34)

up to a constant, with

E
(α)
2j−1 =

1√
2

(
1− Γ2α,2α−1

j

)
, j = 1, . . . , N (35)

and

E
(α)
2j =


1√
2

(
1 + Γ2α−1,2n+1

j Γ2α
j+1

)
,

1√
2

(
1 + Γ2α−1,2n+1

N Γ2α
1

)
,

1 ≤ j ≤ N − 1

j = N.

(36)

These operators generate n independent copies of the (pe-
riodic) Temperley-Lieb algebra [65, 66]:

(E
(α)
j )2 =

√
2E

(α)
j , E

(α)
j E

(α)
j±1 (mod 2N)E

(α)
j = E

(α)
j ,

E
(α)
j E

(α)
j′ = E

(α)
j′ E

(α)
j , |j − j′ (mod 2N)| ≥ 2, (37)

where α = 1, . . . , n and j = 1, 2, . . . , 2N . For the case of
TFI chain [67], the Temperley-Lieb generators are given
by E2j−1 = (1+σx

j )/
√
2 and E2j = (1−σz

jσ
z
j+1)/

√
2; the

KW duality simply amounts to the map σx
j 7→ −σz

jσ
z
j+1,

σz
jσ

z
j+1 7→ −σx

j+1 or Ej 7→ Ej+1, with possible subtleties
arising from the boundary condition. In fact, one can
verify using (37) that the unitary operator defined as

U =

n∏
α=1

2N−1∏
j=1

exp

(
iπ

2
√
2
E

(α)
j

)
(38)

acts on the Temperley-Lieb generators as

UE
(α)
j U† =

{
E

(α)
j+1,

1√
2

(
1 + wΓ2α,2α−1

1

)
,

1 ≤ j ≤ 2N − 1

j = 2N.

(39)
Thus, the unitary operator U implements the duality
transformation (h ↔ J), revealing directly on the lattice
level the structure of exact KW duality in our models;
the self-dual point at J = h is precisely the Spin(n)1
quantum critical point. The only subtlety arises at the
boundary; in particular, one finds that the form of the
Hamiltonian is preserved by the duality transformation
only in the sector with “Z2 flux” w = −1 (i.e., the NS
sector). This is not surprising, as the KW duality is
by no means any “symmetry” in the conventional sense.
Nevertheless, it is worth noting that [U,Mαβ ] = 0 with
Mαβ =

∑N
j=1(Γ

2α−1,2β−1
j + Γ2α,2β

j ), 1 ≤ α < β ≤ n, so
that the KW duality keeps the global SO(n) symmetry
of our model intact.

The Onsager algebra was originally formulated in
terms of an infinite number of generators satisfying cer-
tain commutation relations [6]. Equivalently, the On-
sager algebra can be characterized by a pair of opera-
tors, Q and Q̃, subjecting to the so-called Dolan-Grady
relations [9, 68–70]

[Q, [Q, [Q, Q̃]]] = 16[Q, Q̃], [Q̃, [Q̃, [Q̃,Q]]] = 16[Q̃,Q].
(40)

By defining Q =
∑N

j=1

∑n
α=1 Γ

2α−1,2n+1
j Γ2α

j+1 and Q̃ =

−
∑N

j=1

∑n
α=1 Γ

2α,2α−1
j , the Hamiltonian (7) simply

reads H = JQ+hQ̃ and it can be verified that Q and Q̃
fulfil the Dolan-Grady relations (40). Note that Q and
Q̃ are related by the KW duality, under which (40) is
preserved. As a consequence of the Onsager algebra, an
infinite set of conserved charges can be derived, providing
insight into the integrability of our models.
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VI. SUMMARY AND OUTLOOK

In summary, we have constructed a family of SO(n)-
symmetric spin chains which generalize the transverse-
field Ising chain for n = 1. These models can be mapped
to n itinerant Majorana fermions coupled to a static Z2

gauge field and are hence exactly solvable. The phase
diagram includes two distinct gapped phases as well as
a critical point which is described by the Spin(n)1 CFT.
One of the two gapped phases is trivial, while the other
is an SPT phase. These two gapped phases are found to
be related to each other via a Kramers-Wannier duality,
while the Spin(n)1 critical point lies at the self-dual point.
Closely related to the duality is the infinite-dimensional
Onsager algebra; in fact, the interconnection among the
Onsager algebra, the (generalized) Clifford algebra and
the Temperley-Lieb algebra was exploited in Ref. [71].
This reveals a rich algebraic structure of our models.

The nature of the quantum critical point was charac-
terized by rigorously computing the partition function,
of which the continuum limit agrees with the Spin(n)1
CFT. The latter CFT is formulated in terms of n free
massless Majorana fermion fields. In the vicinity of this
critical point, the Majorana fermions acquire a non-zero
but small mass; as the correlation length is relatively
large, the continuous description still applies, for which
the effective Hamiltonian density reads

Heff = −i

n∑
α=1

[v
2

(
ξR
α∂xξ

R
α − ξL

α∂xξ
L
α

)
+mξR

α ξ
L
α

]
, (41)

where ξ
R(L)
α (x) is the right(left)-moving Majorana

fermion field with “color” α (= 1, . . . , n), v is the ve-
locity, and m is the Majorana mass. The masses of all
Majorana fermion fields being the same implies SO(n)
symmetry. The phase transition is indicated by the sign
change of the Majorana mass. The models we proposed
in this work furnish a perfect lattice realization of the
effective field theory (41).

There are several interesting directions for future inves-
tigations. First, the SO(7) symmetry of the model with
n = 7 can be explicitly broken down to G2 by adding
local interaction terms (see Ref. [72] for related discus-
sions on a different model). It would be worth exploring
how to use our model as the basic building block for con-
structing the Fibonacci topological superconductor pro-
posed by Hu and Kane [73]. Second, we expect that
the method for constructing exactly solvable models with
Majorana fermions coupled to Z2 gauge fields can also be
used for proposing symmetry-protected quantum critical
models [74–78]. It would be interesting to explore, for
instance, duality [79, 80] and conformal boundary con-

ditions [81] in such models. Third, one may consider
multiple species of Zn parafermions coupled to a static
Zn gauge field, which would be a natural generalization
of the models in the present work. It is expected that ex-
otic critical points and different types of gapped phases
would emerge. Finally, the beautiful formalism of topo-
logical defects [82–84] may also be exploited to shed light
on the Kramers-Wannier duality or, more generally, cat-
egorical symmetries in our models; this aspect will be
considered in future works.

Note added.- After submitting the preprint of our
manuscript to arXiv, we were reminded by the authors of
Ref. [85] that they have also considered one-dimensional
Gamma matrix models including our Hamiltonian (7)
and solved them using the Jordan-Wigner transforma-
tion. This calls for a comparison between our present
work and Ref. [85]. The analysis of the conformal criti-
calities and the nature of the gapped phases, which con-
stitutes an essential part of our present work, was not
included in Ref. [85]. Moreover, both works complement
each other as the method being used in our work to solve
the models is Kitaev-type Majorana representation, in
contrast to the Jordan-Wigner transformation. We thank
the authors of Ref. [85] for bringing their work to our at-
tention.
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Appendix A: Representation of the Clifford algebra
Cl2n+1,0(R)

To construct a representation of the Clifford algebra
Cl2n+1,0(R), we distinguish between the cases n = 2k
and n = 2k−1. To make the connection with spinor rep-
resentations of the so(n+1) algebra clear (as exploited in
Sec. IV), in the following we utilize two copies of repre-
sentation of the Clifford algebra Cl2k+1,0(R) to construct
that of Cl2n+1,0(R).

It is straightforward to verify that the 2k-dimensional
matrices Λα, α = 1, 2, . . . , (2k + 1), defined as [58]
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Λ1 = σy
1 ⊗ σz

2 ⊗ · · · ⊗ σz
k, Λ2 = −σx

1 ⊗ σz
2 ⊗ · · · ⊗ σz

k,

Λ3 = σ0
1 ⊗ σy

2 ⊗ · · · ⊗ σz
k, Λ4 = −σ0

1 ⊗ σx
2 ⊗ · · · ⊗ σz

k,

· · · · · ·
Λ2k−1 = σ0

1 ⊗ σ0
2 ⊗ · · · ⊗ σy

k , Λ2k = −σ0
1 ⊗ σ0

2 ⊗ · · · ⊗ σx
k ,

Λ2k+1 = σz
1 ⊗ σz

2 ⊗ · · · ⊗ σz
k, (A1)

satisfy {Λα,Λβ} = 2δαβ and generate Cl2k+1,0(R). Here
σ0 is the 2×2 identity matrix and the subscripts label the
Hilbert subspaces in which these matrices act. It is also
convenient to define the commutators Λαβ ≡ i

2 [Λ
α,Λβ ]

among these matrices. As we will be using two copies of
this representation of Cl2k+1,0(R), let us denote the ma-
trices defined in (A1) as Λα

1→k, and Λα
k+1→2k are similarly

defined.

1. n = 2k

For the case n = 2k, the (2n + 1) Gamma-matrices
given by

Γ2α−1 = Λ2k+1
1→k ⊗ Λα

k+1→2k, α = 1, 2, . . . , (2k + 1),

Γ2α = Λα,2k+1
1→k ⊗ 1k+1→2k, α = 1, 2, . . . , 2k (A2)

generate Cl2n+1,0(R), where 1k+1→2k ≡ σ0
k+1⊗· · ·⊗σ0

2k.
These Gamma-matrices are 22k-dimensional; according
to the definition (A2), their product can be computed as
follows:

Γ1Γ2 · · ·Γ2n+1

= (−1)k

(
2k∏
α=1

Γ2α−1

)(
2k∏
α=1

Γ2α

)
Γ4k+1

= (−1)k

(
2k+1∏
α=1

Λα
1→k

)
⊗

(
2k+1∏
α=1

Λα
k+1→2k

)
= 11→2k, (A3)

where we have made use of the identity Λ1Λ2 · · ·Λ2k+1 =
ik in the last step. Thus, the local fermion parity (8) is
Qloc. = (−1)k within this representation. Using (A2),
the representation for other operators that appear in the
Hamiltonian (7) can also be derived:

Γ2α−1,2n+1 = iΓ2α−1Γ2n+1 = 11→k ⊗ Λα,2k+1
k+1→2k, (A4)

Γ2α,2α−1 = iΓ2αΓ2α−1 = −Λα
1→k ⊗ Λα

k+1→2k, (A5)

where α = 1, 2, . . . , 2k.
To illustrate the above representation more concretely,

let us consider the simplest example with k = 1 and

n = 2. In this case, the Gamma-matrices are expressed
in terms of the Pauli operators as follows:

Γ1 = σz ⊗ σy, Γ2 = −σx ⊗ σ0,

Γ3 = −σz ⊗ σx, Γ4 = −σy ⊗ σ0,

Γ5 = σz ⊗ σz. (A6)

To simplify the Hamiltonian (7) with n = 2, it is useful
to regard each site in the chain as composed of two “con-
stituent” ones; the four-dimensional local Hilbert space
at each original site is accordingly decomposed into the
tensor product of two two-dimensional ones. After this
“splitting” transformation, the Hamiltonian reads

Hn=2 =

N∑
j=1

[
J
(
σx
2jσ

x
2j+1 + σy

2jσ
y
2j+1

)
+ h

(
σx
2j−1σ

x
2j + σy

2j−1σ
y
2j

) ]
, (A7)

which is that of a spin-1/2 bond-alternating isotropic XY
chain, which further reduces to the homogeneous one at
the critical point J = h.

2. n = 2k − 1

In this case, the Gamma-matrices are represented in
parallel with the case n = 2k:

Γ2α−1 = Λ2k
1→k ⊗ Λα

k+1→2k, α = 1, 2, . . . , 2k,

Γ2α = Λα,2k
1→k ⊗ 1k+1→2k, α = 1, 2, . . . , (2k − 1).

(A8)

The product of these Gamma-matrices are now

Γ1Γ2 · · ·Γ2n+1 = iσz
1 ⊗ σz

2 ⊗ · · · ⊗ σz
2k. (A9)

Apparently, Qloc. = i2k−1Γ1Γ2 · · ·Γ2n+1 is diagonal and
Q2

loc. = 1. The representation for other operators is sim-
ilarly derived:

Γ2α−1,2n+1 = 11→k ⊗ Λα,2k
k+1→2k, (A10)

Γ2α,2α−1 = −Λα
1→k ⊗ Λα

k+1→2k, (A11)

where α = 1, 2, . . . , (2k − 1).
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Note that the dimension of the above Gamma-matrices
is 22k, which is the same as that in the case n = 2k. How-
ever, as Qloc. commutes with the set {Γ1,Γ2, . . . ,Γ2n+1},
each of the Gamma-matrices breaks up into two blocks
of size 22k−1×22k−1 (= 2n×2n) that are associated with
the local fermion parity eigenvalues Qloc. = ±1, respec-
tively. Let us now illustrate this point by considering the
simplest example with k = 1 and n = 1. In this case, one
has (zero entries are left empty)

Γ1 = −σx ⊗ σy =

 i
−i

i
−i

 ,

Γ2 = −σz ⊗ σ0 = diag(−1,−1, 1, 1),

Γ3 = σx ⊗ σx =

 1
1

1
1

 , (A12)

and Qloc. = −σz ⊗ σz = diag(−1, 1, 1,−1). By project-
ing into the subspace with Qloc. = +1 [which amounts
to applying with the projector (1 + Qloc.)/2], one finds
that Γ1 7→ σy, Γ2 7→ −σz, Γ3 7→ σx, and other operators
that appear in the Hamiltonian (7) with n = 1 become
Γ1,3 7→ σz, Γ2,1 7→ −σx. Thus, we conclude that Hn=1

is nothing but the Hamiltonian of the TFI chain given
in (1).
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