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Abstract: We use hindcasts from a state-of-the-art decadal climate prediction system initialized
between 1979 and 2017 to explore the predictability of the Antarctic dipole—that is, the seesaw
between sea ice cover in the Weddell and Ross Seas, and discuss its implications for Antarctic sea ice
predictability. Our results indicate low forecast skills for the Antarctic dipole in the first hindcast year,
with a strong relaxation of March values toward the climatology contrasting with an overestimation of
anomalies in September, which we interpret as being linked to a predominance of local drift processes
over initialized large-scale dynamics. Forecast skills for the Antarctic dipole and total Antarctic
sea ice extent are uncorrelated. Limited predictability of the Antarctic dipole is also found under
preconditioning around strong warm and strong cold events of the El Niño-Southern Oscillation.
Initialization timing and model drift are reported as potential explanations for the poor predictive
skills identified.

Keywords: Antarctic sea ice; decadal climate predictions; Antarctic dipole; ENSO; interannual climate
variability; intrinsic ocean variability

1. Introduction

Antarctic sea ice forms in the open Southern Ocean around the Antarctica landmass,
and its spatio-temporal evolution is largely shaped by equatorward drifting and melting
forced by the circumpolar system of southern midlatitude westerly winds and ocean
currents. These winds and currents set the northern boundary of Antarctic sea ice and,
by limiting anomalous atmospheric and oceanic poleward heat flows, reduce its exposure
to global changes [1–3]. The Southern Ocean, and the Antarctic circumpolar current in
particular, feature large eddy activity and spontaneously generate strong ocean intrinsic
variability [4–8]. Accordingly, Antarctic sea ice has displayed modest historical trends in the
early satellite era [9–11], as its variability was dominated by the seasonal component [12].
The more pronounced Antarctic sea ice extent anomalies observed since the 2000s, especially
in the West Antarctic [13,14], have revitalized interest in interannual and decadal variability
and the predictability of this critical component of the Earth system [15–20]. Even more so,
the record minimum extents observed in 2022 and 2023, in concomitance with Southern
Ocean subsurface warming, have been portrayed as the first evidence of a new state of
Antarctic sea ice [21]. However, despite potential sources of predictability identified in the
Pacific [18], Indian [22] and Atlantic sectors [23,24], decadal prediction of Antarctic sea ice
remains a challenge for current coupled climate models [25,26].

Interannual variability of Antarctic sea ice is dominated by a seesaw in sea ice distri-
bution encompassing the Ross–Amundsen Seas and Bellingshausen–Weddell Seas, known
as the Antarctic dipole (ADP), which mainly represents a standing wave in the western
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hemisphere of the Antarctic [27]. The ADP index accordingly describes temporal variations
in the strength of this seesaw, with positive phases of the index describing concomitant
anomalous sea ice cover gains in the Weddell Sea and losses in the Ross Sea, and vice versa
for negative phases. The structure and magnitude of this ADP varies seasonally following
seasonal changes in the overlying atmospheric circulation anomalies [10].

The ADP is associated with the cyclonic flow around the Amundsen Sea Low [28],
where the sea ice dipole is a thermodynamical and dynamical response to the cold equa-
torward wind over the Ross Sea and the warm poleward winds into the Antarctic Penin-
sula/Bellingshausen Sea region. Deepening/shallowing or displacement of the Amundsen
Sea Low are thus associated with ADP anomalies [29]. Wind-driven ADP and Antarctic
sea ice variability and trend have been attributed to several factors, ranging from intrinsic
climate variability to external forcing by stratospheric ozone changes or an increase in
atmospheric greenhouse gas concentrations [30–32]. In addition to local wind forcing, sea
ice variability and trends in the key regions of the ADP have been associated with surface
freshening and changes in the upper stratification of the Southern Ocean that are triggered
by increased precipitation [33] or are part of an ocean-sea ice feedback [34].

Teleconnections have been identified between the ADP and extratropical and tropical
variability in the Southern Hemisphere: on interannual time scales, the ADP and Antarctic
sea ice variability are intertwined with variability of the storm track in the Southern Hemi-
sphere though a variety of thermodynamical and dynamical mechanisms, and feedbacks
that evolve through the austral winter semester [35]. The ADP is associated with the Pacific
South American pattern, which is in turn part of the El Niño-Southern Oscillation (ENSO)
global teleconnection [36–38]. The ENSO-ADP linkage contributes to the host of evidence
from observational and climate modelling studies that point to the tropical Pacific having a
significant effect on Antarctic sea ice cover [10,11,39–42].

This study builds on this evidence, which suggests that the ADP index exhibits
persistent interannual anomalies (especially after being triggered by ENSO forcing), to
assess predictability of the ADP in a state-of-the-art decadal climate prediction system. It
attempts to determine if ENSO, and specifically its teleconnection and associated biases,
predominate over other sources of variability, including the intrinsic variability of the
Southern Ocean dynamics.

2. Materials and Methods
2.1. Decadal Climate Prediction System

This study makes use of the preoperational MiKlip system for decadal climate pre-
dictions, which is based on the high-resolution version of the Max Planck Institute—Earth
System Model (MPI–ESM–HR) [43]. MPI–ESM–HR is a conglomerate of a coupled general
circulation model and subsystem models for land, vegetation, and biogeochemistry. In
MPI–ESM–HR, the atmospheric general circulation model ECHAM6 uses a T127/~100 km
horizontal resolution and 95 hybrid sigma pressure levels that extend up to 0.01 hPa; the
ocean-sea ice model MPIOM [44] uses the TP04 configuration with an eddy-permitting 0.4◦

global resolution on a tripolar grid with 40 z-levels.
In MPI–ESM, oceanic biases prevail in the intermediate layers of the ocean, which reflects

the inability of the model to maintain the correct water mass properties [43,44]. In general, the
ocean in MPI–ESM gets too warm and saline at intermediate levels and in the deep ocean,
whereas it is too cold and fresh in the upper layers. Antarctic sea ice and its seasonal cycle
are generally underestimated in MPI–ESM, which is likely due to a bias in the modeled low-
pressure system over the Amundsen Sea, with repercussions for air pressure distribution over
the Weddell Sea. MPI–ESM–HR and similar or lower-resolution configurations of MPI–ESM
have been widely tested and used in studies of climate dynamics and variability [3,45–47], as
well as in studies of climate predictability [48–51].

We use the output of the MiKlip decadal prediction experiments, which are based on
full-field assimilation of the ORAS4 ocean reanalysis data [52] contributed to the dcppA
experiment of the Decadal Climate Prediction Project (DCPP) [53]. The simulations include
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a historical assimilation run covering the period November 1958–November 2018, hindcasts
initialized on 1 November of each year between 1960 and 2017 and using historical forcing.
Each hindcast consists of five ensemble members that differ in the initial state (r1, . . ., r5).
Our analysis is limited to the period 1979–2018, as sea ice values are relaxed toward the
climatology before the satellite era, which could be inconsistent with other assimilated
data and trigger unrealistic dynamics. The external radiative forcing data are based on
the recommendations by the sixth phase of the Coupled Model Intercomparison Project
(CMIP6), which [54] provides an overview of.

2.2. Data Preprocessing

The output of MPI–ESM–HR is pre-processed to remove the effects of systematic
climate model errors, including drift and bias [48,55,56]. The drift/bias correction method
recommended by the DCPP [53] is employed, and is based on empirical estimates that are
determined as the mean error of all ensembles, when compared to the assimilation run.

Spatially integrated sea ice cover for different key regions of the Southern Ocean is
considered, and specifically, the domains of the Weddell Sea and Ross Sea basins span
latitudes ≤60◦ S at longitudes between 57◦ W and 12◦ E (to the coastline), and between
166◦ E and 155◦ W (to the coastline), respectively.

The ADP index is calculated as the difference between the spatially-integrated sea ice
covers for the Weddell Sea and the Ross Sea.

ENSO is evaluated using the monthly Nino3.4 index, defined as the spatially aver-
aged sea-surface temperature within the domain encompassing 5◦ S–5◦ N latitude and
170◦ W–120◦ W longitude.

2.3. Statistical Analyses

Forecast skills are estimated using the root mean square error (rmse) and the Persis-
tence Index, as detailed in [57]. The value of the initialization year is used as reference for
the calculation of the persistence index.

Trends are estimated using a linear regression with least squares. Time series are
detrended separately for each month of the year. Statistical significance of correlations
accounts for autocorrelation in the series following [58].

Based on the ADP index, years are clustered into two groups, describing strong
positive (upper quartile) and strong negative (lower quartile) values of the index for both
March and September values. Unless otherwise specified, the significance of local sea ice
concentration anomalies for the so-identified clusters is tested with a rank sum (Mann–
Whitney U) test that compares values for each cluster year with those for all other years.

3. Results
3.1. Antarctic SeaIce Evolution and Predictability

Figure 1 illustrates Antarctic sea ice extent evolution and predictability in the MPI–
ESM–HR decadal prediction system. The total Antarctic sea ice extent is characterized by a
long-term positive trend and substantial interannual variability, which are both, in overall
terms, poorly captured by the hindcasts, as evidenced by the envelope of first and second
hindcast year values that widely embed the assimilated time series (Figure 1a). Certain
years (most noticeably 1997, 1998, 2010, 2016 and 2018) are clearly affected by systematic
errors that exceed the range of observed year-by-year variability and are already developed
within the first hindcast year. Accordingly, hindcast skill metrics show substantial year-
by-year variability for both March and September extents (Figure 1c). The persistence
index resembles the rmse in producing generally poor predictions, with only a few years
characterized by positive values, which is indicative of skillful hindcasts (Figure 1d).
The analysis confirms strong year-to-year changes in Antarctic sea ice predictability, and
highlights the separation of winter and summer dynamics (i.e., a skillful prediction of
minimum extent does not guarantee a skillful prediction of the following maximum).
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persistence index (d) for first year March and September predictions (detrended data), with indica-
tion of years clustered according to positive (pale green) and negative (brown) phases of the ADP. 
(e–j) sea ice concentration trends (top, values per decade) and anomalies associated with the clusters 
for negative (mid) and positive (bottom) phases of the ADP for March (e,g,i) and September (f,h,j). 
Only anomalies significant at p = 0.1 (trend) and p = 0.25 (cluster) are plotted. The thick (thin) lines 
are the climatological sea ice edge at the 0 and 0.15 sea ice concentration levels. 

The ADP is characterized by contrasting trends in summer and winter months that 
describe a progressively enhanced seasonal cycle, and by substantial interannual and de-
cadal variability (Figure 1b). The ADP significantly contributes to year-by-year total sea 
ice extent variability in September (r = −0.44, p = 0.004 for 1979–2018 detrended series) but 
less so in March (r = 0.27, p = 0.104 for 1979–2018 detrended series) (Figure 2). Correlations 
increase for non-detrended time series (r = −0.47, p = 0.002 and r = 0.52, p = 0.018 for Sep-
tember and March, respectively), suggesting a connection between the ADP and total Ant-
arctic sea ice trends. This seasonal connection is confirmed by the pattern of March sea ice 
concentration trends when it is superimposed on a positive phase of the ADP, with sea ice 
increase in the Weddell Sea and decrease in the Ross Sea (Figure 1e) contrasting with the 
weaker and more coherent trends in September in the same basin (Figure 1f). Lead-lag 
correlations help to establish causal relationships between the ADP and total Antarctic sea 
ice cover. Figure 2a illustrates the complexity of the interactions through the course of the 

Figure 1. Antarctic sea ice predictions in MPI–ESM–HR. (a,b) Monthly-mean Antarctic total sea
ice extent (a) and Antarctic dipole or ADP (b) anomalies, defined as deviations from the monthly
climatology, in the assimilation run (black: raw data; green: detrended data) and in the first (blue)
and second (orange) hindcast years initialized from 1979 to 2017; (c,d) root mean squared errors (c)
and persistence index (d) for first year March and September predictions (detrended data), with
indication of years clustered according to positive (pale green) and negative (brown) phases of the
ADP. (e–j) sea ice concentration trends (top, values per decade) and anomalies associated with the
clusters for negative (mid) and positive (bottom) phases of the ADP for March (e,g,i) and September
(f,h,j). Only anomalies significant at p = 0.1 (trend) and p = 0.25 (cluster) are plotted. The thick (thin)
lines are the climatological sea ice edge at the 0 and 0.15 sea ice concentration levels.

The ADP is characterized by contrasting trends in summer and winter months that
describe a progressively enhanced seasonal cycle, and by substantial interannual and
decadal variability (Figure 1b). The ADP significantly contributes to year-by-year total sea
ice extent variability in September (r = −0.44, p = 0.004 for 1979–2018 detrended series) but
less so in March (r = 0.27, p = 0.104 for 1979–2018 detrended series) (Figure 2). Correlations
increase for non-detrended time series (r = −0.47, p = 0.002 and r = 0.52, p = 0.018 for
September and March, respectively), suggesting a connection between the ADP and total
Antarctic sea ice trends. This seasonal connection is confirmed by the pattern of March sea
ice concentration trends when it is superimposed on a positive phase of the ADP, with sea
ice increase in the Weddell Sea and decrease in the Ross Sea (Figure 1e) contrasting with
the weaker and more coherent trends in September in the same basin (Figure 1f). Lead-lag
correlations help to establish causal relationships between the ADP and total Antarctic sea
ice cover. Figure 2a illustrates the complexity of the interactions through the course of the
year, where the ADP leads total sea ice in December, and then lags behind it in late austral
summer and autumn. The positive correlations during this period of the year suggest that
there is constructive superposition of the regional and circumpolar anomalies. In contrast,
as noted above, correlations are generally negative during the austral winter, which is
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indicative of negative feedbacks; significant values when the ADP leads suggest they
originate in sea ice anomalies in the Western Hemisphere. The development of interactions
between ADP and sea ice concentrations in austral summer and toward the climatological
annual minimum in March highlights dynamics that are internal to the Weddell Sea: in an
initial positive phase of the ADP in November, anomalous sea ice gains develop in January
to the east of the tip of the Antarctic peninsula, near to the 15% sea ice concentration margin,
and then move eastward toward the shelf, reinforcing the positive ADP in February as the
sea ice margin shrinks (Figure 2b–e).
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Figure 2. Relationship between total Antarctic total sea ice extent and Antarctic dipole (ADP) in MPI–
ESM–HR. (a) Correlation coefficients between detrended 1979–2018 annual time series for individual
months (x-axis reference is for ADP), where total Antarctic sea ice extent data are from the same as
month as for ADP (red), the preceding month (orange) or the following month (blue). Squares indicate
statistically significant correlations (p < 0.05); (b–e) regressions of sea ice concentration on the ADP
(1012 km2) for January, with ADP leading by one month (b), January at lag-0 (c), January, with ADP
lagging by one month (d), February at lag-0 (e). Only local regression significant at p = 0.1 are shown.
The thick (thin) lines are the climatological sea ice edge at the 0 and 0.15 sea ice concentration levels.

A cluster analysis of the Weddell and Ross Seas total sea ice covers describes how
both basins contribute to large anomalies of the ADP (Figure 3a–c): For March, both basins
contribute to the ADP anomaly, with significantly anomalous gains (losses) in the Weddell
(Ross) Sea for positive against negative phases of the ADP. Median differences (1012 km2)
are 0.577 for ADP, 0.505 for the Weddell Sea and −0.157 for the Ross Sea. For September,
only the Ross Sea exhibits significant differences in sea ice cover between opposite phases
of the ADP, whereas the Weddell sea ice cover changes are irrelevant (median differences,
in 1012 km2 are 0.248 and 0.025, respectively). There is therefore an asymmetry between the
relative roles of Weddell and Ross sea ice cover for the ADP in March and September. The
assimilated spatial patterns of sea ice concentration reveal the elements of this asymmetry
and suggest that different dynamics operate under strong positive and strong negative
phases of the ADP: In March, strong negative ADP highlights strong anomalous sea ice
loss in the Weddell Sea (Figure 1g), while strong positive ADP stems from sea ice gain in
the Weddell Sea, coupled with sea ice loss in the Ross Sea (Figure 1i); in September, the
phase of the ADP appears to strongly relate to anomalous sea ice gain or loss around the
sea ice edge in the Ross Sea, while anomalies of the opposite sign relate to the upstream
Drake passage, and only produce a weak signature in the Weddell Sea (Figure 1h,j).
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For March, first year hindcasts display a strong relaxation of the ADP and both Wed-
dell and Ross sea ice cover anomalies toward the climatology, as shown by the box-
whisker plots shrunk around the zero value for both the positive and negative ADP clus-
ters (Figure 3a–c). The difference between hindcast medians has an opposite sign, com-
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Figure 3. Predictions of key components of Antarctic sea ice variability in MPI–ESM–HR. (a–d) Cluster
analysis of monthly-mean March (left) and September (right) shows anomalies of the Antarctic dipole
(ADP) (a), Weddell (b) and Ross (c) sea ice area and Nino3.4 (d) clustered around strong negative
(green) and strong positive (red) phases of the ADP, in assimilation and first year hindcasts. The
numbers at the bottom are p values for a rank sum test that compares the two clusters; (e–j) sea ice
concentration trends (top, values per decade) and anomalies associated with the clusters for negative
(mid) and positive (bottom) phases of the ADP for March (e,g,i) and September (f,h,j) in the first year
hindcasts. Only anomalies significant at p = 0.1 (trend) and p = 0.25 (cluster) are plotted. The thick
(thin) lines are the climatological sea ice edge at the 0 and 0.15 sea ice concentration levels.

In a similar way to total Antarctic sea ice extent, but more recurrently, first year
hindcast errors for the ADP can exceed observed year-by-year variability, which is indica-
tive of an overall poor predictive performance (Figure 1b). The ADP also exhibits strong
year-by-year variations in predictability, as seen in skill metrics that include rmse and
persistence index (Figure 1c,d), with no correlation between skills for the ADP and for total
sea ice extent. Clustering years based on strong positive and strong negative values of the
ADP (Figure 1d) does not reveal a dependency of skills on the state of the ADP, in either
March or September (rank sum tests performed on rmse and the persistence index yield
non-significant results).

For March, first year hindcasts display a strong relaxation of the ADP and both
Weddell and Ross sea ice cover anomalies toward the climatology, as shown by the box-
whisker plots shrunk around the zero value for both the positive and negative ADP clusters
(Figure 3a–c). The difference between hindcast medians has an opposite sign, compared to
the assimilation of the ADP and the Ross sea ice cover, estimated as −0.202 1012 km2 and
0.085 1012 km2, respectively. The associated anomalous patterns confirm the ubiquitous
weakness of Antarctic sea ice concentration anomalies in hindcasts around strong anoma-
lous phases of the ADP (Figure 3g,i). For September, the ADP clusters yield hindcasts
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that are characterized by a large spread, most often crossing the zero value within the
interquartile range (Figure 3a–c). In the hindcasts, the ADP clusters are not significantly
different, but do have anomalies with opposite sign than in the assimilated data. This
tendency is sharper for Ross sea ice concentration (Figure 3c), where the two clusters are
significantly different at p = 0.1. Patterns of sea ice concentration anomalies reveal that the
Ross Sea tendency stems from a competition between sea ice loss in the interior and sea
ice gain in the exterior portions of the basin (Figure 3h,j). In hindcasts, the largest sea ice
concentration difference between positive and negative ADP conditions is an extensive and
strong loss, with a sea ice fraction anomaly in excess of −0.2, to the east of the Weddell Sea
within the 15% sea ice concentration margin.

There seems to be an interplay between difficulties in predicting ADP anomalies and
sea ice cover trends. In March, tendential sea ice growth occurs especially in the Weddell
and eastern Ross Seas, which is partly compensated by losses in the Bellinghausen Sea
(Figure 1e); this is similar to what was observed for ADP anomalies, where trends in
hindcasts are much smaller (about one order of magnitude) and the associated spatial
pattern only weakly superposes on the assimilated counterpart (Figure 3e). In September,
significant sea ice cover trends are weak, with a sparse circumpolar distribution (Figure 1f);
trends in hindcasts show a more structured spatial pattern, with a tripole over the Weddell
Sea and eastwards of it (Figure 3f). Overall, when compared to assimilated data, the
magnitude of changes in hindcasts appear to be smaller in March and larger in September.

3.2. Teleconnections and Sea Ice Predictability

Figure 4 compares the evolution of Antarctic sea ice concentration, sea surface tem-
perature and atmospheric circulation anomalies under strong positive March ADP phases,
both in the assimilation run and in the hindcasts. There is substantial agreement between
hindcasts and assimilated data from the first hindcast month (November), with a seesaw
between anomalous sea ice gain in the western Weddell/Bellinghausen/Somov Seas and
loss in the Ross Sea, which is superposed on a zonal wave train with negative upper
tropospheric geopotential height anomalies over the Amundsen Sea, and consistent El
Niño-like sea surface temperature anomalies (Figure 4a,f). In the assimilation, these sea ice
concentration anomalies weaken in the following months, and persist in the hindcasts (at
fraction anomalies around or in excess of 0.2), especially in the Bellinghausen Sea, where
sea ice is largely overestimated in December and January (Figure 4b–d,g–i).
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Figure 4. Evolution of Antarctic sea ice, sea surface temperature and atmospheric circulation to-
ward strong positive phases of the Antarctic dipole, or ADP, in March, simulated in MPI–ESM–HR.
(a–e) Anomalies for the assimilation run; (f–j) anomalies for the hindcasts. Only statistically signifi-
cant anomalies at p = 0.25 are shown, except for atmospheric circulation changes (continuous contour:
significant; dashed contour: non-significant). Data are linearly detrended. Sea surface tempera-
ture anomalies are only shown until 60◦ S. Atmospheric circulation changes, only available for the
assimilation run, are diagnosed via geopotential height at 300 hPa (blue: positive; green: negative).
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At this stage, the patterns of sea surface temperature anomalies show better con-
sistency than sea ice between assimilated and hindcast data, although the latter feature
a stronger meridional tripole in the Nino3.4 longitudinal band, encompassing positive
anomalies at the equator and mid-latitudes, and negative anomalies in the tropics. Con-
comitantly, the atmospheric wave anomaly moves westward while dampening, with the
negative geopotential height anomalies found over the Ross Sea in December becoming
non-significant over the sea ice domain in January. We argue that in the hindcasts the wave
remains strong and stationary, contributing to the erroneous persistence of the initialized
sea ice anomalies. In February and March, the positive ADP pattern is fully developed in
assimilated data, concomitant with a clear El Niño anomaly (Figure 4d,e). In contrasting
the earlier months with February and March, the hindcasts show weaker sea ice and sea
surface temperature anomalies than assimilated data (Figure 4i,j), yielding the vanishing
sea ice concentration anomalies already observed in Figure 3i. The overall impression is
that when hindcasts are compared to assimilated data they are seen to be characterized by
a weaker imprint of large-scale dynamics and a predominance of a slow local relaxation of
initialized conditions toward the climatology.

3.3. Model Drift

Figure 5 illustrates the month-by-month evolution of Antarctic sea ice concentration
drift, up until March of the first hindcast year. In the first hindcast month, the drift already
causes a ubiquitous sea ice loss around Antarctica, with locally large values exceeding
10% of the grid area, especially in the eastern Weddell Sea and in the west of the Ross
Sea (Figure 5a). In the following months, this systematic erroneous sea ice loss moves
toward the central portions of the Weddell and Ross Seas where, in concomitance with the
seasonal shrinking of the sea ice margin, it strengthens up to an underestimation of sea ice
cover that is more than 30% than the amount in assimilated data (Figure 5b,c). In March,
the regions characterized by the strongest drift correspond to the ADP key regions in the
Ross and Weddell Seas (compare Figure 5e with Figure 1g,i). Accordingly, despite the drift
being removed from hindcasts in the post-processing of the model output, the associated
systematic erroneous local sea ice loss appears to predominate over other dynamics, and
leads toward a fast dampening of initialization constraints.
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including November (a), December (b), January (c), February (d) and March (e). The thick (thin) lines
are the climatological sea ice edge at the 0 and 0.15 sea ice concentration levels.
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3.4. ENSO as a Source of ADP Predictability

ENSO is a known forcing factor of ADP variability, which is confirmed here by the
significantly different ENSO state for strong positive and strong negative phases of the ADP
in March, which correspond to prevalent El Niño- and La Niña-like anomalies, respectively
(Figure 3d). Specifically, the median of the Nino3.4 index in strong (negative) positive
ADP phases is +0.28 ◦C (−0.39 ◦C). However, compared to assimilated data, the hindcasts
largely underestimate ENSO anomalies in March, with largely overlapping distributions of
the Nino3.4 index (+0.31 and +0.001 ◦C in strong positive and strong negative phases of
the ADP, respectively) yielding non-significant ENSO differences (Figure 3d). Since this
corresponds to a failure of the ADP forecast (Figures 3a–c and 4e,j), we are led to question
the extent to which the lack of predictability in the ADP can be attributed to the weak skill
of ENSO predictions.

Figure 6 illustrates the evolution in assimilation and hindcasts of ENSO and Antarctic
sea ice anomalies around the occurrence of major El Niños (first hindcast March in 1983,
1992, 1998, 2010, 2016) and La Niñas (first hindcast March in 1985, 1989, 2000, 2008, 2011).
In assimilated data related to major El Niño and La Niña events, ENSO remains in a
significantly different state from the May preceding to the June following the peak of the
event (black squares in Figure 6d). Hindcasts show an even longer persistence of differences,
with both ensemble mean and individual hindcasts (grey squares in Figure 6d) lasting up
to one year after the peak of the event and reemerging in the following austral autumn
(mostly related to enduring warm conditions following El Niños, and to a stronger shift to
El Niño-like anomalies one year after La Niñas—see Figure 6d). Specifically, at around the
peak of the El Niños, defined as the December–February average, the ensemble average
of the Nino3.4 anomaly for all El Niño events is 2.33 ◦C for the assimilation and 1.95 ◦C
for the hindcasts; in the following austral winter, defined as the June–August average, the
ensemble average for all El Niño events is −0.32 ◦C for the assimilation and 0.60 ◦C for
the hindcasts.

The ADP shows significant differences only before the peak of El Niño/La Niña, a
feature which is only captured by predictions in the first hindcast month (November of
Year 0) (Figure 6a). In March of the first hindcast year, the ensemble average of the ADP
anomaly for all El Niño (La Niña) events is 0.044 (−0.115), 1012 km2 in the assimilation
and 0.011 (−0.016) 1012 km2 in the hindcasts. Instead, the ADP is significantly different
in the two autumns/winters following the peak of El Niño/La Niña, with a good overlap
with the development of too warm El Niño conditions. The ensemble average of the ADP
anomaly for all El Niño (La Niña) events in the austral winter following the peak of the
event is −0.048 (−0.027), 1012 km2 for the assimilation and −0.057 (0.091) 1012 km2 for
the hindcasts. The large forecast spread during these periods however indicates the low
signal-to-noise ratio of simulated ENSO influences on the ADP.

Analysis of clusters of Weddell and Ross Sea ice covers further complicates a robust
attribution of ADP anomalies around major ENSO events. The assimilated data already
only show significant differences sporadically, most noticeably for Ross Sea sea ice cover in
the austral winter preceding the peak of El Niño/La Niña (Figure 6b,c), which however
strongly depended on one event (the 2008 La Niña). Hindcasts show significant differences
in the Weddell Sea during the first hindcast year (sporadic), and in the Ross Sea during the
second hindcast year. Finally, this suggests that multiple mechanisms acting on the two
characteristic basins of the ADP contribute to its apparent predictability being conditioned
to ENSO.
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Figure 6. ENSO as a precursor of Antarctic sea ice variability in MPI–ESM–HR. Evolution of Antarctic
dipole or ADP (a), Weddell (b) and Ross (c) sea ice cover and Nino3.4 index (d) anomalies for
prominent warm (yellow: assimilation; brown: hindcasts) and cold (blue: assimilation; green:
hindcasts) ENSO events. Data are deseasonalized and smoothed with a 3-month running average.
Black (grey; large: hindcast mean; small: individual hindcasts) squares indicate when the difference
between anomalies under warm and cold ENSO is statistically significant (p = 0.1). Hindcasts are
initialized in November of Year 0.

4. Discussion

Our study adds to the host of recent scientific evidence [16–18,25,26,59] that especially
highlight Antarctic sea ice and the Antarctic dipole as critical aspects of near-term climate
variability and predictability, especially in the austral summer season [26,60]. The stark
contrast between the large and extensive assimilated sea ice anomalies, clustered by con-
struction around opposite phases of the ADP, and the lack of responses in the corresponding
predicted values describes the limited predictability of these components of Antarctic sea
ice variability in our model setup. According to our analysis, this limited predictability of
the ADP holds even around strong ENSO events, which have previously been identified
as a major remote source of ADP variability [10,36–38]. Since assimilated data indicate
ENSO as a source of ADP variability and hindcasts indicate predictability for ENSO, at
least in contrasting major El Niños and La Niñas, the lack of ADP predictability under
strong ENSO events implies that other factors dominate over the ENSO forcing.

Among the possible causes of the poor forecast skills are a predictability barrier linked
to the timing of initialization and the erroneous representation in the model of oceanic and
atmospheric processes—or more generally of the interactions and feedbacks in the climate
system. The hindcast initialization in November implies that ENSO anomalies are well de-
veloped, as El Niños typically reach their mature phase in boreal winter [61]; however, other
precursors of Antarctic sea ice variability, especially the southern annular mode [62–64],
might not be well constrained. Also, Antarctic sea ice mostly responds to large-scale modes
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during the austral cold season [10], and the limited predictability evidenced here may
therefore arise from several months of growing errors in sea ice precursors, since the initial-
ization in late austral spring until the teleconnection is fully established. These growing
errors may disrupt the seasonal asymmetry between the ADP and total Antarctic sea ice,
where austral summer is characterized by constructive superposition of anomalies and
winter by anticorrelation. The effects of initialization timing remain difficult to quantify
based on our results, as this would require additional hindcasts initialized at different times
over the year.

The long-lasting differences between clusters of hindcasts initialized around strong
warm and cold phases of ENSO may support the recently suggested potential for multi-year
predictability of ENSO [65]. However, caveats to our analysis include consideration of only
the strongest ENSO events, a weak threshold for statistical significance and possible biases
in ENSO oscillatory dynamics. Further investigation is therefore required before concluding
that MPI–ESM–HR features a broader window of opportunity for ENSO prediction beyond
the spring predictability barrier.

Concerning systematic errors, Antarctic sea ice is generally underestimated in MPI–ESM,
and is affected by a poor representation of the observed seasonal cycle [44]. As shown
here, the model’s drift toward the biased Antarctic sea ice climatology is rapid following
the initialization, with substantial errors diagnosed already in the first hindcast month
and further reinforced in the following months, concomitant with the seasonal sea ice
shrinking during austral spring and summer. This underestimation appears to contribute
to an artificial ADP dampening, as also shown by a multi-model analysis of global warming
scenario experiments, in which reduced Antarctic sea ice weakens the ADP variability [66].
Furthermore, model drifts toward this biased climatology are known to dynamically
interfere with hindcast signals, residuals and background climate, critically contributing
to uncertainty in decadal climate predictions [48]. Due to the drift, artificial anomalies
in sea ice concentration can reach values of −40% in the Weddell Sea in the first March
following initialization (Figure 5e), a value that is comparable to, or even locally exceeds,
the expected difference between assimilated positive and negative phases of the ADP
(Figure 1g,i). Accordingly, hindcasts produce vanishing sea ice concentration anomalies
(Figure 3g,i) as the drift overwhelms other signals. This suggests that the drift is the
dominant factor contributing to lack of ADP predictability in austral summer in our
hindcasts. The mechanism underlying Antarctic sea ice drift is unidentified, but arguably
involves thermodynamic processes linked to the warm surface bias in the Southern Ocean,
detected in this and lower resolution versions of MPI–ESM [43]. Also, current climate
models share a bias in Antarctic sea ice thickness, which calls for improvements in sea ice
dynamics as well [67].

Lack of realism in the simulation of the seasonal phase-locking of ENSO (as shown in
lower resolution versions of MPI–ESM in [44]) may have profound dynamical implications
for the ADP during the drifting phase of the hindcasts, especially during austral spring [11].
Similar concerns arise in relation to the spatial patterns of ENSO, as the bulk of ENSO
activity in MPI–ESM–HR is constrained to the central Pacific [43] and may lack the variety of
ENSO flavors and associated teleconnections shown in observations [68–70]. Beyond biases
in ENSO, the various potential mechanisms of tropical forcing of high-latitude processes
relevant to the ADP may suffer from a biased simulated representation. The underexplored
remote sources of Antarctic sea ice variability include the tropical Atlantic [23,24]. In this
regard, our analysis of ADP highlights (for hindcasts but not assimilated data) extensive
and strong sea ice concentration anomalies to the east of the Weddell Sea that call for further
investigations of Atlantic–Antarctic teleconnections.

Southern Ocean dynamics, and especially their predominant intrinsic component [5–7],
can also critically affect Antarctic sea ice variability and predictability. Purely intrinsic
ocean dynamics cannot be disentangled from the atmospheric driven component of our
coupled model system; yet clustering strong and weak states of Southern Ocean total
surface kinetic energy—a common diagnostic of intrinsic ocean variability—indicates lack
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of predictability within a few months of initialization, due to the large ensemble spread of
the hindcasts (not shown). MPI–ESM–HR may significantly overestimate the strength of
the Antarctic circumpolar current [43], which would affect the simulated representation
of intrinsic ocean variability as well [7]. Overall, this calls for improved understanding
and simulation of fundamental processes that can drive ocean variability, both locally as
well as remotely. Beyond dedicated sensitivity experiments to disentangle the relative roles
of the various sources of Antarctic sea ice variability, the large spread diagnosed in some
quantities calls for larger ensembles of hindcasts that will work toward robust Antarctic
sea ice predictions, even under strong preconditioning.

5. Conclusions

This study describes the low forecast skills of the Antarctic sea ice dipole in the first
hindcast year demonstrated by a decadal climate prediction system based on the MPI–ESM–
HR model. In the hindcasts, which are initialized at the beginning of November, sea ice
concentration in the core regions for the Antarctic dipole quickly relaxes toward the clima-
tology, even under strong forcing from Antarctic dipole predictors, such as a strong El Niño.
This model drift, systematically inducing erroneous sea ice concentration anomalies of up
to −40% in the Weddell Sea within five months of initialization, overwhelms predictable
sea ice signals, especially in austral summer. The drift is thus the main factor determining
the lack of predictability of the Antarctic dipole and total Antarctic sea ice in this model
setup. Our study calls for a stronger research focus on the sources of Antarctic sea ice drifts
and biases, including their seasonal evolution.
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