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Abstract: The ApeTI dataset was built with the aim of retrieving physiological signals such as heart
rate, breath rate, and cognitive load from thermal images of great apes. We want to develop computer
vision tools that psychologists and animal behavior researchers can use to retrieve physiological
signals noninvasively. Our goal is to increase the use of a thermal imaging modality in the community
and avoid using more invasive recording methods to answer research questions. The first step to
retrieving physiological signals from thermal imaging is their spatial segmentation to then analyze
the time series of the regions of interest. For this purpose, we present a thermal imaging dataset
based on recordings of chimpanzees with their face and nose annotated using a bounding box and
nine landmarks. The face and landmarks’ locations can then be used to extract physiological signals.
The dataset was acquired using a thermal camera at the Leipzig Zoo. Juice was provided in the
vicinity of the camera to encourage the chimpanzee to approach and have a good view of the face.
Several computer vision methods are presented and evaluated on this dataset. We reach mAPs of
0.74 for face detection and 0.98 for landmark estimation using our proposed combination of the Tifa
and Tina models inspired by the HRNet models. A proof of concept of the model is presented for
physiological signal retrieval but requires further investigation to be evaluated. The dataset and the
implementation of the Tina and Tifa models are available to the scientific community for performance
comparison or further applications.

Keywords: thermal image processing; face detection; landmark regression; computer vision with
great apes

1. Introduction

Infrared thermography is a technique to measure heat radiation and, thus, the surface
temperature of objects and living beings. In psychological research, thermal imaging is a
valuable tool to measure skin temperature variation related to automatic nervous system
activity changes [1–3]. Previous comparative psychological research used thermal imaging
to study the emotional states of various animal species [2,4,5]. Thermal imaging also finds
its application in the human health sector [6–8] as in the industry [9]. Professor Palvadis
and his team have conducted a series of studies on the retrieval of physiological signals,
such as heart rate [10], breath rate [11], and stress detection [12], by utilizing temperature
information from the perinasal area of humans. These studies also involve time series
analysis using fast Fourier transformations. These studies have applications, among others,
in detecting driving distractions [13]. Similarly, in [14], the temperature of the nose tip and
forehead is observed to assess cognitive workload while driving. In nonhuman animals, the
nose temperature is also observed for detecting arousal [15], breathing, and vocalization [16].
According to these studies, thermal imaging could provide deeper insights into the behavior
and cognitive development of nonhuman animals. However, a limitation of thermal
imaging is that it does not work through glass or plexiglass. Thus, studies on nonhuman
primates are typically conducted with a mesh separating the participating animal from the
thermal camera. This not only led to tremendous amounts of data loss (when the animal
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moved or when areas of interest were covered by bars) but also restricted how data could
be processed and analyzed. The limited visibility made automatized processing impossible
and forced researchers to process their data manually, leading to significant time loss and
imprecise and noisy data.

To avoid such limitations, we developed a new apparatus involving infrared transmis-
sive material, which allows an unobscured view of the tested individual while maintaining
all necessary safety precautions. This unobscured view also enables us to advance au-
tomatized processing of thermal data using deep learning tools. We are developing and
comparing different methods to extract the temperatures of areas of interest automatically.
Using these newly developed methods, we aim to study small temperature changes related
to more subtle emotional changes than previously possible, such as temperature changes in
the forehead and nose caused by changes in mental effort. Furthermore, from a continuous
signal, we also aim to extract the heart rate and the breath rate of the observed individuals.
An accurate heart rate obtained from such a noninvasive acquisition method could also
give us more information on their stress state [17] and further details on their nervous sys-
tem activity [18,19]. Breath rate estimation from thermal images already gave satisfactory
results on humans [20] and would also allow a better assessment of the emotional and
health state of the observed individuals in a noninvasive way.

Due to the rarity of thermal images in image processing, largely attributed to the high
cost of recording devices, thermal imaging (TI) is often combined with the RGB modality
to enhance resolution [21] or for segmentation and detection purposes [22,23]. However,
synchronizing and superimposing the different streams is costly [24] and may not achieve
perfect alignment. This often results in trade-offs between the resolution of the modalities,
varying acquisition rates, and calibration errors. Bearing these risks in mind, we decided to
stick solely to the thermal modality for segmentation and physiological signal extraction to
avoid the errors induced by complex cascading processes.

In this paper, we present the acquired Ape Thermal Image dataset (ApeTI) and our
methods to detect chimpanzees’ face and nose landmarks from thermal images. The
dataset is available online (https://share.eva.mpg.de/index.php/s/MnD33qD9ZxCYdJL
(accessed on 11 March 2024)). Different methods are compared and combined on both
tasks using the mean average precision (mAP) metrics. Section 2 introduces the ApeTI
dataset and the evaluation procedure. We then present the different tested methods and
their results, respectively, in Sections 3 and 4. Subsequently, we outline the project’s scope,
demonstrate a proof of concept for physiological signals retrieval, and discuss our future
work in Section 5. We finally draw our conclusion in Section 6.

2. ApeTI Dataset
2.1. Acquisition

The thermal images have been recorded at the Wolfgang Köhler Primate Research Cen-
ter (WKPRC) from the Leipzig Zoo affiliated with the Max Planck Institute for Evolutionary
Anthropology (MPI EVA). The images are RGB-encoded using an InfraTec VarioCAM HD
camera with a resolution of 1024 × 768 pixels. The temperature resolution of such a camera
can reach up to 0.02 ◦C and record at 30 frames per second. Six different chimpanzees
were filmed alone in a testing room through the mesh across a total of 26 sessions. A juice
dispenser was located close to the camera to encourage the chimpanzee to approach in
order to acquire a good view of the face and the nose. Fifty frames were manually extracted
from each video for annotation. Extremely blurry frames or frames without a chimpanzee
in the field of view were discarded.

The temperature information was saved using a JPEG extension and a JET colormap.
Sadly, the real temperature was lost during these sessions. Nevertheless, using HSV color
distance, we mapped the RGB information to temperature using the color bar on the right
side of Figure 1. This transformation uses a minimum temperature of 28 ◦C and a maximum
temperature of 43 ◦C, which leads to a temperature resolution of 0.0625 ◦C. Even if the
calibration changes across frames, using the same color bar allows us to retrieve qualitative

https://share.eva.mpg.de/index.php/s/MnD33qD9ZxCYdJL
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temperature information and gradients between the different regions. For this dataset,
we consider this approximation acceptable because of the property of CNNs to capture
gradients. The original images and transformation details are available upon request.

Figure 1. Sample from the ApeTI dataset with the thermal colorbar and annotations.

2.2. Dataset Annotation

The annotations were carried out at the MPI EVA by student assistants and reviewed by
a trained graduate student. The annotation project was coordinated by Gregor Kachel and
Johanna Eckert, both researchers at the MPI EVA and with experience in primate research.

The chimpanzee’s face and nine nose landmarks were annotated on each frame using
a bounding box and points, respectively, as depicted in Figure 1. The nine nose landmarks,
indexed from 0 to 8, can also be physiologically named: rhinion, supratip break, supratip
lobule, tip, columella left, columella left-center, columella center, columella right-center,
and columella right [25]. These were chosen for their particularity of forming an arrow
shape on the nose of the chimpanzee, making them easy to annotate. The nose area is also
susceptible to changes when the subject is aroused [15] or breathing [16]. We began with
these landmarks with the goal of extracting heart rate, breath rate, and arousal from their
temperature changes over time.

2.3. Evaluation Strategy

We evaluate the results using the mean average precision metric (mAP) using several
intersections over union (IoU) and object keypoint similarity (OKS) thresholds as previously
performed in COCO challenges [26]: mAP at IoU = 0.50:0.05:0.95 for face detection and
mAP at OKS = 0.50:0.05:0.95 for landmark regression. In addition, we report for both face
detection and landmark regression the average precision (AP) values using only IoU and
OKS thresholds of 50 and 75, denoted, respectively, as AP50 and AP75. These metrics
gauge the precision of a method and are commonly reported in detection and regression
challenges as secondary ranking metrics to foster discussion. Since our dataset has the
particularity to contain only one individual in each frame, we also report the mIoU and
mOKS over the whole test set.
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The dataset is split videowise between train, validation, and test sets, meaning frames
of the same video can be found only in one of the sets. The ground-truth annotations and
the splits of the dataset are shared using the COCO format in our repository. This dataset
allows for solving two tasks: chimpanzee face detection and nose landmark regression.
We encourage researchers to use this dataset to benchmark their methods. Our model
configurations, leaderboard, and guidelines for downloading the data are available on
the dedicated GitHub repository (https://github.com/ccp-eva/ApeTI) (accessed on 11
March 2024).

3. Proposed Methods

We approach this dataset to solve a cascade problem consisting of face detection,
followed by landmark regression on the detected face, as depicted in Figure 2. The deep
learning models are implemented in Python 3.7 using PyTorch 1.9 and OpenMMLab
libraries [27,28].

Figure 2. Landmark computation pipeline: face detection followed by a CNN encoding the position
of the landmarks in its final layer’s channels. The landmark model features of the first and last
convolutional layers are depicted.

3.1. Face Detection

In order to detect the face from the thermal images, we use the cascade HRNet
model [29] pretrained on a COCO object detection task and modified to only recognize a
chimpanzee’s faces from a one-channel input: the temperature. We use the same training
procedure as in [29] except that the input temperature image is not normalized. We use
usual random transformations, including rotation (±10◦), translation (ratio of 0.1), shear
(max degree of 2), scaling (from 0.5 to 1.5), and flip (with probability 0.5) on the fly to
augment our data. The model is fine-tuned for 50 epochs using stochastic gradient descent,
a learning rate of 10−5, a weight decay of 10−4, and a momentum of 0.9 with 500 warm-up
iterations. We annotate this version of HRNet “Tifa” (Thermal Image Face Ape) model.

Since the face should be the warmest area in an image, segmentation based on thresh-
olding the thermal region is also an option for face detection. Therefore, we implement a
nonsupervised threshold method, annotated “Thresh”, for finding the largest area with
a temperature above a certain threshold. As depicted in Figure 3, the method is sensitive
to the threshold parameter, and a search for the best parameter is necessary in order to
obtain the best segmentation. This method is used as a baseline comparison, but can also
be combined with other approaches for improving performance.

https://github.com/ccp-eva/ApeTI
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(a) Threshold of 34 (b) Threshold of 36
Figure 3. Resulting binary images of the Thresh method for segmenting the face. In green, the biggest
contour, and in blue and red, its resulting convex contour and bounding box.

3.2. Landmark Regression

In order to perform landmark regression, we use the HRNet V2 model [30] pretrained
on the Annotated Facial Landmarks in the Wild (AFLW) dataset [31]. As previously
mentioned, the model is modified to detect only nine landmarks and take a one-channel
image as input: the temperature. We use the same training procedure as in [30]. The loss
function is the mean square error between the computed and ground-truth landmarks
heatmap. The ground-truth heatmap is generated by applying a 2D Gaussian filter with a
standard deviation of two pixels centered on the ground-truth location of the landmark.
We use the same data augmentation procedure as stated before. The model is fine-tuned
for 60 epochs using an Adam optimizer, a learning rate of 0.002, a weight decay of 10−4,
and a momentum of 0.9 with 500 warm-up iterations. We annotate this version of HRNet
“Tina” (Thermal Image Nose Ape).

Finally, we also use the state-of-the-art model BlazeFace [32] coupled with Mesh-
Face [33] for comparison. These models, even if they were trained using an RGB modality
and human faces, were the only ones working off the shelf with thermal images and chim-
panzee faces. MeshFace provides a rich mesh of the human face. We retrieve the same
landmarks as in our annotation procedure for evaluation. As BlazeFace usually takes only
RGB images, we normalize our temperature between 0 and 255 and use this information in
the three channels. The way these models have been shared by MediaPipe does not allow us
to perform further modifications as we did with HRNet. Other state-of-the-art pretrained
models were not robust enough to our type of data to be considered for comparison.

We run a full search of the best parameters to solve both tasks. The involved parame-
ters are the threshold for the “Thresh” method and the min and max normalization values
of the TI for BlazeFace and MeshFace. The min and max normalization values define
the encoded range of temperature ∆TI (Equation (1)) and the temperature resolution rTI
(Equation (2)) of the new grayscale image.

∆TI = calibmax − calibmin + 1 (1)

rTI =
∆TI
256

(2)

4. Results

The HRNet models Tifa and Tina were trained on the train set and evaluated at each
epoch on the validation set. The model performing best on the validation set is saved and
tested on the test sets. For the nonsupervised method Thresh, BlazeFace, and MeshFace
and their combination with HRNet, we perform a full search for the best parameters to find
the best combination on the joint train and validation sets, as depicted in Figures 4 and 5.
Further results are reported in Appendix A.
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For clarity, we report in the following subsections only results across the different sets
with regard to the mAP and a more detailed performance analysis on the test sets alone.

4.1. Face Detection

During our analysis, we notice that the performance for face detection could be
improved to the detriment of the landmark regression performance. For greater clarity, we
report in this section only results maximizing the landmark regression performance. In
order to better appreciate the performance of the tested models, we incorporate the metrics
using the ground-truth (GT) annotations with a size modified by ±10% (face still centered
in the detected region)—annotated GT−10% and GT+10%. We also include results without
taking into account a region of interest (ROI). In these cases, denoted as “no ROI”, the
entire thermal image is considered. The models performing best with regard to the mAP
on the whole dataset (Table 1) or the test set only (Table 2) are highlighted in bold.

The low performance on the train set in Table 1 with the fine-tuned model Tifa can be
explained by the greater variety of samples in this set compared with the validation and
test sets. Better performances were obtained at a later epoch, but would deteriorate the
performance on the validation set.

Table 1. Face detection mAP score across the different ApeTI sets.

Method Train Validation Test Overall

GT+10% 0.692 0.7 0.7 0.693
GT−10% 0.692 0.7 0.7 0.693

Tifa 0.550 0.685 0.744 0.622
no ROI 0 0 0 0

Thresh35.6 0.001 0 0 0.001
BlazeFace 0.024 0.017 0.007 0.017

Thresh36.5 + BlazeFace 0.155 0.155 0.136 0.155

As depicted in Figure 4, the search for the best parameters for the combination of
the BlazeFace and Threshold methods on the joint train and validation sets allows us to
choose the right parameters to evaluate the model on the test set. The best performance
achieved by these combined models, as measured by the mAP with IoU for face detection,
is obtained using a threshold of 36.5 ◦C and minimum and maximum calibration values
of 16 ◦C and 42 ◦C, respectively. Figures A1 and A2 provide more metrics during the full
search process.
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Figure 4. Face detection results with variable threshold using the combination of BlazeFace and
Threshold on the joint train and validation sets. A brighter color stands for a higher score.
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As we can see in Table 2, the fine-tuned model Tifa performs best by a large margin.
This is easily explicable since the type of information provided to the pretrained models
differs from what they are used to processing. The Thresh method remains helpful to refine
the ROI one model can process: it improves BlazeFace performance by a few points on all
the sets.

Table 2. Face detection results on the ApeTI test set.

Method mAP AP 50 AP 75 mIoU

GT+10% 0.7 1 1 0.836
GT−10% 0.7 1 1 0.821

Tifa 0.744 0.980 0.902 0.868
no ROI 0 0 0 0.128

Thresh35.6 0 0 0 0.183
BlazeFace 0.007 0.037 0 0.398

Thresh36.5 + BlazeFace 0.136 0.512 0.025 0.576

4.2. Landmark Regression

As in the previous subsection, we incorporate results using the ground truth: GT,
GT−10%, and GT+10% as inputs for the different models. Tables 3 and 4 report the results for
landmark regression. The first part of the tables is dedicated to the Tifa model’s result on
the ground-truth face location. The landmark models are coupled with one or several face
detection methods to analyze the face detection effect on landmark regression performance.
The models performing best with regard to the mAP on the whole dataset (Table 3) or the
test set only (Table 4) are highlighted in bold. FaceMesh, being entirely incorporated with
BlazeFace, could not be tested on the ground-truth region of interest.

Table 3. Landmark regression mAP score across the different ApeTI sets.

Method Train Validation Test Overall

GT + Tina 0.940 1 0.989 0.965
GT+10% + Tina 0.957 1 0.989 0.971
GT−10% + Tina 0.926 0.993 0.995 0.956

no ROI + Tina 0.926 1 0.987 0.953
Thresh29.8 + Tina 0.965 1 0.989 0.981

Tifa + Tina 0.919 0.990 0.980 0.950
Tifa+10% + Tina 0.949 0.999 0.980 0.968
Tifa−10% + Tina 0.903 0.978 0.980 0.939

Thresh29.8 + Tifa + Tina 0.919 0.990 0.952 0.950
BlazeFace + FaceMesh 0.312 0.363 0.336 0.336

Thresh36.5 + BlazeFace + FaceMesh 0.557 0.557 0.566 0.557

As Table 3 shows and similar to face detection, the results on the validation and the
test sets are better than in the train set. The variety of samples in the train set is higher
than in the others, which encourages us to increase the size of our dataset. Surprisingly,
the combination leading to the best performance is obtained with the Thresh29.8 method
and the Tina model. This can be explained by the few instances where the Tifa model
fails to detect the face, as reported in Figure 6. In contrast, the Thresh method, with a low
threshold value, inputs a larger ROI that includes the face, and the Tina model is robust
enough to segment the nose landmarks from this larger input.

As depicted in Figure 5, the search for the best parameters of the combination of the
BlazeFace, Threshold, and FaceMesh methods on the joint train and validation sets allows
us to pick our parameters to evaluate the model on the test set. However, as also depicted
in Figures A3 and A4, the observed metrics do not always agree, nor are they stable. This
behavior may be attributed to the sparsity of our dataset and the temperature differences
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across individual recording sessions. The range of temperatures may vary, and a slight
change in parameters can suddenly affect a portion of the dataset. Nevertheless, the best
performance achieved by these combined models, as measured by the mAP with OKS,
is obtained using a threshold of 36.5 ◦C and minimum and maximum calibration values
of 17 ◦C and 39 ◦C, respectively. Such a threshold may not guarantee that the entire face,
which typically has a temperature between 30 ◦C and 38 ◦C, is included in the ROI inputted
to BlazeFace. Moreover, these normalization parameters encode the face temperature using
a range ∆TI of 23 ◦C, leading to a temperature resolution r of approximately 0.09 ◦C, which
is less precise than our initial resolution. Furthermore, neither BlazeFace nor FaceMesh
has been trained on thermal data, which explains their lower performance compared with
other methods.
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Figure 5. Landmark regression results with variable threshold (first row) and variable calibration
(second row) using the combination of the BlazeFace, Threshold, and FaceMesh methods on the joint
train and validation sets. For the second row, a brighter color stands for a higher score.

Table 4. Landmark regression results on the ApeTI test set.

Method mAP AP 50 AP 75 mOKS

GT + Tina 0.989 0.989 0.989 0.524
GT+10% + Tina 0.989 0.989 0.989 0.523
GT−10% + Tina 0.995 1 1 0.524

no ROI + Tina 0.987 0.988 0.988 0.532
Thresh29.8 + Tina 0.989 0.990 0.990 0.532

Tifa + Tina 0.980 0.980 0.980 0.524
Tifa+10% + Tina 0.980 0.980 0.980 0.523
Tifa−10% + Tina 0.980 0.980 0.980 0.524

Thresh29.8 + Tifa + Tina 0.952 0.953 0.953 0.518
BlazeFace + FaceMesh 0.336 0.652 0.312 0.398

Thresh36.5 + BlazeFace + FaceMesh 0.566 0.819 0.617 0.41

As we can notice on the first part of Table 4, dedicated to the use of the ground-truth
location of the face, the best results are obtained using GT−10%. Indeed, the nose being
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localized in the center of the face, having a tinier ROI still centered on the face, will leave
less room for error. When provided with the GT face location, the Tina model’s performance
is especially high for a landmark model.

Furthermore, we can notice how the combination of the Tifa and Tina models fails
against the Thresh method or even a full image provided to the model (no ROI). However,
this is proper to the specificity of our dataset, which contains at least and only one face per
image. The same metrics would drop if several or no faces were in the image. Nevertheless,
the performance of the combination of the Tifa and Tina models remains respectable in the
context of landmark regression with such a tiny dataset. Inference examples are depicted
in Figure 6 for better appreciation.

Figure 6. Good (left) and bad (right) inference examples with their ground truth from the combination
of the Tifa and Tina models. Ground truth is annotated in green (face) and circles (landmarks) and
inference in red (face) and crosses. Thermal information is encoded using a grayscale colormap for
better annotation visualization: brighter being warmer.

Additionally, considering ±10% of the face area initially detected by the Tifa model
did not significantly impact the landmark regression results. Surprisingly, BlazeFace and
FaceMesh, coupled with the Thresh method, perform correctly despite being trained on
RGB images and human faces. The mesh density used for inference certainly helps in this
regard, and will more likely locate the nose in the middle of the segmented area. Thus,
features of the face, such as the eyebrows and hair gradients, are maintained in the thermal
information and may help align the human mesh with the chimpanzee’s face.

5. Application in Studies

To summarize, our project focuses on retrieving physiological signals such as heart rate,
breath rate, and cognitive load from the thermal imaging of both human and nonhuman
animals. We aim to provide a noninvasive method for psychologists and animal behavior
researchers to gather signals to reveal cognitive load and emotional state. Computer vision
models are exploited in order to automatically segment and track ROIs. The evolution of
the temperature of the ROIs is then analyzed to extract physiological signals. In this paper,
we focus on applications with the great apes of the WKPRC of the Leipzig Zoo. In this
section, we present the next steps for this project.

5.1. The Apparatus

Our apparatus and our testing areas are designed to provide the great apes with a
free space; a continuous reward, grape juice (allowing us to have stable recordings); and
a stimulus. A scheme of this process is depicted in Figure 7. The stimulus is tailored for
each study, from memory to computational tasks. Depending on the research study, we can
enhance our setup with a touch screen or an eye tracker device. An additional image of the
apparatus is reported in Figure A5.
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Figure 7. Scheme of the apparatus with a chimpanzee in a testing context.

5.2. Physiological Signal Retrieval

We estimate the physiological signals by analyzing the temperatures’ time series
extracted from the computed regions and landmarks. We implement several methods
relying on Fourier transformation, band-pass filter, and first-order derivatives. In Figure 8,
we represent an attempt of the physiological signal retrieval from a chimpanzee face using
our apparatus.

Figure 8. Landmark computation, time series observation, and physiological signal retrieval with the
chimpanzee Zira.

Different preprocessing, calculation, regions, and postprocessing methods are being
tested. However, evaluating these methods with reliable ground-truth physiological data is
problematic to achieve with great apes without invasive methods. Trials using a finger clip
placed on one of the fingers of the chimpanzee were performed. Individuals were trained
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to present one of their fingers to wear the device. However, the signals remain unstable
because of the thickness of the skin and the instability of the wearable device.

Therefore, we are building a TI human dataset in a controlled environment with an
induced variation of the physiological signals through a biking activity. We synchronously
record the RGB, thermal streams, and heart and breath rates for the community to evaluate
methods based on only visual and/or thermal information to retrieve the physiological
signals. We shall then be able to evaluate our implemented physiological signal retrieval
methods. Moreover, we may identify the critical regions of the face to regain the measured
physiological signals in humans, and extend this knowledge to great apes. An example of
physiological signal retrieval with a human face is depicted in Figure 9.

Figure 9. An attempt of biosignal retrieval from a thermal video with a human face using Blaze-
Face [32] and FaceMesh [33] for segmentation.

The calculation of the physiological signals, and their evaluation, is currently under
investigation. A more detailed demonstration image with the chimpanzee Zira and a
human is also reported in Figure A6.

6. Conclusions

With this new ApeTI dataset, despite its limited size, we managed to fine-tune pre-
trained models for face detection and landmark regression. We evaluated and compared
their performances and built a pipeline for finding and tracking landmarks of interest.
The annotated landmarks were chosen for their aptitude to retrieve physiological signals
with the aim of better understanding a chimpanzee’s behavior. The introduced Tina and
Tifa models performed best compared with similar tools. The lack of models trained on
thermal images did not allow an exhaustive comparison. Our future work will focus on
the enlargement of the dataset to obtain models more robust to individual differences and
acquisition angles, and the comparison of a greater number of models.

Our final goal being the processing of thermal images for biosignal retrieval for
the study of human and nonhuman animal behaviors in an ecological context, several
challenges remain to be solved, such as the following:

• Metal mesh segmentation and removal from thermal images;
• Heart rate and breath rate estimation from thermal videos; and
• Cognitive load estimation and monitoring from thermal videos.

The recording of physiological signals in nonhuman primates without invasive instru-
ments or protocols is not trivial [34] and makes the evaluation of computed physiological
signals hard to perform. Therefore, we are planning to record a new set of thermal videos
synchronized with devices to record the heart rate and the breath rate of humans. This
dataset will allow us to develop and evaluate methods to calculate such rates from the ther-
mal information and define which regions of interest have to be observed for computing
such rates. It may also contribute to the creation of a facial mapping proper to biosignal
retrieval and tailor our annotation efforts for training new regression models. As presented
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in Section 5, we hope to retrieve these biosignals automatically from the thermal stream
and transfer our knowledge from humans to other nonhuman animal species.
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Appendix A. Results

In this section, we provide complementary figures depicting the face detection and
landmark regression performance during the full search for the best parameters. More
metrics are observed than in the first part of the paper.

Appendix A.1. Face Detection

The observed metrics are similar to the metrics observed for the detection challenge in
the COCO dataset (https://cocodataset.org/#detection-eval (accessed on 11 March 2024)).

Metrics definition:

• Average Precision (AP):

– mAP at IoU = 0.50:0.05:0.95 (primary metric)
– AP50 at IoU = 0.50 (loose metric)
– AP75 at IoU = 0.75 (strict metric)

• AP Across Scales:

– APsmall (small objects: area < 322)
– APmedium (medium objects: 322 < area < 962)
– APlarge (large objects: area > 962)

• Average Recall (AR):

– AR1 (AR given 1 detection per image)
– AR10 (AR given 10 detections per image)
– AR100 (AR given 100 detections per image)

• AR Across Scales:

– ARsmall (small objects: area < 322)
– ARmedium (medium objects: 322 < area < 962)
– ARlarge (large objects: area > 962)

As visible in Figures A1 and A2, the ApeTI dataset does not contain images with small
faces and is therefore per default outputting a constant -1 value. Furthermore, ApeTI has
the particularity to have only one and strictly one face per sample, which leads to having
the same values for AR1, AR10, and AR100.
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Figure A1. Face detection results using the combination of the BlazeFace and Threshold methods on
the joint train and validation sets with variable threshold.

https://cocodataset.org/#detection-eval
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Figure A2. Face detection results using the combination of the BlazeFace and Threshold methods on
the joint train and validation sets with variable calibration.

Appendix A.2. Landmark Regression

The observed metrics are similar to the metrics observed for the keypoint challenge in
the COCO dataset (https://cocodataset.org/#keypoints-eval (accessed on 11 March 2024)).

Metrics definition:

• Average Precision (AP):

– mAP at OKS = 0.50:0.05:0.95 (primary metric)
– AP50 at OKS = 0.50 (loose metric)
– AP75 at OKS = 0.75 (strict metric)

• AP Across Scales:

– APmedium (medium objects: 322 < area < 962)
– APlarge (large objects: area > 962)

• Average Recall (AR):

– mAR at OKS = 0.50:0.05:0.95
– AR50 at OKS = 0.50
– AR75 at OKS = 0.75

• AR Across Scales:

– ARmedium (medium objects: 322 < area < 962)
– ARlarge (large objects: area > 962)

https://cocodataset.org/#keypoints-eval
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Figure A3. Landmark regression results using the combination of the BlazeFace, Threshold, and
FaceMesh methods on the joint train and validation sets with variable threshold.
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Figure A4. Landmark regression results using the combination of the BlazeFace, Threshold, and
FaceMesh methods on the joint train and validation sets with variable calibration. A brighter color
stands for a higher score.
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Appendix B. Application in Studies

Appendix B.1. The Apparatus

Figure A5. The thermal image camera apparatus when unmounted from the testing room. A human
face drinking from the juice dispenser is shown on the screen of the camera.

Appendix B.2. Physiological Signal Retrieval

Figure A6. Landmark computation, time series observation, and physiological signal retrieval with
a chimpanzee.
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