日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Boron-Incorporated Cobalt–Nickel Oxide Nanosheets for Electrochemical Oxygen Evolution Reaction

MPS-Authors
/persons/resource/persons263335

Wang,  Yue
Research Group Tüysüz, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons281616

Kumar,  Ashwani
Research Group Tüysüz, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons250609

Budiyanto,  Eko
Research Group Tüysüz, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons295983

Cheraparambil,  Haritha
Research Group Weidenthaler, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons59100

Weidenthaler,  Claudia
Research Group Weidenthaler, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons59060

Tüysüz,  Harun
Research Group Tüysüz, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Wang, Y., Kumar, A., Budiyanto, E., Cheraparambil, H., Weidenthaler, C., & Tüysüz, H. (2024). Boron-Incorporated Cobalt–Nickel Oxide Nanosheets for Electrochemical Oxygen Evolution Reaction. ACS Applied Energy Materials, 7(8), 3145-3156. doi:10.1021/acsaem.3c03136.


引用: https://hdl.handle.net/21.11116/0000-000F-22E3-A
要旨
The composition and crystal structure are crucial parameters for the activity and stability of the electrocatalysts. Herein, we synthesize a series of CoxNi–B oxide nanosheets with low degree of crystallinity for alkaline media oxygen evolution reaction (OER). The sample with an optimized ratio Co8Ni–B oxide shows the best OER performance, achieving a current density of 10 mA/cm2 at an overpotential of 312 mV and a Tafel slope of 47 mV/dec in the 1 M KOH electrolyte. This sample is stable in the purified Fe-free KOH electrolyte and strongly activated in the nonpurified commercial electrolyte due to the Fe impurity uptake. The high surface area and partially crystalline structure caused by boron incorporation and low-temperature treatment provide more accessible active sites with retaining good stability against leaching during the OER. In situ electrochemical Raman spectroscopy investigation reveals the formation of OER active Co and Ni oxyhydroxides in Co8Ni–B oxides under a potential bias. The Ni substitution in Co oxides modulates the electronic structure of Co, and the OER activity of the electrocatalyst can be enhanced by Fe uptake from the KOH electrolyte.