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Decomposing large unitaries into multimode devices of arbitrary size
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Decomposing complex unitary evolution into a series of constituent components is a cornerstone of prac-
tical quantum information processing. While the decomposition of an n × n unitary into a product of 2 × 2
subunitaries (which can for example be realized by beam splitters and phase shifters in linear optics) is well
established, we show how for any m > 2 this decomposition can be generalized into a product of m × m
subunitaries (which can then be realized by a more complex device acting on m modes). If the cost associated
with building each m × m multimode device is less than constructing with m(m−1)

2 individual 2 × 2 devices, we
show that the decomposition of large unitaries into m × m submatrices is more resource efficient and exhibits
a higher tolerance to errors, than its 2 × 2 counterpart. This allows larger-scale unitaries to be constructed with
lower errors, which is necessary for various tasks, not least boson sampling, the quantum Fourier transform, and
quantum simulations.
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Unitary transformations of modes [1] are the basis of quan-
tum information processing and quantum simulation. While
transformations on a small number of modes are relatively
straightforward, many algorithms and applications require the
implementation of joint unitary transformations on a large
number of modes; pertinent examples include boson sampling
[2,3], the quantum Fourier transform [4,5], quantum photonic
simulation [6], and, outside of quantum photonics, neuromor-
phic computing [7]. Typically these large n × n unitaries are
constructed from a decomposition into a collection of smaller
2 × 2 unitaries. While this approach is used independent of
the physical platform (see, e.g., Ref. [8]), it is very common in
linear optics where 2 × 2 transformations can be easily imple-
mented by beam splitters and phase shifters, the established
building blocks of linear optics. In their seminal paper, Reck
et al. demonstrated how to mathematically decompose any
n × n unitary in a product of n(n − 1)/2 2 × 2 subunitaries.
Their decomposition results in a triangular array of beam
splitters and phase shifters, which can be programed to imple-
ment an arbitrary linear transform of optical modes [9]. This
scheme has been refined by Clements et al. enhancing the loss
tolerance using a symmetric arrangement of 2 × 2 splitters
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[10]. Furthermore, the length of the circuit could be shortened
with symmetric 2 × 2 splitters [11]. Indeed, with the advent
of integrated optics, in which many beam splitters and phase
shifters can be implemented on a small footprint, large and
complex unitary operations have been demonstrated using this
approach, not least linear optics quantum computing [12–14],
boson sampling [15–17], quantum simulation [18–20], and
neuromophic computing [21,22]. Nevertheless, while sources
and detectors scale linearly with the network dimension n, the
required number of beam splitters and phase shifters scales
with O(n2), in order to implement an arbitrary n × n unitary.
It is therefore pertinent to investigate building large unitaries
starting from larger building blocks.

Beyond decompositions of large unitaries into arrays of
beam splitters, other approaches such as multiport integrated
devices and 3 × 3 fiber tritters have also been investigated [23]
in the context of quantum interference [24–27]. Higher-order
modal manipulation of quantum light has also been investi-
gated beyond the spatial degree of freedom, which is highly
promising for experimentally implementing unitaries of larger
size. For example, methods for manipulating orbital angu-
lar momentum modes have been shown up to seven modes
[28], however, generalized manipulation remains challenging
[29]. In the frequency degree of freedom, operations on ten
modes have been shown [30], while operations on hybrid
time-frequency modes have also been demonstrated up to 64
modes [31–34]. This begs the question: How can larger n × n
unitaries be constructed from m × m constituent unitaries,
where m > 2?
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FIG. 1. Example of the matrix embedding for m = 3 (left). The matrix Q̃ only affects the input modes j1, . . . , jm. This is illustrated on the
circuit diagram (right).

The answer to this question becomes practically relevant
only when the m × m constituent device outperforms (by
some reasonable metric) its own decomposition into 2 × 2
components. In other words, if the performance cost (e.g.,
loss, fidelity, production cost, etc.) associated with producing
an m × m unitary is greater than the m(m−1)

2 different 2 × 2
unitaries, the 2 × 2 decomposition is more efficient. Never-
theless, once it becomes cheaper to directly fabricate a device
realizing an m × m unitary compared to building it out of
2 × 2 phase-shifter/beam-splitter cascades, the question how
one can efficiently build an n × n unitary from its m × m
subunitaries is of the utmost relevance. Indeed, in all the afore-
mentioned physical implementations, the number of possible
modes is physically restricted far below the desired matrix
size for quantum computing applications.

In this Letter, we generalize unitary decomposition of an
n × n unitary into m × m submatrices, where n > m � 2.
This provides a significant scaling advantage whenever it is
cheaper to produce an m × m unitary directly, compared to
building it out of 2 × 2 unitaries. We provide an algorithmic
approach to find this decomposition, which uses the best-
known minimum number of submatrices. We also show that
quality thresholds exist when comparing larger devices to
the established beam-splitter decomposition. This provides a
route to implementing large-scale devices, which, by reducing
the total number of components, are more tolerant to the errors
caused by the components individually.

The algorithm to decompose a unitary n × n matrix U into
a product of smaller unitary matrices of dimension m × m
runs as follows: The key task is to find m × m matrices
Q̃1, . . . , Q̃N (properly embedded as n × n matrices) such that
UQ̃1 · · · Q̃N is an upper triangular matrix. Note that any
unitary upper triangular matrix is automatically a diagonal
unitary matrix D. Such diagonal matrices are experimentally
easy to realize because they consist only of a phase shift
in each individual mode. Summarizing, our algorithm will
allow to write the large unitary U as U = DQ̃−1

N · · · Q̃−1
1 , thus

we have factorized U into m × m unitaries and final phase
shifts.

In order to achieve upper triangular matrices we use the
RQ decomposition which, for any m × m matrix A, ensures
the existence of a unitary matrix Q and an upper triangular
matrix R (i.e., Ri j = 0 for i > j) such that A = RQ−1 (see,
e.g., Sec. 5.2 in Ref. [35]). In particular, AQ is upper triangular

so that we can transform any matrix into an upper triangular
one by right multiplication with a unitary.

We now describe how to use the RQ decomposition to
create zeros at predefined positions in a large unitary matrix
U . We will use this multiple times to create zeros at all
places below the diagonal. Let us fix m columns 1 � j1 <

· · · < jm � n and a base row i ∈ {m, . . . , n}. This choice gives
rise to an m × m matrix A consisting of the entries of U
which are contained in the columns j1, . . . , jm and in the rows
i − m + 1, . . . , i (see Fig. 1 for an illustration of this embed-
ding for m = 3). Our goal is to transform this matrix into an
upper triangular form. First, by the RQ decomposition, there
is a unitary matrix Q such that AQ = R is upper triangular.
We now show how to properly embed the matrix Q into an
(n × n) matrix such that we can create zeros in our original
matrix U . For this let qk� denote the entries of the m × m
matrix Q and build an n × n matrix Q̃ with entries q̃k� as
follows: Start with the identity matrix and set q̃ jk , j� := qk�, i.e.,
we embed Q into the identity matrix at the m × m submatrix
given by the entries having their row and column coordinates
both in { j1, . . . , jm}. Thus, UQ̃ has an upper triangular m × m
submatrix. More precisely, the entries in row l and column
jk are zero for l = i − m + 1 + k, . . . , i and k = 1, . . . , m.
Note that the multiplication with Q̃ from the right only affects
the columns j1, . . . , jm of U . Moreover, if there are only
zeros in these columns below the ith row, all these zeros are
maintained by this multiplication. To state this differently, if U
has zeros at (l, jk ), k = 1, . . . , m, this is equivalent to saying
that an input state that occupies only the modes j1, . . . , jm
is transformed to an output state where the lth mode is not
occupied. Since Q̃ only affects the input modes j1, . . . , jm,
this property is preserved if we apply the matrix Q̃ before
applying U , which means that we consider UQ̃.

The algorithm to find the matrices Qi we are presenting
works similarly to a Tetris game: In each step we create zeros
in a specific row by inserting blocks of zeros using the tech-
nique previously described. If m = 2 then this algorithm is
exactly the algorithm of Ref. [9]. We start by creating zeros in
the bottom row. By selecting the first m columns and using the
RQ decomposition as above, we can build an upper triangular
m × m block in the lower left corner of U (see Fig. 2). This
gives us the matrix Q̃1. We now proceed in the same way
with the next m columns without zero entries to create more
and more triangle-shaped blocks of zeros in that row until
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FIG. 2. Decomposition for m = 3 and n = 5 (left) with an ex-
perimental circuit (right). In a first step we can create an upper
triangular matrix in the lower left 3 × 3 submatrix, which means
that we produce zeros on the blue L-shaped region. In the next step
the submatrix Q−1

2 creates zeros in the yellow L-shaped region. This
operation is followed by a two-mode device that only acts on modes
2 and 4 and creates a zero in the red box. Finally, the submatrix
Q−1

4 creates further zeros in the green L-shaped region. The final
phase shifts ϕ1, . . . , ϕ5 transform the matrix to the identity matrix.
Continuous lines that bypass a colored box in the circuit diagram
(e.g., mode 3 in Q−1

3 ) denote modes that are not affected by the
submatrix operation.

the number m′ of remaining nonzero entries is less that m
and use (potentially) one more matrix of size m′ to fill in the
remaining zeros—a triangle-shaped block of size m′. As we
already created some zeros in the penultimate row, we only
have to create new zeros at the places which are not already
covered. Here, we have to split up the triangle-shaped block
and use selected columns j1, . . . , jm as described above. In
general, the algorithm is structured as follows:

(1) Let i ∈ {2, . . . , n} be the smallest value such that in the
rows i + 1, . . . , n all entries below the diagonal are zero. In
the first step described above we generically have no zeros in
the last row, i.e., i = n.

(2) Consider the ith row and pick the first m nonzero entries
in that row which are on the left-hand side of the diagonal
or on the diagonal. Denote the corresponding columns by
j1, . . . , jm. If there are just 2 � m′ < m nonzero entries left
in that row, proceed with m′ instead of m.

(3) Choose a unitary matrix corresponding to the row i and
the columns j1, . . . , jm to create an upper triangular block of
size m, as described above.

(4) Repeat until U is transformed into an upper tri-
angular matrix. Figures 2 and 3 show illustrations of the
decomposition, exemplary for a 5 × 5 and a 13 × 13 unitary,
respectively, together with the corresponding physical net-
work.

Each m × m submatrix Q̃i creates 1
2 (m − 1)m zeros in the

matrix U . In total we have to create 1
2 (n − 1)n zeros to end

up with a diagonal matrix. Hence, we need at most n(n−1)
m(m−1)

matrices Q̃i which come from an m × m matrix. In addition,
our algorithm requires at most one m′ × m′ submatrix with
m′ < m for each row. Hence, we end up with at most n(n−1)

m(m−1) +
n − 1 matrices Q̃i (see Fig. 4).

If cm is the relevant cost of an m × m unitary, then the
total cost for constructing the n × n matrix out of m × m
matrices is Cn,m � cm( n(n−1)

m(m−1) + n − 1) (under the assump-
tion that the total cost is linear in the number of utilized

(a)

(b)

FIG. 3. (a) Illustration of the algorithm using triangle blocks
for m = 4 and n = 13 and (b) corresponding circuit diagram. Each
colored region corresponds to the zeros created by the action of one
multimode device. Note that in the last line all four-mode devices
act on adjacent modes and thus the colored regions are connected
step-shaped regions. By contrast, the red region in the penultimate
line is split over modes 3, 6 and 9, which is possible due to a
matrix embedding as described in Fig. 1. Note that as in the example
presented in Fig. 2, at some places one may also use subunitaries of
smaller size, e.g., the pink box on the top that stems from a 2 × 2
unitary.

FIG. 4. Scaling behavior of our algorithm for the number of
elements to construct a unitary of size n according to n(n−1)

m(m−1) + n − 1.
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FIG. 5. Numerical simulations of the fidelity for n = 50. For
each data point we reconstructed 100 random unitary matrices U ,
each with 20 different perturbations and averaged over all 2000
reconstructions. The size of the calculated submatrices is indicated
in the legend. The error bars of the statistical fluctuations are smaller
than the symbol size.

devices). Recall that the Reck or Clements scheme requires
1
2 n(n − 1) different 2 × 2 unitaries which leads to a relevant
cost of Cn,2 = c2

2 n(n − 1) for the realization of a 2 × 2 unitary.
Comparing these two cost functions one sees directly that
whenever cm < 1

2 m(m − 1) (i.e., the m × m device is cheaper
then building the matrix out of 2 × 2 matrices), one sees that
for large n, Cn,m < Cn,2, i.e., it is advantageous to build the
n × n matrix out of m × m instead of the traditional 2 × 2
beam-splitter/phase-shifter cascades.

We numerically implemented the above described algo-
rithm in order to test its performance as well as its robustness
against perturbations: For this, we randomly chose a n × n
unitary matrix U and decomposed it into m × m unitaries Qi

as described above. We then perturbed the calculated m × m
submatrices Qi by adding random numbers from a normal
distribution with specified width (“noise strength”) to the real
and imaginary part of the entries, respectively. As a figure of
merit for the strength of the perturbation we consider the
fidelity of the perturbed submatrices Qpert and the original
submatrices Q [10] given by

F (Q, Qpert ) :=

∣∣∣∣∣∣∣

1
m Tr(Q† · Qpert )√
1
m Tr(Q†

pert · Qpert )

∣∣∣∣∣∣∣

2

. (1)

This will of course vary for any realized perturbation so we
take the expected reconstruction fidelity FQ := E[F (Q, Qpert )]
as a measure for the precision of our individual components
Q. Next, we reconstruct a (n × n)-matrix Upert from the Q̃pert.
The final metric to analyze the robustness of U is defined
by F (U,Upert ) respectively by the expected fidelity FU :=
E[F (U,Upert )] and plotted in Figs. 5 and 6. In the first figure,
we fixed the matrix size at n = 50 and plot the dependence of
the reconstruction fidelity FU as a function of the component
quality FQ for different submatrix sizes m = 2, 3, 5, 10. It can
be clearly seen from the figure that the reconstruction fidelity
of FU drops quickly with component quality FQ. The smaller

FIG. 6. Numerical simulations of the fidelity for increasing n �
m at a fixed component quality FQ = 0.95 ± 0.0005. For each data
point we reconstructed 100 random unitary matrices U , each with 20
different perturbations. The size of the submatrices is indicated in the
legend. The error bars of the statistical fluctuations are often smaller
than the symbol size.

the submatrices are (i.e., the smaller m), the steeper is the
fidelity drop. Thus, already the increase in component size
from m = 2 to m = 3 improves significantly the fidelity of
the final unitary and proves a much higher robustness of the
reconstructed matrix Upert. Second, we analyzed the question
of how big the final system size (i.e., unitary size n) can
become, given components of size m achieving a specified
quality FQ. The results for a fixed value FQ = 0.95 ± 0.0005
and m = 2, 3, 5, 10 are presented in Fig. 6. Again, we observe
already for m = 3 a significant advancement in fidelity which
enables the realization of much bigger matrices, i.e., quantum
networks, at reasonable fidelities. The advantage increases
with the size of the submatrices, as expected. Of course it
should be noted that Fig. 6 compares m-mode devices of
increasing size m, assuming that the fidelity for each indi-
vidual device is the same, independent of m. In practice one
expects the fidelity to decrease for more complex devices, so
again there is an obvious competition between the increasing
challenge to construct accurate m-mode devices and the ben-
efit that comes from a more efficient decomposition of large
unitaries.

In conclusion, we have presented an algorithm to decom-
pose large n × n unitaries into smaller constituent m × m
subunitaries. We have shown that these become more toler-
ant to loss and errors as m increases, yielding the intuition
that larger unitaries are more effectively building from larger
building blocks. This has implications for building large-scale
unitary dynamics on quantum systems, in particular linear op-
tics, where the decomposition in terms of 2 × 2 beam splitters
and phase shifters has become ubiquitous. Exploring other
devices which intrinsically operate on a larger set of modes
simultaneously is thus highly advantageous, and may simplify
the path towards practical large-scale devices.
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