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16 Abstract: Water stress is a main factor limiting the vegetation carbon assimilation rate, especially in semi-arid 

17 and arid regions. This study aims to analyze the characteristics of GPP response to soil water availability by 

18 three parameters, WI, kW and αW, based on a light-use-efficiency (LUE) model. These parameters describe the 

19 inflection point, slope and lag effect of GPP response to soil water availability changes, respectively, reflecting 

20 the average water constraints, responding speed to soil water variations and degree of lagged effect. We utilized 

21 a hybrid approach by coupling machine learning techniques with the LUE model to learn intricate relationships 

22 between these parameters and features encompassing climate, vegetation, nutrient deposition, soil properties and 

23 elevation across 196 eddy covariance sites. The results showed that the spatial variability of these three 

24 parameters was dominated by plant types, enhanced vegetation index (EVI) variability, forest age, soil properties, 
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25 and bioclimatic conditions. Mixed and deciduous broadleaf forests alongside vegetation characterized by lower 

26 temporal EVI variability and older forests (>50 years) displayed statistically lower WI and kW, indicating 

27 generally fewer water limitations and quicker responses to changes in soil water availability, in contrast to shrubs 

28 and grass. The impact of soil properties on the spatial distribution of water sensitivities was significant but 

29 complex. Rising temperatures can intensify the average water limitation and reduce the response speed to soil 

30 water changes. The spatial distribution patterns of WI and kW generally followed the climate aridity. Vegetation 

31 in most arid regions exhibited lagged responses to soil water availability. Uncertainties in WI and kW were higher 

32 in the tropics due to limited datasets and in humid areas due to neural network structures, underscoring the 

33 importance of training datasets and approaches in GPP sensitivity analysis. Our study highlights the spatial 

34 heterogeneity of carbon assimilation responses to climate changes driven by diverse vegetation, climate and soil 

35 properties.

36 Keywords: gross primary productivity, water sensitivity, response curve feature, spatial distribution, lag effect, 

37 hybrid model

38 1. Introduction

39 Soil water availability is one of the primary factors influencing the temporal variability in carbon assimilation 

40 rates[1, 2]. Water limitations are reported to have an increasing impact on ecosystem productivity, especially 

41 gross primary productivity (GPP) [3]. Despite various studies exploring the spatial distribution pattern of soil 

42 water sensitivity using different photosynthesis models[1, 2, 4, 5], the specifics of the GPP response to water 

43 availability changes remain unclear, such as the inflection point, slope and lagged effect of the GPP response. 

44 Investigating the spatial patterns of GPP response to water availability is essential for forecasting carbon uptake 

45 trends in our aridity-changing world[6, 7]. 

46 In photosynthesis models, GPP responses to water stress are described and controlled by several model 

47 parameters, which are typically assigned according to plant functional types (PFTs) or set as fixed values in 

48 traditional photosynthesis models. For example, the first proposed MODIS global gross primary productivity 

49 (GPP) product based on a light use efficiency (LUE) model applied a PFT-based look-up table for the parameters 
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50 controlling responses of GPP to absorbed light, temperature and vapour pressure deficit (VPD)[8]. The optimal 

51 soil water availability (also known as inflection point or soil moisture threshold) in LUE models was usually set 

52 based on PFT or fixed values [9, 10]. Moreover, PFT-based parameterization is widely used in photosynthesis 

53 models stemming from the FvCB leaf-scale photosynthesis process model[11]. A representative case is the 

54 photosynthesis module in the community land model (CLM) series[12]. It adopts the PFT-based 

55 parameterization approach for the specific leaf area and leaf nitrogen for carboxylation, while fixing water-

56 stress-related parameters globally. Other kinds of dynamic global vegetation models (DGVMs) in TRENDY and 

57 global climate models in the CMIP6 ensemble are also parameterized according to PFT[13, 14]. In general, the 

58 parameter variability within PFT is ignored in traditional photosynthesis models, resulting in poor simulations 

59 in many cases and high uncertainties[15].

60 The water response function parameters in photosynthesis models can be calibrated locally according to the 

61 observational carbon flux data available at hundreds of eddy covariance sites (e.g., FLUXNET). Many models, 

62 such as CASA, PRELES, EC-LUE, and TL-LUE parameters, were optimized and improved through site 

63 calibrations[16-19], reflecting notable parameter variability beyond PFT. However, model parameters cannot be 

64 calibrated per grid at the global scale due to the limited number of EC sites. Many studies chose to extrapolate 

65 parameters according to PFT[18], site-similarity[16] or applied unified parameters[20]. The PFT-based 

66 extrapolation approach assumes that photosynthesis model parameters vary with PFT only, neglecting other 

67 possible dominating factors, e.g., climate and soil properties which are related to photosynthesis sensitivities. 

68 The links between photosynthesis model parameters and ecosystem properties, including vegetation and climatic 

69 characteristics, were demonstrated independently[21-23]. These studies illustrated that the variability of 

70 photosynthesis model parameters, representing the photosynthesis sensitivities, can be explained by vegetation 

71 and climate features. Existing literature does not directly reveal drivers and distribution patterns of water 

72 sensitivity parameters, while highlighting the importance of root-zone water storage capacity for GPP 

73 responses[24] and the complexity of the vegetation sensitivities to soil moisture[4]. In light of these facts, Horn 

74 et al[25] and Peaucelle et al[26] predicted photosynthesis model parameters using plant traits and climate 

75 features to improve model extrapolation ability. However, these studies based on calibrated parameters were 
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76 restricted from parameter equifinality and unable to detect the actual relationship between parameters and 

77 ecosystem properties.

78 Hybrid models coupling traditional process models with machine learning techniques enable the exploration of 

79 parameter variability. Bao et al.[27] proposed a simultaneous model parameter inversion and extrapolation (SPIE) 

80 approach which can parametrize an LUE model based on ecosystem properties. The approach embeds the 

81 traditional LUE model into a neural network structure, which can output GPP and model parameters 

82 simultaneously. With the approach, the variability and distribution patterns of the parameters determining GPP 

83 responses to soil water availability can be learned. 

84 This study focuses on the analysis of variability and distribution patterns of the GPP sensitivity to water stress. 

85 We took advantage of three parameters in a LUE model to represent the average soil water limitation, soil water 

86 responding speed and lagged responses of GPP to water stress. The three parameters describe the inflection 

87 point, the slope and lag effect of the soil water response function of GPP in the LUE model. We applied SPIE to 

88 learn the relationship between these parameters and features denoting vegetation, climate, atmospheric nutrient 

89 deposition, terrain and soil properties. The learned relationship was used to extrapolate the parameters and 

90 explore their spatial variability. Our study can contribute to a better understanding of the link between ecosystem 

91 features and the water sensitivity of carbon assimilation rates and offers global distribution maps of these water 

92 sensitivity parameters.

93 2. Data and Methods

94 2.1 Light use efficiency model

95 The LUE model is selected from a large ensemble of models with various combinations of environmental drivers 

96 and sensitivity functions[28]. It is evaluated against observations across different site groups and plant-climate 

97 types at daily, weekly, monthly and annual scales, and the results show that the model significantly outperforms 

98 other models. The model has a typical LUE structure which defines GPP as the product of maximum light use 

99 efficiency (εmax), absorbed photosynthetically active radiation (APAR) and the environmental sensitivity 

100 functions. APAR is the product of the incoming photosynthetically active radiation (PAR) and the fraction of 
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101 the absorbed photosynthetically active radiation (FAPAR). The environmental sensitivity functions represent 

102 the environmental impacts on the photosynthesis process, including sensitivity functions of air temperature (T), 

103 vapour pressure deficit (VPD), atmospheric CO2 concentration (Ca), soil water availability (W), light intensity 

104 (L) and cloudiness index (CI). fCa represents the fertilization effect of CO2, while the other sensitivity functions 

105 all represent the environmental stress downregulating GPP, i.e., making GPP smaller than the potential GPP 

106 under optimal T, VPD, W, APAR and fully diffused radiation. The model equation is as follows:

107 GPP = εmax ∙ APAR ∙ fT ∙ fVPD ∙ fCa ∙ fW ∙ fL ∙ fCI    1

108 All sensitivity functions range from zero to one except fCa (≥1). The fL and fCI can be also used to represent the 

109 limitation from light saturation and the fertilization from diffuse radiation, respectively. The detailed equations 

110 of the sensitivity functions are listed at eq. 2-7.

111   fT = 2e-(Tf-Topt) kT

1 + e (-(Tf-Topt) kT)2
    2

112  fVPD = e
κ(Ca0

Ca
)Cκ

VPD
    3

113 fCa = 1 +
Ca - Ca0

Ca - Ca0 + Cm
     4

114  fW =
1

1 + ekW(Wf-WI) 5

115  fL =
1

1 + γ ∙ APAR 6

116 fCI = CIμ   7

117 Tf(t) = (1 - αT) ∙ T(t) + αT ∙ Tf(t - 1)    8

118  Wf(t) = (1 - αW) ∙ W(t) + αW ∙ Wf(t - 1)    9

119 The LUE model parameters (in bold and italic) indicate the sensitivities of GPP. t refers to the time step. 

120 Equations Error! Reference source not found.-Error! Reference source not found. are the lag functions for 

121 GPP responses to temperature and soil moisture in boreal climates and arid climates, respectively. The units and 

122 ranges of these parameters are listed in Table S1. 

123 The water sensitivity parameters refer to WI, kW and αW, which are the inflection point, slope of water response 

124 function and the lagged effect of soil water availability changes in arid climates (see how the soil water sensitivity 

125 of GPP, fW, vary with the three parameters in Figure 1). WI indicates the average water limitation on GPP and 
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126 kW reflects the responding speed of GPP to W changes. The combination of a low WI and a low kW (=high 

127 absolute value) implies that GPP is impacted by soil moisture only below a relatively lower threshold while 

128 decreasing rapidly due to water limitation. αW closing to one represents the lagged response of GPP to W due to 

129 the green tissue development in the vegetation after drought. Therefore, we use these three parameters to 

130 diagnose the average soil water limitation, responding speed and lagged responses of GPP.

131

132 Figure 1. The sensitivity function of GPP to W (fW) changes with three water sensitivity parameters 
133 (WI, kW and αW). WI represents the inflection point of the fW, which is equal to the W resulting in fW=0.5 
134 (exemplified as the red point shown in Figure1a); kW is the slope of the fW; αW represents the degree of 
135 the lag effect, i.e., the GPP response to W changes is lagged when αW is close to 0.9 and the GPP response 
136 is instantaneous when αW is close to zero.

137 2.2 Forcing data

138 The forcing data for the LUE model is collected at 196 EC sites from FLUXNET (https://fluxnet.org/). The data 

139 from EC sites include daily global radiation (Rg, MJ∙m-2∙d-1), T (°C), VPD (hPa), precipitation (Precip, mm), 

140 potential evapotranspiration (PET, mm), potential radiation (MJ∙m-2∙d-1), and latent heat (LE, W∙m-2). PAR is 

141 estimated by Rg and 0.45 (denotes the fraction of visible bands). The water availability index (WAI, mm) is 

142 calculated using PET and Precip with two parameters, the maximum available soil water content (AWC) and ET 

143 decay coefficient (θ), as shown in 10-12[29, 30]. We normalized the WAI using equation 13 to calculate the W 

144 representing the relative soil water availability. W serves as an input for the LUE model.

145 minP = min(Precip(t),AWC -WAI(t -1))    10

146 ETsim(t) = min(PET(t),θ ∙ (WAI(t - 1) + minP))    11

147 WAI(t) = WAI(t - 1) - ETsim(t) + minP    12
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148 W = WAI/AWC    13

149 Here, ET and WAI can be both estimated using Precip and PET. AWC and θ are predicted together with the 

150 LUE model parameters. Snow sublimation is considered according to Trautmann et al[30]. Before estimation, 

151 all state variables are initialized by at least a 5-year spin-up period.

152 CI is equal to one minus the global radiation by the potential radiation, which is linearly correlated to the fraction 

153 of diffuse radiation to the global radiation. The daily evapotranspiration (ET, mm) is estimated based on LE and 

154 T and used to optimize WAI parameters. 

155 We adopt normalized difference vegetation index (NDVI) to represent FAPAR for their linear relationship. The 

156 NDVI is calculated using the red and near-infrared bands of MODIS directional hemispherical reflectance 

157 product at the resolution of 500m (MCD43A3), averaging from the nearest four pixels. The gaps in temporal 

158 NDVI at each site are filled with the FluxnetEO dataset[31]. The monthly mean atmospheric CO2 concentration 

159 (ppm) is acquired from the NOAA website (https://www.esrl.noaa.gov/gmd/) and linearly interpolated to the 

160 daily scale.

161 We collect the GPP and ET estimated from the observational net ecosystem exchange and latent heat flux 

162 (hereafter referred to as GPPobs and ETobs) and the relative uncertainties. These data are used to optimize the 

163 neural network and validate the simulated GPP and ET (hereafter referred to as GPPsim and ETsim) 

164 2.3 Model inputs

165 The model inputs for parameter determination include PFT, bioclimatic variables (BIO1-19), aridity index (AI1-

166 2), vegetation index features (VIF1-8), forest age, atmospheric nutrient deposition, soil properties and elevation 

167 (Table 1). At the site level, PFT and elevation are collected from the site information on the FLUXNET website. 

168 The 19 bioclimatic variables and aridity index are calculated based on the WorldClim global meteorological 

169 product from 1970-2000 with a 1km resolution[32, 33]. The vegetation index features are calculated based on 

170 the enhanced vegetation index (EVI, multiplied by 100), which was computed using the red, near-infrared and 

171 blue bands of Landsat 5, 7 and 8 from 1986-2015 (downloaded via Google Earth Engine) around each site with 

172 a window size of 1km. The forest age is extracted from the global forest age product at 1km resolution which is 

173 estimated based on inventories, biomass and climate data[34]. The ages of cropland and grassland are set to be 
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174 zero. The atmospheric nitrogen and phosphorus deposition datasets were extracted from the nearest pixel of the 

175 modelled global nutrient deposition product from 1986-2015[35]. Moreover, we collect 16 soil property 

176 variables for the surface soil layer at each site from the mean of the nearest pixels of SoilGrids[36] within a 

177 window of 1km. 

178 Table 1. Definition of input features

Class Short names Definitions

CRO Croplands
CSH Closed shrublands 
DBF Deciduous broadleaf forests
EBF Evergreen broadleaf forests
ENF Evergreen needleleaf forests
GRA Grasslands
MF Mixed forests

OSH Open shrublands
SAV Savannas
WET Wetlands

Categorical 
variable/PFT

WSA Woody savannas

BIO1 Annual mean temperature in °C

BIO2 Mean diurnal range in °C (mean of monthly maximum temperature 
minus minimum temperature)

BIO3 Isothermality (BIO2 divided by BIO7 and 100)

BIO4 temperature seasonality in 102°C (standard deviation of 
temperature multiplied by 100)

BIO5 Max temperature of warmest month in °C
BIO6 Min temperature of coldest month in °C
BIO7 Temperature annual range in °C (BIO5 minus BIO6)
BIO8 Mean temperature of wettest quarter in °C
BIO9 Mean temperature of driest quarter in °C
BIO10 Mean temperature of warmest quarter in °C
BIO11 Mean temperature of coldest quarter in °C
BIO12 Annual precipitation in mm
BIO13 Precipitation of wettest month in mm
BIO14 Precipitation of driest month in mm
BIO15 Precipitation seasonality (coefficient of variation)
BIO16 Precipitation of wettest quarter in mm

Bioclimatic 
variables

BIO17 Precipitation of driest quarter in mm
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BIO18 Precipitation of warmest quarter in mm
BIO19 Precipitation of coldest quarter in mm

AI1 Mean annual aridity index (ratio between mean annual 
precipitation and potential evapotranspiration)Aridity 

features
AI2 seasonality of aridity index (standard deviation of mean monthly 

aridity index)

VIF1 Annual mean EVI

VIF2 EVI seasonality (standard deviation of monthly EVI relative to the 
mean EVI)

VIF3 Max EVI of warmest month
VIF4 Min EVI of coldest month
VIF5 Mean EVI of wettest quarter
VIF6 Mean EVI of driest quarter
VIF7 Mean EVI of warmest quarter
VIF8 Mean EVI of coldest quarter

Vegetation 
features

Age Forest age (in years)

NdepNHX Average atmospheric nitrogen deposition (NH3 and NH4) 

NdepNOY Average atmospheric nitrogen deposition (NO and NO2)

Atmospheric 
nutrient 

deposition

Pdep Average atmospheric phosphorus deposition
BDRLOG Probability of occurrence (0-100%) of R horizon
BDTICM Absolute depth to bedrock (in cm)
BLDFIE Bulk density (fine earth) in kg/m3 
CECSOL Cation exchange capacity of soil in cmol/kg 
CLYPPT Clay content (0-2 mm) mass fraction in % 
CRFVOL Coarse fragments volumetric in % 
ORCDRC Soil organic carbon content (fine earth fraction) in g/kg 
PHIHOX Soil pH*10 in H2O 
PHIKCL Soil PH*10 in KCl 
SLTPPT Silt content (2-50 mm) mass fraction in % 
SNDPPT Sand content (50-2000 mm) mass fraction in % 

AWCh1 Derived available soil water capacity (volumetric fraction) with FC 
= pF 2.0 

AWCh2 Derived available soil water capacity (volumetric fraction) with FC 
= pF 2.3 

AWCh3 Derived available soil water capacity (volumetric fraction) with FC 
= pF 2.5

WWP Derived available soil water capacity (volumetric fraction) until 
wilting point 

Soil 
properties

AWCtS Saturated water content (volumetric fraction) teta-S
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Terrain 
feature elevation Elevation (in m)

179

180 At the global scale, the input features are collected from the same sources as the local scale except for PFT and 

181 elevation. We extract PFT from MODIS 1km land cover type product (MCD12Q1) in 2001 (downloaded via 

182 Google Earth Engine) and apply the elevation product derived from the SRTM data at 0.0083 degrees 

183 (downloaded from https://www.worldclim.org/data/worldclim21.html). All global input features are resampled 

184 to the spatial resolution of 1km based on the linear interpolation approach.

185 All input features are normalized and then standardized by subtracting the mean and dividing by the standard 

186 deviation. The categorical variables were processed based on the one-hot encoding approach.

187 2.4 Simultaneous parameter inversion and extrapolation (SPIE)

188 The SPIE approach is to inverse and extrapolate parameters based on a hybrid model coupling a traditional 

189 process model and a neural network[37]. Here, we couple the LUE model with a multilayer perceptron neural 

190 network (3 hidden layers and 64 neurons per layer). All LUE model parameters and WAI parameters are 

191 predicted using the neural network based on standardized input features. The predicted parameters are then used 

192 to parameterize the LUE model and WAI to estimate GPP and ET with the temporal forcing data from EC sites 

193 (as explained 2.2). We optimized and constrained the neural network by the cost function including GPP errors 

194 (sum of the squared difference between GPPobs and GPPsim divided by the uncertainty of NEE), ET errors (sum 

195 of the squared difference between ETobs and ETsim divided by the uncertainty of LE) and some constraints on 

196 sensitivity functions (see equations S1-S5). The outputs of the whole framework include the predicted 

197 parameters (only spatially changed) and the estimated temporal GPP and ET (see the flowchart in Bao et al., 

198 2023). Since the neural network is trained against the observations and learns the relationship between the input 

199 features and model parameters, it is applied to analyze the spatial variability and extrapolate the parameters.

200 To avoid the effect of different training datasets on the learned relationship, we trained the neural network ten 

201 times based on different groups of datasets. Each training dataset covered all PFTs and climate types of the sites 

202 comprehensively to reduce extrapolation bias. GPPsim and ETsim are validated according to the ten-fold cross-

203 validation strategy. The following results and analyses are all based on the cross-validated parameters and GPP. 
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204 2.5 Partial dependence plot (PDP)

205 The partial dependence plot (PDP) is a typical approach to analyze the responses of predictions to the input 

206 features of interest for interpreting a machine learning model[38]. We compute the partial dependence of the 

207 predicted model parameters on each input feature. First, we generate a sequence of 100 numbers with the same 

208 interval within the range of an input feature across sites while fixing other features. The combinations of the 

209 generated feature and the other features are inputted into the trained neural network to predict parameters of test 

210 sites (refers to datasets excluded in the training process). The trend of the predicted parameters, which is shown 

211 in PDP, indicates the response of the parameter to the change in the generated feature, marginalizing all other 

212 input features. For categorical features (PFT and climate types), the partial dependence is calculated based on 

213 two values of the target feature (0 and 1) combined with other features.

214 2.6 Shapley additive explanation (SHAP) dependence plot

215 The Shapley additive explanation (SHAP) dependence plot is an alternative to PDP for the global interpretation 

216 of machine learning models. The Shapley value of each feature is calculated based on the deviation of the 

217 predicted model parameter at a certain input from the average prediction[39]. Shapley values represent the 

218 contribution of a feature to the predicted parameter. We analyze the response of parameters by the average 

219 Shapley value across sites of each feature, i.e., the SHAP dependence plot. Since the Shapley value shows the 

220 variance of predictions while partial dependence shows the average effects, we subtract the mean from the partial 

221 dependence and divide it by the number of input features to make the PDP and SHAP comparable.

222 2.7 Uncertainty assessment

223 We assessed uncertainties in predicted GPP and parameters with respect to training datasets and neural network 

224 structures. 

225 The sites were divided into ten groups randomly for cross-validation. We trained SPIE using every nine of these 

226 groups as the training dataset (10% of the training datasets were set as the test dataset to tune the neural network) 

227 and validated the remaining group as the test dataset until all groups were validated independently. The 

228 uncertainties in parameters and GPP arising from different training datasets were quantified using the standard 
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229 deviation of parameter scalars and the Nash-Sutcliffe model efficiency (NSE) of estimated GPP across these ten 

230 site groups.

231 We assessed the epistemic uncertainty of the neural network (due to structures and parameters) by applying 

232 drop-out training as a Bayesian approximation[40]. The drop-out training was repeated ten times to calculate the 

233 standard deviation of NSE and parameter scalars as the neural network uncertainty.

234 3. Results

235 3.1 Performance of SPIE

236 The simulation accuracy of GPP showed that SPIE performed well at different time scales (Figure 2). NSE and 

237 determination coefficient (R2) of the mean GPP per day of year, week and month across sites reached 0.78, 0.79 

238 and 0.80 respectively (Figure 2a-c). At the annual scale, the NSE and R2 of GPPsim were not as good as shorter 

239 time scales, but the normalized root mean squared error was lower (NRMSE=0.31). At the site level, SPIE can 

240 perform well (NSE>0) at 78%, 74%, 58% and 21% of the sites at daily, weekly, monthly and annual scales, 

241 respectively. As another output of the LUE model, the simulation accuracy of ET was also good 

242 (NSE=0.55,0.57,0.59 and 0.35). Although the GPPsim based on SPIE (in cross-validation) underperformed site 

243 calibrations (trained on all sites), SPIE overperformed using optimized parameters per PFT (OPT-PFT, shown 

244 in Figure S1), which is widely applied in most photosynthesis models. It illustrates that the seasonal variability 

245 of GPP using the SPIE-predicted parameters can be well captured with a low mean annual error. 
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246

247

248 Figure 2. Comparison between mean seasonal cycle GPPobs and GPPsim based on SPIE-predicted 
249 parameters (in blue). Each scatter represents the mean GPP per Julian day, week, month or per year at a site, 
250 respectively. The histogram is the distribution of the site-level NSE at daily, weekly, monthly and annual 
251 scales, respectively. 

252 3.2 Response of water sensitivity parameters to model inputs

253 The spatial variability of WI and kW were both dominated by vegetation features, soil properties and climatic 

254 characteristics. According to two-sample Kolmogorov-Smirnov tests, MF and DBF had significantly smaller WI 

255 and kW than other types (Figure 3(1) and Figure 4(1)), indicating generally fewer water limitations and faster 

256 responses to changes in water availability. WET also had statistically smaller WI. The differences between other 

257 PFTs were not statistically significant, while the mean and median of WI in shrublands (OSH and CSH) and 

258 GRA sites were larger, representing greater water constraints in most of the sites. The partial dependence plots 

259 showed that the variability of WI and kW was primarily contributed by vegetation seasonality, forest age, 

260 bioclimatic conditions, soil properties and aridity seasonality. The higher VIF2 (=standard deviation of EVI) 

261 related to greater water limitation and faster-responding speed to soil water availability (i.e., larger WI and kW, 

262 Figure 3(2) and Figure 4(2)), whereas higher AI2 (=standard deviation of monthly aridity index) resulted in 
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263 lower limitation and responding speed (Figure 3(10) and Figure 4(8)). Older forests (50-300 years) exhibited 

264 lower WI and kW than younger forests in the range of 0-50 years. Besides, WI and kW were strongly correlated to 

265 the precipitation in the coldest quarter and the mean temperature of the driest quarter (BIO19 and BIO9). The 

266 temperature in the warmest month and quarter (BIO5 and BIO10) and mean annual temperature (BIO1) all had 

267 positive effects on the parameters, representing the temperature can increase the average water limitation on 

268 GPP and response speed to variations in soil water availability. The influence of various soil property variables 

269 on WI and kW were different, while the variables related to water holding capacity contributed the most to the 

270 variability for WI and kW, e.g., CRFVOL and BDTICM. In general, vegetation features, including PFT, 

271 vegetation index features and forest age, together with climate features as well as soil properties, were driving 

272 the spatial variability of WI and kW.
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273

274 Figure 3. Partial dependence plots of WI to input features in cross-validation. Categorical features (the 
275 first row, (1)) are arranged by the differences between means of predicted WI, with the red asterisk indicating 
276 statistically significant differences (p<0.05) between predicted WI of a specific type and those of other types 
277 (grey-color). The width of the half violin plots indicates the probability density function. Non-categorical 
278 features are sorted by the relative variance (shown in the upper-right corner of (2)- (51)). The brown shadow in 
279 (2)- (51) represents the standard deviation of the predicted WI across training groups.
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280

281 Figure 4. Partial dependence plots of kW to input features in cross-validation.

282 The parameter indicating the lagged response of GPP to soil moisture change, αW, was mainly controlled by 

283 vegetation features including PFTs and EVI features, bioclimatic variables and soil properties (Figure 5). The 

284 αW of OSH sites was significantly higher than others, representing OSH were more likely to have lagged 

285 responses, in opposite to DBF sites. The seasonality of vegetation dominates the variability of αW, which was 

286 the same as WI and kW. Besides, the responses of αW to the mean EVI in the wettest quarter (VIF5) and the 

287 maximum EVI in the warmest month (VIF3) showed that dense vegetation with higher maximum and mean EVI 

288 can respond to soil moisture promptly, while sparse vegetation was more prone to exhibit a lag effect. The lag 

289 effect was also related to the thermal conditions (e.g., BIO5, BIO10, BIO2 and BIO7). It showed that hot 
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290 temperatures and larger diurnal and annual temperatures can result in lagged responses of GPP to soil moisture. 

291 Furthermore, αW was affected by the soil properties related to water and nutrient holding capacity and soil PH, 

292 like CECSOL, CLYPPT, SLTPPT, and PHIKCL. The vegetation growing in the environment with higher aridity 

293 (lower AI1) and lower aridity seasonality (lower AI2) had higher αW, representing more likely to have lagged 

294 responses. Alpine vegetation also had higher αW. In general, the dominant variables of αW were similar to part 

295 of the dominant variables of WI and kW, like PFTs and soil water holding capacity, however, αW was more 

296 influenced by the maximum and mean EVI and thermal conditions.
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297

298 Figure 5. Partial dependence plots of αW to input features in cross-validation

299 The SHAP dependence plots presented different magnitudes but similar trend directions to the PDP. Although 

300 the magnitudes and slopes were slightly different, the changing trends of parameters to various features were the 

301 same after converting the units of partial dependences to Shapley values (Figure S2-7). Thus, the derived 

302 response trends were robust between different approaches and training datasets.

303 To summarize, the parameters controlling soil water sensitivity, WI, kW and αW, strongly responded to the 

304 vegetation seasonality and soil properties relating to the water holding capacity. Shrubs generally face greater 
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305 water limitation compared to other plant types, whereas deciduous broadleaf and mixed forests exhibit faster 

306 responses to changes in soil water availability than other plant types.

307 3.3 Uncertainties in GPP and parameters

308 At the site level, low uncertainties in GPP and predicted parameters associated with training datasets and neural 

309 network structures were observed (Figure 6). The mean seasonal cycle GPP showed robustness at daily, weekly 

310 and monthly scales (standard deviation of NSE<0.01 and 0.08, respectively), while at the annual scale, the 

311 uncertainty was over twice as high. The uncertainties in predicted WI, kW and αW using different training datasets 

312 and neural network structures were similar. Both results showed that the uncertainty of predicted kW was higher 

313 than the other two parameters. 

314

315
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316 Figure 6. Uncertainty in Nash-Sutcliffe efficiency (NSE) of mean seasonal cycle GPP and predicted 
317 parameters due to different training datasets and neural network structures. 

318 At the global scale, the uncertainty related to training datasets and neural network structures both showed spatial 

319 heterogeneity. The uncertainty of WI and kW resulting from different training datasets was higher in the tropics 

320 and polar regions due to less data (Figure S8a-b). For the same reason, αW exhibited higher uncertainties in the 

321 west of Asia (Figure S8c). The median uncertainty of WI and kW reached 13% and 28%, respectively, much 

322 higher than αW (=3%). Compared to the uncertainty from training datasets, lower WI, kW and αW uncertainties 

323 from neural network structures were observed (median=10%, 21% and 2%, respectively). The WI and αW 

324 uncertainty was relatively homogeneous spatially, whereas kW displayed lower uncertainties in arid regions and 

325 higher uncertainties in other places (Figure S9). Our results reflected that parameter uncertainties were affected 

326 by the distribution density of training datasets.

327 3.4 Global distribution maps

328 The global distribution of WI and kW shows higher water constraints and quicker responses to soil water in 

329 subtropical and temperate dry regions while lower in the wet tropics and high northern latitudes. The high WI 

330 was observed primarily in the south of North America, areas around the Mediterranean Sea, West Asia and North 

331 Africa (Figure 7a). In these places, kW was also high (Figure 7b), indicating more significant water limitation 

332 and slower responding speed. WI and kW were strongly correlated in 55% of the areas (r>0.7). Besides, we found 

333 high αW values (median=0.83) across all arid climates (according to the Koeppen-Geiger climate classification, 

334 Figure 7c). It represented that most vegetation growing under arid climates exhibited lagged responses to soil 

335 moisture. Furthermore, the global kW showed a slightly different density distribution pattern from the local scale 

336 (see the histogram in Figure 7b). In general, the global maps illustrated that GPP in arid regions experiences 

337 greater water limitations and exhibits both gradual and delayed responses to water availability.
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339  (a)

340

341  (b)
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342

343  (c)

344 Figure 7. Global distribution maps of (a)WI, (b)kW and (c)αW in 0.0083° (smoothed using a 25*25 moving 
345 median window). The histogram shows the possibility distribution function (PDF, dotted lines) and fraction 
346 (bars) of the predicted parameters at sites (in blue) and at the global scale (in red). 

347 4. Discussion

348 4.1 Drivers for GPP sensitivities to soil water availability

349 Vegetation water sensitivities differ between plant types. Our results reveal that forests, especially MF and DBF, 

350 face statistically fewer water limitations and respond faster to water availability changes, while grass and shrubs 

351 tend to be more insensitive to water availability changes, similar to the findings of another study[41]. This can 

352 be related to vegetation physiological features, climate and soil properties of the growing environment. 

353 Vegetation index features, especially VIF2 representing vegetation seasonality strength, were found to be the 

354 most important variables to predict WI, kW, and αW, in other words, to control the water sensitivity of GPP. On 

355 the one hand, the importance can be explained by the interaction (i.e., a vegetation index influences carbon 

356 assimilation rate and is affected by carbon allocation) and strong correlation between GPP and a vegetation index 

357 (here refers to EVI). On the other hand, the vegetation variability, which is related to species and climates, 
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358 influences the response of GPP under water stress[42]. Our results indicate that vegetation with lower seasonal 

359 variability experiences fewer water constraints generally and GPP saturates faster than vegetation with higher 

360 seasonal variability. 

361 Stand age is another important feature affecting the inflection point and the slope of soil water response function, 

362 i.e., WI and kW. Older trees generally experience lower water limitations and respond faster to soil moisture 

363 changes relative to younger trees. Our findings agree with on-site studies of trees older than 25 years[43], 

364 showing higher average soil moisture content for older trees. The wetness of environments for older trees 

365 (e.g., >50 years) like rainforests could also contribute. 

366 Soil properties were known to have important effects on vegetation responses to water stress[44]. Soil water 

367 holding capacity, indicating the maximum water content the soil can hold under gravity, is related to soil 

368 properties such as soil depth and soil texture. However, the water availability for plants might not be positively 

369 correlated with soil water holding capacity due to variations in soil water matric potential[45]. Although the WI, 

370 kW, and αW were all controlled by properties relating to the soil water holding capacity, the relationships can be 

371 opposite. For example, soils with fewer coarse fragments, higher clay content and deeper depth tend to have 

372 higher water-holding capacity. However, the relationship between WI and coarse fragments, between WI and 

373 soil clay content and between kW and soil depth (Figure 3 (4)- (5) and Figure 4 (2)) were all positive. The findings 

374 demonstrated that the spatial relationship between vegetation water sensitivity and soil properties were strongly 

375 affected by other factors dominating soil water matrix potential, such as vegetation type, rainfall and soil 

376 temperature[44, 46].

377 Bioclimatic variables are the last but not the least key factors for the soil water response function. Our results 

378 showed the rising annual and seasonal temperature (e.g., BIO1, BIO5, and BIO9-10), especially in the warmest 

379 and driest seasons, can exacerbate water limitations and reduce the GPP saturation speed. Additionally, the rising 

380 temperature can intensity the lag in GPP responses due to green tissue redevelopment following drought periods. 

381 Greater seasonality and variability in annual temperature (e.g., BIO2-4 and BIO7) correlate with reduced water 

382 constraints but are associated with more pronounced lagged responses. Furthermore, the spatial correlation 

383 between rainfall and GPP’s responses to water availability exhibits complexity. An increase in rainfall does not 
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384 uniformly reduce water sensitivity across large spatial extents, likely influenced by diverse soil properties[44] 

385 and the mitigation of evapotranspiration. This contrasts with the more direct and immediate temporal correlation 

386 between rainfall and vegetation water stress [47]. Hence, the patterns of spatial variation in water sensitivity of 

387 GPP cannot be straightforwardly translated to temporal analyses. Our study confirms temperature as a main 

388 driver of soil water sensitivities across the sites.

389 4.2 Spatial patterns of GPP sensitivity to soil water availability

390 The global distribution pattern of WI and kW generally follows the climate aridity[48, 49]. It is also similar to the 

391 pattern of precipitation sensitivity to leaf area index changes[figure 2a in 50], reflecting the spatial variability of 

392 vegetation sensitivities to water supply. However, the pattern is different from the root-zone water storage 

393 estimated by the maximum cumulative water deficit during dry seasons[24], particularly in the subtropical dry 

394 regions (e.g., southern Spain, India and South Asia). In most of the arid areas, the response of GPP to water 

395 availability changes has a temporal lag (brown area in Figure 7c). This lag effect is associated with the 

396 vegetation’s strategy to mitigate water stress resulting from insufficient rainfall or alterations in its 

397 seasonality[51]. The strategy is a result of a plant’s system to absorb and recover from disturbance or stress[52, 

398 53]. The phenomenon in local scales has been reported in other studies[25, 53, 54]. Our results reveal the spatial 

399 relationship between the response of GPP to soil water availability and water supply. 

400 4.3 Challenges in parameter interpretation

401 The uncertainties in parameters due to training datasets and neural network structures cannot be neglected in 

402 tropics and humid areas, respectively. The predicted GPP contains the uncertainty introduced by the parameters. 

403 Although the relative importance of the input features (i.e., the magnitude of the partial dependence and SHAP 

404 dependence) differ across approaches and datasets, our results show stable trend directions of dependence plots. 

405 Nevertheless, several challenges require further investigation in future studies.

406 The performance of simulated GPP by SPIE is good across sites (NSE=0.78), while it is low (NSE≤0) at 21% 

407 of the sites, particularly for evergreen broadleaf forest, tropical and polar sites where the uncertainty is relatively 

408 high. This may hamper the analysis of parameter variability in these sites and increase the error and uncertainty 
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409 in wet tropics and the Arctic. In general, SPIE works well spatially while needs further improvement to capture 

410 the temporal variability of GPP for evergreen broadleaf forests, tropics and polar regions.

411 In addition to instantaneous responses to environmental changes, plants undergo physiological and structural 

412 adaptions over weekly to monthly time scales to optimize their growth potential during their lifetime, i.e., 

413 acclimation[55, 56]. Mengoli et al.[57] demonstrated the importance of incorporating temperature acclimation 

414 by dynamically adjusting parameters representing the maximum carboxylation and electron transport rates, 

415 leading to improvement in model performance. This highlights the necessity of considering the acclimation of 

416 model parameters, i.e., the temporal variability of parameters, in future studies.

417 5. Conclusion

418 Our study highlights that the response of GPP to soil water availability is influenced by several factors, including 

419 plant types, vegetation seasonality, soil properties and bioclimatic conditions. Especially, older forests, and 

420 vegetation with lower seasonal variability generally exhibits fewer water limitations and GPP reach saturations 

421 faster, contrasting with more gradual responses observed in grass and shrubs. Furthermore, soil properties, 

422 particularly those related to soil water holding capacity, play a significant role in shaping GPP responses, 

423 nevertheless the relationship between them is complex. We also found that higher annual and seasonal 

424 temperatures intensity average water limitations and reduce the GPP saturation rate. Additionally, arid plant GPP 

425 responses to water availability show lagged effect. The spatial distribution pattern of GPP response to water 

426 availability generally aligns with the climate aridity. Our study identifies consistent patterns across the space, 

427 regardless of training datasets and neural network structures, while uncertainties exist at local scales. These 

428 findings underscore the importance of considering plant types, vegetation features, soil properties and 

429 bioclimatic conditions when analyzing the spatial variability of responses of carbon assimilation to water stress 

430 under global climate changes. 
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