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Abstract: 
 
The soil microbiome determines the fate of belowground inputs of plant fixed carbon. 
The shifts in soil properties caused by changes in land use leads to modifications in 
microbiome structure and function, resulting in either loss or gain of soil organic carbon 
(SOC). Soil pH is the primary factor regulating microbiome characteristics leading to 
distinct pathways of microbial carbon cycling, but the underlying mechanisms remain 
understudied. Here, the taxa-trait relationships behind the variable fate of SOC were 
investigated across two temperate paired land use intensity contrasts with differing 
soil pH using metaproteomics, metabarcoding and a 13C labelled litter decomposition 
experiment. 13C incorporation into microbial biomass increased with land use 
intensification in low pH soils but decreased in high pH soils, impacting ecosystem 
carbon use efficiency (CUE) in opposing directions. Reduction in biosynthesis traits 
across land use intensity contrasts was due to increased abundance of proteins linked 
to resource acquisition and stress tolerance. These community-level trait trade-offs 
were underpinned by land use intensification-induced changes in dominant taxa with 
distinct traits. These trait changes alter the balance of decomposition and stabilisation 
of carbon in soil through divergent pH-controlled pathways. In low pH soils, land use 
intensification alleviates microbial abiotic stress resulting in increased CUE but 
promotes decomposition and SOC loss. In contrast, in high pH soils, land use 
intensification increases microbial physiological constraints and decreases CUE, 
leading to reduced necromass build-up and SOC stabilisation. We demonstrate how 
microbial CUE can be decoupled from SOC highlighting the need for its careful 
consideration in predicting or managing SOC storage for soil health and climate 
change mitigation. 
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Introduction: 
 
Soils are under pressure to deliver multiple ecosystem services, especially food 
production. This has led to the expansion of agriculture into pristine environments and 
increased intensification. There is a growing recognition that the intensive use of soils 
is detrimental to soil health, changing soils' inherent biodiversity and risking the 
services that they provide [1, 2]. The world’s soils have historically lost 133 Pg of 
carbon due to land use intensification [3]. However, degraded soils low in organic 
matter also represent an opportunity to adopt regenerative management promoting 
soil carbon storage that may help mitigate this issue [1, 4, 5]. To better achieve this 
aim, it is vital to understand the role of soil microbes in carbon cycling, as the 
microbiome is the gatekeeper of soil-atmosphere carbon exchange controlling the fate 
of carbon in soils [6].  
 
A new paradigm recognises the direct, significant contribution of microbes in 
transforming photosynthetically derived carbon into soil organic carbon [7], by 
stabilising dead microbial biomass (necromass) onto mineral surfaces to enable 
persistent, long-term carbon storage [8]. Microbial CUE is a vital ecosystem trait that 
determines soils’ ability to accumulate carbon [9] and is measured as the incorporation 
of organic carbon from the environment into its biomass through growth [10, 11]. A 
higher microbial CUE implies more efficient biomass production and a lower 
respiratory loss [12]. Increased growth and death of microbes results in a bigger 
necromass pool that on association to mineral surfaces can form persistent SOC 
thereby promoting soil carbon storage [13]. As microbes become more efficient in 
using carbon, higher carbon storage is observed in soils, a pattern that is detectable 
at the global scale [14]. Increased microbial CUE therefore offers the potential to 
increase the necromass pool for stabilisation in the mineral-associated organic matter 
resulting in long term SOC storage. 

 
Microbiome diversity and function are responsive to environmental gradients [15–17] 
and microbial biomass is generally greatest under low intensity land use [18, 19]. 
Increased necromass production for promoting soil carbon storage is likely best 
achieved at grassland sites with low land use intensification. Given the degraded state 
of many of the world’s agricultural soils that have lost SOC, croplands represent a 
habitat where carbon storage could be promoted through microbiome-mediated 
processes. Therefore, it is crucial to understand how land use intensification impacts 
key microbial traits such as CUE [20–22]. This knowledge would enable us to better 
manage degraded soils to enhance microbial CUE and promote SOC stabilisation, 
providing many benefits for soil health, soil biodiversity, and climate change mitigation 
[4, 23, 24]. 

 
A positive relationship between microbial biomass and SOC concentration has been 
observed across 21 paired land use contrasts in the UK [25]. However, land use 
intensification effects on community-level CUE were complex and were better 
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explained through interactions of multiple soil properties. Of these, soil pH was 
identified as the dominant factor, as converting grasslands to cropland tends to 
increase soil pH [25]. Soil pH has been previously found to be the main factor 
influencing soil microbial diversity [26, 27]. The UK-wide study suggested two distinct, 
pH-dependent mechanisms of soil carbon accumulation [25]. Acid, wet, and anoxic 
conditions limit microbial growth and decomposition [25], accumulating part-
decomposed plant materials at the soil surface and high SOC in the upper horizons 
[28]. In contrast, well-drained neutral to alkaline pH soils provide conditions more 
conducive to microbial growth, promoting necromass generation for stabilisation as 
SOC [25]. Thus, soil pH can be used as a proxy to study the divergent effect of land 
use intensification on soil microbiomes and carbon cycling.  
 
The trait-based life history strategies of the resident microbiome can explain the 
divergent mechanisms of microbial SOC accumulation. A life history framework has 
been proposed for microbes classifying them into three main strategies: high yield (Y), 
resource acquisition (A) and stress tolerance (S) with multiple underlying traits [29]. 
These traits correlate due to physiological or evolutionary trade-offs, influenced by the 
environmental conditions such as resource availability and abiotic stress [25, 29]. In 
low resource environments, typical of high land use intensity soils (e.g. arable systems 
where plant biomass inputs to soil tend to be low), traits that enable microbial survival 
and activity include investment into the production of extracellular enzymes for 
resource acquisition pathways [29, 30]. In soils under high land use intensification, 
microbes are exposed to increased frequency of drought stress as tillage leads to soil 
aggregate disruption and lower water holding capacity [31]. Investment in stress 
tolerance in high land use intensity soils can often be observed with chaperone 
proteins such as Chaperonin GroEl that prevent stress-induced misfolding of proteins 
[25]. These increased cellular investments into stress alleviation and resource 
acquisition trade off with microbial growth yield due to the diversion of resources from 
growth and biosynthesis. The reduced biomass (and subsequent necromass pool) and 
the increased respiratory loss reflect lower SOC accumulation rates [25, 29]. 
Furthermore, under intense abiotic pressure, such as drought, microbes might also 
shift to a dormancy state, reducing ecosystem CUE [32, 33]. 

 
While microbial community-level traits such as CUE have been linked to ecosystem 
measures such as changes in SOC, identifying taxonomic groups contributing to 
higher CUE is challenging. Previous studies have aimed to do this, by assigning 
microbial taxa to trophic groups or life history strategies such as the copiotroph-
oligotroph dichotomy [34, 35]. It was observed that copiotrophs invest in a competitive 
strategy and have a high maintenance respiration, which reduces their CUE. In 
contrast, oligotrophs maintain growth over respiration in low quality resource 
environments, thereby increasing their CUE [35, 36]. However, the copiotroph-
oligotroph dichotomy does not exist at broader levels of taxonomic linages [37]. 
Therefore, linking a comprehensive set of traits (such as those for Y-A-S life history 
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strategies) to taxonomic identity is essential to better understand how organismal 
physiology influences ecosystem-level processes.  

 
This study investigated the microbial community response to land use intensification 
in two temperate sites of contrasting soil pH to understand how taxonomic and trait 
shifts impact soil carbon cycling. Our current understanding of the microbial traits 
underpinning SOC stabilisation processes is mainly obtained through analysing a 
community response, often using an emergent trait such as CUE. In addition to this 
approach, we aim to identify how changes in the abundance of dominant microbial 
taxa caused by land use intensification led to shifts in key microbial traits, emergent 
ecosystem CUE, and SOC decomposition and stabilisation rates. We hypothesise that 
increased land use intensification impacts soil properties, with a shift from high growth 
yield taxa to resource acquiring and stress tolerant taxa in the microbial community, 
resulting in lower CUE and SOC stabilisation. Using metaproteomics and 
metabarcoding, we identified the dominant taxonomic groups with different Y-A-S 
traits and related them to ecosystem CUE measures. Therefore, this study 
demonstrates how land use intensification selects microbial communities with variable 
organismal traits impacting the soil carbon cycling. 
 
 
Methods: 
 
Site description 
 
To understand how microbial taxonomy and traits influence soil carbon dynamics in 
soils of differing land use intensity, we chose two sites with contrasting pH that were 
previously studied as part of a landscape scale survey [25]. The low pH site (pH 5.2), 
Kirkton located in Perthshire (Table 1), has historically undisturbed plots 
representative of wet acid upland podzols [28] with high SOC in the upper horizons. 
These soils are dominated by U4d (Festuca ovina–Agrostis capillaris–Galium 
saxatile, Luzula multiflora–Rhytidiadelphus loreus subcommunity) and the U5a 
(Nardus stricta–Galium saxatile species-poor subcommunity) grasslands of the 
National Vegetation Classification [38]. The contrasting plot has soils improved to 
support agricultural activities by drainage and liming, this raised soil pH to 6.4. The 
high pH site (pH 7.7) was a chalk grassland at Parsonage Down National Nature 
Reserve located in Wiltshire (Table 1). The low land use intensity plot has not been 
ploughed in the last 100 years and supports a herb-rich plant community dominated 
by CG2 Festuca ovina–Avenula pratensis grassland [38]. The high land use intensity 
arable cropland plot at this site has a soil pH of pH 8 (Table 1). In both sites, land use 
intensification led to a loss of soil organic carbon. Pairwise t-test was performed to 
ascertain the effect on land use intensity on soil properties. 
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Table 1: Site characteristics given as mean values (± standard error) with statistical 
comparison of land use intensity contrasts within sites given by p values of t-test.  
 

 Low pH site: Perthshire, UK High pH site: Wiltshire, UK 
Land use 
intensity  

Low High Pairwise 
t-test 

p-value 
 

Low High Pairwise 
t-test 

p-value 
 

Land 
management 

Unimproved 
grassland 

Intensive 
grassland 

Unimproved 
grassland 

Intensive 
arable 

Soil pH 5.2 (±0.2) 6.4 (± 0.1) 0.011 7.7 (± 0.03) 8.0 (± 0.04) 0.001 
Soil C (%) 23.8(± 8.5) 4.3 (± 0.6) 0.145 10.4 (± 0.5) 3.8 (± 0.1) 0.004 
Moisture (%) 72.1 (± 13.6) 41.7 (± 2.5) 0.153 43.1 (± 4.9) 30.4 (± 4.9) <0.001 
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Experimental design 
 
At each plot, three spatially dispersed soil cores (5 cm diameter, 15 cm deep) were 
sampled. Soil samples were preserved at 4°C following removal of vegetation and 
homogenisation by sieving (< 4mm). Mesocosms were established in Petri dish plates 
containing 10 g (dry weight equivalent) soil, maintained at field moisture 
gravimetrically and incubated at 21°C for 7 days. After this time, 3 mg 13C-labeled 
Chenopodium sp. leaf litter was mixed thoroughly with the soil in each mesocosm 
(n=3). As the amount of carbon in the added litter was very low (<1%) relative to the 
existing soil carbon, the influence of litter addition on microbial community taxonomy 
and function is considered negligible. The 13C-labeled leaf litter was produced by 
growing Chenopodium sp. in a closed chamber containing ~1 atom% 13C-CO2 at a 
concentration of 400 ppm, followed by drying of leaves and homogenisation by 
grinding. Mesocosms were destructively harvested on day 0 (just before litter addition) 
and days 2, 8 and 36 following litter addition. 13C-labelling of the litter enabled 13C to 
be traced into separate pools as microbial biomass, respired CO2, and bulk soil. The 
labelled substrate was added at a single time, allowing the monitoring of the microbial 
ecosystem CUE over the incubation period. 
 
Microbial CUE 
 
An aliquot (1 g) of the soil collected at each sampling point was placed in a sealed 10-
ml glass vial with rubber septa and incubated overnight (for ~16 h) at 21 °C in the dark 
to collect respired CO2 in the headspace. Concentrations of CO2 and its 13C content 
was analysed by gas chromatography isotope ratio mass spectrometer (GC-IRMS, 
Delta + XL, Thermo Fisher Scientific, Germany) coupled to a PAL autosampler (CTC 
Analytics) with general purpose (GP) interface (Thermo Fisher Scientific, Germany). 
DNA was extracted from 0.25 g soil at each sampling point using the PowerSoil-htp 
96-well soil DNA isolation kit per manufacturer's instructions (MO BIO Laboratories, 
UK) and its quality was checked by Nanodrop. Total extractable DNA concentration 
was also measured using a Qubit fluorometer, providing a proxy for microbial biomass.  
13C content of DNA extracts was analysed by liquid chromatography isotope ratio 
mass spectrometer LC-IRMS (HPLC system coupled to a Delta + XP IRMS through 
an LC IsoLink interface; Thermo Fisher Scientific, Germany). This approach enabled 
quantification of the proportion of 13C labelled plant litter in total microbial DNA and 
respired CO2 during the incubation.  Microbial CUE was calculated using the following 
equation:   
 

CUE = 13C-DNA/(13C-DNA + ∑13CO2) 
 

where ∑13CO2 is the cumulative litter-derived 13C lost during respiration. Statistical 
analyses and visualisations in ggplot2 [39] were performed using R software 2023.3.0 
[40]. Multi-factorial ANOVA was performed to ascertain the effect of site, land use 
intensity and sampling time on 13C in DNA, 13C in respired CO2 and ecosystem CUE. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 9, 2024. ; https://doi.org/10.1101/2024.04.05.588235doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.05.588235
http://creativecommons.org/licenses/by/4.0/


7 
 

Metabarcoding 
 

DNA was extracted as described above. Amplicon libraries were constructed 
according to a dual indexing strategy [41] with each primer consisting of the 
appropriate Illumina adapter, 8-nt index sequence, a 10-nt pad sequence, a 2-nt linker 
and the amplicon specific primer. For prokaryotes, the V3-V4 16S rRNA amplicon 
primers from Kozich et al. [41] were used (CCTACGGGAGGCAGCAG and 
GCTATTGGAGCTGGAATTAC), for eukaryotes the 18S rRNA amplicon primers from 
Baldwin et al. [42] were used (AACCTGGTTGATCCTGCCAGT and 
GCTATTGGAGCTGGAATTAC). Amplicons were generated using a high-fidelity DNA 
polymerase (Q5 Taq, New England Biolabs). After an initial denaturation at 95 ºC for 
2 minutes PCR conditions were: denaturation at 95 ºC for 15 seconds; annealing at 
temperatures 55 ºC, 57 ºC for 16S, 18S reactions respectively; annealing times were 
30 seconds with extension at 72 ºC for 30 seconds; cycle numbers were 25 for 16S, 
and 30 for 18S; final extension of 10 minutes at 72 ºC was included. Amplicon sizes 
were determined using an Agilent 2200 TapeStation system and libraries normalized 
using SequalPrep Normalization Plate Kit (Thermo Fisher Scientific) and quantified 
using Qubit dsDNA HS kit (Thermo Fisher Scientific). Each amplicon library was 
sequenced separately on Illumina MiSeq using V3 600 cycle reagents at 
concentrations of 8 pM with a 5% PhiX Illumina control library. Raw data have been 
deposited in NCBI SRA under accession PRJNA1088078.  
 
Sequenced paired-end reads were joined using PEAR[43], quality filtered using 
FASTX tools (hannonlab.cshl.edu), length filtered with the minimum length of 300 bp, 
presence of PhiX and adaptors were checked and removed with BBTools 
(jgi.doe.gov/data-and- tools/bbtools/), and chimeras were identified and removed with 
VSEARCH [44] using Greengenes 13_5 [45] and SILVA 132 [46] databases for 16S 
and 18S respectively (at 97%). Singletons were removed and the resulting sequences 
were clustered into operational taxonomic units (OTUs) with VSEARCH at 97% 
sequence identity. Representative sequences for each OTU were taxonomically 
assigned by RDP Classifier [47] with the bootstrap threshold of 0.8 or greater using 
the Greengenes 13_5 and SILVA 132 databases (16S and 18S respectively) as the 
reference. Unless stated otherwise, default parameters were used for the steps listed. 
Taxonomic groupings of prokaryotes were presented using the older taxonomic 
classification to compare with proteomics-derived taxonomy. Only three major groups 
of eukaryotes: fungi, Ciliophora and Cercozoa were analysed. α-diversity indices 
(Shannon Weiner diversity index, Pielou’s Evenness Index and OTU Richness) were 
calculated on rarefied data (2000 reads) using the vegan package in R [48] and 
visualisations were performed using ggplot2 [39]. β-diversity was assessed by in non-
metric multidimensional scaling ordinations and running Permutational Multivariate 
Analysis of Variance (PERMANOVA) using vegan’s adonis2 function. Multi-factorial 
ANOVA was performed to ascertain the effect of site and land use intensity on diversity 
indices and the abundance of taxonomic groups of interest. 
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Metaproteomics 
 

Metaproteomic analysis was performed on soil microbial communities for day 0 and 
day 8 samples. Proteins were extracted from 5 g of soil (with two technical replicates) 
using the SDS buffer–phenol extraction method, followed by purification with 1D SDS-
PAGE. The resultant product was subjected to tryptic digestion. Proteolytically cleaved 
peptides were separated prior to mass spectrometric analyses by reverse-phase nano 
HPLC on a nano-HPLC system (Ultimate 3000 RSLC nano system, Thermo Fisher 
Scientific, San Jose, CA, USA) coupled online for analysis with a Q Exactive HF mass 
spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) equipped with a nano 
electrospray ion source (Advion Triversa Nanomate, Ithaca, NY, USA). Raw data were 
searched using Proteome Discoverer v1.4.1.14 (Thermo Fisher Scientific) against a 
FASTA-formatted database (Uniprot 05/2016) using the SEQUEST HT algorithm. 
Additional details on quality control, database searches, and filtering are described 
elsewhere [25]. The mass spectrometry data are available in the ProteomeXchange 
Consortium via the PRIDE partner repository with the identifier PXD010526. 
Functional annotation was performed using KEGG classifier and GhostKoala. 
Taxonomic origin was assigned to proteins using Unipept v3.2, enabling us to make 
function-taxonomy linkages. Two-factorial ANOVA was performed to ascertain the 
effect of site and land use intensity on proteomics-derived functional diversity index. 
Pairwise Indicator Species Analysis was performed to identify the protein functions 
that were significantly enriched in low- and high-intensity land use treatments at each 
site [25]. The abundance of different protein functions that were identified was then 
investigated in each taxonomic group of interest and this was plotted using ggplot2 by 
combining the geom_tile and geom_point functions. Pairwise t-test was performed to 
ascertain the effect on land use intensity on the abundance of protein functions under 
each taxonomic group.  
 
Results and discussion 
 
Land use intensification alters soil physicochemical properties 

 
Land use intensification had profound effects on soil properties, significantly 
increasing soil pH at both sites (Table 1). At the low pH site, pH increased from 5.2 to 
6.4 through liming that is necessary to achieve the optimum soil pH range for crop 
plant nutrient availability [49]. Improved drainage and crop cultivation reduced the soil 
moisture into an optimal range (40-50%), hence reducing anoxia, further alleviating 
physiological constraints on the soil microbiome. Thus, the wider assumption that land 
use intensification causes aridity and drought stress in soil microbiomes does not 
apply to poorly drained acidic soils [25]. Land use intensification only marginally 
increased soil pH at the high pH site – a shift of 0.3 units. These soils are inherently 
alkaline, and do not require pH adjustment through liming to support agriculture. 
Increased land use intensification at this site reduced soil moisture below the optimum 
range (40-50%), possibly increasing the risk of drought stress [50]. Therefore, soil 
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conditions under increased land use intensification are likely more challenging for the 
microbiome at the tested high pH site. 
 
Land use intensification at the tested low pH site resulted in over 80% of the SOC 
being lost relative to the unimproved soil (Table 1). Increased decomposition in organic 
soils under land use intensification is a key mechanism for SOC loss, as the carbon at 
these sites is particularly vulnerable to loss due to a lower proportion of mineral-
associated organic matter or MAOM [4, 33, 51]. Land use intensification at our high 
pH site led to a marked SOC decline from 10.4% to 3.8% (Table 1), confirming that 
cultivated soils are prone to SOC loss [52]. These impacts of land use intensification 
on soil properties are in accordance with Malik et al. [25] who also observed increased 
soil pH under intensification that led to SOC loss and reduced soil moisture availability, 
being most pronounced in low pH soils. 
 
Land use intensification influences microbial growth, respiration, and 
ecosystem CUE 
 
Microbial growth depended on land use intensification and site (Fig. 1a), with 
increased land use intensification resulting in an increase of 13C in the microbial DNA 
at the low pH site (54% more in the high than in the low land use intensity soil) and in 
a reduction of 13C in microbial DNA at the high pH site (35% less in the high than in 
the low land use intensity soil). This contrasting effect of land use intensity at the two 
sites is highlighted by the significant interactive effect of site and land use intensity 
(ANOVA, p<0.001). This result supports our hypothesis that land use intensification 
reduces carbon incorporation into microbial biomass, but only at the high pH site 
where land use intensification reduced soil resource availability and moisture. In 
contrast, land use intensification at low pH alleviated physiological constraints of 
acidity, wetness, and anoxia, enabling increased growth (Fig.1a).  
 
We hypothesised that land use intensification results in an increase in the 
decomposition rate of an added complex resource, measured by an increased 13CO2 
production. However, there was no difference in respiratory rate of the 13C labelled 
substrates in soils across the land use intensity contrasts at both sites (Fig. 1b). 
 
Ecosystem-level microbial CUE deduced from 13C in the microbial DNA and respired 
CO2 was not statistically significant across land use intensity treatments, but the 
patterns suggest a reduction with land use intensification at the high pH site and the 
opposite at the low pH site (Fig. 1c). A similar pattern of community-level CUE has 
been previously observed in the same soils [25]. The increased CUE values over time 
following labelled litter addition highlights the long-term persistence of carbon in the 
microbial biomass due to substrate recycling in the microbial food web. Such 
measurements are key to studying the longer-term effects of microbial processes on 
soil carbon cycling; CUE measured over a longer incubation period (several weeks) 
enables inferring the complex interactions within the microbial community and 
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Fig. 1: Isotopic incorporation from labelled litter into DNA as a proxy for microbial 
biomass (a) and respired CO2 (b). Patterns of estimated ecosystem CUE (c) under low 
(green) and high (orange) land use intensity. Points indicate individual samples, and 
the lines connect the mean values at each sampling time. ANOVA p values of the 
influencing factors of site (S), land use intensity (L) and their interaction (S´L) for (a) 
13C in DNA - S: 0.37, L: 0.92, S´L: 0.006; (b) 13C in respired CO2 - S: <0.001, L: 0.95, 
S´L: 0.64; (c) CUE - S: 0.014, L: 0.91, S´L: 0.15.  
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between the microbial community and its abiotic environment [9]. The reduction in 
ecosystem CUE with land use intensification at the high pH site translates into lower 
biomass and necromass production with a lower SOC stabilisation potential [13, 53]. 
Conversely, land use intensification alleviated environmental stressors on the soil 
microbiome in low pH soil, promoting microbial growth. Here SOC change is 
decoupled from microbial CUE, and other biogeochemical mechanisms might be more 
important in controlling the rate of SOC loss or accumulation. It also highlights that 
current microbial CUE measurements do not always link to historical soil carbon 
changes. Therefore, future research must consider the balance between the 
biogeochemical processes of decomposition and stabilisation, including abiotic factors 
such as organic matter access, chemistry, and mineral stabilisation, when studying 
the impact of long-term land use change on changes in soil carbon storage. 
 
Land use intensification changes microbial diversity 
 
The functional (inferred from metaproteomics) and taxonomic (inferred from 
metabarcoding) composition of microbial communities changed with land use 
intensification in the two sites (Fig. 2a-c). The sites strongly differed in microbial 
functional and taxonomic diversity (Fig. 2a-c), but the functional alpha diversity was 
not different across the land use intensity treatments at both sites (Fig. 2d). The 
community shifts over time were insignificant, suggesting that the small amount of 
plant litter that was added caused only minor changes in microbial taxonomy and 
function; all sampling points were therefore considered replicates to study the effect 
of land use intensification.  
 
Bacterial alpha diversity significantly increased with land use intensification (Fig. 2e) 
which corroborates previously observed high bacterial diversity in agricultural soils [26, 
54], contradicting the notion that disturbance decreases biodiversity [51]. Several 
explanations for this apparent paradox have been proposed, such as agricultural 
rotations increasing resource heterogeneity [55] and tillage redistributing plant litter to 
depth facilitating access to resources and growth to a diverse range of bacteria [56]. 
The high diversity of microbial taxa in agricultural soils could also represent relic DNA 
from dead microbes that sticks to soil minerals [57]. In contrast, eukaryotic alpha 
diversity (Fig. 2f) and the abundance of OTUs representing fungal taxa (Fig. 3j) were 
unaffected by land use intensification. 
 
The relative abundance of the 12 most abundant taxa (bacteria, fungi and 
microeukaryotes) were differentially affected by the sites and land use intensity. At the 
high pH site, low land use intensity soil bacteria were dominated by Actinobacteria, 
Alphaproteobacteria, and Verrucomicrobia (Fig. 3a,b,g). Land use intensification in 
high pH soil reduced the abundance of Actinobacteria, but increased that of 
Gammaproteobacteria, Deltaproteobacteria and Ciliophora (Fig. 3h,i,l). The decline of 
Actinobacteria under high land use intensity accords with Griffiths et al. [26] who noted 
that Actinobacteria are common in higher pH soils, but being filamentous, are sensitive 
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Fig. 2: Ordination using nonmetric multidimensional scaling (NMDS) of 
metaproteomics-derived functions (a), 16S rRNA gene-derived bacterial taxonomy (b) 
and 18S rRNA gene-derived eukaryotic taxonomy (c). Similarly, Shannon's diversity 
index was used to visualise functional alpha diversity (d), bacterial alpha diversity (e) 
and eukaryotic alpha diversity (f) under high (orange) and low (green) land use 
intensity at the two sites under study. In d-f, the presence of an asterisk between low 
and high land use intensity violins suggests statistically significant pairwise 
differences. Also displayed within d-f are statistically significant ANOVA results of the 
influencing factors of site (S), land use intensity (L) and their interaction (S´L); *** p < 
0.001, ** p < 0.01, * p < 0.05 (non-significant results are not displayed). Note that 
metaproteomics was performed only at day 0 and day 8 after litter addition.  
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Fig. 3: Relative abundance of dominant bacterial and eukaryotic phyla/class: 
Actinobacteria (a), Alphaproteobacteria (b), Firmicutes (c), Betaproteobacteria (d), 
Acidobacteria (e), Bacteroidetes (f), Verrucomicrobia (g), Gammaproteobacteria (h), 
Deltaproteobacteria (i), Fungi (j), Cercozoa (k) and Ciliophora (l). Abundances are 
displayed across land use intensity treatments: high (orange) and low (green) and the 
presence of an asterisk between them suggests statistically significant pairwise 
differences at the site. Also displayed within each plot are statistically significant 
results of the influencing factors of site (S), land use intensity (L) and their interaction 
(S´L); *** p < 0.001, ** p < 0.01, * p < 0.05.   
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to disturbances from agricultural management [58, 59]. Acidobacteria was one of the 
most dominant bacterial groups in low intensity soils at the low pH site (Fig. 3e). Land 
use intensification at this site increased the abundance of Betaproteobacteria (from 
9% to 26%, Fig. 3d) in accordance with Babin et al. [60], who also observed increases 
in the abundance of this taxa in improved grassland. Land use intensification at the 
low pH site also significantly increased the relative abundance of predatory Cercozoa 
(from 15% to 23%, Fig. 3k).  
 
Taxa-trait changes due to land use intensification in the high pH site 
 
‘ABC transporters’ were the most abundant protein indicators of low land use at the 
high pH site. Communities here were associated with a transporter-mediated resource 
acquisition strategy that is likely more efficient in resource use [25]. The presence of 
transporters reflects abundant high-quality resource availability, most likely as root 
exudates and microbial metabolites. The taxonomic assignment of these transporters 
suggested that they were mostly associated with Alphaproteobacteria (Fig. 4). 
Although Alphaproteobacteria were not differentially abundant in low land use soils 
compared to the high land use contrast at this site (Fig. 3b), in terms of the taxonomic 
distribution of this trait, Alphaproteobacteria were the dominant class differentially 
expressing this function in low land use soils according to peptide marker abundances 
relating to this strategy. This implies that members of this class have a resource-
uptake optimised strategy in low land use soils that likely contributes to the increase 
in community-level CUE and therefore promote SOC stabilisation [29].  
 
We observed that land use intensification in high pH soils increased the expression of 
proteins linked to ‘RNA degradation’ – molecular chaperones that prevent protein 
aggregation by either re-folding or degrading stress-induced misfolded proteins [29]. 
Chaperone production in high land use soils indicates microbial investment into stress 
tolerance. This trait was differentially expressed in the taxa Alphaproteobacteria and 
Gammaproteobacteria (Fig. 4). Members of these taxa in high land use soils likely 
excel in a stress tolerance strategy to tide over the dry and disturbed soil conditions.  
 
In addition to the increased expression of stress tolerance traits in 
Gammaproteobacteria in high land use intensity, proteins linked to ‘oxidative 
phosphorylation’ (energy generating pathways using ATPase to fuel growth or non-
growth maintenance activities) and ‘carbon metabolism’ (central carbon metabolism 
pathways such glycolysis and TCA cycle) were also differently abundant relative to 
low land use intensity (Fig. 4). This most likely represents increased energy needs for 
fast growing taxa with a wasteful metabolism; a life history strategy often associated 
with copiotrophs such as Gammaproteobacteria that are differentially abundant in high 
land use soils at this site [25]. We also observed concomitant increased abundance of 
predatory Ciliophora in high land use soil communities (Fig. 3l), these likely increase 
in response to the increased abundance of their bacterial prey – a hypothesis that 
needs testing. These microbivorous protists could contribute to SOC stabilisation 
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Fig. 4: Metaproteomics-derived abundances of functions and their taxonomic lineages 
were used to link physiological traits to microbial taxa at high (orange) and low (green) 
land use intensity. Sample labels represent soil pH of the site and land use intensity, 
for example “Low: Low” means low pH site and low land use intensity. Pairs of circles 
representing peptide abundances linked by a vertical line within each site are 
significantly different (p < 0.05).  
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directly through increased necromass contributions, but also through their influence 
on the assemblage and function of the microbiome [61]. 
 
Taxa-trait changes due to land use intensification in the low pH site 
 
Stress proteins were the most abundant protein indicators at the low pH site in both 
low and high land use soils but with higher relative abundances in the low intensity 
land use treatment [25]. This is likely a physiological response to the acidic and wet 
conditions in the low intensity soils through increased expression of ‘RNA degradation’ 
proteins such as Chaperonin GroEL and molecular chaperone DnaK. They were 
differentially abundant in the phylum Acidobacteria in the low intensity relative to high 
intensity soils (a dominant taxonomic group in low intensity soils at the low pH site; 
Fig. 3a). But there were other taxa that also had higher expression of this trait in the 
low intensity soils.  
 
Land use intensification at the low pH site increased the abundance of 
Betaproteobacteria (from 9% to 26%, Fig. 3d) in accordance with Babin et al. [60], who 
also observed increases in the abundance of this taxa in improved grassland. 
Members of the class Betaproteobacteria also showed differentially abundant stress 
proteins in high intensity soils. However, they also showed increased abundance of 
‘ABC transporters’ (Fig. 4), indicating an uptake-optimised resource acquisition 
strategy reflecting the increased abundance of resources under high intensity land 
use. This is a result of alleviation of constraints on microbial decomposition of organic 
matter due to increase in pH and decrease in wetness and anoxia. Betaproteobacteria 
also had increased expression of proteins linked to ‘carbon metabolism’, ‘ribosome’, 
and ‘oxidative phosphorylation’ pathways; a land use intensification response very 
similar to that of Gammaproteobacteria in high pH soils. This response likely 
represents a shift towards increased growth and turnover in a stressed and disturbed 
environment. Land use intensification also significantly increased the relative 
abundance of predatory Cercozoa (from 15% to 23%, Fig. 3k) at low pH, that may be 
responding to increased prey availability under high intensity land use, such as the 
increase in fast-growing Betaproteobacteria. The increase of Cercozoa under high 
land use intensity at the low pH site mirrors the increase of Ciliophora under high land 
use intensity at the high pH site, which suggests that the dominance of distinct 
bacterial groups might be associated with distinct predatory protozoan groups driving 
turnover of carbon to a variable degree.  
 
Taxa-trait changes related to mechanisms of soil carbon cycling   
 
The observed shifts in trait-taxa linkages are in line with our hypothesis that land use 
intensification leads to shifts in microbiome structure and its associated traits that has 
consequences for ecosystem CUE. In our high pH site, low intensity land use with no 
resource limitation and minimum stress resulted in a microbial community that is 
dominated by taxonomic sub-groups within Alphaproteobacteria that have an efficient 
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transporter-mediated resource-uptake optimised life history strategy with limited 
investment in stress tolerance traits. This likely increased the microbial biomass (and 
therefore necromass production) promoting SOC stabilisation pathways. However, 
increased land use intensification in high pH soils caused resource limitation and 
stress in microbes. This led to proliferation of microbial sub-groups within 
Alphaproteobacteria and Gammaproteobacteria that likely excel in an inefficient 
stress-tolerance life history strategy diverting resources away from biosynthesis and 
necromass formation and resulted in increased carbon loss and reduced SOC 
stabilisation. The taxa-trait linkages were vastly different in low pH soils. Here, soils 
under low intensity land use were dominated by Acidobacteria excelling in stress 
tolerance traits highlighting a life history strategy that is adapted to the acidic, wet, and 
anoxic soil conditions. The low growth rates observed in these soils suggest lower 
rates of decomposition and accumulation of undecomposed plant organic matter. 
Increased land use intensification in these low pH soils reduced soil acidity, wetness 
and anoxia which led to increased microbial growth likely due to alleviation of microbial 
physiological constraints. This results in a shift towards Betaproteobacteria excelling 
in stress tolerance and resource acquisition strategies that fuel their higher growth 
rates which could be linked to increased decomposition and loss of the historically 
accumulated SOC. 
 
Our research reveals that land use intensification induced shifts in microbial taxa and 
their life history strategies that were pH dependant. Changes in soil characteristics 
selects for a new community with different traits (environmental filtering) rather than 
the community shifting its physiology (phenotypic adaptation) [4, 32]. Our study 
accords with previous trait-based approaches that have demonstrated that microbial 
efficiency declines along gradients of environmental stress, as increased stress 
through altitude [34] and salinity [36] results in increased stress tolerance and resource 
acquisition  life history strategies that reduce microbial CUE and negatively influence 
the microbially-derived SOC formation. Further, our findings of increased abundance 
of predatory protozoa in response to increased land use intensification, could be 
crucial for carbon turnover and food web connectivity. This is especially pertinent, as 
protists are known to be key for promoting the formation of necromass and 
consequently more persistent mineral-associated organic matter [58]. 

 
Here we successfully used a trait-based framework to link taxonomic information to 
traits and rates of carbon cycling in soils. In this sense, this approach encompasses 
many of the concepts required to envisage soil health [62], by focussing on the function 
of the active microbiome and its emergent traits (such as CUE) but also on other 
biogeochemical factors that are key to determining the balance of SOC decomposition 
and stabilisation pathways. We also demonstrate how CUE-SOC relationship can be 
decoupled and how variable pathways of decomposition and stabilisation of particulate 
and mineral associated organic matter can influence SOC loss or gain in response to 
land use change. This holistic understanding will be fundamental to predict soil’s ability 
to recover from the combined stressors of intensification along with environmental 
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change, to ensure that our soils and their microbiomes remain resilient and productive 
under global change [63]. 
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