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ABSTRACT

Despite the recent advances in large-scale diffusion models, little progress has
been made on the layout-to-image (L2I) synthesis task. Current L2I models either
suffer from poor editability via text or weak alignment between the generated im-
age and the input layout. This limits their usability in practice. To mitigate this, we
propose to integrate adversarial supervision into the conventional training pipeline
of L2I diffusion models (ALDM). Specifically, we employ a segmentation-based
discriminator which provides explicit feedback to the diffusion generator on the
pixel-level alignment between the denoised image and the input layout. To encour-
age consistent adherence to the input layout over the sampling steps, we further
introduce the multistep unrolling strategy. Instead of looking at a single timestep,
we unroll a few steps recursively to imitate the inference process, and ask the
discriminator to assess the alignment of denoised images with the layout over a
certain time window. Our experiments show that ALDM enables layout faithful-
ness of the generated images, while allowing broad editability via text prompts.
Moreover, we showcase its usefulness for practical applications: by synthesizing
target distribution samples via text control, we improve domain generalization of
semantic segmentation models by a large margin (∼12 mIoU points).
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Figure 1: In contrast to prior L2I synthesis methods (Xue et al., 2023; Zhang & Agrawala, 2023),
our ALDM model can synthesize faithful samples that are well aligned with the layout input, while
preserving controllability via text prompt. Equipped with these both valuable properties, we can
synthesize diverse samples of practical utility for downstream tasks, such as data augmentation for
improving domain generalization of semantic segmentation models.
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1 INTRODUCTION

Layout-to-image synthesis (L2I) is a challenging task that aims to generate images with per-pixel
correspondence to the given semantic label maps. Yet, due to the tedious and costly pixel-level
layout annotations of images, availability of large-scale labelled data for extensive training on this
task is limited. Meanwhile, tremendous progress has been witnessed in the field of large-scale
text-to-image (T2I) diffusion models (Ramesh et al., 2022; Balaji et al., 2022; Rombach et al.,
2022). By virtue of joint vision-language training on billions of image-text pairs, such as LAION
dataset (Schuhmann et al., 2022), these models have demonstrated remarkable capability of synthe-
sizing photorealistic images via text prompts. A natural question is: can we adapt such pretrained
diffusion models for the L2I task using a limited amount of labelled layout data while preserving
their text controllability and faithful alignment to the layout? Effectively addressing this question
will then foster the widespread utilization of L2I synthetic data.

Recently, increasing attention has been devoted to answer this question (Zhang & Agrawala, 2023;
Mou et al., 2023; Xue et al., 2023). Despite the efforts, prior works have suffered to find a good
trade-off between faithfulness to the layout condition and editability via text, which we also empir-
ically observed in our experiments (see Fig. 1). When adopting powerful pretrained T2I diffusion
models, e.g., Stable Diffusion (SD) (Rombach et al., 2022), for L2I tasks, fine-tuning the whole
model fully as in (Xue et al., 2023) can lead to the loss of text controllability, as the large model
easily overfits to the limited amount of training samples with layout annotations. Consequently, the
model can only generate samples resembling the training set, thus negatively affecting its practical
use for potential downstream tasks requiring diverse data. For example, for downstream models
deployed in an open-world, variety in synthetic data augmentation is crucial, since annotated data
can only partially capture the real environment and synthetic samples should complement real ones.

Conversely, when freezing the T2I model weights and introducing additional parameters to accom-
modate the layout information (Mou et al., 2023; Zhang & Agrawala, 2023), the L2I diffusion mod-
els naturally preserve text control of the pretrained model but do not reliably comply with the layout
conditioning. In such case, the condition becomes a noisy annotation of the synthetic data, under-
mining its effectiveness for data augmentation. We hypothesize the poor alignment with the layout
input can be attributed to the suboptimal MSE loss for the noise prediction, where the layout infor-
mation is only implicitly utilized during the training process. The assumption is that the denoiser
has the incentive to utilize the layout information as it poses prior knowledge of the original image
and thus is beneficial for the denoising task. Yet, there is no direct mechanism in place to ensure
the layout alignment. To address this issue, we propose to integrate adversarial supervision on the
layout alignment into the conventional training pipeline of L2I diffusion models, which we name
ALDM. Specifically, inspired by Sushko et al. (2022), we employ a semantic segmentation model
based discriminator, explicitly leveraging the layout condition to provide a direct per-pixel feedback
to the diffusion model generator on the adherence of the denoised images to the input layout.

Further, to encourage consistent compliance with the given layout over the sampling steps, we pro-
pose a novel multistep unrolling strategy. At inference time, the diffusion model needs to consecu-
tively remove noise for multiple steps to produce the desired sample in the end. Hence, the model
is required to maintain consistent adherence to the conditional layout over the sampling time hori-
zon. Therefore, instead of applying discriminator supervision at a single timestep, we additionally
unroll backward multiple steps over a certain time window to imitate the inference time sampling.
This way the adversarial objective is designed over a time horizon and future steps are taken into
consideration as well. Enabled by adversarial supervision over multiple sampling steps, our ALDM
can effectively ensure consistent layout alignment, while maintaining initial properties of the text
controllability of the large-scale pretrained diffusion model. We experimentally show the effective-
ness of adversarial supervision for different adaptation strategies (Mou et al., 2023; Qiu et al., 2023;
Zhang & Agrawala, 2023) of the SD model (Rombach et al., 2022) to the L2I task across different
datasets, achieving the desired balance between layout faithfulness and text editability (see Table 1).

Finally, we demonstrate the utility of our method on the domain generalization task, where the se-
mantic segmentation network is evaluated on unseen target domains, whose samples are sufficiently
different from the trained source domain. By augmenting the source domain with synthetic images
generated by ALDM using text prompts aligned with the target domain, we can significantly en-
hance the generalization performance of original downstream models, i.e., ∼ 12 mIoU points on the
Cityscapes-to-ACDC generalization task (see Table 4).
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In summary, our main contributions include:

• We introduce adversarial supervision into the conventional diffusion model training, im-
proving layout alignment without losing text controllability.

• We propose a novel multistep unrolling strategy for diffusion model training, encouraging
better layout coherency during the synthesis process.

• We show the effectiveness of synthetic data augmentation achieved via ALDM. Benefiting
from the notable layout faithfulness and text control, our ALDM improves the generaliza-
tion performance of semantic segmenters by a large margin.

2 RELATED WORK

The task of layout-to-image synthesis (L2I), also known as semantic image synthesis (SIS), is to
generate realistic and diverse images given the semantic label maps, which prior has been studied
based on Generative Adversarial Networks (GANs) (Wang et al., 2018; Park et al., 2019; Wang
et al., 2021; Tan et al., 2021; Sushko et al., 2022). The investigation can be mainly split into two
groups: improving the conditional insertion in the generator (Park et al., 2019; Wang et al., 2021;
Tan et al., 2021), or improving the discriminator’s ability to provide more effective conditional su-
pervision (Sushko et al., 2022). Notably, OASIS (Sushko et al., 2022) considerably improves the
layout faithfulness by employing a segmentation-based discriminator. However, despite good lay-
out alignment, the above GAN-based L2I models lack text control and the sample diversity heavily
depends on the availability of expensive pixel-labelled data. With the increasing prevalence of dif-
fusion models, particularly the large-scale pretrained text-to-image diffusion models (Nichol et al.,
2022; Ramesh et al., 2022; Balaji et al., 2022; Rombach et al., 2022), more attention has been de-
voted to leveraging pretrained knowledge for the L2I task and using diffusion models. Our work
falls into this field of study.

PITI (Wang et al., 2022) learns a conditional encoder to match the latent representation of
GLIDE (Nichol et al., 2022) in the first stage and finetune jointly in the second stage, which un-
fortunately leads to the loss of text editability. Training diffusion models in the pixel space is ex-
tremely computationally expensive as well. With the emergence of latent diffusion models, i.e., Sta-
ble Diffusion (SD) (Rombach et al., 2022), recent works (Xue et al., 2023; Mou et al., 2023; Zhang
& Agrawala, 2023) made initial attempts to insert layout conditioning into SD. FreestyleNet (Xue
et al., 2023) proposed to rectify the cross-attention maps in SD based on the label maps, while it also
requires fine-tuning the whole SD, which largely compromises the text controllability, as shown in
Figs. 1 and 4. On the other hand, OFT partially updates SD, T2I-Adapter (Mou et al., 2023) and
ControlNet (Zhang & Agrawala, 2023) keep SD frozen, combined with an additional adapter to ac-
commodate the layout conditioning. Despite preserving the intriguing editability via text, they do
not fully comply with the label map (see Fig. 1 and Table 1). We attribute this to the suboptimal
diffusion model training objective, where the conditional layout information is only implicitly used
without direct supervision. In light of this, we propose to incorporate the adversarial supervision
to explicitly encourage alignment of images with the layout conditioning, and a multistep unrolling
strategy during training to enhance conditional coherency across sampling steps.

Prior works (Xiao et al., 2022; Wang et al., 2023b) have also made links between GANs and diffusion
models. Nevertheless, they primarily build upon GAN backbones, and the diffusion process is
considered as an aid to smoothen the data distribution (Xiao et al., 2022), and stabilize the GAN
training (Wang et al., 2023b), as GANs are known to suffer from training instability and mode
collapse. By contrast, our ALDM aims at improving L2I diffusion models, where the discriminator
supervision serves as a valuable learning signal for layout alignment.

3 ADVERSARIAL SUPERVISION FOR L2I DIFFUSION MODELS

L2I diffusion model aims to generate images based on the given layout. Its current training and
inference procedure is inherited from unconditional diffusion models, where the design focus has
been on how the layout as the condition is fed into the UNet for noise estimation, as illustrated in
Fig. 2 (A). It is yet under-explored how to enforce the faithfulness of L2I image synthesis via direct
loss supervision. Here, we propose novel adversarial supervision which is realized via 1) a semantic
segmenter-based discriminator (Sec. 3.1 and Fig. 2 (B)); and 2) multistep unrolling of UNet (Sec. 3.2
and Fig. 2 (C)) to induce faithfulness already from early sampling steps and consistent adherence to
the condition over consecutive steps.

3



Published as a conference paper at ICLR 2024

Figure 2: Method overview. To enforce faithfulness, we propose two novel training strategies
to improve the traditional L2I diffusion model training (area (A)): adversarial supervision via a
segmenter-based discriminator illustrated in area (B), and multistep unrolling strategy in area (C).

3.1 DISCRIMINATOR SUPERVISION ON LAYOUT ALIGNMENT

For training the L2I diffusion model, a Gaussian noise ϵ ∼ N(0, I) is added to the clean variable x0

with a randomly sampled timestep t, yielding xt:
xt =

√
αtx0 +

√
1− αtϵ, (1)

where αt defines the level of noise. A UNet (Ronneberger et al., 2015) denoiser ϵθ is then trained to
estimate the added noise via the MSE loss:

Lnoise = Eϵ∼N(0,I),y,t

[
∥ϵ− ϵθ(xt, y, t)∥2

]
= Eϵ,x0,y,t

[∥∥ϵ− ϵθ(
√
αtx0 +

√
1− αtϵ, y)

∥∥2] .
(2)

Besides the noisy image xt and the time step t, the UNet additionally takes the layout input y. Since
y contains the layout information of x0 which can simplify the noise estimation, it then influences
implicitly the image synthesis via the denoising step. From xt and the noise prediction ϵθ, we can
generate a denoised version of the clean image x̂

(t)
0 as:

x̂
(t)
0 =

xt −
√
1− αtϵθ(xt, y, t)√

αt
. (3)

However, due to the lack of explicit supervision on the layout information y for minimizing Lnoise,
the output x̂(t)

0 often lacks faithfulness to y, as shown in Fig. 3. It is particularly challenging when y
carries detailed information about the image, as the alignment with the layout condition needs to be
fulfilled on each pixel. Thus, we seek direct supervision on x̂

(t)
0 to enforce the layout alignment. A

straightforward option would be to simply adopt a frozen pre-trained segmenter to provide guidance
with respect to the label map. However, we observe that the diffusion model tends to learn a mean
mode to meet the requirement of the segmenter, exhibiting little variation (see Table 3 and Fig. 6).

To encourage diversity in addition to alignment, we make the segmenter trainable along with the
UNet training. Inspired by Sushko et al. (2022), we formulate an adversarial game between the
UNet and the segmenter. Specifically, the segmenter acts as a discriminator that is trained to classify
per-pixel class labels of real images, using the paired ground-truth label maps; while the fake images
generated by UNet as in (Eq. (3)) are classified by it as one extra “fake” class, as illustrated in
area (B) of Fig. 2. As the task of the discriminator is essentially to solve a multi-class semantic
segmentation problem, its training objective is derived from the standard cross-entropy loss:

LDis = −E

 N∑
c=1

γc

H×W∑
i,j

yi,j,c log (Dis(x0)i,jc)

− E

H×W∑
i,j

log
(
Dis(x̂

(t)
0 )i,j,c=N+1

) , (4)
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where N is the number of real semantic classes, and H ×W denotes spatial size of the input. The
class-dependent weighting γc is computed via inverting the per-pixel class frequency

γc =
H ×W∑

E [1 [yi,j,c = 1]]
, (5)

for balancing between frequent and rare classes. To fool such a segmenter-based discriminator, x̂(t)
0

produced by the UNet as in (Eq. (3)) shall comply with the input layout y to minimize the loss

Ladv = −E

 N∑
c=1

γc

H×W∑
i,j

yi,j,c log
(
Dis(x̂

(t)
0 )i,j,c

) . (6)

Such loss poses explicit supervision to the UNet for using the layout information, complementary
to the original MSE loss. The total loss for training the UNet is thus

LDM = Lnoise + λadvLadv, (7)

where λadv is the weighting factor. The whole adversarial training process is illustrated Fig. 2 (B).
As the discriminator is improved along with UNet training, we no longer observe the mean mode
collapsing as with the use of a frozen semantic segmenter. The high recall reported in Table 2
confirms the diversity of synthetic images produced by our method.

3.2 MULTISTEP UNROLLING

Admittedly, it is impossible for the UNet to produce high-quality image x̂
(t)
0 via a single denoising

step as in (Eq. (3)), especially if the input xt is very noisy (i.e., t is large). On the other hand, adding
such adversarial supervision only at low noise inputs (i.e., t is small) is not very effective, as the
alignment with the layout should be induced early enough during the sampling process. To improve
the effectiveness of the adversarial supervision, we propose a multistep unrolling design for training
the UNet. Extending from a single step denoising, we perform multiple denoising steps, which are
recursively unrolled from the previous step:

xt−1 =
√
αt−1

(
xt −

√
1− αtϵθ(xt, y, t)√

αt

)
+
√

1− αt−1 · ϵθ(xt, y, t), (8)

x̂
(t−1)
0 =

xt−1 −
√
1− αt−1ϵθ(xt−1, y, t− 1)

√
αt−1

. (9)

As illustrated in area (C) of Fig. 2, we can repeat (Eq. (8)) and (Eq. (9)) K times, yielding
{x̂(t)

0 , x̂
(t−1)
0 , ..., x̂

(t−K)
0 }. All these denoised images are fed into the segmenter-based discriminator

as the “fake” examples:

Ladv =
1

K + 1

K∑
i=0

−E

[
N∑
c=1

γcyc log
(
Dis(x̂

(t−i)
0 )c

)]
. (10)

By doing so, the denoising model is encouraged to follow the conditional label map consistently over
the time horizon. It is important to note that while the number of unrolled steps K is pre-specified,
the starting time step t is still randomly sampled.

Such unrolling process resembles the inference time denoising with a sliding window of size K.
As pointed out by Fan & Lee (2023), diffusion models can be seen as control systems, where the
denoising model essentially learns to mimic the ground-truth trajectory of moving from noisy image
to clean image. In this regard, the proposed multistep unrolling strategy also resembles the advanced
control algorithm - Model Predictive Control (MPC), where the objective function is defined in terms
of both present and future system variables within a prediction horizon. Similarly, our multistep
unrolling strategy takes future timesteps along with the current timestep into consideration, hence
yielding a more comprehensive learning criteria.

While unrolling is a simple feed-forward pass, the challenge lies in the increased computational
complexity during training. Apart from the increased training time due to multistep unrolling, the
memory and computation cost for training the UNet can be also largely increased along with K.
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Ground truth Label T2I-Adapter FreestyleNet ControlNet ALDM

Figure 3: Qualitative comparison of faithfulness to the layout condition on ADE20K.

Since the denoising UNet model is the same and reused for every step, we propose to simply ac-
cumulate and scale the gradients for updating the model over the time window, instead of storing
gradients at every unrolling step. This mechanism permits to harvest the benefit of multistep un-
rolling with controllable increase of complexity during training.

Implementation details. We apply our method to the open-source text-to-image Stable Diffusion
(SD) model (Rombach et al., 2022) so that the resulting model not only synthesizes high quality im-
ages based on the layout condition, but also accepts text prompts to change the content and style. As
SD belongs to the family of latent diffusion models (LDMs), where the diffusion model is trained
in the latent space of an autoencoder, the UNet denoises the corrupted latents which are further
passed through the SD decoder for the final pixel space output, i.e., x̂0 = D(ẑ0). We employ Uper-
Net (Xiao et al., 2018) as the discriminator, nonetheless, we also ablate other types of backbones in
Table 3. Since Stable Diffusion can already generate photorealistic images, a randomly initialized
discriminator falls behind and cannot provide useful guidance immediately from scratch. We thus
warm up the discriminator firstly, then start the joint adversarial training. In the unrolling strategy,
we use K = 9 as the moving horizon. An ablation study on the choice of K is provided in Table 5.
Considering the computing overhead, we apply unrolling every 8 optimization steps.

4 EXPERIMENTS

Sec. 4.1 compares L2I diffusion models in terms of layout faithfulness and text editability. Sec. 4.2
further evaluates their use for data augmentation to improve domain generalization.

4.1 LAYOUT-TO-IMAGE SYNTHESIS

Experimental Details. We conducted experiments on two challenging datasets: ADE20K (Zhou
et al., 2017) and Cityscapes (Cordts et al., 2016). ADE20K consists of 20K training and 2K vali-
dation images, with 150 semantic classes. Cityscapes has 19 classes, whereas there are only 2975
training and 500 validation images, which poses special challenge for avoiding overfitting and pre-
serving prior knowledge of Stable Diffusion. Following ControlNet (Zhang & Agrawala, 2023), we
use BLIP (Li et al., 2022b) to generate captions for both datasets.

By default, our ALDM adopts ControlNet (Zhang & Agrawala, 2023) architecture for layout con-
ditioning. Nevertheless, the proposed adversarial training strategy can be combined with other L2I
models as well, as shown in Table 1. For all experiments, we use DDIM sampler (Song et al., 2020)
with 25 sampling steps. For more training details, we refer to Appendix A.1.

Evaluation Metrics. Following (Sushko et al., 2022; Xue et al., 2023), we evaluate the image-
layout alignment via mean intersection-over-union (mIoU) with the aid of off-the-shelf segmentation
networks. To measure the text-based editability, we use the recently proposed TIFA score (Hu
et al., 2023), which is defined as the accuracy of a visual question answering (VQA) model, e.g.,
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T2I-Adapter FreestyleNet ControlNet ALDM

Original caption: “a red van driving down a street next to tall buildings.”

+ “snowy scene”

+ “nighttime”

→ “burning van”

Figure 4: Visual comparison of text control between different L2I diffusion models on Cityscapes.
Based on the image caption, we directly modify the underlined objects (indicated as →), or append
a postfix to the caption (indicated as +). In contrast to prior work, ALDM can faithfully accomplish
both global scene level modification (e.g., “snowy scene”) and local editing (e.g., “burning van”).

Table 1: Effect of adversarial supervision and multistep unrolling on different L2I synthesis adapta-
tion methods. Best and second best are marked in bold and underline, respectively.

Cityscapes ADE20K
Method FID ↓ mIoU↑ FID↓ mIoU↑
OFT (Qiu et al., 2023) 57.3 48.9 29.5 24.1
+ Adversarial supervision 56.0 54.8 31.0 29.7

+ Multistep unrolling 51.3 58.8 29.7 31.8

T2I-Adapter (Mou et al., 2023) 58.3 37.1 31.8 24.0
+ Adversarial supervision 55.9 46.6 32.4 26.5

+ Multistep unrolling 51.5 50.1 30.5 29.1

ControlNet (Zhang & Agrawala, 2023) 57.1 55.2 29.6 30.4
+ Adversarial supervision 50.3 61.5 30.0 34.0

+ Multistep unrolling 51.2 63.9 30.2 36.0

mPLUG (Li et al., 2022a), see Appendix A.2. Fréchet Inception Distance (FID) (Heusel et al.,
2017), Precision and Recall (Sajjadi et al., 2018) are for assessing sample quality and diversity.
Main Results. In Table 1, we apply the proposed adversarial supervision and multistep unrolling
strategy to different Stable Diffusion based L2I methods: OFT (Qiu et al., 2023), T2I-Adapter (Mou
et al., 2023) and ControlNet (Zhang & Agrawala, 2023). Through adversarial supervision and mul-
tistep unrolling, the layout faithfulness is consistently improved across different L2I models, e.g.,
improving the mIoU of T2I-Adapter from 37.1 to 50.1 on Cityscapes. In many cases, the image qual-
ity is also enhanced, e.g., FID improves from 57.1 to 51.2 for ControlNet on Cityscapes. Overall, we
observe that the proposed adversarial training complements different SD adaptation techniques and
architecture improvements, noticeably boosting their performance. By default, ALDM represents
ControlNet with adversarial supervision and multistep unrolling in other tables.

In Table 2, we quantitatively compare our ALDM with the other state-of-the-art L2I diffu-
sion models: PITI (Wang et al., 2022), which does not support text control; and recent SD
based FreestyleNet (Xue et al., 2023), T2I-Adapter and ControlNet, which support text control.
FreestyleNet has shown good mIoU by trading off the editability, as it requires fine-tuning of the
whole SD. Its poor editability, i.e., low TIFA score, is particularly notable on Cityscapes. As its
training set is small and diversity is limited, FreestyleNet tends to overfit and forgets about the
pretrained knowledge. This can be reflected from the low recall value in Table 2 as well. Both
T2I-adapter and ControlNet freeze the SD, and T2I-Adapter introduces a much smaller adapter for
the conditioning compared to ControlNet. Due to limited fine-tuning capacity, T2I-Adapter does not
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Table 2: Quantitative comparison of the state-of-the-art L2I diffusion models. Best and second
best are marked in bold and underline, respectively, while the worst result is in red. Our ALDM
demonstrates competitive conditional alignment with notable text editability.

Cityscapes ADE20K
Method FID ↓ mIoU↑ P.↑ R.↑ TIFA↑ FID↓ mIoU↑ P.↑ R.↑ TIFA↑
PITI n/a n/a n/a n/a ✗ 27.9 29.4 n/a n/a ✗
FreestyleNet 56.8 68.8 0.73 0.44 0.300 29.2 36.1 0.83 0.79 0.740
T2I-Adapter 58.3 37.1 0.55 0.59 0.902 31.8 24.0 0.79 0.81 0.892
ControlNet 57.1 55.2 0.61 0.60 0.822 29.6 30.4 0.84 0.84 0.838
ALDM (ours) 51.2 63.9 0.66 0.68 0.856 30.2 36.0 0.86 0.82 0.888

utilize the layout effectively, leading to low mIoU, yet it better preserves the editability, i.e., high
TIFA score. By contrast, ControlNet improves mIoU while trading off the editability. In contrast,
ALDM exhibits competitive mIoU while maintaining high TIFA score, which enables its usability
for practical applications, e.g., data augmentation for domain generalization detailed in Sec. 4.2.

Qualitative comparison on the faithfulness to the label map is shown in Fig. 3. T2I-Adapter
often ignores the layout condition (see the first row of Fig. 3), which can be reflected in low
mIoU as well. FreestyleNet and ControlNet may hallucinate objects in the background. For in-
stance, in the second row of Fig. 3, both methods synthesize trees where the ground-truth la-
bel map is sky. In the last row, ControlNet also generates more bicycles instead of the ground
truth trees in the background. Contrarily, ALDM better complies with the layout in this case.
Visual comparison on text editability is shown in Figs. 1 and 4. We observe that FreestyleNet
only shows little variability and minor visual differences, as evidenced by the low TIFA score.

Table 3: Ablation on the discriminator type.
Cityscapes ADE20K

Method FID↓ mIoU↑ FID↓ mIoU↑
ControlNet 57.1 55.2 29.6 30.4

+ UperNet 50.3 61.5 30.0 34.0
+ Segmenter 52.9 59.2 29.8 34.1

+ Feature-based 53.1 59.6 29.3 33.1

+ Frozen UperNet - - 50.8 40.2

T2I-Adapter and ControlNet on the other hand
preserve better text control, nonetheless, they
may not follow well the layout condition. In
Fig. 1, ControlNet fails to generate the truck,
especially when the prompt is modified. And
in Fig. 4, the trees on the left are only sparsely
synthesized. While ALDM produces samples
that adhere better to both layout and text condi-
tions, inline with the quantitative results.

Discriminator Ablation. We conduct the ablation study on different discriminator designs, shown
in Table 3. Both choices for the discriminator network: CNN-based segmentation network Uper-
Net (Xiao et al., 2018) and transformer-based Segmenter (Strudel et al., 2021), improve faithfulness
of the baseline ControlNet model. Instead of employing the discriminator in the pixel space, we also
experiment with feature-space discriminator, which also works reasonably well. It has been shown
that internal representation of SD, e.g., intermediate features and cross-attention maps, can be used
for the semantic segmentation task (Zhao et al., 2023). We refer to Appendix A.3 for more details.
Lastly, we employ a frozen semantic segmentation network to provide guidance directly. Note that
this case is no longer adversarial training anymore, as the segmentation model does not update itself
with the generator. Despite achieving high mIoU, the generator tends to learn a mean mode of the
class and produce unrealistic samples (see Fig. 6), thus yielding high FID. In this case, the generator
can more easily find a “cheating” way to fool the discriminator as it is not updating.

4.2 IMPROVED DOMAIN GENERALIZATION FOR SEMANTIC SEGMENTATION

We further investigate the utility of synthetic data generated by different L2I models for domain gen-
eralization (DG) in semantic segmentation. Namely, the downstream model is trained on a source
domain, and its generalization performance is evaluated on unseen target domains. We experiment
with both CNN-based segmentation model HRNet (Wang et al., 2020) and transformer-based Seg-
Former (Xie et al., 2021). Quantitative evaluation is provided in Table 4, where all models except the
oracle are trained on Cityscapes, and tested on both Cityscapes and the unseen ACDC. The oracle
model is trained on both datasets. We observe that Hendrycks-Weather (Hendrycks & Dietterich,
2018), which simulates weather conditions in a synthetic manner, brings limited benefits. ISSA (Li
et al., 2023b) resorts to simple image style mixing within the source domain. For models that accept
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Image Ground truth Baseline Ours

Figure 5: Semantic segmentation results of Cityscapes → ACDC generalization using HRNet. The
HRNet is trained on Cityscapes only. Augmented with diverse synthetic data generated by our
ALDM, the segmentation model can make more reliable predictions under diverse conditions.

Table 4: Comparison on domain generalization, i.e., from Cityscapes (train) to ACDC (unseen).
mIoU is reported on Cityscapes (CS), individual scenarios of ACDC (Rain, Fog, Snow) and the
whole ACDC. Hendrycks-Weather (Hendrycks & Dietterich, 2018) simulates weather conditions in
a synthetic manner for data augmentation. Oracle model is trained on both Cityscapes and ACDC in
a supervised manner, serving as an upper bound on ACDC (not Cityscapes) for the other methods.
ALDM can consistently improve generalization performance of both HRNet and SegFormer.

HRNet (Wang et al., 2020) SegFormer (Xie et al., 2021)
Method CS Rain Fog Snow ACDC CS Rain Fog Snow ACDC

Baseline (CS) 70.47 44.15 58.68 44.20 41.48 67.90 50.22 60.52 48.86 47.04

Hendrycks-Weather 69.25 50.78 60.82 38.34 43.19 67.41 54.02 64.74 49.57 49.21
ISSA 70.30 50.62 66.09 53.30 50.05 67.52 55.91 67.46 53.19 52.45
FreestyleNet 71.73 51.78 67.43 53.75 50.27 69.70 52.70 68.95 54.27 52.20
ControlNet 71.54 50.07 68.76 52.94 51.31 68.85 55.98 68.14 54.68 53.16
ALDM (ours) 72.10 53.67 69.88 57.95 53.03 68.92 56.03 69.14 57.28 53.78
Oracle (CS+ACDC) 70.29 65.67 75.22 72.34 65.90 68.24 63.67 74.10 67.97 63.56

text prompts (FreestyleNet, ControlNet and ALDM), we can synthesize novel samples given the
textual description of the target domain, as shown in Fig. 4. Nevertheless, the effectiveness of such
data augmentation depends on the editability via text and faithfulness to the layout. FreestyleNet
only achieves on-par performance with ISSA. We hypothesize that its poor text editability only pro-
vides synthetic data close to the training set with style jittering similar to ISSA’s style mixing. While
ControlNet allows text editability, the misalignment between the synthetic image and the input lay-
out condition, unfortunately, can even hurt the performance. While mIoU averaged over classes is
improved over the baseline, the per-class IoU shown in Table 7 indicates the undermined perfor-
mance on small object classes, such as traffic light, rider and person. On those small objects, the
alignment is noticeably more challenging to pursue than on classes with large area such as truck
and bus. In contrast to it, ALDM, owing to its text editability and faithfulness to the layout, consis-
tently improves across individual classes and ultimately achieves pronounced gains on mIoU across
different target domains, e.g., 11.6% improvement for HRNet on ACDC. Qualitative visualization
is illustrated in Fig. 5. The segmentation model empowered by ALDM can produce more reliable
predictions under diverse weather conditions, e.g., improving predictions on objects such as traffic
signs and person, which are safety critical cases.

5 CONCLUSION

In this work, we propose to incorporate adversarial supervision to improve the faithfulness to the
layout condition for L2I diffusion models. We leverage a segmenter-based discriminator to explicitly
utilize the layout label map and provide a strong learning signal. Further, we propose a novel mul-
tistep unrolling strategy to encourage conditional coherency across sampling steps. Our ALDM can
well comply with the layout condition, meanwhile preserving the text controllability. Capitalizing
these intriguing properties of ALDM, we synthesize novel samples via text control for data augmen-
tation on the domain generalization task, resulting in a significant enhancement of the downstream
model’s generalization performance.
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SUPPLEMENTARY MATERIAL
This supplementary material to the main paper is structured as follows:

• In Appendix A, we provide more experimental details for training and evaluation.

• In Appendix B, we include the ablation study on the unrolling step K, and more quantitative
evaluation results.

• In Appendix C, we provide more visual results for both L2I task and improved domain
generalization in semantic segmentation.

• In Appendix D, we discuss the failure cases of our approach, and potential solution for
future research.

• In Appendix E, we discuss the theoretical connection with prior works and potential future
research directions, which can be interesting for the community for further exploration and
development grounded in our framework.

A EXPERIMENTAL DETAILS

A.1 TRAINING DETAILS

We finetune Stable Diffusion v1.5 checkpoint and adopt ControlNet for the layout conditioning. All
trainings are conducted on 512 × 512 resolution. For Cityscapes, we do random cropping and for
ADE20K we directly resize the images. Nevertheless, we directly synthesize 512×1024 Cityscapes
images for evaluation. We use AdamW optimizer and the learning rate of 1× 10−5 for the diffusion
model, 1× 10−6 for the discriminator, and the batch size of 8. The adversarial loss weighting factor
λadv is set to be 0.1. The discriminator is firstly warmed up for 5K iterations on Cityscapes and
10K iterations on ADE20K. Afterward, we jointly train the diffusion model and discriminator in an
adversarial manner. We conducted all training using 2 NVIDIA Tesla A100 GPUs.

A.2 TIFA EVALUATION

Evaluation of the TIFA metric is based on the performance of the visual question answering (VQA)
system, e.g. mPLUG (Li et al., 2022a). By definition, the TIFA score is essentially the VQA ac-
curacy, given the question-answer pairs. To quantitatively evaluate the text editability, we design
a list of prompt templates, e.g., appending “snowy scene” to the original image caption for image
generation. Based on the known prompts, we design the question-answer pairs. For instance, we
can ask the VQA model “What is the weather condition?”, and compute TIFA score based on the
accuracy of the answers.

A.3 FEATURE-BASED DISCRIMINATOR FOR ADVERSARIAL SUPERVISION

Thanks to large-scale vision-language pretraining on massive datasets, Stable Diffusion (SD) (Rom-
bach et al., 2022) has acquired rich representations, endowing it with the capability not only to gen-
erate high-quality images, but also to excel in various downstream tasks. Recent work VPD (Zhao
et al., 2023) has unleashed the potential of SD, and leveraged its representation for visual percep-
tion tasks, e.g., semantic segmentation. More specifically, they extracted cross-attention maps and
feature maps from SD at different resolutions and fed them to a lightweight decoder for the specific
task. Despite the simplicity of the idea, it works fairly well, presumably due to the powerful knowl-
edge of SD. In the ablation study, we adopt the segmentation model of VPD as the feature-based
discriminator. Nevertheless, different from the joint training of SD and the task-specific decoder
in the original VPD implementation, we only train the newly added decoder, while freezing SD to
preserve the text controllability as ControlNet.
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Table 5: Ablation on the unrolling step K. Overhead is measured as seconds per training iteration.
Cityscapes ADE20K

FID↓ mIoU↑ TIFA↑ FID↓ mIoU↑ TIFA↑ Overhead
ControlNet 57.1 55.2 0.822 29.6 30.4 0.838 0.00
K = 0 50.3 61.5 0.894 30.0 34.0 0.904 0.00
K = 3 54.9 62.7 0.856 - - - 1.55
K = 6 51.6 64.1 0.832 30.3 34.5 0.898 3.11
K = 9 51.2 63.9 0.856 30.2 36.0 0.888 4.65
K = 15 50.7 64.1 0.882 30.2 36.9 0.825 7.75

Table 6: Quantitative comparison of different T2I diffusion models. P., R., and R.mIoU represent
Precision, Recall and robust mIoU respectively.

Method FID ↓ P.↑ R.↑ mIoU↑ R.mIoU↑ TIFA ↑
FreestyleNet 56.8 0.73 0.44 68.8 69.9 0.300
T2I-Adapter 58.3 0.55 0.59 37.1 44.7 0.902
ControlNet 57.1 0.61 0.60 55.2 57.3 0.822
ALDM 51.2 0.66 0.68 63.9 65.4 0.856

B MORE ABLATION AND EVALUATION RESULTS

B.1 MULTISTEP UNROLLING ABLATION

For the unrolling strategy, we compare different number of unrolling steps in Table 5. We observe
that more unrolling steps is beneficial for improving the faithfulness, as the model can consider more
future steps to ensure alignment with the layout condition. However, the additional unrolling time
overhead also increases linearly. Therefore, we choose K = 9 by default in all experiments.

B.2 ABLATION ON FROZEN SEGMENTER

We ablate the usage of a frozen segmentation model, instead of joint training with the diffusion
model. As quantitatively evaluated in Table 3, despite achieving good alignment with the layout
condition, i.e., high mIoU, we observe that the diffusion model tends to lean a mean mode and
produces unrealistic samples with limited diversity (see Fig. 6), thus yielding high FID values.

B.3 ROBUST MIOU EVALUATION

Conventionally, the layout alignment evaluation is conducted with the aid of off-the-shelf segmen-
tation networks trained on the specific dataset, thus may not be competent enough to make reliable
predictions on more diverse data samples, as shown in Fig. 7. Therefore, we propose to employ a
robust segmentation model trained with special data augmentation techniques (Li et al., 2023b), to
more accurately measure the actual alignment.

We report the quantitative performance in Table 6. Notably, there is a large difference between the
standard mIoU and robust mIoU, in particular for T2I-Adapter. From Fig. 7, we can see that T2I-
Adapter occasionally generates more stylized samples, which do not comply with the Cityscapes
style, and the standard segmenter has a sensitivity to this.

B.4 COMPARISON WITH GAN-BASED L2I METHODS.

We additionally compare our method with prior GAN-based L2I methods in Table 8. It is worth-
while to mention that all GAN-based approaches do not have text controllability, thus they can only
produce samples resembling the training dataset, which constrains their utility on downstream tasks.
On the other hand, our ALDM achieves the balanced performance between faithfulness to the layout
condition and editability via text, rendering itself advantageous for the domain generalization tasks.

14



Published as a conference paper at ICLR 2024

Ground truth Label Samples

Figure 6: Visual results of using a frozen segmentation network, i.e., a pretrained UperNet (Xiao
et al., 2018), to provide conditional guidance during diffusion model training. We can observe the
mode collapse issue, where the diffusion model tends to learn to a mean mode and exhibits little
variation in the generated samples.

Ground truth Sample Standard Prediction Robust Prediction

Figure 7: Comparison of standard segmenter and robust segmenter for layout alignment evalua-
tion on synthesized samples of T2I-Adapter. When testing on more diverse images, the standard
segmenter struggles to make reliable predictions, thus may lead to inaccurate evaluation.

B.5 PER-CLASS IOU FOR SEMANTIC SEGMENTATION

In Table 7, we report per-class IoU of the object classes on Cityscapes. For ControlNet the mis-
alignment between the synthetic image and the input layout condition, unfortunately, can hurt the
segmentation performance on small and fine-grained object classes, such as bike, traffic light, traffic
sign, rider, and person. While ALDM demonstrates better performance on those classes, which re-
flects that our method can better comply with the layout condition, as small and fine-grained object
classes are typically more challenging in L2I task and pose higher requirements for the faithfulness
to the layout condition.
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Table 7: Per-class IoU of Cityscapes object classes. Numbers in red indicate worse IoU compared
to the baseline. The best is marked in bold. Our ALDM has demonstrated better performance on
small object classes, e.g., pole, traffic light, traffic sign, person, rider, which reflects our method can
better comply with the layout condition, as small object classes are typically more challenging in
L2I task and pose higher requirement for the faithfulness to the layout condition.

Method Pole Traf. light Traf. sign Person Rider Car Truck Bus Train Motorbike Bike
Baseline 48.50 59.07 67.96 72.44 52.31 92.42 70.11 77.62 64.01 50.76 68.30
ControlNet 49.53 58.47 67.37 71.45 49.68 92.30 76.91 82.98 72.40 50.84 67.32
ALDM 51.21 60.50 69.56 73.82 53.01 92.57 76.61 81.37 66.49 52.79 68.61

Table 8: Quantitative comparison results with the state-of-the-art layout-to-image GANs and diffu-
sion models (DMs). Our ALDM demonstrates competitive conditional alignment with notable text
editability.

Cityscapes ADE20K
Method FID ↓ mIoU↑ TIFA↑ FID↓ mIoU↑ TIFA↑

GANs

Pix2PixHD (Wang et al., 2018) 95.0 63.0

✗

81.8 28.8

✗

SPADE (Park et al., 2019) 71.8 61.2 33.9 38.3
OASIS (Schönfeld et al., 2020) 47.7 69.3 28.3 45.7
SCGAN (Wang et al., 2021) 49.5 55.9 29.3 41.5
CLADE (Tan et al., 2021) 57.2 58.6 35.4 23.9
GroupDNet (Zhu et al., 2020) 47.3 55.3 41.7 27.6

DMs

PITI (Wang et al., 2022) n/a n/a ✗ 27.9 29.4 ✗
FreestyleNet (Xue et al., 2023) 56.8 68.8 0.300 29.2 36.1 0.740
T2I-Adapter (Mou et al., 2023) 58.3 37.1 0.902 31.8 24.0 0.892
ControlNet (Zhang & Agrawala, 2023) 57.1 55.2 0.822 29.6 30.4 0.838
ALDM (ours) 51.2 63.9 0.856 30.2 36.0 0.888

C MORE VISUAL EXAMPLES

C.1 LAYOUT-TO-IMAGE TASKS

In Fig. 8, we showcase more visual comparison on ADE20K across various scenes, i.e., outdoors
and indoors. Our ALDM can consistently adhere to the layout condition.

Figure 9 presents visual examples of Cityscapes, which are synthesized via various textual descrip-
tions with our ALDM, which can be further utilized on downstream tasks.

In Fig. 10, we demonstrate the editability via text of our ALDM. Our method enables both global
editing (e.g., style or scene-level modification) and local editing (e.g., object attribute).

In Figs. 11 until 13, we provide qualitative comparison on the text editability between different L2I
diffusion models on Cityscapes and ADE20K.

In Fig. 14, we compare our ALDM with GAN-based style transfer method ISSA (Li et al., 2023b).
It can be observed that ALDM produces more realistic results with faithful local details, given the
label map and text prompt. In contrast, style transfer methods require two images, and mix them on
the global color style, while the local details, e.g., mud, and snow may not be faithfully transferred.

In Fig. 15, we provide visualization of the segmentation outputs from the discriminator. It can be
seen that the discriminator can categorize some regions as ”fake” class (in black), meanwhile it is
also fooled by some areas, where the discriminator produces reasonable segmentation predictions
matched with ground truth labels. Therefore, the discriminator can provide useful feedback such
that the generator (diffusion model) produces realistic results meanwhile complying with the given
label map.
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GT Label T2I-Adapter FreestyleNet ControlNet Ours

Figure 8: Qualitative comparison of faithfulness to the layout condition between different L2I
methods on ADE20K. Our ALDM can comply with the label map consistently, while the other may
ignore the ground truth label map and hallucinate, e.g., synthesizing trees in the background (see the
third row).

C.2 IMPROVED DOMAIN GENERALIZATION

More qualitative visualization on improved domain generalization is shown in Fig. 16. By employ-
ing synthetic data augmentation empowered by our ALDM, the segmentation model can make more
reliable predictions, which is crucial for real-world deployment.

D FAILURE CASES

As shown in Fig. 17, when editing the attribute of one object, it could affect the other objects as well.
Such attribute leakage is presumably inherited from Stable Diffusion, which has been observed in
prior work (Li et al., 2023a) with SD as well. Using a larger UNet backbone e.g. SDXL (Podell
et al., 2023) or combining with other techniques, e.g., inference time latent optimization (Chefer
et al., 2023; Li et al., 2023a) may mitigate this issue. This is an interesting open issue, and we
would leave this for future investigation. Depsite the improvement on layout aligment, ALDM is
not yet perfect and may not seamlessly align with given label map, especially when the text prompt
is heaivly edited to a rare scenario.
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Ground truth Label +“rainy scene” +“snowy scene” +“nighttime”

Ground truth Label +“muddy road” +“heavy fog” +“snowy scene,
nighttime ”

Figure 9: Visual examples of Cityscapes, synthesized by ALDM via various textual descriptions,
which can be further utilized on downstream tasks.

E DISCUSSION & FUTURE WORK

E.1 THEORETICAL DISCUSSION

In the proposed adversarial training, the denoising UNet of the diffusion model can be viewed as
the generator, the segmentation model acts as the discriminator. For the diffusion model, the dis-
criminator loss is combined with the original reconstruction loss, to further explicitly incorporate
the label map condition. Prior works (Gur et al., 2020; Larsen et al., 2016; Xian et al., 2019) have
combined VAE and GAN, and hypothesized that they can learn complementary information. Since
both VAE and diffusion models (DMs) are latent variable models, the combined optimization of
diffusion models with an adversarial model follows this same intuition - yet with all the advantages
of DMs over VAE. The combination of the latent diffusion model with the discriminator is thus, in
principle, a combination of a latent variable generative model with adversarial training. In this work,
we have specified the adversarial loss such that relates our model to optimizing the expectation over
x0 in Eq. (6), and for the diffusion model, we refer to the MSE loss defined on the estimated noise
in Eq. (2), which can be related to optimizing x0 with respect to the approximate posterior q by op-
timizing the variational lower bound on the log-likelihood as originally shown in DDPM (Ho et al.,
2020). Our resulting combination of loss terms in Eq. (7) can thus be understood as to optimize over
the weighted sum of expectations on x0.
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Original caption: “a street filled with lots of parked cars next to tall buildings”
Ground truth Label → “muddy street” → “snowy street” → “burning cars”

Original caption: “a car driving down a street next to tall buildings”
Ground truth Label → “purple car” → “blue car” → “red car”

Original caption: “a couple of men standing next to a red car”
Ground truth Label → “purple car” → “green car” → “pink car”

Original caption: “a room with a chair and a window”
Ground truth Label + “sketch style” + “Picasso painting” + “Cyberpunk style”

Figure 10: Visual examples of text controllability with our ALDM. Based on the original image
captions generated by BLIP model, we can directly modify the underlined objects (indicated as →),
or append a postfix to the caption (indicated as +). Our ALDM can accomplish both local attribute
editing (e.g., car color) and global image style modification (e.g., sketch style).

E.2 FUTURE WORK

In this work, we empirically demonstrated the effectiveness of proposed adversarial supervision and
multistep unrolling. In the future, it is an interesting direction to further investigate how to better
incorporate the adversarial supervision signal into diffusion models with thorough theoretical justi-
fication.
For the multistep unrolling strategy, we provided a fresh perspective and a crucial link to the ad-
vanced control algorithm - MPC, in Sec. 3.2. Witnessing the increasing interest in Reinforcement
learning from Human Feedback (RLHF) for improving T2I diffusion models (Fan et al., 2023; Xu
et al., 2023), it is a promising direction to combine our unrolling strategy with RL algorithm, where
MPC has been married with RL in the context of control theory (Wang et al., 2023a) to combine the
best of both world. In addition, varying the supervision signal rather than adversarial supervision,
e.g., from human feedback, powerful pretrained models, can be incorporated for different purposes
and tailored for various downstream applications. As formulated in Eq. (10), we simply average the
losses at different unrolled steps, similar to simplified diffusion MSE loss (Ho et al., 2020). Future
development on the time-dependent weighting of losses at different steps might further boost the
effectiveness of the proposed unrolling strategy.
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Ground truth

+ “heavy fog”

FreestyleNet ControlNet Ours

+ “snowy scene
with sunshine”

+“snowy scene,
nightitme”

Faithfulness
Editability

Figure 11: Qualitative comparison of text editability between different L2I diffusion models on
Cityscapes. FreestyleNet exhibits little variability via text control. ControlNet often does not adhere
to the layout condition, e.g., synthesizing buildings (1st row) or trees (2nd and 3rd row) where the
ground truth label map is sky. In contrast, Our ALDM can synthesize samples well complied with
both layout and text prompt condition.

Ground truth

+ “snowy scene”

T2I-Adapter FreestyleNet ControlNet Ours

+ “night scene”

Figure 12: Qualitative comparison of text editability between different L2I diffusion models on
Cityscapes.

Last but not the least, with the recent rapid development of powerful pretrained segmentation models
such as SAM (Kirillov et al., 2023), autolabelling large datasets e.g., LAION-5B (Schuhmann et al.,
2022) and subsequently training a foundation model jointly for the T2I and L2I tasks may become
a compelling option, which can potentially elevate the performance of both tasks to unprecedented
levels.

20



Published as a conference paper at ICLR 2024

Ground trurh

+ “snowy scene”

T2I-Adapter FreestyleNet ControlNet Ours

+ “Van Gogh style”

Figure 13: Qualitative comparison of text editability between different L2I diffusion models on
ADE20K. ALDM can synthesize samples well complied with the layout and text prompt.

Content Style ISSA Label ALDM (Ours)

+“muddy street”

+“snowy scene”

+“nighttime”

Figure 14: Comparison between our ALDM and GAN-based style-transfer method ISSA (Li et al.,
2023b). It can be seen that ALDM can produce more realistic results with faithful local details, given
the label map and text. In contrast, style transfer methods require two images, and mix them on the
global color style, while the local details, e.g., mud, and snow may not be faithfully transferred.
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Ground truth Label Predicted x̂
(t)
0 Seg. Pred.

Figure 15: Visualization of discriminator predictions on the estimated clean image x̂
(t)
0 at t =

5. Black in the ground truth label map represents unlabelled piels, while in the last segmentation
predicion column black indicates the fake class predicitons.
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Image Ground truth Baseline Ours

Figure 16: Semantic segmentation results of Cityscapes → ACDC generalization using HRNet.
The HRNet is trained on Cityscapes only. Augmented with samples synthesized by ALDM, the
segmentation model can make more reliable predictions under diverse unseen conditions, which is
crucial for deployment in the open-world.

Ground truth Label → “purple car” → “pink car”

Figure 17: Editing failure cases. When editing the attribute of one object, it may leak to other objects
as well. For instance, the color of the car on the right is modified as well.
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