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Ultrashort laser pulses pose unique tools to trigger and probe the fastest charge dynamics in
matter, allowing the investigation of fundamental physical phenomena with unprecedented resolution
in space, time, and energy. One of the most fascinating opportunities that ultrashort pulses offer is
the possibility of modulating and investigating symmetries by tailoring the properties of the laser
beam in the spatial and polarization domains, effectively controlling symmetry breaking on multiple
levels. In particular, this allows probing chiral matter and ultrafast chiral dynamics. In recent years,
the development of highly sensitive approaches for studying chirality has been a hot topic in physics
and chemistry that has developed largely separately from the field of tailored light. This perspective
discusses the individual and joint evolution of these fields with an emphasis on how the fields have
already cross-fertilized, opening new opportunities in science. We outline a future outlook of how
the topics are expected to fully merge and mutually evolve, emphasizing outstanding open issues.

INTRODUCTION

During the past few decades, laser technology has sub-
stantially advanced, resulting in the ability to generate
and finely control multiple degrees of freedom of coher-
ent light. One particularly important development is
the production of ultrashort laser pulses. To date, the
shortest laser pulses with durations of a few tens of at-
toseconds [1–3] are generated table-top via the process
of high-order harmonic generation (HHG) (a discovery
recently awarded the Nobel prize in Physics [4]), or from
x-ray free electron lasers (XFEL) [5]. Such pulses pro-
vide unprecedented resolution in space, time, and energy
[6–9], and effectively allow probing charge dynamics in
their natural timescales. This provides insight into fun-
damental physical phenomena such as electron correla-
tions [10–15], photoionization time delays [16–19], and
coupled electron-nuclear dynamics [20–23]. They also
pave the route to exploring phenomena that intersect
with applications such as charge migration and trans-
fer [7, 8, 24–26], photocurrent generation [27–30], and
molecular chirality [31–33].
Immense scientific effort has been dedicated to the con-

trol over a wide variety of characteristics of ultrashort
laser pulses, culminating in the prominent field of tailored
light [34–37]. Such control has evolved over the years
from fine manipulation of the pulse carrier frequency,
bandwidth, pulse duration and envelope [38–41], to more
intricate details such as the beam spatial profile or its
angular momenta, which can take two forms: spin an-
gular momentum [42] (polarization) and orbital angular
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momentum [43] (vorticity). In particular, by incorporat-
ing multiple carrier waves into a single coherent beam,
one gains immediate control of light’s symmetry (and
asymmetry) properties [44]. This emerged initially in
the form of bi-chromatic bi-circular fields [45–47], which
also allowed the generation of circularly-polarized x-rays
through HHG [48–52], and more recently allowed intri-
cate waveforms for exploring molecular chirality [53, 54].
At the ultimate regime of control, all of these tailored
properties could be tuned simultaneously to generate
waveforms with coupled degrees of freedom, i.e. where
the symmetries and symmetry breaking of the beam de-
rive from a non-trivial combination of the spatial, tem-
poral, and polarization degrees of freedom [55–59]. In
combination with the field of HHG, by driving non-linear
response with such tailored beams, their physical prop-
erties can be imprinted onto generated attosecond beams
and X-ray emission. This paves the way to exploiting the
beams’ unique symmetries and asymmetries for probing
fundamental phenomena both directly and in down-the-
line attosecond spectroscopies.

A separate field of research that has been actively pe-
rused in recent years is the field of chirality. Chirality
is a universal property in nature, emerging on all length
scales from galaxies [60] to snail shells [61], and down
to fundamental particles [62]. In general, an object is
chiral if and only if it can not be superimposed onto
its mirror image, connecting the physics behind chiral-
ity to symmetries [63]. At the nanoscale, chirality man-
ifests in the form of chiral molecules, whose two oppo-
site mirror-reflected versions are denoted as enantiomers.
Oppositely-handed enantiomers are generally indistin-
guishable, except for when interacting with another chi-
ral object (e.g. in a chemical reaction with other chiral
molecules, or when interacting with circularly-polarized
light).

Since most biological molecules are chiral, chirality is
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extremely relevant in biology and pharmaceutical science,
where highly sensitive identification of chiral molecules is
a current open problem. Chirality is also of interest in
particle physics [64, 65]. Traditional optical methods to
distinguish chirality are based on interactions with ellip-
tically polarized light, relying on the interplay between
electric-dipole and magnetic-dipole interactions, and thus
producing weak signals [66]. In recent years there has
been a massive effort from the physics and chemistry
communities to improve the sensitivity of chiral detec-
tion schemes using a variety of approaches. Among these
approaches are the use of nonlinear light-matter interac-
tions [67, 68], utilizing X-ray wavelengths [69], microwave
wavelengths [70, 71], or even high laser intensities to drive
chiral HHG and photoionization [33, 72, 73]. More re-
cently, these efforts have begun to merge with the com-
munity of tailored light, e.g. utilizing helical dichroism
from topological beams [74–77], employing polarization
tailored light [32, 78, 79], and light with combinations of
polarization and spatial phase tailoring[53, 80–85].

In this perspective, we review recent advances on these
two fronts, emphasising how controlling symmetries in
light fields allows for novel directions in the research of
chirality. We also provide an outlook for future develop-
ment in both fields, as well as new breakthroughs which
could arise as a result of the synergistic study of tailored
light and chirality.

TAILORED LASER FIELDS

The coherent nature of laser light allows for precise
control over its properties. For example, one may com-
bine different frequencies in a laser beam, harness the
laser polarization, design beams with spatial structures,
or even control the temporal shape of the pulse. These
different kinds of laser fields can be encompassed under
the term ”tailored laser fields” and many light-matter in-
teractions can be driven and controlled by them by uti-
lizing their various degrees of freedom. In this section,
we will review the recent developments in tailored fields
in the context of ultrafast light-matter interactions.

Laser tailoring is a very wide area of research and nu-
merous kinds of light sources have been developed using a
variety of tailoring techniques over the past decades. For
illustrative purposes, Figure 1 shows a schematic sum-
mary of different categories of laser tailoring, but beams
can also be generated using combinations of the described
techniques. We can consider two main ways of taking
control over the different attributes of laser light: (i) tai-
loring the electric field properties at the microscopic level
(i.e. properties that can be defined at each infinitely
small region of space, such as spectro-temporal proper-
ties or polarization, shown at the left side of Figure 1),
and (ii) tailoring the laser beam spatial shape, thus at
the macroscopic level (i.e. properties that derive from
the spatial variation of the field, such as topological light
or polarization gratings, shown at the right side of Figure

1). In addition, novel forms of light sources can be con-
sidered as a non-trivial combination of microscopic and
macroscopic tailoring, such as polarization vortex beams
that will be discussed below.

The first efforts in the control over laser field proper-
ties were mainly focused on harnessing its intensity (e.g.
to generate nonlinear phenomena), as well as its spectral
and temporal properties, creating laser light with tun-
able wavelengths and bandwidths (e.g. for spectroscopic
applications), and aiming for the shortest durations to
investigate ultrafast dynamics (Figure 1A). This type of
tailoring is also particularly relevant for nonlinear phe-
nomena [86].

Other prominent types of tailored fields are beams ob-
tained from coherent combinations of two or more carrier
components with different frequencies and polarizations.
Since these beams have multiple frequencies (typically a
fundamental frequency and its second harmonic are em-
ployed due to convenience), their Lissajous curves can
exhibit time-evolving polarizations with unique struc-
tures. That is, the polarization state of the beam can
evolve in a non-trivial manner in time, generating and/or
breaking specific symmetries of the electromagnetic field.
Particularly important examples include orthogonally-
polarized two-color fields (see Figure 1B), which con-
sist of two linearly polarized components with mutually
orthogonal polarizations (allowing to generate mirror-
symmetric and time-reversal invariant waveforms [44])
and bi-circular fields (see Figure 1C), which consist of two
circularly polarized components with different frequen-
cies (allowing the generation of rotationally-symmetric
waveforms[48, 87–89]). More generally, one can combine
multiple carrier waves [90] or even non-commensurate
waves [91], which present a playing ground for tuning
symmetries in light’s time-dependent polarization plane.
Note that in poly-chromatic beams, besides frequency
and polarization, the relative phases and intensities of
the carrier-beam components are also available as con-
trol knobs that provide additional degrees of freedom of-
ten useful for ultrafast spectroscopy.

Light’s polarization can also be shaped in three dimen-
sions by combining two frequencies with non-coplanar
polarizations, e.g. one elliptically polarized field plus a
linearly polarized field in the orthogonal direction (see
Figure 1D). This field is denoted as synthetic locally-
chiral light [53, 78], as it has the peculiarity of drawing
a chiral shape in time in every point in space, thus be-
ing locally-chiral. The interaction of such beams with
chiral molecules will be described in next section. Im-
portantly, such 3D polarizations can be generated using
non-collinear schemes or tightly focused beams, where
the resulting polarization state varies spatially and can
interact with all of the sample’s main axes as opposed to
only in a plane.

This brings us to another family of tailored fields, those
that carry macroscopic structures. Such tailored fields
are often denoted as structured light, where a property
of light – such as intensity, phase or polarization – varies
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FIG. 1. Scheme of different types of tailored laser fields. Generally, field tailoring may refer either to the control over the
laser spectral, temporal, and polarization properties, or to the control over the spatial structure of the beam. Thus, it is possible
to tailor microscopic properties, that can be defined at each point in space (left side of the figure), macroscopic properties arising
from the laser’s spatial variations (right side of the figure), or combinations of both. Conventional tailoring consists of the
shaping of the temporal duration and spectral content of laser fields (panel A). Control over the laser polarization, beyond
the generation of laser fields with different ellipticities, can be achieved by combining multiple frequency components, which
results in an electric field drawing Lissajous figures in time. Two prominent examples are two linearly polarized components
with orthogonal polarizations (panel B) and two circularly polarized components with opposite helicities (panel C). Three-
dimensional local polarizations can also be created, such as in the locally-chiral light (panel D). Polarization can also be
harnessed macroscopically, such as through the creation of spatial gratings, as shown in panel E for the typical set up of two
non-collinear counter-rotating laser fields. Another important kind of macroscopic laser tailoring is the generation of light
beams with topological properties, such as vortex beams, carrying an azimuthally-varying phase around a phase singularity
(panel F) and vector beams, with azimuthally-rotating polarization around a polarization singularity (panel G).

spatially following a certain pattern. Among these are
spatial gratings created in non-collinear schemes, result-
ing in periodic patterns in space (see Figure 1E). For
example, non-collinear counter-rotating driving beams
with the same color create polarization patterns that al-
low for the generation of circularly polarized attosecond
pulses [92]. Macroscopic gratings can also generate op-
tical Talbot carpets used for transient excitations [93],
or induce waveforms with topological properties such as
skyrmions[94].

A particularly interesting kind of spatially structured
beams are those that carry orbital angular momentum
(OAM) [43]. While the spin angular momentum (SAM)
of light describes its polarization – a microscopic prop-
erty defined locally at each point of space – the OAM of
light is connected to the macroscopic shape of a paraxial
light beam (paraxiality is required for separating these
two degrees of freedom). OAM beams exhibit twisted
phase front and doughnut-like intensity profiles around a

phase point-singularity and are therefore often denoted as
vortex beams (see Figure 1F). Vortex beams offer excit-
ing possibilities for particle manipulation [95, 96], infor-
mation transfer [97], phase contrast [98], super-resolution
microscopies [99], and in quantum information [100, 101].
The generation of OAM beams in the extreme-ultraviolet
(EUV) or x-ray spectral regimes is motivated by the pos-
sibility of extending the current applications of vortex
beams to the nanometric scale, especially in microscopy
and spectroscopy [102–105]. Vortex beams are typically
produced in the optical and infrared regimes using spiral-
phase plates, q-plates, holographic techniques or intra-
cavity techniques. These methods however become in-
efficient for imprinting OAM to EUV or X-ray light,
which are desirable for probing ultrafast phenomena. As
alternatives, high-frequency beams carrying OAM have
been generated via HHG [106, 107] or particle accelera-
tors [108]. In HHG, harmonic vortices exhibit topolog-
ical charges that follow simple conservation rules [109],
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whereby the vortex nature of the beam is effectively im-
printed onto the nonlinear optical emission. By com-
bining temporal and spatial degrees of freedom together
even more exotic characteristics can be induced, such as
spatiotemporal optical vortices [110, 111] or time-varying
OAM [57].

One noteworthy aspect of vortex beams is their connec-
tion to topology. A topological property of a geometric
object is a quantity that is preserved under continuous
deformations such as stretching, twisting, or bending.
Light’s OAM is often denoted as a topological charge,
whereas vortex beams are referred to as “topological
light”. But, what exactly is topological about light? We
can understand this connection by diving into its histor-
ical origins [112]. Young’s discovery of light’s wave na-
ture at the beginning of the nineteenth century motivated
the study of wave-related properties of light. Parallel to
this, phase singularities started to be studied in different
kinds of waves, such as in tides [113] (1833) or wavefunc-
tions [114] (1930). However, the first connection between
phase singularities in waves and topology appeared in
1974 in a seminal article by Nye and Berry [115], where
they associated phase singularities in waves to wavefront
dislocations, which can be studied in the same framework
as crystal dislocations, opening the route towards at-
tributing topological properties to light. From this point
on, the term “topological charge” started to be used in
vortex beams [116–119]. This conserved charge is de-
fined through the integral of the beam’s phase gradient
in closed loop around the singularity: ℓ = 1

2π

∮
C
∇ϕ(r)dr

[120], where ϕ(r) is the spatially-varying phase and C de-
notes the loop. Finally, in 1992, Allen et al [43] connected
light’s phase singularities to OAM.

It is worth noting that phase singularities are not the
only possible singularities in light beams — polarization
singularities are also very relevant, with vector beams
the most well-known example [121]. Vector beams ex-
hibit a nonzero Poincaré index, which is a topological in-
dex that describes the number of complete polarization
rotations in a closed loop [122] (see Figure 1G). Phase
and polarization singularities can be further combined,
such as in vector-vortex beams [123] (also denoted as
vectorial vortices [124] or full Poincaré beams [125]), and
polarization knots [126–128], where torus-knots can be
described by their torus-knot angular momentum [55].
Other 3D polarization structures include flying dough-
nuts [129–132], where the longitudinal component of light
creates a toroidal polarization shape, and polarization
Möbius strips [133, 134], where the polarization struc-
ture creates a single-side surface.

The connection between light and topology is inter-
esting in the framework of light-matter interactions, as
topological properties of light are connected to its sym-
metries, allowing us to define conserved quantities and
design topologically protected (more robust under per-
turbations) configurations [135]. However, it is impor-
tant to also acknowledge the differences between light’s
topology and topology as it’s often regarded and analyzed

in the condensed-matter community, i.e. connecting to
the Nobel prize in 2016 [136]. The topology of materials
leading to topological insulators, topological semimetals,
protected surface states, and more, arises directly from
the symmetry properties of the Material’s Hamiltonian
[135]. Formally, material topology is a property defined
in the ground state and under adiabatic evolution (with
some recent extensions to out-of-equilibrium [137]). The
topological protection of surface states appears as a re-
sult of an underlying symmetry (e.g. time reversal) and
exists as long as that symmetry is respected, including by
perturbations. In contrast, the conserved charges associ-
ated with light beams arise in the wave functions rather
than from the fundamental Hamiltonian (i.e. in solutions
to Maxwell’s equations rather than from Maxwell’s equa-
tions themselves). While the charges of a given beam are
overall conserved, they are not offered exactly the same
kind of protection as electronic wave functions in crystals.
For instance, beams of high values of OAM might split
up into many beams with lower OAM, or transfer their
OAM to other entities through interactions [138]. They
also do not lead to another set of protected states as the
concept of bulk-edge correspondence is not relevant for
freely propagating beams. Lastly, we note that in topo-
logical light beams, the singularity is always removable
in the sense that no physical property actually diverges
at the singularity (because physical properties such as in-
tensity or polarization exhibit a well-behaved limit, and
the electromagnetic field is smooth and continuous ev-
erywhere). This differs from the situation in topological
materials where there is a non-removable topological ob-
struction in k-space [139, 140]. At the same time, we
should note that there are many analogue properties be-
tween topological photonics and topological condensed-
matter, especially with using photonic crystals, which
can also lead to new physical effects [141–146].

From a practical standpoint, using tailored fields to
drive laser-matter interactions may require special con-
siderations compared to more standard light. First, from
the theoretical point of view, complex polarization struc-
tures break typical symmetries associated with linearly
polarized light, leading to more demanding calculations.
On the other hand, it is important to note that mod-
elling nonlinear light-matter interactions using spatially-
structured light requires performing macroscopic calcu-
lations (at the very least in the plane transverse to the
beam propagation), in contrast to standard cases where
the single atom/molecule (point emitter) response is suf-
ficient. This is because the spatially-varying response
means that contributions from all local emitters need to
be added up coherently and propagated towards the de-
tector. Thus, the optical responses are strongly influ-
enced by the spatial structure of the beam, adding sen-
sitivity to micrometer-scale imperfections in the samples
as well. Moreover, phase-matching effects might be rel-
evant for very intense laser pulses or dense media along
the propagation direction (requiring a macroscopic de-
scription of the interaction). In certain cases (such as



5

chiral media discussed below) commonly employed ap-
proximations might break [147]. From the experimental
perspective, this immediately means that one must con-
sider the spatial three-dimensional geometry of the setup
where it could also be crucial to adjust the position of
the target with respect to the beam’s waist. Often safely
ignored effects such as the Gouy phase can all of a sudden
play an important role [123, 148].

Finally, we may contemplate potential novel applica-
tions of tailored fields and the direction of this research
area as a whole. In our opinion, polarization-tailored
sources are especially interesting in the context of non-
linear light-matter interactions and should prove highly
useful for spectroscopy and coherent control in the com-
ing years. For example, the two-color tailored fields em-
ployed to control the polarization of EUV or X-ray light
[45–51, 149–153] can also be employed to harness valley
degrees of freedom [154, 155] and material topology [156].
On the other hand, topological beams can serve as a spec-
troscopic tool to explore the target’s anisotropy [157] and
generate out-of-equilibrium states with novel properties
[158], or even control optoelectronic responses [58]. More
generally, by taking advantage of the spatially-varying
phase in OAM beams, one can hope to control different
properties of the optical responses, as has been for in-
stance already employed to control the polarization of the
attosecond pulses [159] and their spectral content [160].
Lastly, we highlight one extremely relevant field for ap-
plying such capabilities — chirality. Given that chiral-
ity connects with the geometrical properties of objects,
and tailored fields allow manipulating the geometry of
light on multiple levels, the two should match extremely
well. In the next section, we introduce chirality and the
state-of-art examples of how it benefits from the use of a
tailored laser field.

BRINGING TAILORED FIELDS TO CHIRALITY

Let us now briefly review ongoing efforts in the field
of chirality, and connect these to the discussion above.
This section is organized as follows. We will first review
the main approaches for studying chirality using standard
laser fields (i. e. standard elliptically/circularly polarized
light), and we will show a summary of such techniques
in Figure 2. Secondly, we will discuss recently developed
techniques that use tailored laser fields, including those
discussed in the previous section, and we will show a
compilation of different methods in Figure 3.

Chirality is an asymmetry property of matter, i.e. it
arises when matter lacks certain symmetries. Conse-
quently, to identify whether a certain object, crystal, or
molecule, is chiral, it is enough to look at the point/space
group characterizing it [63]. If that group excludes sym-
metry elements such as inversion, mirror planes, and im-
proper rotations, then the object inherently cannot be su-
perimposed onto its mirror image by rotations (see Figure
2A). Direct ramifications of this are, for instance, opti-

cal activity such as circular dichroism (CD)[66], meaning
that circularly-polarized light has a helicity-dependent
absorption cross-section in the medium. The first ob-
servations of CD and related optical activity happened
already in the 19th century and carried enormous weight
in the sugar and pharmaceutical industry. From a prac-
tical perspective, since chirality is omnipresent, even in
our body’s most fundamental constituents such as DNA,
its identification and analysis are paramount. Comple-
menting chemical methodologies, light-matter interac-
tions based on optical activity have been the workhorse
for this task for over a century[66]. Typically, a CD is
measured in crystal or solution using extremely accurate
spectrometers, allowing extraction of the medium’s enan-
tiomeric excess (EE) that is defined by the normalized
ratio of left/right-handed molecules: (L − R)/(L + R),
where L/R are the concentrations of left/right-handed
molecules.

The origin of this linear-optical CD signal has a clear
intuitive symmetry connection — if we recall that chi-
rality by definition is the lack of mirror symmetries, we
could argue that a chiral interaction (one that discrimi-
nates the handedness of the molecule) is intuitively ex-
pected only when the light beam also shares this asym-
metry. Circularly-polarized light beams exhibit a polar-
ization (of both the electric and magnetic components)
that traces a screw-like shape in space-time (see Fig-
ure 2B), meaning that it clearly does not exhibit mir-
ror symmetries, leading to CD in the interaction signal.
However, an important point is that this lack of mir-
ror symmetry only arises when considering the spatial
structure of the beam where the screw is traced-out.
At any given singular local point in space, the beam
is circularly polarized and traces a two-dimensional pla-
nar circle, which is mirror-symmetric. This means that
the physical origins of typical CD signals are effects be-
yond the electric-dipole approximation, i.e. requiring in-
formation regarding the beam’s spatial evolution. In-
deed, as a result, common chiral signals are of the order
of 10−3 − 10−6, and arise from an interplay of electric
and magnetic dipole interactions or electric quadrupole
interactions[66]. This signal can in principle be enhanced
by applying light with shorter wavelength (making the
spatial symmetry-breaking structure appear on length
scales closer to that of the molecule) [69, 163], as shown in
Figure 2C, adapted from 69. Another option consists of
attempting to enhance light’s intrinsic symmetry break-
ing through superchiral structures [164, 165]. However,
such strategies have other limitations connected with the
difficulty in their generation and measurement. Overall,
this greatly limits the scope of chiral spectroscopy, mak-
ing gas phase approaches difficult, requiring accurate and
costly measurement apparatuses, and not allowing access
to more fundamental physical phenomena such as parity-
violation[64, 65]. Another noteworthy point is that chiral
molecules, especially large bio-molecules that are relevant
as novel emerging drug candidates, can exhibit chirality
in multiple stereo-centers. Such intricate details are very
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FIG. 2. The study of molecular chirality using standard laser fields. Panel A: Scheme illustrating the concept of
chirality, a universal property found at all length scales. Molecular enantiomers are the mirror-reflected versions of a chiral
molecule. Panels B-D: Traditional methods for the analysis of molecular chirality are based on CD, which measures the
difference between the responses of the two enantiomers to elliptically-polarized light. Standard CD consists of measuring
differences in absorption of light with right circular polarization (RCP) and left circular polarization (LCP), as illustrated in
panel B. This concept can be extended to the x-ray regime, where the enantio-sensitivity is higher, as shown in panel C,
figure adapted from 69. CD can also be found in the variation of the HHG yield with the ellipticity of the driving field, as
presented in panel D (adapted from 33). Panels E-F: Modern approaches to analyze molecular chirality based on electric-
dipole interactions with standard circularly/elliptically polarized light. In PECD, the angular distribution of the photoelectron
momentum shows an enantio-sensitive asymmetry in the direction of the laser field propagation, as shown in panel E, reprinted
from 161. Enantio-sensitive signals are also found in measurements of photoion fragments (as shown in panel F, reprinted from
162).

difficult to identify with optical activity alone, further
motivating research.

A different approach to enhance the CD signal con-
sists in resorting to highly nonlinear phenomena such as
HHG, where chiral-selective interactions have also been
intensely studied in the last decade. Initially, high har-
monics driven by elliptically-polarized lasers were mea-
sured in gas-phase chiral molecules[33]. The advantage
of HHG is that it carries attosecond information about
the interaction, allowing to explore additional physics
such as the timescales of photo-ionization and photo-
recombination. These measurements were conducted at

low ellipticity values since the HHG yield exponentially
diminishes with the driving ellipticity in the monochro-
matic case [166, 167]. Chiral signals were of the order
of 1% and arose mostly in the form of discrimination of
the ellipticity that maximizes the HHG yield (see Figure
2D, adapted from 33). This relatively large signal was
very surprising given that the symmetry-breaking origin
is still in light’s spatial polarization structure, and hence
the signal involves magnetic dipole interactions. In fact,
the signal is this high (about two orders of magnitude
larger than usual CD) simply due to the extreme non-
perturbative non-linearity of HHG.
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Parallel to these findings, in the past years, the emer-
gence of the so-called ”electric-dipole revolution” [168]
— i.e. the extraction of huge chiral signals using
schemes that rely only on electric-dipole interactions—
has launched enormous theoretical and experimental ef-
forts to develop new techniques for chiral sensing, also to-
wards studying gas phase systems and ultrafast chirality.
This has been initiated with the emergence of photoelec-
tron CD (PECD), whereby one measures the helicity-
dependent angular-, momentum-, and energy-resolved
photoemission spectrum. The novelty here is that the
chiral signal emerges already within the electric-dipole
approximation, reaching scales of up to 30% (orders of
magnitude larger than typical CD) [73, 169, 170]. In
PECD the mirror-symmetry-broken electric field arises
in light’s spatial structure. In that respect, electric-
dipole interactions are intuitively expected to not yield
chiral signals. However, the experimental apparatus
angularly resolves the photoelectron yield, permitting
electric-dipole-induced interactions to arise in resolved
parts of the spectrum. If one spatially integrates then
the chiral signal vanishes, but when looking at the for-
ward/backward hemispheres of the photoemission (with
respect to light’s propagation axis) a chiral signal arises
in the form of a forward/backward asymmetry (see Fig-
ure 2E, reprinted from 161). This effect has also been
extended to nonlinear optical interactions in various con-
figurations [171, 172], and even to the attosecond regime
[31, 173, 174]. It has also been more recently observed
in a similar process of laser-induced electron diffraction
[175]. In addition, it has been proposed that photoion-
ization by short few-cycle linearly polarized pulses re-
sults in the creation of enantio-sensitive electron vortices
[176]. Moreover, a similar concept to PECD consists in
Coulomb explosion imaging whereby the photoions are
measured in coincidence [162, 177], allowing also to di-
rectly measure the absolute handedness of molecules (i.e.
if they are in R/L configuration, and not only the pres-
ence of dichroism), where symmetry breaking arises due
to spatial structure and the detection geometry (see Fig-
ure 2F, reprinted from 162).

So, where do tailored light pulses necessarily come in?
We would argue that they are pertinent to the field due to
the symmetry connection — they permit either breaking
symmetries that have not been broken before, or breaking
the same symmetries but in a new way. In the following,
we shall present a compilation of techniques using tai-
lored light to investigate chirality. One of the first pro-
posals for bringing tailored fields to chirality consisted
in the use of polarization gratings that would exert an
enatio-sensitive force on chiral molecules [178, 180], en-
abling the separation of the enantiomers (see Figure 3A,
reprinted from 178). Other complex polarization spatial
structures have also demonstrated to result in enantio-
sensitive direction of light emission [81, 181].

PECD experiments can also benefit from the use of
tailored light. For example, it has been shown that by
utilizing bi-chromatic ω-2ω fields that are co-propagating

and transversely-polarized (OTC fields) the PECD spec-
tra can be delay-dependent and carry information on the
light field’s instantaneous chirality [32, 182, 183] (see Fig-
ure 3B). Bi-circular ω–2ω fields were also recently em-
ployed for chiral attoclocks [184]. While these effects do
not have a different source from typical PECD, the na-
ture of mirror symmetry breaking is different than that
in circularly-polarized light, allowing more information
to be extracted.

Let us now move towards all-optical techniques us-
ing tailored light. First, low-order non-linear interac-
tions have the advantage of requiring moderate laser in-
tensities. These include second-order optical techniques
that break the symmetry in polarization space such as
sum-frequency generation or other wave mixing effects
[67, 68, 185, 186] (including the microwave regime that
has been particularly successful owing to good phase
matching [70, 71, 186], as shown in Figure 3C reprinted
from 70) or using three resonant pulses that break the
mirror symmetry in polarization and time, such as in
enantio-specific state transfer measurements [179, 187]
(see Figure 3D reprinted from 179) or the enantiosensitive
free-induction decay steered by a tricolor cross-polarized
field [84].

In the highly non-linear regime, the above-mentioned
chiral HHG [33] motivated additional work using tai-
lored light to drive HHG — it was known at the time
that combinations of circular drivings allow conditions of
nonzero HHG, e.g. if bi-chromatic bi-circular pulses are
employed [48]. The hope was to use such poly-chromatic
polarization-tailored pulses to repeat this experiment but
in conditions where much larger dichroism would be ob-
tained [188]. Indeed, recently dichroism of up to 10%
was measured in bicircular HHG [79, 189] (see Figure 3E
reprinted from 79), and also utilized to track chiral chem-
ical reactions in real time [190]. In the next stage, per-
turbative and wave-mixing methods were extended to
HHG, where by tailoring the driving beams with poly-
chromatic components the nature of the polarization-
induced symmetry breaking can be more finely controlled
[78]. Here one can also generate electric-dipole chiral sig-
nals that arise in the yield and handedness of the har-
monics. Lastly, specialized beams where light’s symme-
tries are completely broken were developed, denoted as
so-called locally-chiral light [53]. The idea here is to im-
pose strict no-mirror symmetry groups on the light field
at every local point in space [191, 192]. That is, the
time-dependent polarization of the electric (and mag-
netic) field in every given point in space traces out a
spatio-temporal object that cannot be superposed onto
its mirror twin. This extends the typical molecular def-
inition of chirality to electromagnetism. A direct result
of this polarization-induced symmetry breaking is chiral
signals in HHG (and perturbative harmonics as well) that
are driven by electric-dipole interactions and arise in the
yield of harmonics, rather than in their handedness (see
Figure 3F, reprinted from 168). This technique has been
proposed in multiple geometries, each with its own ad-
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FIG. 3. Applications of tailored laser fields to investigate molecular chirality. Panel A is a figure reprinted from
178 showing a polarization grating creates an enantio-sensitive force that separates molecular enantiomers. Panel B is a
figure reprinted from 32, showing an example of how PECD experiments can also benefit from using tailored fields, such as
an OTC fields. OTC fields can also be used to drive low-order non-linear interactions where the 3-wave mixing signal is
enantiomer-dependent, as shown in panel C, a figure reprinted from 70. Panel D presents a figure reprinted from 179, showing
the enantio-specific transfer between molecular rotational states when using a 3-color field with crossed polarizations. Highly
non-linear interactions such as HHG can also rise to strong enantio-sensitive signals. Panel E shows a figure reprinted from
79 where the HHG signal induced by the ω–2ω field together with the corresponding CD was presented. Panel F presents a
figure reprinted from 168 that illustrates the setup for the generation of locally-chiral light (left side) and shows the enantio-
sensitive HHG yield (up right) and corresponding CD (bottom right). In addition, molecular chirality can also be explored
using topological light: panel G shows a figure reprinted from 76 exhibiting the HD induced by light carrying OAM. Finally,
locally-chiral light also serves as a tool to imprint chirality on atoms, as shown in H, which is a figure adapted from 85 presenting
the chiral superposition of atomic electronic states.
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vantages/disadvantages [81, 82, 84, 168, 185, 193], and
allows all-optical measurements that can be optimized
to very high chiral signals, above 100%, and potentially
also resolve local stereo-centers within the chiral molecule
[194]. Locally-chiral light beams were also proposed as
useful for extending PECD methodologies, whereby the
geometry of the measurement apparatus is no longer es-
sential to obtain the electric-dipole chiral signal since the
light carries the dipole-induced symmetry breaking. This
leads to a breaking of the forward/backward asymmetry
in PECD and with it chiral signals in the angle-integrated
above-threshold ionization spectra that can also be em-
ployed for optical enantio-purification [195].

More recently, topological light beams carrying OAM
were employed to develop new types of dichroism such
as helical dichroism (HD) (see Figure 3G reprinted from
76). Generally, this signal appears in the linear optical re-
sponse as a result of the interference between the electric
dipole interaction with magnetic dipole and/or electric
quadrupole interactions [196] and is a dichroism obtained
upon inverting the beam’s OAM handedness (i.e. the
sign of its topological charge) rather than its polarization
handedness [74–77]. Helical dichroism can even appear
with linearly polarized beams, decoupling the need for
polarization control [197]. Its origin of symmetry break-
ing is still in light’s spatial structure, but embedded in the
phase front rather than polarization evolution. Techni-
cally, CD and HD can be combined to provide additional
chiral information by controlling both degrees of freedom.
In principle, nonlinear responses should also yield to HD
(due to the symmetry-breaking nature being the same),
which, to our knowledge, has not been generally shown or
predicted yet, but only analyzed in nonlinear absorption
spectroscopy [198]. Moreover, combining OAM beams
with locally-chiral light can produce even more powerful
chiral spectroscopy schemes [199].

In addition, recent studies show how light with ever-
more intricate waveforms such as three-color pulses could
contribute towards an enantio-selective photochemistry
via enantio-sensitive population transfers [200]. Finally,
it is worth mentioning that locally-chiral light can also
be used to imprint chirality in atoms [85], which are nat-
urally achiral, by creating a superposition of electronic
states that results in a chiral state [201] (see Figure 3H
reprinted from 85).

CONCLUSIONS AND OUTLOOK

In this Perspective we have reviewed both the individ-
ual and joint evolution of the fields of chirality and tai-
lored light, with emphasis on how controlling symmetries
and symmetry breaking in light fields allows for novel di-
rections in the research of chirality. Both tailored fields
and chirality have been intensely studied over the pre-
vious two decades; tailored fields due to their ability to
observe and control ultrafast electron dynamics, and chi-
rality due to its prevalence in biological molecules and

importance in many interdisciplinary domains such as
biochemistry. Given each of their many and varied ap-
plications, and potential ability to generate advances in
laser and medical technology, we expect this trend of in-
tense study in both domains to continue for many years
to come. However, given the strong connection and po-
tential synergy between these two fields, in the remainder
of this Perspective we suggest potential future advances
that could be achieved via a combined approach to the
study of tailored light and chirality.
Tailored fields offer many different capabilities beyond

those of standard light (i.e. just single color, Gaussian
beam, elliptically-polarized), and so have recently been
more heavily applied to the study of chirality as discussed
in detail above. These recent advances demonstrate the
promise tailored beams offer for chiral spectroscopy, es-
pecially in ultrafast timescales, and open the path to
many yet unexplored possibilities. In future years, one
can expect novel tailored light forms to be even more
useful in chiral spectroscopy in standard and emerging
systems, but also for new ideas from the field of chiral-
ity to impact the engineering of light beams, for exam-
ple, attosecond pulses generated by helical HHG with or
without OAM. Emerging applications of tailored fields
for the study of chirality could include: (i) pump-probe
setups as often employed in femtosecond spectroscopies
but allowing additional symmetry breaking from struc-
tured light, (ii) polychromatic schemes allowing for low
order non-linear interactions (where weaker light inten-
sities are sufficient) with enantio-sensitive emissions as
well as control over rotational states, (iii) polarization
structures enabling the use of enantio-sensitive forces or
emission directions, (iv) OTC and bicircular fields used
to extend the capabilities of PECD or HHG measure-
ments, (v) the use of locally-chiral light to produce huge
enantio-sensitive signals in HHG, (vi) combining helical
dichroism signals with circular dichroism in nonlinear op-
tics and HHG. Even further in the future, we can envision
the use of exotic forms of OAM such as flying doughnut
beams and transverse OAM polarization-vortex beams
to define new chiral observables, and the use of topolog-
ical light bringing topologically-protected quantities and
robustness to the realm of chirality.(vii) Lastly, one can
imagine that the additional degrees of freedom offered
by tailored light (e.g. relative color phases, intensities,
vortex order, singularity type etc.), will pave the way
to studying fundamental properties of chiral molecules
beyond simply accessing enantiomeric excess or detect-
ing chiral centers. In this context, by scanning these
additional and non-trivial degrees of freedom one can de-
velop multi-dimensional spectroscopies to explore elec-
tronic correlations, charge dynamics, energy transfer, ro-
vibrational behaviour, and more, in chiral systems.
All of these avenues of research will be challenging,

but rewarding, for theoretical, computational, and exper-
imental physicists and chemists alike, yielding exciting
prospects for both of the fields of chirality and tailored
light, and driving technological advances.
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[133] I. Freund, Optical Möbius strips in three-dimensional el-
lipse fields: I. lines of circular polarization, Optics Com-
munications 283, 1 (2010).

[134] T. Bauer, P. Banzer, E. Karimi, S. Orlov, A. Rubano,
L. Marrucci, E. Santamato, R. W. Boyd, and G. Leuchs,
Observation of optical polarization Möbius strips, Sci-
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[148] M. M. Sánchez-López, J. A. Davis, I. Moreno, A. Cofré,
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