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Abstract

Image segmentation has greatly advanced over the past ten years. Yet, even the
most recent techniques face difficulties producing good results in challenging
situations, e.g., if training data are scarce, out-of-distribution examples need to
be segmented, or if objects are occluded. In such situations, the inclusion of
(geometric) constraints can improve the segmentation quality significantly. In this
paper, we study the constraint of the segmented region being segmented convex.
Unlike prior work that encourages such a property with computationally expensive
penalties on segmentation masks represented explicitly on a grid of pixels, our
work is the first to consider an implicit representation. Specifically, we represent
the segmentation as a parameterized function that maps spatial coordinates to the
likeliness of a pixel belonging to the fore- or background. This enables us to
provably ensure the convexity of the segmented regions with the help of input
convex neural networks. Numerical experiments demonstrate how to encourage
explicit and implicit representations to match in order to benefit from the convexity
constraints in several challenging segmentation scenarios.

1 Introduction

The past decade has led to tremendous advances in the field of image segmentation via data-driven
techniques with state-of-the-art approaches typically relying on an explicit grid-based representation,
using discrete segmentation mask with values in [0, 1]. However, explicit representations using only
one value per pixel have difficulties representing the global context of the segmentation, which can
lead to severe failure cases. Therefore, we propose to use implicit representations in the form of a
neural network that (continuously) maps (arbitrary) spatial coordinates to the likeliness of a pixel
belonging to fore- or background, which we illustrate in fig. 1.

(a) Scribbled Image (b) Implicit Representation
G(x; ν) : R2 → [0, 1]

(c) Explicit Representation
u ∈ [0, 1]ny×nx

Figure 1: Trying to segment a scribbled image like (a). We propose to parameterize segmentations
implicitly via an input convex function (b) instead of classical explicit representation methods (c).
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While implicit representations have recently been very successful for representing images (c.f.
[16, 17]), we are (to the best of our knowledge) the first to use a learnable implicit representation for
image segmentation. By parameterizing the implicit function to be input convex [2], we can provably
ensure the resulting segmentation to be convex. In this work, we demonstrate how to combine and
jointly train the common explicit and our novel implicit representation and illustrate advantages in
challenging image segmentation scenarios numerically.

2 Related Work

Including geometric constraints such as convexity of the shape to the segmentation has received
significant attention already in early work, which used segmentation representations via a polygon
representing the boundary of the objects [14, 5]. These representations implicitly satisfy connectivity
constraints, but are prone to getting stuck in bad local optima. Yet, similar representations have
gained recent attention in the context of convexity priors exploiting orientation-based lifting [3, 4].
Level-set functions have been made topology-preserving by preventing local changes that would alter
the topology [7], yet consequently also have difficulties overcoming local minima.

Interestingly, for more global approaches utilizing explicit representations, the seemingly simple
constraint of the segmented region being convex is challenging: As segmentations of an image
f ∈ Rnx×ny×3 are commonly represented explicitly as masks m ∈ [0, 1]ny×nX , graphs with nx · ny

many nodes or (discretized) level-set functions ϕ ∈ Rnx×ny to identify the segmented region with
{(i, j) | ϕi,j ≤ 0}, different characterizations of convex sets have been exploited to form regularizers.
Yet, explicit representations either need to approximate the convexity [12] or lead to computationally
intense schemes, e.g. leading to combinatorial (NP-hard) problems, c.f. [9, 13], or using curvature
penalties leading to fourth order differential equations [13] during optimization.

By considering an implicit representation and defining a coupling loss for unifying explicit and
implicit representations, we demonstrate that provable convexity can easily be ensured in arbitrary
existing (learning- or model-based) image segmentation approaches.

3 Explicit vs. Implicit Representations for Segmentations

3.1 Implicit Representations

We propose to represent the segmentation as a function Gν : Ω ⊂ R2 → R implicitly via a neural
network parameterized by ν: Gν takes coordinates within the image domain Ω as an input and
predicts values that – when thresholded – divide Ω into foreground and background. While this type
of representation has recently gained a lot of attention for images [16, 17] it has - to the best of our
knowledge - not been exploited for representing segmentations. In particular, by choosing Gν to be
an input convex network [2], i.e., choosing

Gν(x) = zK , zi+1 = ReLU(νzi zi + νxi x+ bi), νzi ≥ 0 ∀i ∈ {1, . . . ,K − 1}, (1)

we can assure that any lower level set is a convex set. Thus

{x ∈ R2 | Gν(x) ≤ 0} ⊂ R2 (2)

is an implicit representation of a convex region. Yet, this raises the question of how our representation
(2) can be included in common segmentation frameworks that frequently predict (or optimize for)
one value per pixel of the image to be segmented.

3.2 Representation Unification

Let Nθ(f) ∈ [0, 1]ny×nx be any function that predicts a (classical) segmentation on an image
f ∈ Rny×nx×3 while possibly depending on additional parameters θ. Typical cases include energy
minimization approaches such as

Nθ(f) = argmin
u∈[0,1]ny×nx

D(u, f) + α∥∇u∥1 (3)

for a data term D(u, f). One example could be a linear term with a model-based likelihood as
in [15], and a regularizer such as the total variation, where we state ∇ as the discrete derivative
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operator in (3). In such a case θ would only consist of the regularization parameter α and possible
hyperparameters for generating the data term. Equally valid, Nθ could represent a neural network
with learned parameters θ such that Nθ(f) denotes the result of an inference step on the image f .

In any case, despite the discrete nature of Nθ(f) ∈ [0, 1]ny×nx , it is natural to still interpret the
prediction as a (piecewise constant) function Nθ(f) : Ω → [0, 1] by identifying the pixel values
(Nθ(f))i,j as the constant value of the function for all x inside the entire rectangle that describes the
pixel. Thus, with any given explicit representation being in the same function space as our family
of implicit and provably convex neural networks, it is natural to penalize the distance between a
given prediction Nθ(f) and the set of functions that can be represented as a soft (e.g. sigmoid-based)
thresholding of implicit input convex functions (1). As the distance between a point and a set is
defined as the minimal distance between the point and any element in the set, we naturally study

dist(Nθ(f), S) = min
ν

∥Nθ(f)− σ(Gν(f))∥ (4)

for S as being the set of functions that can be represented via (1) for a fixed choice of architecture,
and σ being a sigmoid function.

3.3 Sequential vs. Joint Representation Unification

Considering that eq. (4) already involves two sets of parameters, ν and θ, it is natural that we have
two options for computing convex segmentations, i.e., for unifying the two representations. The
sequential option computes the projection of a given prediction Nθ(f) onto our set S, i.e.

projS(Nθ(f)) = σ(Gν̂(f)) for ν̂ = argmin
ν

∥Nθ(f)− σ(Gν(f))∥. (5)

With increasingly expressive architecture choices for the input convex networks in S, we expect (5)
to converge to the projection of Nθ(f) onto the set of convex segmentations*.

For any learnable approach that determines the parameters θ of the predictor in a training process,
a joint unification is an interesting alternative. In this case, we propose to use (4) as a regularizer
during training, effectively leading to a joint optimization over the predictors parameters θ and one
set of implicit convex representation parameters ν per training image f .

4 Numerical Experiments

To investigate the influence of the implicit convex representation numerically, we exploit the scribble-
based convexity dataset †. It consists of 51 images with user scribbles, and (approximately) convex
foreground objects to be segmented. All details of our numerical experiments can be found in the
appendix.

In our first study, we consider the segmentation of separate images based on scribbles, i.e., with
approaches that are not based on a large set of training images, but try to learn the correct predictions
on a single user-scribbled image only. [10] also considers sparse segmentation in the context of
motion segmentation. We use a simple convolutional neural network (CNN) with 3× 3 kernels, and a
pointwise (fully connected or 1× 1 CNN) network (FCN) as predictors Nθ. The networks are trained
separately for each image in order to predict the correct label only for the scribbled pixels. Inspired by
[6], we vary the inputs of the network as an RGB image in combination with either spatial coordinates
or semantic features [1] or a combination of both. We compare the outcome of each approach in
the setting of sequential representation unification, i.e., first training the predictor, then computing
the projection onto our implicit convex representations, and in the setting of a joint unification, i.e.,
training the network parameters θ and the representation parameters ν jointly coupled via (4), see
table 1.

We can see that the implicitly enforced convexity assumption is able to improve the results, with a
joint unification clearly being superior to a sequential one. Interestingly, the impact of the convex
projection method is significantly larger when the segmentation network does not receive any spatial
information, which leads to substantial improvements and is the best-performing approach by far.

*Strictly mathematically, care has to be taken of the proposed optimization problem having a minimizer as
the sigmoid can create problems in this respect.

†The convexity dataset is available at https://vision.cs.uwaterloo.ca/data/.
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(a) Scribbled Image (b) Segmentation (c) Convex Projection (d) Joint Unification

Figure 2: Qualitative results of a FCN segmentation, trained on scribbles (a) with RGB input and
semantic features. In (b), the learned segmentation is given, which is very scattered, due to the lack of
spatial information, while its convex projection (c) fits the balloon quite well. We get an even better
segmentation using the joint training approach (d).

Table 1: Intersection over union (IoU) of the foreground objects w.r.t the ground truth. We report
the sequential projection (first row) and the joint representation unification (second row) between
different predictors Nθ and our proposed implicit convex representations Gν over three runs.

RGB+spatial RGB+semantic RGB+spatial+semantic
CNN / convex FCN / convex CNN / convex FCN / convex CNN / convex FCN / convex

seq. 0.697 / 0.763 0.732 / 0.711 0.726 / 0.843 0.714 / 0.851 0.778 / 0.766 0.736 / 0.746
joint 0.798 / 0.799 0.755 / 0.756 0.818 / 0.899 0.635 / 0.894 0.805 / 0.809 0.768 / 0.769

Table 2: IoU for SAM (first row) and the convex projection (second row) in the case of additional
corruptions. A severity value of 5 is used to corrupt the images.

Model Clean Spatter Contrast Brightness Impulse Shot Noise Gaussian Noise Defocus Blur Glass Blur

SAM 0.7275 0.5627 0.6489 0.6456 0.5330 0.6298 0.6246 0.7333 0.7187
projS(SAM) 0.7407 0.5817 0.6597 0.6516 0.5504 0.6371 0.6357 0.7426 0.7321

We exemplify the effect of the projection as well as the joint training qualitatively in Fig. 2: While
the original segmentation Nθ is highly scattered (fig. 2 b), an implicit input-convex projection yields
the segmentation of the main convex object (fig. 2 c). Joint training allows both representations to
find an agreement leading to even more accurate contours (fig. 2 d).

Figure 3: Trying to segment
a scribbled image with SAM
[11] fails when using full
scribbles as SAM has not been
trained with dense scribbles

While the results in table 1 show consistent improvements, one
could think that large foundational models such as Segment Any-
thing (SAM) [11] solve the image segmentation problem as a whole
and make the consideration of separately segmenting single images
with scribbles obsolete. Yet, as we illustrate in Fig. 3, even SAM can
easily fail due to out-of-domain examples and can therefore benefit
from geometric convexity constraints if such prior information is
valid. To analyze such cases quantitatively, we exploit SAM pre-
dictions with a random foreground-scribbled point as a prompt, as
the full scribbles already yield an out-of-distribution prompt, which
makes SAM fail completely. Yet, even using the corruptions pro-
posed in [8] on the convexity dataset yields challenging cases for
SAM. Projecting the results onto our implicit convex representation
yields a small but systematic improvement as shown in Table 2. Interestingly, even without corrup-
tions, using a foreground-scribbled point as a prompt in SAM cannot compete with a joint training of
a simple network with semantic features and our implicit convex representation.

5 Conclusions

In this paper, we propose to use implicit representations for image segmentation as they allow for an
easier inclusion of geometric constraints such as convexity of the segmented region. We demonstrate
the effectiveness of this approach in two different training scenarios, resulting in better segmentation
than classical explicit segmentation methods. We consider the general framework to be highly
promising with a great potential for further extensions from convexity to connectivity constraints.
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