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Abstract

Neural networks tend to overfit the training distribution and perform poorly on out-of-
distribution data. A conceptually simple solution lies in adversarial training, which intro-
duces worst-case perturbations into the training data and thus improves model generalization
to some extent. However, it is only one ingredient towards generally more robust models and
requires knowledge about the potential attacks or inference time data corruptions during
model training. This paper focuses on the native robustness of models that can learn robust
behavior directly from conventional training data without out-of-distribution examples. To
this end, we study the frequencies in learned convolution filters. Clean-trained models often
prioritize high-frequency information, whereas adversarial training enforces models to shift
the focus to low-frequency details during training. By mimicking this behavior through fre-
quency regularization in learned convolution weights, we achieve improved native robustness
to adversarial attacks, common corruptions, and other out-of-distribution tests. Addition-
ally, this method leads to more favorable shifts in decision-making towards low-frequency
information, such as shapes, which inherently aligns more closely with human vision.

1 Introduction

Modern convolutional neural networks (CNNs) (He et al., 2016; Liu et al., 2022; Tan & Le, 2019) show
a steady increase in performance in terms of test accuracy on a wide range of learning tasks. Yet, most
models suffer from a low generalization ability, even when faced with small domain shifts. To improve the
low generalization ability, previous work focused on aspects such as aliasing (Zhang, 2019; Zou et al., 2020;
Li et al., 2020; Grabinski et al., 2022b;a), the padding operations (Gavrikov & Keuper, 2023), the training
schedule (Lopes et al., 2019; Saikia et al., 2021), or analyzing the image feature spectrum (Geirhos et al., 2019;
Wang et al., 2020). In addition, introducing perturbed images into the training data, known as adversarial
training (AT) (Madry et al., 2018), can alleviate low generalization to some extent. However, AT is not
the cure-all to improve network robustness and tends to overfit on training attacks (Tramèr & Boneh, 2019;
Rice et al., 2020; Yu et al., 2022). Intuitively, the adversarial attack used during training becomes an in-
domain sample of the model, while its robustness to new out-of-domain samples (e.g. a different adversarial
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Figure 1: Our proposed regularization decreases the reliance on high-frequency information of a ResNet-20
trained on CIFAR-10 (b-d) as visible in mean DCT-II coefficients magnitudes (= frequency distribution;
computation shown in (a)).

attack) is hard to anticipate. Saikia et al. (2021) show that AT can even increase the mean corruption error
on ImageNet-C (Hendrycks & Dietterich, 2019). Therefore, we argue that AT can only be one ingredient
towards building more robust models, while the main focus should rather be to encourage behavior that we
call native robustness. We expect from natively robust models that they can learn robust behavior directly
from the conventional training data. Thereby, robust behavior includes, on the one hand, a certain degree
of adversarial robustness without being confronted with adversarial attacks during training, i.e. the model
should not easily be fooled using attacks with very small perturbation budgets. Similarly, they should be
robust against other perturbations such as common corruptions (Hendrycks & Dietterich, 2019) as long as
corruption severities are low. On the other hand, robust behavior implies a better alignment with human
perception, i.e. models should decide for a specific class more by the shape of an object than by its texture
(Geirhos et al., 2019). Note that the expected degree of specific robustness can not be compared to the
one obtained by techniques that specifically optimize for them, such as adversarial training. For instance,
adversarial samples remain out-of-domain samples for such natively robust models. Yet, additionally training
these natively robust models with AT should be complementary and have a further beneficial effect.

In this paper, we propose a new perspective on improving native robustness by investigating the frequencies
in the learned network filters directly. Specifically, we propose to project CNN convolution filter weights
into the frequency domain by applying a discrete cosine transformation (DCT-II). Although the resulting
formulation is in principle equivalent to the commonly adopted CNN formulation, it provides direct access
to the learned filter frequencies. Thereby, we aim to investigate the following research questions: (i) Which
filter frequencies are predominantly learned in the layers of CNNs? (ii) Can we regularize the frequencies
during the training process such as to increase the native robustness of the learned model?

We investigate these questions in the context of image classification - yet our approach bears the potential
to be expanded to other tasks such as object detection and segmentation. First, we analyze the learned filter
frequencies of modern CNNs and observe that they tend to have a low-frequency bias in deep layers, while fil-
ters of earlier layers of the network are either uniformly distributed in frequency space or even biased towards
higher frequencies. In the latter cases, the convolution thus relies on high-frequency information. Contrary,
adversarial training appears to shift the focus to low filter frequencies in early layers. To leverage this be-
havior, we introduce a regularization scheme, which increases the bias to low-frequencies in these early layers
(see Figure 1 for a visualization). We evaluate the proposed spectral decomposition and regularization on
different CNNs under distribution shifts in test data. Results on CIFAR-10, CIFAR-100 (Krizhevsky, 2009),
SVHN (Netzer et al., 2011), MNIST (LeCun et al., 2010), Tiny-ImageNet (Le & Yang, 2015) and ImageNet
(Deng et al., 2009) show increased native robustness1. In summary, we make the following contributions:

1Code: https://github.com/jovitalukasik/filter_freq_reg
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• We observe that adversarial training results in a shift towards a low-frequency bias in the filter
weights of early layers during the early phases of training (Section 3).

• Based on this observation, we propose a high-frequency penalization term in the weight space of
convolution layers (Section 4) to mitigate the reliance on high-frequency information.

• Networks trained with this regularization become gradually, yet consistently, more robust against
a wide array of out-of-distribution generalization tasks without reliance on AT or additional data
- i.e. networks increase their native robustness (Section 5). Additional AT is complementary and
further improves the measurable adversarial robustness to a variety of attacks.

2 Related work

Robustness. While modern neural networks yield accuracies close to or even beyond human performance,
they seem to struggle with generalization to out-of-distribution data. In the context of adversarial attacks,
it has been shown that minor, for the human eye barely perceivable perturbations can cause models to make
wrong predictions with high confidence. Formally, let f be a model parameterized by θ, x an input sample
with the corresponding class label y, and L the loss function. Then adversarial attacks will attempt to
maximize the loss L by finding an additive perturbation to an input sample x′. To constrain their intensity,
perturbations are sought in an Bϵ(x) ball centered at x with a radius of ϵ.

max
x′∈Bϵ(x)

L (f (x′; θ) , y) , Bϵ(x) = {x′ : ∥x − x′∥p ≤ ϵ}. (1)

with ∥ · ∥p depicting the Lp-norm. The most successful adversarial attacks are white-box attacks, where
the attacker has full access to the attacked model. Often, these methods rely on gradient information,
such as projected gradient descent (PGD) (Kurakin et al., 2017) where the attacker follows the gradient
that maximizes the loss and then projects the perturbations back to Bϵ(x). Since PGD is computationally
expensive, a faster, yet less successful attack that approximates the perturbations by the gradient sign and
only performs one step has been proposed: fast gradient sign method (FGSM) (Goodfellow et al., 2015).

Regarding defenses in general, the most successful approach to tackle out-of-distribution shifts is adversarial
training (Madry et al., 2018) where worst-case perturbations are reintroduced to the training data. Often,
these methods are accompanied by additional external data (Carmon et al., 2022). Evaluating the defenses
on a single attack can be misleading, due to the possibility of attack overfitting (Rice et al., 2020). Towards
more reliable benchmarks, AutoAttack (AA) (Croce & Hein, 2020a) proposes an ensemble of various white-
and black-box attacks such as APGD (Croce & Hein, 2020a), FAB (Croce & Hein, 2020b), and Square (An-
driushchenko et al., 2020) and establishes the public RobustBench leaderboard. Benchmarks are constrained
to p = 2, ϵ = 0.5 on CIFAR-10, p = ∞, ϵ = 8/255 on CIFAR-10/100, and p = ∞, ϵ = 4/255 on ImageNet,
respectively. However, these large thresholds are disputed as they generate easily detectable perturbations
(Lorenz et al., 2022).

Unfortunately, the possibility of adversarial attacks is only a symptom of larger generalization issues. For
example, neural networks fail to generalize under various corruptions such as weather conditions, changes in
lighting, noise, and blurring (Dodge & Karam, 2017; Hendrycks & Dietterich, 2019). For fast and comparable
benchmarks, common corruption datasets CIFAR-10-C, CIFAR-100-C, and ImageNet-C have been proposed
(Hendrycks & Dietterich, 2019), which include 15 (+4 extra) types of corruption at increasing severity level
(from 1 to 5).

Additionally, Geirhos et al. (2019) observed that CNNs are biased towards detecting textures of an image
instead of the shape (cue-conflict), which is in contrast to human vision behavior that focuses on shape
information, i.e. shape bias. To overcome this texture bias, they train on a stylized version of ImageNet to
increase the shape bias of CNNs. For fast evaluation of out-of-distribution (OOD) generalization Geirhos
et al. (2021) proposed a benchmark including 17 OOD datasets, from which 12 contain image perturbations
and the other 5 are single manipulations of ImageNet (Deng et al., 2009): cue-conflicted texture vs. shape
data, sketches (Wang et al., 2019), stylized images, edges, and silhouettes. They evaluate and compare more
than 50 different networks to human performance to determine the gap between human and machine vision.
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Frequencies and robustness. Recent work demonstrated the importance of learned frequencies for net-
work robustness. Wang et al. (2020) demonstrated that CNNs initially rely on low-frequency information
for prediction, but shift towards high-frequency information as training progresses. On the other hand, AT
models predominantly classify based on low-frequency information. As texture information typically resides
in higher frequency bands, this is a suitable explanation for the observations by Geirhos et al. (2019). As
such, there is also a correlation between AT and a reduced texture bias (Geirhos et al., 2021; Gavrikov
et al., 2023). Duan et al. (2021) exploit these findings by proposing an adversarial attack that drops DCT
coefficients corresponding to high frequencies from inputs to fool neural networks. Yet despite the common
assumption, adversarial attacks are not always targeting high-frequencies and the behavior depends on the
dataset (Maiya et al., 2021; Abello et al., 2021; Bernhard et al., 2021; Ortiz-Jiménez et al., 2020).

Multiple works explore the desensitization of neural networks to HF from various angles to avoid AT: Lopes
et al. (2019) randomly add noise to image patches, Saikia et al. (2021) regularize the feature maps pro-
duced by convolution layers in a dedicated two-stream architecture, and Grabinski et al. (2022a) introduce a
downsampling approach within the frequency domain that removes aliasing-related high-frequency informa-
tion. Huang et al. (2023) propose a frequency regularization in the context of adversarial training, which -
contrary to the previous works - amplifies high frequencies, resulting in higher robust accuracy, at an impair-
ment of clean accuracy. In contrast, we regularize high-frequency information directly in convolution filters
to improve the native robustness and OOD generalization of the model, which is not limited to effects on
adversarial training, but indeed can also improve the robust accuracy in the context of adversarial training,
and eventually mitigate robust overfitting.

Feature map vs. weight regularization. We have previously outlined the role of HF in generalization
within the existing literature. In this paragraph, we aim to emphasize the distinction between our proposed
weight regularization method and prior research.
Regularization vs. bandpass filtering: Previous methods often lowpass-filter signals which leads to a hard
smoothing of the resulting feature maps and the active deletion of information that may be necessary to
predictions - especially in fine-grained classification problems. Instead, we only regularize the attenuation
and thus effectively force the network to reweigh information without having to discard information.
Data-independent and explicit attenuation: By regularizing weights, we induce an explicit causal bias in the
operator. Alternatively, an attenuation of feature maps would be implicit and would highly depend on the
frequency distribution of the inputs. Additionally, attenuating the filters results in a local suppression (i.e.,
in the patch) of HF, while a (global) feature-map regularization would affect the entire scene.

Basis decomposition. The decomposition of convolution filters is typically studied in the context of
compression, see Yaroslavsky (2014) for an overview. The majority of decomposition approaches convert
the convolution layer weights to the frequency domain e.g. by utilizing the DCT-II-basis (Chen, 2004; Chen
et al., 2016; Lo & Hang, 2019; Cheinski & Wawrzynski, 2020; Chen et al., 2022; Ulicny et al., 2022) to prune
and compress the number of frequency components. But works also exist that transform the input images
directly for better performance and generalization (Xu et al., 2020; Hossain et al., 2019). In detail, the discrete
cosine transform (DCT) (Ahmed et al., 1974) maps an input signal into a frequency domain represented
by cosine basis functions. In particular, the common DCT-II variant is used in JPEG compression, where
it successfully compresses natural images (Wallace, 1992). These works mainly explore the fact, that data
of multiple domains is not uniformly distributed in the frequency domain and is typically biased towards
low frequencies (Singh & Theunissen, 2004; Ruderman, 1994). Gavrikov & Keuper (2022a;b) showed that
the basis of convolution filter kernels obtained via SVD is often highly similar and independent of the
architecture, learned task, or dataset. The identified bases have a striking similarity to the DCT-II basis.

Our realization of the DCT-II basis is similar to Ulicny et al. (2022) and other previous work, however,
instead of compression, we explore an orthogonal direction and study the role of individual frequencies in
training and apply regularization in the frequency space to improve generalization. DCT merely serves as a
tool in our study.
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3 Frequency analysis

In this initial analysis, we transform learned convolution filters to the frequency domain. We implement this
by changing the basis of convolution weights to DCT-II, revealing the coefficients and therefore frequency
information. Formally we define this as follows. Let V denote the k × k-DCT-II basis. Then every basis
vector Vi,j with horizontal frequency j and vertical frequency i is defined as:

Vi,j,m,n = cos
[

πi

k

(
m + 1

2

)]
cos

[
πj

k

(
n + 1

2

)]
. (2)

Every basis vector is additionally normalized to its L1 length: Vi,j = Vi,j/∥Vi,j∥1. We show the DCT-II
basis vectors for different kernel sizes k in Figure 2. In principle, DCT-II could be replaced by any other
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Figure 2: The full DCT-II basis for different resolutions.

frequency base such as a discrete Fourier or sine transform. Following the basis change, we visualize the
average magnitude of coefficients in every convolution layer by heat maps (as shown in Figure 1). Having
the frequency information at hand, we can directly analyze its distribution in common CNNs.

3.1 Analyzing learned convolution weights

We start by analyzing two modern networks trained on ImageNet without any robustness optimization
techniques: EfficientNet-B0 (Tan & Le, 2019) and ConvNeXt-Tiny (Liu et al., 2022) (Figure 3). Our
visualizations show that these CNNs do not always learn a uniform frequency spectrum utilization throughout
the network. Earlier layers show a more uniform distribution of magnitude or are biased towards higher
frequencies. However, deeper convolution layers instead reveal a salient bias towards low frequencies. Some
layers even appear to discard a majority of high-frequency information.

In addition, we are interested in how adversarial training affects the frequency utilization in convolution
filters. As shown from various angles (Wang et al., 2020; Geirhos et al., 2019; Saikia et al., 2021) robust
models shift their bias to low-frequencies, as this reduces the possibility of overfitting on high-frequencies
and therefore provides better generalization abilities. Thus, we expect that these results transfer to the
frequency utilization in weight space to some extent. Indeed, Wang et al. (2020) stated that the very first

0

max Layers

(a) EfficientNet-B0

(b) ConvNeXt-Tiny

Figure 3: Frequency distribution of each layer for trained (a) EfficientNet-B0 (containing 3 × 3 and 5 × 5
kernels) and (b) ConvNeXt-Tiny (containing 2 × 2 [downsampling layers], 5 × 5 [stem] and 7 × 7 kernels).
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Figure 4: Evolution of the frequency distributions in the first three convolution layers of an EfficientNet-B0
in comparison between (a) regular and (b) adversarial training with CIFAR-10. Evolution plots for all layers
and other architectures can be found in Appendix L.

convolution layer of AT CNNs learns smoother filters which equals to filters that are less reliant on high-
frequency information than the equivalents in normally trained models. However, their frequency analysis
was limited to the first initial layer, while we aim to provide a holistic analysis over the entire network. This
is also backed by our previous observations showing that frequency utilization varies by depth. Further,
their results do not appear to be representative of modern models that are trained under L∞-norm. Such
models predominantly learn thresholding filters (Madry et al., 2018) independent of architecture and dataset
(Gavrikov & Keuper, 2022b) that do not resemble “common” first layers as shown by Yosinski et al. (2014).
As such, they are hardly smooth.

Exemplarily, we proceed by comparing an adversarially trained EfficientNet-B0 with its regularly-trained
counterpart (more comparisons are included in Appendix L). We observe that adversarial training leads to
a characteristically different distribution of learned frequencies during training (Figure 4). Especially in the
first layers, the network learns predominantly from low frequencies, which enables the network to preserve
the global image content, rather than overfitting on high-frequency details such as texture. Interestingly, the
adversarially-trained model learns this behavior in the early training stages, and faster than under normal
training conditions (Rahaman et al., 2019). Deeper layers on the other hand show no salient differences.

Based on these findings, we propose a transformation approach of convolution weights into the frequency
domain to interact with frequency information. Secondly, based on the latter finding we propose a high-
frequency regularization, to further enforce the low-frequency bias in the first network layers and thus increase
the native robustness.

4 Modifications to the convolution layers

Let us first formalize the computation flow in a conventional 2D convolution layer fconv2d(x; W), fconv2d
transforming an input signal x with din input-channels into a signal with dout output-channels using a
convolution kernel with a size of k0 × k1. Further, let W ∈ Rdout×din×k0×k1 denote the learned weights (i.e.
the set of all kernels Wi,j in the respective layer, without bias). Without loss of generality, we assume
k0 = k1 = k in this paper. The output of fconv2d(x; W) is then defined as:

ys =
din−1∑
d=0

Ws,d ∗ xd, for s ∈ {0, . . . , dout − 1}. (3)

In the following, we propose a simple representation in the frequency space by replacing the convolution
weight W with a combination of learned coefficients on the DCT-II basis. In this work, we limit ourselves to
kernels with k ≥ 3. We realize this by two common implementations seen in related literature (e.g. Ulicny
et al. (2022)). Schematic visualizations of both approaches can be found in Appendix E.

Weight decomposition (WD). Our first approach decomposes the weight in a convolution layer into
learnable coefficients C ∈ Rdout×din×k×k and the basis V defined in Equation 2: W = C · V. Then, the
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ficients in an individual 3 × 3 filter kernel.
Colors match Equation 7.

R(C) = ∥C[s],[d],I,J∥2︸ ︷︷ ︸ ·I+

ρdiff · max(∥C[s],[d],L,M ∥2 −
︷ ︸︸ ︷
∥C[s],[d],0,0∥2︸ ︷︷ ︸, 0),

for I, J = {⌈k/2⌉, . . . , k}, L, M = {0, 1},

[s] = {0, . . . , dout − 1}, [d] = {0, . . . , din − 1}.

(7)

convolution can be rewritten as:

ys =
∑

d

(Cs,d · V) ∗ xd =
∑

d,m,n

(Cs,d,m,n · Vm,n) ∗ xd. (4)

This increases the parameters to be kept in memory by a factor of 2 and adds one additional tensor multi-
plication per layer. However, these additional parameters are constant and do not need to be learned.

Signal decomposition (SD). Alternatively, our second approach does not replace the convolution weight
W directly but performs a depthwise convolution of all combinations of inputs and the fixed basis vectors
which is then aggregated by a learnable pointwise (1 × 1) convolution.

ys =
∑

d,m,n

Cs,d,m,n · (Vm,n ∗ xd). (5)

This increases the parameter number by a factor of dink2 to be kept in memory. Again, the number of
learnable parameters is not increased. Also, note that the associativity property of convolution reveals the
equivalence of both formulations in the forward pass:

ys =
∑

d,m,n

Cs,d,m,n · (Vm,n ∗ xd) =
∑

d,m,n

(Cs,d,m,n · Vm,n) ∗ xd. (6)

However, due to different learning dynamics, the modifications may converge to different solutions. In both
approaches, the initial coefficient weights are sampled from a uniform distribution with an adjusted scale as
per He et al. (2015). For the weight decomposition approach, we use dink2 as fan information. The basis
vectors are initialized as defined in Section 3 without any further adjustments.

4.1 Frequency coefficient regularization

As we have seen in Section 3.1 neural networks are biased towards low-frequency information, while early
layers also introduce more magnitude on high frequencies. However, adversarial training increases the low-
frequency bias already in the early training stages resulting in an overall low-frequency dominance after
convergence in the first layers. To make use of this finding and increase the robustness of CNNs directly
without adversarial training, we propose to regularize the DCT-II coefficients and explore the frequency shift
and performance.

The proposed regularization (Equation 7 and Figure 5) regularizes the highest frequencies and additionally
forces the first coefficient to have a higher magnitude than the subsequent frequency. Such behavior, that
the weight coefficients decay with their corresponding frequencies, can also be observed in the adversarially
robust weights in Figure 5. Interestingly, this is also in line with the theoretically expected behavior of
frequency spectra that represent shapes rather than textures. We provide more theoretic background on this
aspect in Appendix P. The occurrence of this latter constraint is determined by the binary hyperparameter
ρdiff , with ρdiff = 1 throughout the paper, if not stated otherwise. The multiplicative term k

2 increases
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penalization of higher frequencies. Let coefs(θ, h) denote a function that returns the set of convolution
coefficient weights of the learnable parameters θ in the first 1/h section of the network depth. To enforce
the dominance of low frequencies in early layers, we set h = 3 as our default value. We train the network
with the following modifications to the objective:

min
θ

L (f (x; θ) , y) + λ
∑

C∈coefs(θ,h)

R(C). (8)

Where x, y ∼ D denotes the training dataset and L is the original objective. An exemplary visualization of
the learned coefficients under regularization is given in Figure 1 for h ∈ {1, 3}.

Table 1: Performance evaluation of various networks (ResNet-20/9 and EfficientNet-B0) on multiple
datasets (CIFAR-10/100, SVHN, TinyImageNet, MNIST) before and after our applied regularization. We
report clean accuracy on the respective test sets as well as adversarial robustness against FGSM, PGD-40,
and AutoAttack for L∞, ϵ = 1/255 (ϵ = 16/255 for MNIST). We report averages over 5 runs.

Variant Clean (↑) Adversarial Acc. (↑)
Val Acc. FGSM PGD-40 AA

C
IF

A
R

-1
0

R
es

N
et

-2
0 CNN 91.29 50.49 30.92 10.78

WD 91.04 48.40 30.37 10.72
SD 91.36 50.83 32.98 11.97
WD + Reg. 89.86 50.85 41.81 26.79
SD + Reg. 90.54 53.12 44.42 29.14

R
es

N
et

-9

CNN 94.29 59.58 53.04 37.49
WD 93.73 55.51 49.84 35.23
SD 93.97 55.73 50.29 36.0
WD + Reg. 93.18 59.25 56.08 43.62
SD + Reg. 93.09 59.87 56.89 44.80

E
ff.

N
et

-B
0 CNN 90.38 53.55 54.05 45.51

WD 90.51 49.87 49.97 40.76
SD 90.44 51.04 51.77 43.39
WD + Reg. 88.97 57.91 59.60 53.30
SD + Reg. 89.18 57.83 59.68 53.50

Variant Clean (↑) Adversarial Acc. (↑)
Val Acc. FGSM PGD-40 AA

C
IF

A
R

-1
00

R
es

N
et

-2
0 CNN 60.41 14.36 5.45 1.17

WD 58.90 12.84 4.68 1.01
SD 60.34 13.87 5.18 1.13
WD + Reg. 56.65 16.85 12.73 5.59
SD + Reg. 58.19 17.20 12.24 5.11

SV
H

N

R
es

N
et

-2
0 CNN 96.31 83.84 79.94 69.81

WD 96.35 83.52 80.01 71.25
SD 96.34 84.07 80.64 71.74
WD + Reg. 96.28 84.11 81.21 73.27
SD + Reg. 96.34 84.17 81.23 73.03

T
in

yI
m

N
et

R
es

N
et

-9

CNN 53.20 17.79 16.76 9.57
WD 52.08 17.11 16.19 9.40
SD 52.12 16.85 15.88 9.15
WD + Reg. 51.25 18.10 17.34 10.23
SD + Reg. 51.22 18.26 17.40 10.39

M
N

IS
T

R
es

N
et

-2
0 CNN 99.68 89.74 45.37 8.92

WD 99.69 90.45 47.06 10.22
SD 99.65 91.23 54.08 16.80
WD + Reg. 99.69 90.70 55.84 25.92
SD + Reg. 99.69 88.98 50.02 21.71

5 Experiments

In the following, we compare different architectures, with regular convolutions, and both decomposition
variants (WD/SD) at varying frequency regularization (+ Reg.) (Equation 7). For each combination, we
report results on clean accuracy, as well as robustness to various aspects.

Models and datasets. We evaluate low-resolution datasets such as CIFAR-10/100 (Krizhevsky, 2009),
MNIST (LeCun et al., 2010), SVHN (Netzer et al., 2011), and Tiny-ImageNet (Le & Yang, 2015) on ResNet-
20 (as introduced for CIFAR in He et al. (2016)), ResNet-9 - a regular and larger ResNet with optimization
for CIFAR and a reduced number of layers (see Appendix D for architecture details), and an EfficientNet-B0
(Tan & Le, 2019) where we remove striding from the stem convolution. For ImageNet (Deng et al., 2009),
we evaluate EfficientNet-B0 (Tan & Le, 2019) and ConvNeXt-Tiny (Liu et al., 2022). We test h ∈ {1, 3} and
λ ∈ {0.01, 0.05, 0.1} and report results for the best performance over the mean of 5 runs except for ImageNet
(1 run). Details regarding the training can be found in Appendix B.

Note that we have selected models with different kernel sizes - e.g. after the stem, ResNets use k = 3,
EfficientNets-B0 mix k = 3 and k = 5, and ConvNeXts k = 7 (and k = 2 downsampling layers). The
variance in kernel size allows us to demonstrate the transferability of our proposed regularization beyond
the common k = 3 kernels.
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Table 2: Comparison against other robustness techniques (Grabinski et al., 2022a; Lopes et al., 2019)
of ResNet-20, ResNet-9, and EfficientNet-B0 on CIFAR-10. We report the mean clean validation accuracy
and robust accuracy against adversarial attacks: FGSM, PGD-40, and AutoAttack for L∞, ϵ = 1/255, and
the mean corruption accuracy on CIFAR-10-C. We report averages over 5 runs.

Variant Clean (↑) Adversarial Acc. (↑) CC (↑)
Val Acc. FGSM PGD-40 AA Acc.

ResNet-20

CNN 91.29 50.49 30.92 10.78 67.96
FLC (Grabinski et al., 2022a) 91.52 52.49 30.25 8.48 68.75
PaGA (Lopes et al., 2019) 91.29 50.36 31.50 11.38 67.73
Blur Pooling (Zhang, 2019) 89.89 41.61 29.43 15.58 66.73
Adaptive Blur Pooling (Zou et al., 2020) 89.48 41.94 32.09 18.22 67.17
Wavelet Pooling (Li et al., 2020) 89.89 41.17 27.88 13.78 67.40

WD 91.04 48.40 30.37 10.72 66.92
SD 91.36 50.83 32.98 11.97 67.48
WD + Reg. 89.86 50.85 41.81 26.79 74.04
SD + Reg. 90.54 53.12 44.42 29.14 74.14

ResNet-9

CNN 94.29 59.58 53.04 37.49 73.38
FLC (Grabinski et al., 2022a) 94.24 59.64 53.47 38.65 73.81
PaGA (Lopes et al., 2019) 94.33 59.12 52.62 37.50 73.72

WD 93.73 55.51 49.84 35.23 72.87
SD 93.97 55.73 50.29 36.00 73.48
WD + Reg. 93.18 59.25 56.08 43.62 76.41
SD + Reg. 93.09 59.87 56.89 44.80 77.72

EfficientNet-B0

CNN 90.38 53.55 54.05 45.51 68.09
FLC (Grabinski et al., 2022a) 89.68 51.92 53.09 45.37 69.72
PaGA (Lopes et al., 2019) 90.72 54.18 54.97 46.64 69.31

WD 90.51 49.87 49.97 40.76 67.10
SD 90.44 51.04 51.77 43.39 66.65
WD + Reg. 88.97 57.91 59.60 53.30 72.14
SD + Reg. 89.18 57.83 59.68 53.50 71.87

Table 3: A benchmark of a ResNet-20 (CIFAR-10) with various architecturial frequency attenuation tech-
niques evaluated with a batch size of 512 on an NVIDIA A100 GPU.

Variant Total Learnable Throughput Batch Update
Params (↓) Params (↓) (k img/sec) (↑) (ms) (↓)

CNN 272.5k 272.5k 128.0 24.7

FLC (Grabinski et al., 2022a) 272.5k 272.5k 82.7 30.2
Blur Pooling (Zhang, 2019) 272.5k 272.5k 113.0 26.5
Adaptive Blur Pooling (Zou et al., 2020) 272.7k 272.7k 34.4 44.0
Wavelet Pooling (Li et al., 2020) 272.5k 272.5k 103.0 26.5

WD (+ Reg.) 274.0k 272.5k 124.3 24.9
SD (+ Reg.) 323.3k 272.5k 28.0 51.9

Robustness evaluation. To understand the effect on robustness and generalization of our proposed de-
composition and regularization approaches, we run the standard AutoAttack test suite (AA) (Croce & Hein,
2020a) and additional FGSM-, and PGD-attacks at ϵ = 1/255 (ϵ = 16/255 for MNIST) under the L∞-norm.
We use Foolbox (Rauber et al., 2017) to run both FGSM and PGD at the default setting (e.g. 40 steps
for PGD). We do not include AA results for ImageNet, as these models barely withstand any attacks and
measure robust accuracies of 0% even at this small ϵ without adversarial training. Further, we evaluate the
robustness of common corruptions of CIFAR-10 and ImageNet models on the respective corrupted datasets
(Hendrycks & Dietterich, 2019). In addition, we are interested in the behavior of the methods towards
texture bias (Geirhos et al., 2019) and OOD generalization tests (Geirhos et al., 2021). Hence, we evaluate
our ImageNet (Deng et al., 2009) models on 5 of these OOD datasets: texture-shape cue-conflict, ImageNet-
Sketch, Stylized-ImageNet, and edge-/silhouette-transformations of ImageNet using the implementation of
Geirhos et al. (2021).

5.1 Low-resolution datasets

CIFAR-10. As to be expected, switching from regular to either decomposition variant has an insignificant
impact on the clean accuracy and a small effect on robust accuracy (at all adversarial attacks) (Table 1).
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−2σ

+2σ Stem Block0.1 Block0.2 Block1.1 Block1.2 Block2.1 Block2.2

Block3.1 Block3.2 Block4.1 Block4.2 Block5.1 Block5.2 Block6.1

Block6.2 Block7.1 Block7.2 Block8.1 Block8.2

Figure 6: Frequency heat maps of feature maps: Regularized layers (top row) of a ResNet-20 show a shift
towards LF after regularization, compared to non-regularized layers in rows two and three.

However, applying the regularization clearly improves robustness towards all attacks, while slightly decreasing
clean accuracy. We can also observe that SD slightly outperforms WD on almost all tested architectures.
Hence, it may be tempting to only proceed with SD. However, the additionally created channels account
for more parameters, a large memory overhead, and slower inference and training performance. E.g. on
ResNet-20 we see a 4.4x slower forward pass and 18% more total parameters, while WD has a minimal
overhead, both, in parameters and throughput (Table 3).
Regarding robustness, we see the largest gains on models that initially performed worst (+18.36% on ResNet-
20 on CIFAR-10). Out of all our tested models, EfficientNet-B0 is the most robust, both, before and after
regularization. Noticeably, even the worst hyperparameter combination for ResNet-20 (WD, λ = 0.01, h =
1, ρdiff = 0) still achieves a 14.22% higher AA accuracy than the baseline. A complete overview of tested
hyperparameters is given in Appendix F.

Common corruptions of CIFAR-10. For common corruptions (CC) (the last column in Table 2 corre-
sponds to the CIFAR-10 results in Table 1), we analyze the mean accuracy over all corruptions and severities,
as well as individual results for corruptions at the highest severity level. A complete overview is given in
Appendix C. Similar to the results on adversarial robustness we observe that on average both regularized
variants outperform the baseline. Additionally, regularized models become significantly more robust against
corruptions having predominantly high frequency (HF) perturbations (see Yin et al. (2019) for spectrums)
such as pixelate and defocus/glass/gaussian blur. Perhaps less surprisingly, regularized models become less
sensitive to increased JPEG compression, as they rely on (quantized) DCT-II coefficients. For corruptions
with larger variance in the frequency spectrum, regularized performance remains largely unchanged. We
see a slight degradation of performance in low frequency (LF) corruptions such as brightness, saturation,
contrast, and impulse noise. However, the accuracy drop is relatively low considering the evaluation at the
highest severity level.

Other datasets. Although several works reported a shift in the frequency band of adversarial attacks
depending on the dataset (Maiya et al., 2021; Abello et al., 2021; Bernhard et al., 2021; Ortiz-Jiménez et al.,
2020), we consequently see an improvement due to our HF regularization on multiple datasets (Table 1).
Arguably, we see smaller improvements for SVHN/Tiny-ImageNet - which are also the datasets that show
more LF perturbations than HF. Contrary to our CIFAR-10 results, WD outperforms SD on all datasets
except SVHN.

Spectrum of feature maps. Further, we aim to understand the implications of the regularization on the
computed feature maps. Exemplarily, we compare an SD + Reg. ResNet-20 against a CNN baseline and
analyze the magnitude shift in the DCT-II coefficients of the feature maps (Figure 6) of a clean validation
batch. Our regularization causes a clear shift towards lower frequencies in regularized layers. Interestingly,
in the stem layer, we also see large shifts from entirely vertical or horizontal frequencies to more balanced
ones. Contrary, non-regularized (deeper) layers appear to slightly shift towards higher frequencies.
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Table 4: Results on ImageNet for EfficientNet-B0 and ConvNeXt-Tiny on clean data, FGSM, PGD-40
(L∞, ϵ = 1/255), ImageNet-C and out-of-distribution generalization test. All regularization hyperparameters
are λ = 0.05 and h = 3.

Variant Clean Val. Acc. (↑) Adversarial Attacks Corruption Cue-Conflict Sketch (↑) Stylized (↑) Edge (↑) Silhouette (↑)
Acc. (↑) Error (↓) (↑)

Top 1 Top 5 FGSM PGD-40 ImageNet-C Top 1 Top 5 Top 1 Top 5 Top 1 Top 1

EfficientNet-B0

CNN 75.44 92.86 16.89 2.32 54.54 23.52 65.25 84.62 52.25 79.00 35.00 51.25
WD 75.80 92.94 14.86 2.03 53.99 22.58 66.12 86.25 48.25 78.88 40.62 55.00
SD 75.62 92.82 15.05 1.41 52.85 23.67 66.38 84.50 52.50 78.50 34.38 58.13
WD + Reg. 75.44 92.15 18.45 4.43 52.03 29.38 66.38 86.88 47.62 79.75 36.25 58.13
SD + Reg. 74.42 92.19 18.70 5.33 51.12 25.78 64.75 87.88 49.12 77.12 32.50 58.75

ConvNeXt-Tiny
CNN 81.32 95.53 35.53 3.93 41.92 24.84 71.50 88.00 56.00 78.38 48.12 62.50
WD 81.11 95.55 35.30 2.97 42.98 25.31 73.12 89.62 52.00 77.62 47.50 58.75
WD + Reg. 79.25 94.38 35.69 4.22 44.31 32.27 73.75 88.12 58.00 82.38 38.75 65.62

Table 5: FGSM-Adversarial Training on CIFAR-10 with L∞, ϵ = 8/255. We report the mean over
5 runs for the FGSM train and validation accuracy of the epoch of the best PGD-40 validation accuracy
as well as the AutoAttack accuracy. We also report the corresponding mean accuracy on CIFAR-10-C and
report the difference to the clean-trained evaluations.

Variant Clean FGSM (↑) Adversarial Acc. (↑) Corruption Acc.
Val. Acc. (↑) Train Acc. PGD-40 AA Mean (↑) ∆ (AT-Normal) (↑)

ResNet-20
CNN 73.73 50.39 46.14 36.09 66.99 -0.97
WD + Reg. 71.69 48.46 45.38 35.64 65.48 -8.56
SD + Reg. 73.01 49.93 46.34 36.47 66.73 -7.41

ResNet-9
CNN 81.70 60.27 52.77 0.00 74.06 0.68
WD + Reg. 81.56 61.66 51.52 39.97 74.47 -1.94
SD + Reg. 82.56 63.39 51.80 40.14 75.40 -2.32

EfficientNet-B0
CNN 63.00 42.34 42.49 34.04 57.35 -10.74
WD + Reg. 68.50 45.87 45.13 36.56 62.66 -9.48
SD + Reg. 68.89 46.76 45.57 36.76 63.07 -8.8

Table 6: PGD-Adversarial Training on ImageNet of ResNet-50 with L∞, ϵ = 4/255. We report the
train and validation accuracy under PGD attacks, validation accuracy under AutoAttack, corruption error,
and cue-conflict. Results are from one run.

Variant Clean PGD (↑) Adversarial Acc. (↑) Corruption Cue-Conflict (↑)
Val Acc. (↑) Train Acc. PGD AA Error (↓)

CNN 56.85 33.88 36.04 22.33 78.65 38.83
WD 55.82 33.91 35.06 22.06 78.90 38.83
WD + Reg. 58.09 36.00 37.09 24.32 78.36 39.38

Comparison to other methods. We compare our method to FrequencyLowCut Pooling (FLC) (Grabinski
et al., 2022a), Patch Gaussian Augmentation (PaGA) (Lopes et al., 2019), and, on ResNet-20, Blur Pooling
(Zhang, 2019), Adaptive Blur Pooling (Zou et al., 2020), and Wavelet Pooling (Li et al., 2020) (Table 2)
as these methods also aim at HF-regularization. Regarding AA and CC performance, we observe that our
method consistently outperforms these other approaches in standalone comparisons with small degradation
of clean validation accuracy. Additionally, imposing our regularization on top of other methods can improve
their robustness significantly, as we show for FLC and PaGA in Appendix I. Interestingly, we often get the
highest levels of robustness in combination with another method, proving that our regularization can be
complementary to other robustness techniques. For a comparison to Wang et al. (2020), please refer to
Appendix I, where we show favorable behavior of our approach.

5.2 ImageNet

Next, we aim to explore how our regularization performs on the common ImageNet dataset (Deng et al.,
2009). In particular, more OOD tests exist for this dataset which allows us to study aspects outside adver-
sarial robustness, and robustness against common corruptions. Similar to our results on other datasets, we
see an improvement in adversarial robustness at slight (1-2%) degradation of clean performance (Table 4).
While we see an improvement in CC performance on EfficientNet, we see an equal decrease for ConvNeXt.
This may be due to the larger kernels (7 × 7) that ConvNeXt utilizes and may, thus, require other hyper-
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parameters. Importantly we see a significant improvement of the cue-conflict in both cases - which is also
reflected in the increased accuracy of silhouette (LF) and the decrease in performance of edge (HF). This
indicates that our regularization favorably shifts models toward shape bias (Geirhos et al., 2019).

5.3 Integration into adversarial training and impact on robust overfitting

So far, we investigated the effect of our proposed HF regularization on native robustness. For completeness,
we aim to explore the role of our regularization in AT. We train our models against FGSM-adversaries on
CIFAR-10 (L∞, ϵ = 8/255) (Table 5). To avoid robust overfitting, we use early stopping based on PGD-40
test performance. We observe, that our regularization has a beneficial effect on the out-of-domain attacks
(i.e. AA) and all runs show an increased performance after regularization. We furthermore observe that
our regularization appears to mitigate robust overfitting of training attacks (similarly to Grabinski et al.
(2022a)) on ResNet-9: without regularization the AT-trained CNN achieves high FGSM train accuracy and
high PGD-40 validation accuracy but fails to generalize to other attacks (AA) and stagnates at 0%. With
regularization, all runs show comparable or even better accuracy than the best non-regularized models.
However, similarly to the observations by Saikia et al. (2021), we generally see a significant decrease in CC
accuracy due to AT. Again, this demonstrates that AT is not the cure-all to improve network robustness
and there is a need for other approaches such as our proposed frequency regularization.

Additionally, we extend our experiments to AT on ImageNet (Table 6). Here we switch to single-step PGD
training with the common ϵ = 4/255 and train the ResNet-50 architecture. Again we report PGD, AA, and
CC performance but this time also the cue-conflict score. Our regularized WD architecture outperforms the
baseline in all metrics: adversarial robustness, corruption error, and cue-conflict. This demonstrates that
our method can mitigate some of the overfitting aspects of adversarial training and leads to an improved
OOD generalization performance. We do not report the (regularized) SD performance due to the lack of
tuned hyperparameters but expect similar gains when tuned properly.

6 Conclusion

We have shown a first step towards improving the native robustness of CNNs to multiple distribution
shifts such as adversarial attacks, corruptions, and shape-biased datasets, as well as the benefit of our
regularization for adversarial training. In particular, our regularization decreases the sensitivity to high-
frequency perturbations. Albeit our results do not approach SOTA levels, we emphasize that we improve
robustness on a wide range of tests, whereas SOTA methods like AT often overfit to one specific type of
robustness, such as adversarial attacks, and often even impair performance on other tests compared to normal
baselines. Additionally, our method does not rely on OOD examples but intrinsically strengthens the model.
Our approach has shown to generalize to different networks with various kernel sizes, that were trained on
different datasets, and different measures of robustness. We have also shown that our method can be used in
combination with other approaches such as PaGA (Lopes et al., 2019), FLC (Grabinski et al., 2022a), and
even AT (Madry et al., 2018) to further improve robust performance. In combination with AT, our approach
shows promise to mitigate robust overfitting (Rice et al., 2020).

Limitations. We observed that on some architectures switching to WD/SD introduces a significant drop in
accuracy (before regularization). Although the forward pass of both methods is mathematically equivalent to
baselines, the backward pass is not. E.g. weight updates on linear combinations of decomposed convolution
filters and feature maps are in different backward pass stages and under different quantization conditions due
to limited bit precision. While we observe that our regularization generally improves a multitude of robustness
aspects, the regularized counterparts may underperform CNN baselines due to the initial impairment due to
the architecture change. We aim to explore more root causes and alternatives in future work.
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Organization of the Appendix. In the following, we provide additional information and details that
accompany the main paper. We first describe the broader impact of our method. Secondly, describe the
details of training setups for the different models and datasets. We give more information on the results of
common corruptions, i.e. CIFAR-10-C. We provide an overview of the used ResNet-9 architecture. Further,
we visualize both our proposed decomposition approaches, weight decomposition and signal decomposition.
Then, we include all hyperparameter exploration results for both our methods and further motivate our
regularization approach by ablating two other regularization types. We show results of adversarial training on
ImageNet and additional comparisons to other robustness techniques and show the impact of corruptions and
adversarial samples in the frequency domain. Also, we include details on the shape bias visualization. Next,
we provide detailed plots on the coefficient distributions of clean-trained and adversarial-trained networks,
i.e. ResNet-20, ResNet-9, and EfficientNet-B0, over all layers and epochs. Then, we include a detailed version
of Table 1 in the main paper. We visualize and interpret the attributions before and after regularization, and
show the Fourier spectrum of activations (and their differences). Finally, we provide a theoretical motivation
for our proposed regularization based on the frequency spectra of shape signals.

• Broader impact in Appendix A

• Training details in Appendix B

• Details on corruption experiments in Appendix C

• ResNet-9 architecture in Appendix D

• Architecture diagram of weight/signal decomposition in Appendix E

• Hyperparameter exploration in Appendix F

• Adversarial training on ImageNet in Appendix G

• Ablation with other regularization approaches in Appendix H

• Comparison to other robustness techniques in Appendix I

• Analysis of corruptions and adversarial samples in the frequency domain in Appendix J

• Details on shape bias in Appendix K

• Evolution plots in Appendix L

• Detailed table including standard deviation in Appendix M

• Qualitative analysis of attribution maps in Appendix N

• Fourier spectrum of activations in Appendix O

• Background on the link between shape and low-frequency bias as motivation for our proposed reg-
ularization in Appendix P

A Broader Impact

• Arms race: Adversarial training, which is a common technique to enhance model robustness,
involves introducing worst-case perturbations into the training data. However, the very same tech-
niques used for adversarial training can also be employed by malicious actors to craft adversarial
attacks. As AI models become more robust to conventional adversarial attacks, adversaries may
develop more sophisticated and potent attack strategies. This arms race in adversarial techniques
could potentially lead to an escalation of cyber threats, with negative consequences for cybersecurity
and data privacy.
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• Native robustness: In theory, one could attempt to characterize all possible perturbations of train
data and perform adversarial training on those. However, characterizing all possible perturbations
is already very hard for specific problems and potentially insolvable for vision in general (e.g., all
the possible perturbations that could happen in autonomous driving). This problem hasn’t been
solved to date. Further, even if we were able to characterize all possible perturbations, we could
only train on a discrete set, which could only approximate the continuous search space and, thus,
risk overfitting. Lastly, to effectively integrate this into current training approaches, we would
have to significantly increase the training time to compensate for the new data. In contrast, by
native robustness, we seek to add a low-frequency prior to the network to steer the training to
a more generalizable representation without additional (perturbated/augmented) data. Still, we
remain compatible with these methods and even adversarial training. In Section 5.3 we even show
a reduced risk of robust overfitting after regularization.

• Ethical and bias: While the paper’s approach to prioritizing low-frequency information in decision-
making can mitigate certain types of bias, it is crucial to recognize that bias is generally a multi-
faceted issue. Shifting the focus toward low-frequency information may introduce its own set of
biases. For example, in computer vision, prioritizing shapes might lead to underrepresentation or
misrepresentation of fine-grained details, which can have implications in fields like medical diagnos-
tics and object recognition. It is essential to carefully consider and address these potential biases to
ensure fair and equitable AI systems.

B Training details

B.1 Low resolution: CIFAR-10/100, MNIST, SVHN, Tiny-Imagenet

Training setup. We train models for all low-resolution datasets with the same hyperparameters. Models
are trained for 120 epochs. For both ResNets we use an SGD optimizer (with Nesterov momentum of 0.9)
with an initial learning rate of 1e-2 that we downscale by 0.1 every 30 epochs, and a weight decay of 1e-2.
For EfficientNet-B0 we use an AdamW (Loshchilov & Hutter, 2019) optimizer with an initial learning rate
of 1e-4 that follows a cosine annealing schedule, and a weight decay of 5e-2. In all cases, we use a batch
size of 256, and categorical cross entropy as loss function with our regularization. We analyze models with
weights learned after the last gradient update.

We use the following augmentations for datasets:

• CIFAR-10/100: Training images are zero-padded by 4 px along each dimension, apply random
horizontal flips, and proceed with 32 × 32 px random crops. Test images are not modified.

• Tiny-ImageNet: Training images are obtained using randomly resized 56 × 56 px crops. Test
images are 56 × 56 px center crops.

• MNIST: Train and test images are upscaled to 32 × 32 px.

• SVHN: Train and test images are not modified.

For all datasets, samples are normalized by the channel mean and standard deviation.

B.2 ImageNet.

We train all ImageNet models with the default hyperparameters and augmentations for ConvNeXt-Tiny (Liu
et al., 2022). In particular, we train 300 epochs with an effective batch size of 4096. For EfficientNet-B0,
we reduce the batch size to 1024 due to memory constraints. Again, we evaluate model parameters learned
after the last gradient update.
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C CIFAR10-C details

In this section we provide detailed information about the the corruption results on CIFAR-10-C (Hendrycks
& Dietterich, 2019) in Table 7.

Table 7: Results (in % and averaged over 5 runs) on CIFAR-10-C for ResNet-20, ResNet-9 and EffcientNet-
B0. Reported is the mean over all severities and corruptions and all corruptions at severity level 5.

Variant Mean (↑) Noise Blur Weather
Accuracy Gaussian Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Brightness

ResNet-20

CNN 67.96 23.77 28.64 32.01 51.67 38.31 56.85 55.99 65.77 50.60 62.74 85.54
WD 66.92 20.06 24.29 27.62 54.29 37.42 57.75 57.42 64.38 49.65 62.08 85.63
SD 67.48 20.34 24.60 27.09 52.37 37.85 56.75 56.62 66.24 51.23 63.66 85.96
WD + Reg. (λ = 0.05, h = 3) 74.04 34.40 39.78 25.73 64.69 55.87 64.51 70.84 73.93 70.38 60.49 84.52
SD + Reg. (λ = 0.01, h = 3) 74.14 31.95 37.26 25.09 63.91 54.24 64.41 71.05 74.28 69.51 62.38 85.17

ResNet-9

CNN 73.38 27.16 34.61 24.92 53.98 47.89 64.43 62.64 75.08 63.46 67.74 89.48
WD 72.87 27.06 34.06 24.91 56.81 48.00 65.72 64.45 74.48 63.18 67.67 88.75
SD 73.48 28.36 35.52 27.47 57.91 48.10 65.93 65.20 75.29 64.31 68.32 88.89
WD + Reg. (λ = 0.01, h = 3) 76.41 32.71 38.94 23.21 64.86 60.63 67.13 71.71 79.42 75.45 66.25 87.85
SD + Reg. (λ = 0.01, h = 3) 77.72 36.31 42.39 24.34 67.38 64.71 68.65 73.88 80.68 78.43 65.73 87.93

EfficientNet-B0

CNN 68.09 25.02 29.04 29.41 45.76 47.17 52.34 53.14 65.74 54.80 54.81 84.06
WD 67.10 18.56 22.33 23.02 48.38 44.17 55.67 55.24 67.11 56.59 58.52 83.96
SD 66.65 17.59 21.15 21.70 47.46 44.97 55.08 55.47 65.41 53.16 57.39 84.02
WD + Reg. (λ = 0.01, h = 3) 72.14 28.06 33.15 21.30 61.23 59.35 62.72 66.69 73.79 68.62 52.39 83.10
SD + Reg. (λ = 0.01, h = 3) 71.87 26.99 32.48 20.52 59.29 61.23 59.11 65.19 73.60 69.59 50.22 83.01

Variant Digital Extra
Contrast Elastic Transform Pixelate JPEG Compression Speckle Noise Gaussian Blur Spatter Saturate

ResNet-20

CNN 26.18 64.51 38.11 67.11 34.39 35.35 69.75 82.37
WD 25.54 64.21 37.42 66.84 29.57 39.21 70.87 80.97
SD 27.46 65.62 36.73 67.54 29.95 37.10 70.41 81.69
WD + Reg. (λ = 0.05, h = 3) 23.69 71.65 81.36 76.15 43.27 58.97 74.83 78.53
SD + Reg. (λ = 0.01, h = 3) 22.10 71.43 80.04 76.23 41.07 57.60 75.24 79.91

ResNet-9

CNN 26.25 75.26 50.51 74.78 40.95 41.70 72.83 83.84
WD 25.62 75.09 49.04 73.59 40.44 45.16 73.29 82.65
SD 26.72 75.09 49.40 73.72 41.84 45.90 73.64 83.17
WD + Reg. (λ = 0.01, h = 3) 24.10 78.52 77.45 79.45 42.89 56.68 79.25 81.15
SD + Reg. (λ = 0.01, h = 3) 24.24 78.58 81.09 80.67 45.90 59.81 80.49 81.28

EfficientNet-B0

CNN 20.46 70.68 47.06 73.33 33.99 35.53 73.88 81.92
WD 19.34 69.90 47.27 72.11 28.27 37.72 72.20 80.48
SD 22.23 71.09 46.38 72.29 26.91 37.71 73.91 81.25
WD + Reg. (λ = 0.01, h = 3) 18.75 73.97 76.93 77.89 37.34 54.08 76.21 78.72
SD + Reg. (λ = 0.01, h = 3) 17.37 74.41 78.30 77.85 36.56 51.89 76.72 78.10
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D ResNet-9 architecture

In this section, we show the architectural topology of the ResNet-9 (Figure 7), used in the main paper in
Section 5.
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Figure 7: Architecture of ResNet-9. The numbers on the arrows indicate the number of channels. The initial
and final number of channels depends on input data and the number of classes.

E Decompositions

In the following, we visualize both convolution decomposition approaches as presented in Section 4. Figure 8
shows the weight decomposition approach and Figure 9 the signal decomposition approach.

fixed k2 basis

cin

learned coefficients

*
cout

Figure 8: Flow of the weight decomposition implementation. Instead of learning the weight directly, we learn
coefficients of a DCT-II basis and construct the weight via a linear combination.

*

depthwise convolution with fixed k2 basis

cin cout

pointwise convolution with learned coefficients

*

*

Figure 9: Flow of the signal decomposition implementation. Each input channel is convolved with all basis
vectors in a depthwise convolution layer. The outputs are then aggregated by a pointwise (1×1) convolution.
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F Hyperparameter exploration

In the main paper, we only included the results using h = 3 as regularization depth and λ = 0.05. For the
sake of completeness, we further provide additional results on other regularization hyperparameters. In the
following, we compare different regularization hyperparameters and evaluate them on the clean accuracy in
CIFAR-10 (Krizhevsky, 2009) and against adversarial attacks, FGSM (Goodfellow et al., 2015), PGD-40
(Kurakin et al., 2017) and AutoAttack (Croce & Hein, 2020a) as well as against corruptions in CIFAR-10-C
(Hendrycks & Dietterich, 2019). The evaluation setting is the same as in the main paper in Section 5. Table 8
presents an overview of different regularization depths for ResNet-20 (He et al., 2016), from regularizing only
the first eighth layers (the first 3 layers in this case, h = 8) to regularizing the complete network (h=1). Note,
h = 2 regularizes half of the network. As we can see, regularizing more than half of the network leads to a
decrease in clean validation accuracy, with no overall benefit to robust accuracy. Whereas regularizing only
within the first half of the network leads to the trade-off of slightly decreasing the clean accuracy compared
to the non-regularized versions, but substantially increasing the robust accuracy, which we aim for in this
paper. Also, our default setting in the main paper (h = 3) leads overall to the best robust accuracy.

In Table 9 and Table 10 we provide results on CIFAR-10 and CIFAR-100 for ResNet-20, ResNet-9 (He et al.,
2016) and EfficientNet-B0 (Tan & Le, 2019) with different regularization hyperparameters: λ as the loss
parameterization Equation 8, has the network depth regularization (first 1/h is regularized) and the binary
parameter ρdiff Equation 7. The evaluation on clean accuracy and adversarial robustness in the same as in
the main paper in Section 5.

Table 8: Ablation of ResNet-20 with different regularization depths on CIFAR-10 and evaluation
against adversarial attacks, FGSM, PGD-40, AutoAttack, and corruption CIFAR-10-C. Reported is the
mean accuracy in % and standard deviation over 5 runs.

Variant Clean Val Acc.(↑) FGSM ϵ = 1/255 (↑) PGD-40 ϵ = 1/255 (↑) AA ϵ = 1/255(↑) Mean Accuracy
CIFAR-10-C (↑)

CNN 91.29 ± 0.14 50.49 ± 0.62 30.92 ± 0.88 10.78 ± 0.33 67.96
WD 91.04 ± 0.21 48.40 ± 0.36 30.37 ± 0.98 10.72 ± 0.91 66.92
SD 91.36 ± 0.23 50.83 ± 0.49 32.98 ± 1.06 11.97 ± 0.92 67.48
WD + Reg. (λ = 0.05, h = 3) 89.86 ± 0.14 50.85 ± 0.71 41.81 ± 1.15 26.79 ± 1.52 74.04
SD + Reg. (λ = 0.05, h = 3) 90.34 ± 0.14 53.07 ± 0.29 44.04 ± 0.56 28.62 ± 0.96 73.98

WD + Reg. (λ = 0.05, h = 1) 88.84 ± 0.08 48.99 ± 0.90 40.67 ± 1.34 26.19 ± 1.52 73.96
WD + Reg. (λ = 0.05, h = 1.2) 88.78 ± 0.21 48.46 ± 0.57 39.99 ± 0.86 25.77 ± 1.30 73.56
WD + Reg. (λ = 0.05, h = 1.4) 88.78 ± 0.47 48.42 ± 1.30 40.05 ± 1.82 25.81 ± 2.20 73.51
WD + Reg. (λ = 0.05, h = 1.6) 88.77 ± 0.32 48.58 ± 0.94 40.57 ± 1.22 26.20 ± 1.09 73.94
WD + Reg. (λ = 0.05, h = 1.8) 88.93 ± 0.32 48.42 ± 0.90 39.42 ± 1.58 24.74 ± 2.55 73.39
WD + Reg. (λ = 0.05, h = 2) 88.99 ± 0.22 49.20 ± 0.34 40.54 ± 0.70 26.21 ± 1.31 74.14
WD + Reg. (λ = 0.05, h = 4) 90.13 ± 0.10 51.20 ± 0.75 41.85 ± 1.15 26.08 ± 1.30 72.05
WD + Reg. (λ = 0.05, h = 6) 90.05 ± 0.31 50.87 ± 0.52 41.17 ± 0.86 25.06 ± 0.69 71.79
WD + Reg. (λ = 0.05, h = 8) 90.42 ± 0.21 50.45 ± 0.35 39.68 ± 0.89 22.82 ± 1.43 70.88
SD + Reg. (λ = 0.05, h = 1) 89.26 ± 0.32 49.48 ± 0.35 41.23 ± 0.43 26.61 ± 0.60 74.32
SD + Reg. (λ = 0.05, h = 1.2) 89.09 ± 0.21 50.11 ± 0.74 42.10 ± 1.14 27.75 ± 1.86 74.35
SD + Reg. (λ = 0.05, h = 1.4) 89.28 ± 0.22 50.54 ± 0.53 42.19 ± 1.06 27.71 ± 1.29 74.34
SD + Reg. (λ = 0.05, h = 1.6) 89.28 ± 0.27 51.03 ± 1.56 43.18 ± 2.30 28.92 ± 2.92 74.44
SD + Reg. (λ = 0.05, h = 1.8) 89.52 ± 0.34 51.25 ± 0.95 43.04 ± 1.49 28.34 ± 2.09 74.67
SD + Reg. (λ = 0.05, h = 2) 89.32 ± 0.13 50.90 ± 0.68 42.60 ± 1.34 27.75 ± 1.68 74.74
SD + Reg. (λ = 0.05, h = 4) 90.58 ± 0.17 52.41 ± 0.69 42.16 ± 0.86 25.53 ± 1.17 71.77
SD + Reg. (λ = 0.05, h = 6) 90.61 ± 0.25 52.35 ± 0.63 42.46 ± 0.77 25.89 ± 0.63 71.88
SD + Reg. (λ = 0.05, h = 8) 90.63 ± 0.05 51.92 ± 0.98 40.82 ± 1.21 23.43 ± 1.18 71.15
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Table 9: Ablation Results (in % and averaged over 5 runs) of ResNet-20, ResNet-9, and EfficientNet-B0
trained with different convolution implementations and varying regularization on CIFAR-10, and evaluation
against adversarial attacks, FGSM, PGD-40 and AutoAttack and corruptions in CIFAR-10-C.

Variant Clean Val Acc. in (%)(↑) FGSM ϵ = 1/255 (↑) PGD-40 ϵ = 1/255 (↑) AA ϵ = 1/255(↑) Mean Accuracy
CIFAR-10-C (↑)

ResNet-20

CNN 91.29 ± 0.14 50.49 ± 0.62 30.92 ± 0.88 10.78 ± 0.33 67.96
WD 91.04 ± 0.21 48.40 ± 0.36 30.37 ± 0.98 10.72 ± 0.91 66.92
WD + Reg. (λ = 0.01, h = 1, ρdiff = 0) 89.03 ± 0.27 48.58 ± 0.70 39.77 ± 1.02 25.00 ± 1.21 73.85
WD + Reg. (λ = 0.01, h = 1) 88.91 ± 0.37 48.93 ± 0.42 40.50 ± 0.98 25.94 ± 1.37 73.97
WD + Reg. (λ = 0.01, h = 3, ρdiff = 0) 89.86 ± 0.33 50.74 ± 0.57 41.60 ± 0.99 25.96 ± 1.23 73.60
WD + Reg. (λ = 0.01, h = 3) 90.02 ± 0.22 50.38 ± 0.37 41.34 ± 0.79 25.86 ± 1.07 73.43
WD + Reg. (λ = 0.05, h = 1) 89.05 ± 0.27 49.06 ± 0.38 40.83 ± 0.70 26.24 ± 1.02 73.76
WD + Reg. (λ = 0.05, h = 3) 89.86 ± 0.14 50.85 ± 0.71 41.81 ± 1.15 26.79 ± 1.52 74.04
WD + Reg. (λ = 0.1, h = 1, ρdiff = 0) 88.91 ± 0.10 49.45 ± 0.67 41.27 ± 1.28 26.73 ± 1.59 73.66
WD + Reg. (λ = 0.1, h = 1) 88.91 ± 0.15 49.16 ± 0.95 40.95 ± 1.56 26.39 ± 1.84 73.84
WD + Reg. (λ = 0.1h = 3, ρdiff = 0) 89.95 ± 0.14 50.32 ± 0.42 41.11 ± 0.52 25.88 ± 0.59 74.04
WD + Reg. (λ = 0.1, h = 3) 89.85 ± 0.12 50.65 ± 0.39 41.57 ± 0.40 26.33 ± 0.77 73.85
SD 91.36 ± 0.23 50.83 ± 0.49 32.98 ± 1.06 11.97 ± 0.92 67.48
SD + Reg. (λ = 0.01h = 1, ρdiff = 0) 89.14 ± 0.10 49.57 ± 1.11 40.90 ± 1.85 25.95 ± 1.99 73.80
SD + Reg. (λ = 0.01, h = 1) 89.48 ± 0.48 50.59 ± 1.19 42.61 ± 1.79 28.22 ± 1.64 73.92
SD + Reg. (λ = 0.01, h = 3, ρdiff = 0) 90.51 ± 0.36 52.56 ± 0.75 43.22 ± 0.83 27.35 ± 0.70 73.46
SD + Reg. (λ = 0.01, h = 3) 90.54 ± 0.14 53.12 ± 0.34 44.42 ± 0.63 29.14 ± 1.15 74.14
SD + Reg. (λ = 0.05, h = 1) 89.20 ± 0.24 49.59 ± 0.74 41.05 ± 0.89 26.28 ± 1.04 74.24
SD + Reg. (λ = 0.05, h = 3) 90.34 ± 0.14 53.07 ± 0.29 44.04 ± 0.56 28.62 ± 0.96 73.98
SD + Reg. (λ = 0.1, h = 1, ρdiff = 0) 89.32 ± 0.23 49.38 ± 0.91 40.63 ± 1.35 25.73 ± 1.89 74.14
SD + Reg. (λ = 0.1, h = 1) 89.29 ± 0.25 50.06 ± 0.73 41.90 ± 1.03 27.58 ± 1.08 74.29
SD + Reg. (λ = 0.1, h = 3, ρdiff = 0) 90.32 ± 0.20 52.22 ± 0.48 42.64 ± 0.80 27.11 ± 0.97 73.78
SD + Reg. (λ = 0.1, h = 3) 90.28 ± 0.14 52.39 ± 1.01 43.29 ± 1.16 27.75 ± 1.29 74.07

ResNet-9

CNN 94.29 ± 0.09 59.58 ± 0.41 53.04 ± 0.59 37.49 ± 0.53 73.38
WD 93.73 ± 0.06 55.51 ± 0.41 49.84 ± 0.33 35.23 ± 0.53 72.87
SD 93.97 ± 0.15 55.73 ± 0.56 50.29 ± 0.55 36.02± 0.86 73.48
WD + Reg. (λ = 0.01, h = 3) 93.18 ± 0.19 59.25 ± 2.24 56.08 ± 3.22 43.62 ±4.53 76.41
WD + Reg. (λ = 0.05, h = 3) 92.31 ± 0.24 56.82 ± 1.16 53.03 ± 1.35 40.33 ±1.52 78.42
SD + Reg. (λ = 0.01, h = 3) 93.09 ± 0.30 59.87 ± 1.29 56.89 ± 1.79 44.81±2.29 77.72
SD+ Reg. (λ = 0.05, h = 3) 92.41 ± 0.24 57.05 ± 1.02 53.71 ± 1.22 44.79 ±7.77 78.81

EfficientNet-B0

CNN 90.38 ± 0.10 53.55 ± 0.76 54.05 ± 1.44 45.51 ±1.92 68.09
WD 90.51 ± 0.34 49.87 ± 1.59 49.97 ± 2.44 40.76 ±3.27 67.10
SD 90.44 ± 0.11 51.04 ± 0.89 51.77 ± 1.25 43.39 ±1.63 66.65
WD + Reg. (λ = 0.01, h = 3) 88.97 ± 0.31 57.91 ± 0.98 59.60 ± 1.01 53.37±1.19 72.14
WD + Reg. (λ = 0.05, h = 1) 88.14 ± 0.42 56.11 ± 1.44 57.78 ± 1.62 51.44± 1.91 73.98
WD + Reg. (λ = 0.05, h = 3) 88.27 ± 0.11 56.78 ± 0.69 58.35 ± 0.86 52.04± 1.13 74.22
SD + Reg. (λ = 0.01, h = 3) 89.18 ± 0.52 57.83 ± 0.33 59.68 ± 0.44 53.50±0.59 71.87
SD+ Reg. (λ = 0.05, h = 1) 88.18 ± 0.46 55.76 ± 1.55 57.23 ± 1.64 50.69 ±2.14 74.45
SD + Reg. (λ = 0.05, h = 3) 88.08 ± 0.35 56.72 ± 1.86 58.21 ± 2.21 51.91± 2.61 74.12
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Table 10: Ablation Results (in % and averaged over 5 runs) of ResNet-20, ResNet-9, and EfficientNet-
B0 trained with different convolution implementations and varying regularization on CIFAR-100, and
evaluation against adversarial attacks, FGSM, PGD-40, and AutoAttack.

Variant Clean Val Acc. in (%)(↑) FGSM ϵ = 1/255 (↑) PGD-40 ϵ = 1/255(↑) AA ϵ = 1/255 (↑)

ResNet-20

CNN 60.41 ± 0.33 14.36 ± 0.35 5.45 ± 0.30 1.17 ± 0.10
WD 58.90 ± 0.19 12.84 ± 0.39 4.68 ± 0.16 1.01 ± 0.09
WD + Reg. (λ = 0.01, h = 1, ρdiff = 0) 55.31 ± 0.46 16.56 ± 0.49 12.65 ± 0.45 5.65 ± 0.38
WD + Reg. (λ = 0.01, h = 1) 55.23 ± 0.26 16.75 ± 0.49 13.01 ± 0.60 5.93 ± 0.34
WD + Reg. (λ = 0.01, h = 3, ρdiff = 0) 56.50 ± 0.29 16.10 ± 0.72 11.63 ± 0.97 4.78 ± 0.58
WD + Reg. (λ = 0.01, h = 3) 56.50 ± 0.27 16.01 ± 0.38 11.59 ± 0.42 4.96 ± 0.31
WD + Reg. (λ = 0.05, h = 1) 55.55 ± 0.16 17.03 ± 0.46 13.26 ± 0.48 6.07 ± 0.46
WD + Reg. (λ = 0.05, h = 3) 56.50 ± 0.29 16.60 ± 0.60 12.39 ± 0.56 5.28 ± 0.28
WD + Reg. (λ = 0.1, h = 1, ρdiff = 0) 55.41 ± 0.13 16.64 ± 0.66 12.71 ± 0.94 5.69 ± 0.72
WD + Reg. (λ = 0.1, h = 1) 55.50 ± 0.47 17.03 ± 0.22 13.11 ± 0.62 5.91 ± 0.57
WD + Reg. (λ = 0.1, h = 3, ρdiff = 0) 56.77 ± 0.44 16.42 ± 0.48 12.26 ± 0.59 5.32 ± 0.35
WD + Reg. (λ = 0.1, h = 3) 56.65 ± 0.39 16.85 ± 0.67 12.73 ± 0.65 5.59 ± 0.46
SD 60.34 ± 0.44 13.87 ± 0.18 5.18 ± 0.09 1.13 ± 0.05
SD + Reg. (λ = 0.01, h = 1, ρdiff = 0) 56.32 ± 0.26 17.31 ± 0.57 13.26 ± 0.48 5.93 ± 0.39
SD + Reg. (λ = 0.01, h = 1) 56.68 ± 0.50 17.40 ± 0.38 13.41 ± 0.60 6.03 ± 0.48
SD + Reg. (λ = 0.01, h = 3, ρdiff = 0) 58.27 ± 0.31 17.23 ± 0.23 12.47 ± 0.74 5.24 ± 0.53
SD + Reg. (λ = 0.01, h = 3) 58.19 ± 0.23 17.20 ± 0.43 12.24 ± 0.51 5.11 ± 0.27
SD + Reg. (λ = 0.05, h = 1) 56.71 ± 0.24 17.74 ± 0.33 13.73 ± 0.32 6.27 ± 0.32
SD + Reg. (λ = 0.05, h = 3) 58.29 ± 0.57 17.24 ± 0.51 12.19 ± 0.39 4.95 ± 0.31
SD + Reg. (λ = 0.1, h = 1, ρdiff = 0) 56.56 ± 0.20 17.01 ± 0.34 12.91 ± 0.48 5.74 ± 0.26
SD + Reg. (λ = 0.1, h = 1) 56.60 ± 0.37 17.59 ± 0.44 13.76 ± 0.56 6.40 ± 0.20
SD + Reg. (λ = 0.1, h = 3, ρdiff = 0) 58.32 ± 0.59 17.10 ± 0.45 12.46 ± 0.38 5.03 ± 0.32
SD + Reg. (λ = 0.1, h = 3) 58.27 ± 0.41 17.00 ± 0.35 12.03 ± 0.60 5.01 ± 0.47

ResNet-9

CNN 75.80 ± 0.28 30.41 ± 0.35 24.12 ± 0.27 10.13 ± 0.31
WD 75.52 ± 0.34 29.97 ± 0.62 23.68 ± 0.48 10.80 ± 0.30
WD + Reg. (λ = 0.01, h = 1) 73.85 ± 0.38 31.55 ± 0.71 28.00 ± 0.64 15.70 ± 0.37
WD + Reg. (λ = 0.05, h = 1) 71.65 ± 0.29 28.28 ± 0.32 24.11 ± 0.31 12.84 ± 0.09
WD + Reg. (λ = 0.05, h = 3) 72.69 ± 0.23 30.76 ± 0.20 26.72 ± 0.40 14.67 ± 0.39
WD + Reg. (λ = 0.1, h = 1) 71.59 ± 0.28 28.67 ± 0.31 24.43 ± 0.40 13.04 ± 0.38
WD + Reg. (λ = 0.1, h = 3) 72.74 ± 0.17 30.62 ± 0.19 26.52 ± 0.29 14.71 ± 0.36
SD 76.06 ± 0.28 30.73 ± 0.16 24.65 ± 0.32 11.48 ± 0.37
SD + Reg. (λ = 0.01, h = 1) 74.00 ± 0.27 31.97 ± 0.18 28.64 ± 0.37 16.42 ± 0.29
WD + Reg. (λ = 0.01, h = 3) 74.75 ± 0.31 33.66 ± 0.18 30.31 ± 0.30 17.62 ± 0.37
SD + Reg. (λ = 0.01, h = 3) 75.27 ± 0.27 34.04 ± 0.41 30.95 ± 0.35 18.26 ± 0.32
SD + Reg. (λ = 0.05, h = 1) 71.70 ± 0.17 28.81 ± 0.43 24.75 ± 0.48 13.24 ± 0.43
SD + Reg. (λ = 0.05, h = 3) 72.77 ± 0.23 31.07 ± 0.37 27.26 ± 0.46 15.15 ± 0.47
SD + Reg. (λ = 0.1, h = 1) 71.56 ± 0.28 28.53 ± 0.33 24.41 ± 0.41 13.14 ± 0.35
SD + Reg. (λ = 0.1, h = 3) 72.86 ± 0.24 31.07 ± 0.57 27.20 ± 0.64 15.08 ± 0.31

EfficientNet-B0

CNN 62.09 ± 0.75 26.33 ± 1.07 24.99 ± 2.70 18.76 ± 3.37
WD 63.49 ± 0.32 23.55 ± 0.53 18.13 ± 2.33 9.91 ± 2.46
WD + Reg. (λ = 0.01, h = 1) 60.02 ± 0.24 26.00 ± 0.43 26.35 ± 0.58 20.97 ± 0.86
WD + Reg. (λ = 0.01, h = 3) 60.11 ± 0.55 27.45 ± 0.88 27.69 ± 1.15 22.50 ± 1.31
WD + Reg. (λ = 0.05, h = 1) 60.23 ± 0.50 25.45 ± 0.50 25.69 ± 0.54 20.34 ± 0.77
WD + Reg. (λ = 0.1, h = 1) 60.16 ± 0.29 26.07 ± 0.62 26.35 ± 0.60 21.02 ± 0.66
WD + Reg. (λ = 0.1, h = 3) 59.46 ± 0.07 27.27 ± 0.53 27.55 ± 0.57 22.57 ± 0.69
SD 62.85 ± 0.29 25.11 ± 0.30 20.73 ± 1.95 13.21 ± 2.27
SD + Reg. (λ = 0.01, h = 1) 61.24 ± 0.44 28.67 ± 0.62 28.70 ± 0.78 23.40 ± 1.19
WD + Reg. (λ = 0.05, h = 3) 59.21 ± 0.42 27.44 ± 0.91 27.73 ± 1.03 22.93 ± 0.97
SD + Reg. (λ = 0.01, h = 3) 60.49 ± 0.44 29.63 ± 0.61 30.24 ± 0.80 25.42 ± 1.21
SD + Reg. (λ = 0.05, h = 1) 60.06 ± 0.41 27.79 ± 0.51 27.87 ± 0.53 22.80 ± 0.68
SD + Reg. (λ = 0.05, h = 3) 59.65 ± 0.39 28.30 ± 0.65 28.82 ± 0.85 24.07 ± 1.08
SD + Reg. (λ = 0.1, h = 1) 59.91 ± 0.27 27.55 ± 0.36 27.57 ± 0.39 22.44 ± 0.49
SD + Reg. (λ = 0.1, h = 3) 59.72 ± 0.38 28.93 ± 0.77 29.36 ± 0.92 24.73 ± 1.14
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G Adversarial Training on ImageNet

We show the results of our regularization on a ResNet-50 trained on ImageNet with adversarial training Ta-
ble 11, based on the implementation in https://github.com/dedeswim/vits-robustness-torch. Training
is executed against a single-step L∞, ϵ = 4/255 PGD adversary. Our regularization improves both, clean and
robust performance against non-regularized baselines. On ImageNet, we observe better results with WD for
the same regularization hyperparameters.

Table 11: Performance of Adversarial Training of a ResNet-50 trained on ImageNet.

Variant Clean Adversarial Acc. (↑)
Val Acc. (↑) PGD ϵ = 4/255 AA ϵ = 4/255

CNN 56.85 36.04 22.33
SD 56.50 35.96 18.66
SD + Reg. (λ = 0.05, h = 3) 57.61 35.85 22.25

WD 55.82 35.06 22.06
WD + Reg. (λ = 0.05, h = 3) 58.09 37.09 24.32
WD + Reg. (λ = 0.01, h = 3) 57.22 35.75 23.33
WD + Reg. (λ = 0.1, h = 3) 56.99 36.17 24.10
WD + Reg. (λ = 0.2, h = 3) 57.45 36.52 24.03
WD + Reg. (λ = 0.05, h = 1) 54.72 31.94 19.94

H Extended Ablation: Other regularization approaches

Table 12: Ablation on the hierarchical regularization approach on EfficientNet-B0 trained with differ-
ent convolution implementations on CIFAR-10 and evaluation against FGSM and PGD attacks. Results in
% and averaged over 5 runs.

Variant Clean Adversarial Acc. (↑)
Val Acc. (↑) FGSM ϵ = 1/255 PGD-40 ϵ = 1/255

CNN 90.38 ± 0.10 53.55 ± 0.76 54.05 ± 1.44
WD 90.51 ± 0.34 49.87 ± 1.59 49.97 ± 2.44
SD 90.44 ± 0.11 51.04 ± 0.89 51.77 ± 1.25
WD + Reg. (λ = 0.05, h = 3) 88.27 ± 0.11 56.78 ± 0.69 58.35 ± 0.86
WD + Reg. (λ = 0.05, h = 3, hierarchical) 90.46 ± 0.12 50.04 ± 1.91 50.22 ± 2.82
SD + Reg. (λ = 0.05, h = 3) 88.08 ± 0.35 56.72 ± 1.86 58.21 ± 2.21
SD + Reg. (λ = 0.05, h = 3, hierarchical) 90.36 ± 0.43 52.21 ± 0.57 53.13 ± 0.54

Ablation. In order to further support the regularization approach, we included an ablation with a different
regularization (Table 12). Here, instead of regularizing the coefficients belonging to the highest frequencies,
we impose a penalty that enforces a hierarchy of frequencies based on magnitude starting with the highest
magnitude on the lowest frequency. This regularization has a slightly positive impact on the robustness
compared to its non-regularized counterpart but does not suppress higher frequencies. Therefore, it is
intrinsically limited in improving robustness. We compare the regularization as described in Section 4.1
with a regularization approach, which ignores the first part of Equation 7 but rather forces the lowest
frequencies to have a higher magnitude than subsequent frequencies for all frequencies, i.e. frequency c0,0
has a higher frequency magnitude than {c0,1, c1,0, c1,1} and further {c0,1, c1,0, c1,1} has a higher magnitude
than {c0,2, c1,2, c2,0, c2,1, c2,2} and so on. We denote this type of regularizaton with ρ̃diff . As we can see in
Table 12

In this section, we additionally compare our proposed regularization with two other regularizations. First,
to motivate the regularization of high frequencies, we regularize inverse to our original approach: instead of
regularizing high frequencies, we regularize the low frequencies. In the case of kernel size k = 3 the penalty
becomes:

Pinverse(C) = ∥C:,:,0,0∥2 · 2 + max(
1∑

i,j=0
(i=j)̸=0

(∥C:,:,i,j∥2) − min(∥C:,:,:3,:3∥2), 0). (9)

Second, we observe that some layers learn predominantly coefficients in the first row and column. To
further investigate this observation, we regularize the lower quadrant, i.e. keeping the frequencies in the
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Table 13: Ablation of ResNet-20 with different regularization types on CIFAR-10 and evaluation
against adversarial attacks, FGSM, PGD-40, AutoAttack, and corruption CIFAR-10-C. Reported is the
mean accuracy in % and standard deviation over 5 runs.

Variant Clean Val Acc. (↑) FGSM ϵ = 1/255 (↑) PGD-40 ϵ = 1/255 (↑) AA ϵ = 1/255(↑) Mean Accuracy
CIFAR-10-C (↑)

CNN 91.29 ± 0.14 50.49 ± 0.62 30.92 ± 0.88 10.78 ± 0.33 67.96
WD 91.04 ± 0.21 48.40 ± 0.36 30.37 ± 0.98 10.72 ± 0.91 66.92
WD + Reg. (λ = 0.01, h = 1) 88.91 ± 0.37 48.93 ± 0.42 40.50 ± 0.98 25.94 ± 1.37 73.97
WD + Reg. (λ = 0.01, h = 3) 90.02 ± 0.22 50.38 ± 0.37 41.34 ± 0.79 25.86 ± 1.07 73.43
WD + Reg. (λ = 0.05, h = 1) 89.05 ± 0.27 49.06 ± 0.38 40.83 ± 0.70 26.24 ± 1.02 73.76
WD + Reg. (λ = 0.05, h = 3) 89.86 ± 0.14 50.85 ± 0.71 41.81 ± 1.15 26.79 ± 1.52 74.04
WD + Reg. (λ = 0.1, h = 1) 88.91 ± 0.15 49.16 ± 0.95 40.95 ± 1.56 26.39 ± 1.84 73.84
WD + Reg. (λ = 0.1, h = 3) 89.85 ± 0.12 50.65 ± 0.39 41.57 ± 0.40 26.33 ± 0.77 73.85
SD 91.36 ± 0.23 50.83 ± 0.49 32.98 ± 1.06 11.97 ± 0.92 67.48
SD + Reg. (λ = 0.01, h = 1) 89.48 ± 0.48 50.59 ± 1.19 42.61 ± 1.79 28.22 ± 1.64 73.92
SD + Reg. (λ = 0.01, h = 3) 90.54 ± 0.14 53.12 ± 0.34 44.42 ± 0.63 29.14 ± 1.15 74.14
SD + Reg. (λ = 0.05, h = 1) 89.20 ± 0.24 49.59 ± 0.74 41.05 ± 0.89 26.28 ± 1.04 74.24
SD + Reg. (λ = 0.05, h = 3) 90.34 ± 0.14 53.07 ± 0.29 44.04 ± 0.56 28.62 ± 0.96 73.98
SD + Reg. (λ = 0.1, h = 1) 89.29 ± 0.25 50.06 ± 0.73 41.90 ± 1.03 27.58 ± 1.08 74.29
SD + Reg. (λ = 0.1, h = 3) 90.28 ± 0.14 52.39 ± 1.01 43.29 ± 1.16 27.75 ± 1.29 74.07

WD + Reg. (λ = 0.01, h = 3, inverse) 90.45 ± 0.22 45.59 ± 0.85 23.85 ± 1.13 6.22 ± 0.75 65.41
WD + Reg. (λ = 0.05, h = 3, inverse) 90.47 ± 0.14 43.95 ± 1.59 20.39 ± 0.87 3.94 ± 0.42 64.49
WD + Reg. (λ = 0.1, h = 3, inverse) 90.62 ± 0.23 42.56 ± 1.15 18.69 ± 2.10 3.29 ± 0.98 64.57
WD + Reg. (λ = 0.01, h = 3, quadrant) 90.50 ± 0.27 51.76 ± 0.87 41.03 ± 2.05 24.37 ± 2.96 71.02
WD + Reg. (λ = 0.05, h = 3, quadrant) 90.08 ± 0.20 51.33 ± 0.40 40.20 ± 1.10 24.08 ± 1.26 71.55
WD + Reg. (λ = 0.1, h = 3, quadrant) 90.10 ± 0.17 51.14 ± 0.42 40.81 ± 0.79 24.79 ± 1.05 71.62
SD + Reg. (λ = 0.01, h = 3, inverse) 90.69 ± 0.23 47.23 ± 0.58 25.26 ± 0.68 6.36 ± 0.57 65.92
SD + Reg. (λ = 0.05, h = 3, inverse) 90.86 ± 0.12 45.94 ± 1.35 21.81 ± 0.84 4.36 ± 0.55 65.04
SD + Reg. (λ = 0.1, h = 3, inverse) 90.56 ± 0.45 44.10 ± 0.97 20.17 ± 1.16 3.66 ± 0.42 64.05
SD + Reg. (λ = 0.01, h = 3, quadrant) 90.67 ± 0.06 53.95 ± 0.49 43.94 ± 0.77 27.23 ± 1.19 72.29
SD + Reg. (λ = 0.05, h = 3, quadrant) 90.49 ± 0.11 52.98 ± 0.54 42.31 ± 1.21 25.65 ± 1.77 72.22
SD + Reg. (λ = 0.1, h = 3, quadrant) 90.54 ± 0.12 53.02 ± 0.66 42.06 ± 0.90 25.77 ± 1.26 72.10

first column and first row (ci,0, c0,i, for i ∈ {0, . . . , k}), with k being the kernel size, quadrant. This way
we do not regularize all coefficients corresponding to high frequencies. As a result, quadrant suppresses
high frequencies on diagonal structures but allows vertical/horizontal high frequencies, while our original
regularization enforces regularization independent of the orientation.

We present the results in Table 13 on ResNet-20. The inverse approach does not increase robustness, quite
contrary it even decreases the accuracy under adversarial attacks and CIFAR-10-C, which strengthens the
formulation of our original regularization. The quadrant regularization increases robustness but performs
subpar compared to our original approach.

I Comparison-State-of-the-Art including Wang et al.

In the main paper, we compared our method to other robustness techniques such as FrequencyLowCut
Pooling (Grabinski et al., 2022a) and Patch Gaussian Augmentation (Lopes et al., 2019) in Section 5.1. In
Table 14 we additionally compare our proposed method to Smoothing Kernel (HFC) as proposed in Wang
et al. (2020). However, in contrast to the results in Wang et al. (2020), we do not see favorable behavior
of this method, but a decrease of clean validation accuracy and robust accuracy evaluated against PGD-40,
FGSM, and AutoAttack. Since we can not replicate their results, we have reached out to the authors but
have not received a reply. Furthermore, Table 14 also demonstrates, combining other robustness techniques
with our proposed regularization even further increases the robustness.

Table 14 also provides the standard deviation over 5 runs to the tables Table 1 and Table 2 from the main
paper.
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Table 14: Comparison results (in % and averaged over 5 runs) of ResNet-20, ResNet-9, and EfficientNet-
B0 against other robustness techniques (Grabinski et al., 2022a; Lopes et al., 2019; Wang et al., 2020) on
CIFAR-10.We report the mean clean validation accuracy and robust accuracy against adversarial attacks:
FGSM, PGD-40, and AutoAttack for L∞, ϵ = 1/255, and the mean corruption accuracy on CIFAR-10-C.
The proposed regularization improves over other robustness techniques on all models.

Variant Robust Acc. [L∞ = ϵ = 1/255] (↑) Corruption (↑)
Clean Val Acc.(↑) FGSM PGD-40 AA Mean Acc.

ResNet-20

CNN 91.29 ± 0.14 50.49 ± 0.62 30.92 ± 0.88 10.78 ± 0.33 67.96
CNN + FLC (Grabinski et al., 2022a) 91.52 ± 0.29 52.49 ± 0.48 30.25 ± 0.42 8.48 ± 0.74 68.75
CNN + PaGA (Lopes et al., 2019) 91.29 ± 0.15 50.36 ± 1.09 31.50 ± 1.82 11.38 ± 1.60 67.73

WD 91.04 ± 0.21 48.40 ± 0.36 30.37 ± 0.98 10.72 ± 0.91 66.92
WD + FLC 91.16 ± 0.17 51.40 ± 0.79 30.49 ± 1.36 8.08 ± 0.51 67.88
WD + PaGA 91.01 ± 0.18 48.61 ± 0.53 31.44 ± 1.29 11.72 ± 1.45 67.87
SD 91.36 ± 0.23 50.83 ± 0.49 32.98 ± 1.06 11.97 ± 0.92 67.48
SD + FLC 91.42 ± 0.14 52.99 ± 0.43 33.21 ± 0.61 9.32 ± 0.29 68.44
SD + PaGA 91.38 ± 0.27 50.68 ± 0.84 31.86 ± 1.20 10.91 ± 1.09 67.71
WD + Reg. 89.86 ± 0.14 50.85 ± 0.71 41.81 ± 1.15 26.79 ± 1.52 74.04
WD + Reg + FLC 89.65 ± 0.24 52.21 ± 0.48 42.02 ± 1.03 25.39 ± 1.69 75.28
WD + Reg + PaGA 89.84 ± 0.15 50.09 ± 0.64 40.92 ± 1.24 25.79 ± 1.80 73.85
SD + Reg. 90.54 ± 0.14 53.12 ± 0.34 44.42 ± 0.63 29.14 ± 1.15 74.14
SD + Reg + FLC 90.37 ± 0.54 54.89 ± 1.81 45.13 ± 2.57 28.11 ± 3.56 74.41
SD + Reg + PaGA 90.32 ± 0.15 52.47 ± 0.89 42.98 ± 1.33 27.30 ± 1.36 73.19

ResNet-9

CNN 94.29 ± 0.09 59.58 ± 0.41 53.04 ± 0.59 37.49 ± 0.53 73.38
CNN + FLC (Grabinski et al., 2022a) 94.24 ± 0.14 59.64 ± 0.36 53.47 ± 0.55 38.65 ± 0.73 73.81
CNN + PaGA (Lopes et al., 2019) 94.33 ± 0.17 59.12 ± 0.55 52.62 ± 0.61 37.50 ± 0.48 73.72
CNN + HFC (Wang et al., 2020) 87.62 ± 0.34 47.27 ± 0.87 42.41 ± 1.03 29.16 ± 1.08 32.85

WD 93.73 ± 0.06 55.51 ± 0.41 49.84 ± 0.33 35.23 ± 0.53 72.87
WD + FLC 93.73 ± 0.17 55.52 ± 0.23 50.07 ± 0.42 35.53 ± 0.25 73.00
WD + PaGA 93.71 ± 0.07 55.62 ± 0.62 50.17 ± 0.64 35.50 ± 0.59 73.05
SD 93.97 ± 0.15 55.73 ± 0.56 50.29 ± 0.55 36.02± 0.86 73.48
SD + FLC 93.98 ± 0.10 56.07 ± 0.30 50.73 ± 0.44 36.36 ± 0.87 73.41
SD + PaGA 93.79 ± 0.12 55.95 ± 0.46 50.73 ± 0.55 36.68 ± 0.75 73.32
WD + Reg. 93.18 ± 0.19 59.25 ± 2.24 56.08 ± 3.22 43.62 ± 4.53 76.41
WD + Reg + FLC 93.20 ± 0.19 59.64 ± 0.68 56.39 ± 0.84 44.24 ± 1.09 76.78
WD + Reg + PaGA 92.15 ± 0.22 56.48 ± 0.80 52.64 ± 0.88 39.78 ± 1.23 78.14
SD + Reg. 93.09 ± 0.30 59.87 ± 1.29 56.89 ± 1.79 44.81 ± 2.29 77.72
SD + Reg + FLC 93.43 ± 0.35 60.80 ± 0.55 58.18 ± 0.69 46.08 ± 1.03 77.60
SD + Reg + PaGA 93.14 ± 0.40 59.86 ± 1.21 57.24 ± 1.49 45.06 ± 1.62 77.54

EfficientNet-B0

CNN 90.38 ± 0.10 53.55 ± 0.76 54.05 ± 1.44 45.51 ±1.92 68.09
CNN + FLC (Grabinski et al., 2022a) 89.68 ± 0.26 51.92 ± 0.93 53.09 ± 0.98 45.37 ± 1.10 69.72
CNN + PaGA (Lopes et al., 2019) 90.72 ± 0.33 54.18 ± 0.71 54.97 ± 1.29 46.64 ± 1.52 69.31
CNN + HFC (Wang et al., 2020) 79.96 ± 1.30 42.40 ± 1.90 43.85 ± 2.03 37.34 ± 1.94 22.80

WD 90.51 ± 0.34 49.87 ± 1.59 49.97 ± 2.44 40.76 ±3.27 67.10
WD + FLC 89.60 ± 0.23 46.29 ± 1.30 46.66 ± 1.70 37.32 ± 2.21 68.54
WD + PaGA 90.82 ± 0.21 48.77 ± 0.84 49.14 ± 1.80 39.50 ± 2.46 67.89
SD 90.44 ± 0.11 51.04 ± 0.89 51.77 ± 1.25 43.39 ± 1.63 66.65
SD + FLC 89.47 ± 0.15 47.91 ± 0.74 48.55 ± 1.22 39.92 ± 1.62 67.61
SD + PaGA 90.91 ± 0.23 50.92 ± 0.63 51.74 ± 0.58 42.65 ± 0.75 68.13
WD + Reg. 88.97 ± 0.31 57.91 ± 0.98 59.60 ± 1.01 53.37 ± 1.19 72.14
WD + Reg + FLC 87.67 ± 0.32 52.68 ± 2.67 54.66 ± 2.83 48.14 ± 3.58 71.17
WD + Reg + PaGA 88.49 ± 0.20 55.15 ± 0.77 56.70 ± 0.71 50.05 ± 0.85 74.16
SD + Reg. 89.18 ± 0.52 57.83 ± 0.33 59.68 ± 0.44 53.50 ± 0.59 71.87
SD + Reg + FLC 87.90 ± 0.32 54.15 ± 1.03 56.38 ± 0.97 50.31 ± 1.25 71.10
SD + Reg + PaGA 89.66 ± 0.22 56.72 ± 0.79 58.56 ± 0.86 51.87 ± 1.13 72.39

J Perturbations in the frequency domain

In this section, we visualize common corruptions and FGSM attacks in frequency space. Therefore, we
compute the average error in the FFT spectrum between the attack images and their clean counterparts.

Common Corruptions. Figure 10 shows an example image of the CIFAR-10-C test with various cor-
ruptions while Figure 11 shows the error of these corruptions in FFT space (as already shown in Yin et al.
(2019)). Corruptions affect the frequency spectrum differently e.g. pixelate affects only high frequencies,
brightness only low frequencies, and others like Gaussian noise affect the entire spectrum.

FGSM. Figure 12 shows the attack spectrum of an FGSM-attack with ϵ = 1/255, L∞ on a ResNet-20,
ResNet-9, and Efficientnet-B0 trained with CIFAR-10. We find perturbations for the models under the
regular implementation of convolutions (non-robust), and regularized weight/signal decomposition layers.
Regular convolutions are attacked in almost the entire spectrum, but primarily in the highest frequencies
(top-left). Under regularization, we observe a shift of attacks to lower frequencies which indicates a successful
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defense against high-frequency perturbations. We observe differences in the spectrum depending on the
architecture.

original fog spatter zoom blur defocus blur speckle noise jpeg compression frost gaussian noise brightness

elastic transform contrast gaussian blur snow shot noise saturate glass blur motion blur pixelate impulse noise

Figure 10: Visualizations of the corruptions in CIFAR-10-C.

fog spatter zoom blur defocus blur speckle noise jpeg compression frost gaussian noise brightness

elastic transform contrast gaussian blur snow shot noise saturate glass blur motion blur pixelate impulse noise

Figure 11: Mean absolute error in FFT spectrum of the corrupted CIFAR-10 test set (severity level 5) and
clean test set. Corruptions affect the frequency spectrum differently e.g. pixelate affects only high frequencies,
brightness only low frequencies, and others like Gaussian noise affect the entire spectrum. Black indicates
no error, and bright colors indicate larger errors. The lowest frequencies are located in the center, high
frequencies are located at the edges.
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Figure 12: Mean absolute error in the FFT spectrum of FGSM-attacks (ϵ = 1/255, L∞) on CIFAR-10 models
with different (regularized) convolution modifications and the clean test set. Regular convolutions are at-
tacked in almost the entire spectrum, but primarily in the highest frequencies (top-left). After regularization,
the adversarial attacks shift from high frequencies to lower ones. The architectures are attacked differently.
Black indicates no error, and bright colors indicate larger errors. The lowest frequencies are located in the
center, high frequencies are located at the edges.
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K Details on shape bias

Accompanying Table 4, we also plot the texture-shape bias in Figure 13 using Geirhos et al. (2021) for
our ImageNet (Deng et al., 2009) models, EfficinetNet-B0 and ConvNext-Tiny (Liu et al., 2022) for our
decomposition approaches with and without regularization.
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Figure 13: Top: Shape vs. texture bias: category-level plot. Bottom: Box-plot: shape vs. texture bias
for all variants of EfficientNet-B0 and ConvNeXt-Tiny. Both plots were generated by Geirhos et al. (2021).
High values indicate a shape bias, and low values a texture bias.

L Evolution Plots

In the following, we show further and more detailed evolution plots of the DCT-II coefficients in all convolu-
tion layers of ResNet-20 (Figure 14), ResNet-9 (Figure 15), and EfficientNet-B0 (Figure 16) between regular
and adversarial training. The latter adversarial training is based on FGSM with an early stopping approach
w.r.t the PGD-40 accuracy as presented in Wong et al. (2020).
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(b) Adversarial Training.

Figure 14: Evolution of the coefficients in a ResNet-20 trained on CIFAR-10.
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(b) Adversarial Training.

Figure 15: Evolution of the coefficients in a ResNet-9 trained on CIFAR-10.
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(b) Adversarial Training.

Figure 16: Evolution of the coefficients in a EfficientNet-B0 trained on CIFAR-10.
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M Tables from Main Paper with Standard Deviation

In this section, we provide a more detailed version of Table 1 from the main paper. In Table 15 we also show
the standard deviation over 5 runs.

Table 15: Results (in % and averaged over 5 runs) of ResNet-20 trained with different convolution imple-
mentations and regularization on CIFAR-100, SVHN, TinyImageNet, MNIST. We report the mean
clean validation accuracy and robust accuracy against adversarial attacks: FGSM, PGD-40, and AutoAttack
for L∞, ϵ = 1/255. For MNIST we set ϵ = 16/255. The usage of the proposed regularization improves the
robustness on all datasets.

Dataset Model Variant Clean (↑) Robust Acc. [L∞, ϵ = {1, 16∗}/255] (↑)
Val Acc. FGSM PGD-40 AA

CIFAR-100 ResNet-20

CNN 60.41 ± 0.33 14.36 ± 0.35 5.45 ± 0.30 1.17 ± 0.10
WD 58.90 ± 0.19 12.84 ± 0.39 4.68 ± 0.16 1.01 ± 0.09
SD 60.34 ± 0.44 13.87 ± 0.18 5.18 ± 0.09 1.13 ± 0.05

WD + Reg. 56.65 ± 0.39 16.85 ± 0.67 12.73 ± 0.65 5.59 ± 0.46
SD + Reg. 58.19 ± 0.23 17.20 ± 0.43 12.24 ± 0.51 5.11 ± 0.27

SVHN ResNet-20

CNN 96.31 ± 0.09 83.84 ± 0.65 79.94 ± 0.80 69.81 ± 1.12
WD 96.35 ± 0.15 83.52 ± 0.27 80.01 ± 0.41 71.25 ± 0.71
SD 96.34 ± 0.05 84.07 ± 0.27 80.64 ± 0.57 71.74 ± 0.85

WD + Reg. 96.28 ± 0.10 84.11 ± 0.27 81.21 ± 0.32 73.27 ± 0.64
SD + Reg. 96.34 ± 0.07 84.17 ± 0.19 81.23 ± 0.22 73.03 ± 0.84

TinyImageNet ResNet-9

CNN 53.20 ± 0.46 17.79 ± 0.14 16.76 ± 0.11 9.57 ± 0.24
WD 52.08 ± 0.26 17.11 ± 0.42 16.19 ± 0.43 9.40 ± 0.33
SD 52.12 ± 0.40 16.85 ± 0.28 15.88 ± 0.25 9.15 ± 0.22

WD + Reg. 51.25 ± 0.20 18.10 ± 0.28 17.34 ± 0.30 10.23 ± 0.28
SD + Reg. 51.22 ± 0.36 18.26 ± 0.36 17.40 ± 0.28 10.39 ± 0.20

MNIST * ResNet-20

CNN 99.68 ± 0.02 89.74 ± 5.63 45.37 ± 18.85 8.92 ± 8.33
WD 99.69 ± 0.05 90.45 ± 6.09 47.06 ± 13.02 10.22 ± 7.35
SD 99.65 ± 0.04 91.23 ± 2.87 54.08 ± 11.61 16.80 ± 11.47

WD + Reg. 99.69 ± 0.01 90.70 ± 3.92 55.84 ± 6.63 25.92 ± 3.25
SD + Reg. 99.69 ± 0.02 88.98 ± 3.35 50.02 ± 12.53 21.71 ± 8.26

N Qualitative Analysis of Attribution Maps

In the following section, we aim to understand how our regularization affects decisions by visualizing and
interpreting attribution maps via SmoothGrad (Smilkov et al., 2017). We study the attributions of some
selected ImageNet validation samples for the true label. We generate attributions from a regular ConvNeXt-
Tiny, and the same network with WD and regularized WD layer as in Table 4. For all samples, we assert that
all 3 models correctly predict the top-1 label. Our results in Figure 17 show that our proposed regularization
(WD + Reg.) appears to shift attributions from edges and local texture shortcuts seen in unregularized
networks (CNN or WD) to a more global understanding of the scene.
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Original CNN WD WD + Reg.

Original CNN WD WD + Reg.

Original CNN WD WD + Reg.

Original CNN WD WD + Reg.

Original CNN WD WD + Reg.

Original CNN WD WD + Reg.

Original CNN WD WD + Reg.

Original CNN WD WD + Reg.

Figure 17: SmoothGrad attributions (Smilkov et al., 2017) of ConvNeXt-Tiny without changes to convolution
layers (left), with unregularized WD (center), and regularized WD (right). The regularization appears to shift
attributions from edges (first 4 rows) and local texture shortcuts (last 4 rows) to a more global understanding
of the scene.
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O Fourier Spectrum of Activations

Complementary to the results in Figure 6 we investigate the activations immediately after convolution layers
of a ResNet-20 on a batch of clean CIFAR-10 test samples. However, this time we plot the centered magnitude
of the Fourier magnitude (FFT). Note that the regularization only affects layers up to and including Bl.2.2.
The results in Figure 18 show a shift towards lower frequencies in the affected layers of regularized models
compared to non-regularized models. The shift is not as strong as for AT models. Figure 19 shows a couple
of differences for better understanding. Note that in general, the shift is relatively small but still significantly
affects robustness.

CN
N
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Figure 18: Visualization of the magnitude of the Fourier Spectrum of Activations in each convolution layer
within a ResNet-20 trained on CIFAR-10.
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(b) WD + Reg. vs. CNN
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(c) WD + Reg. vs. SD + Reg.

Figure 19: Comparison of Fourier domain activation magnitudes in a ResNet-20 trained on CIFAR-10,
highlighting the distinctions between the WD + Reg. approach and various alternative methods

P Bridging Shape and Low-Frequency Bias

Our proposed regularization is based on the theoretical background of the relationship between shapes and
frequencies. Geirhos et al. (2019) showed that neural networks tend to classify based on textures and not
shapes which is not only different from human vision but also results in non-robustness due to the locality
of the information. On the other hand, detection based on global information such as shapes must be
more robust (Geirhos et al., 2021). Therefore, we want to induce a shape bias directly by our proposed
regularization approach.
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Figure 20: Shape and DCT-II spectrum for an object and its shape.
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Figure 21: 1D shape toy example with its corresponding DCT-II basis transformation.

Low-frequency components dominate shape signals. For simplicity, let us consider a shape function
in 1D, i.e. a rectangular pulse. For the Discrete Fourier Transform (DFT), it is well known that a rectangular
pulse in the spatial domain directly corresponds to a sinc function, defined as sinc(ω) = sin(ω)

ω , in the
frequency domain and vice versa. The absolute value of this function assigns the highest values to the lowest
frequency and the amplitude of the wave decreases as the frequency increases. The behavior of the DCT is
related to that of the DFT and similar in practice.

Figure 20 visualizes the behavior for the DCT-II: Transforming the shape function of a 1D selected area of the
image (Everingham et al.) into its frequency domain using the DCT-II basis results in a wave function whose
amplitudes decrease as the frequency increases. We furthermore visualize this relationship on a toy example
of a rectangle function and its transformation into the frequency domain (Figure 21). In the following, we
provide the mathematical motivation of the resulting regularization term, which is given in Equation 7 in
the main paper and which is inspired by this behavior. Specifically, we show the behavior of the DCT-II of
a rectangular pulse.

Let x ∈ CN be a rectangular pulse of width 2M in the domain of symmetric, periodic signals of length N,
approximating a square wave when M = N/4, i.e. x(n) = 1 for −M ≤ n ≤ M and x(n) = 0 otherwise.

The DCT-II of x is X = DCT(x), for k = − N
2 , . . . , N

2 ,
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In the second equality (10), we apply Euler’s formula. Moving to (11) we apply the finite sums formula
and cancel exp

(
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2 and exp
(
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2 in line (12). Then, we again apply again Euler’s formula in (13)
and (14). The step to arrive at (15) is an approximation used for the DFT, following the reasoning that
for small ω, sin(ω) = ω and the term in the sin function in the denominator is small. As a result, the
DCT of the rectangular pulse corresponds to a sinc function overlayed with a cosine. The amplitude of the
resulting function decays as the frequency increases. For small k, the function approximates a sinc function.
In the regularization term we propose in Equation 7, we, therefore, regularize the lower frequencies with the
hierarchical term that encourages the maximal amplitudes of higher bands to be lower than the maximal
frequency of lower bands, i.e. we regularize the max

(
∥C[s],[d],L,M ∥2 − ∥C[s],[d],0,0∥2

)
for L, M = {0, 1}. For

high frequencies, we just encourage the amplitudes to be low in general, so that the full regularization is

R(C) = ∥C[s],[d],I,J∥2 · I+ ρdiff · max
(
∥C[s],[d],L,M ∥2 − ∥C[s],[d],0,0∥2

)
,

for I, J = {⌈k/2⌉, . . . , k}, L, M = {0, 1} and [s] = {0, . . . , dout − 1}, [d] = {0, . . . , din − 1}.
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