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In this work we introduce PhenomXO4a, the first phenomenological, frequency-domain gravitational wave-
form model to incorporate multipole asymmetries and precession angles tuned to numerical relativity. We
build upon the modeling work that produced the PhenomPNR model and incorporate our additions into the IM-
RPhenomX framework, retuning the coprecessing frame model and extending the tuned precession angles to
higher signal multipoles. We also include, for the first time in frequency-domain models, a recent model for
spin-precession-induced multipolar asymmetry in the coprecessing frame to the dominant gravitational-wave
multipoles. The accuracy of the full model and its constituent components is assessed through comparison to
numerical relativity and numerical relativity surrogate waveforms by computing mismatches and performing
parameter estimation studies. We show that, for the dominant signal multipole, we retain the modeling im-
provements seen in the PhenomPNR model. We find that the relative accuracy of current full IMR models varies
depending on location in parameter space and the comparison metric, and on average they are of comparable
accuracy. However, we find that variations in the pointwise accuracy do not necessarily translate into large
biases in the parameter estimation recoveries.

I. INTRODUCTION

The properties of compact-binary gravitational-wave (GW)
sources are inferred by convolving detector data with theo-
retical signal models [1–11]. In LIGO-Virgo-KAGRA (LVK)
compact binary observations to date the most commonly used
families of signal models have been Phenom, SEOBNR and
NRSurrogate [12–33] The Phenom and SEOBNR models are
constructed from a combination of analytic or semianalytic
approximations during the inspiral, and numerical relativity
(NR) calculations for the late inspiral, merger and ringdown;
the NRSurrogate models are constructed primarily from NR
waveforms. The accuracy of Phenom and SEOBNR models
is determined by the accuracy of the analytic ingredients, by
the length, accuracy and parameter-space coverage of the NR
waveforms, and by the details of the model construction, in-
cluding any physical approximations. By contrast, the main
limitation in current surrogate models is not their accuracy,
but their parameter-space coverage and the length of the input
waveforms (which, given the fixed frequency range of detec-
tor sensitivities, limits the masses at which they can be used
for analysis).

Two of the limitations in the Phenom and SEOBNR models
used in the first three LVK observing runs (O1-3) were that
precession effects (due to spins misaligned with the orbital an-
gular momentum) are based only on analytic approximations
and do not include tuning to any NR simulations of precess-
ing binaries, and that the models neglect an asymmetry in the
multipoles that is present in precessing configurations. In this
paper we present a new model that adds both of these fea-
tures, PhenomXO4a (XO4a). (Throughout the paper we will
introduce each model with its full name, but also introduce

an abbreviation, which we we will use to simplify reference
throughout the paper to a large number of models with very
similar names.)

This paper extends on the work in Ref. [34] (Paper I), and
we refer the reader to this paper for more background on
the phenomenology of precessing binaries, and a summary
of approaches to modelling the GW signal from them. Pa-
per I presented the PhenomPNR (PNR) model, where merger-
ringdown precession effects in the ℓ = 2 multipoles were
tuned to 40 NR simulations of single-spin systems between
mass ratios of 1 ≤ q = m1/m2 ≤ 8, where m1 and m2 are the
component masses of the binary system with m1 ≥ m2, and
the primary black hole has dimensionless spin χ misaligned
from the orbital angular momentum by θLS.

In this work the model is retuned to all 80 simulations in
the NR catalogue discussed in Ref. [35], to improve the over-
all accuracy of the phenomenological fits, but in particular the
behavior of low-spin binaries near the aligned-spin limit. The
resulting model is implemented within the IMRPhenomX in-
frastructure [21]. We also extend the model of the precession
dynamics to higher multipoles through an approximate fre-
quency mapping analogous to that used to construct higher
signal multipoles in the earlier PhenomHM model [15], and
make use of an estimate of the ringdown frequency for each
multipole in a frame that tracks the binary’s precession, as
presented in Ref. [36].

We incorporate a model for the multipole asymmetry in the
dominant (ℓ, |m|) = (2, 2) multipoles based on a prescription
presented in Ref. [37]. This allows us to easily construct the
antisymmetric contribution to the dominant multipole from
physical quantities that were already modeled for the sym-
metric contribution, namely the signal amplitude, phase, and
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one of the three Euler angles that specify the precession.
The current model is the first frequency-domain higher-

multipole inspiral-merger-ringdown model to include preces-
sion tuning to NR and multipole asymmetry, and provides a
first indication of the accuracy improvements each new fea-
ture provides, and improvements that need to be made in fu-
ture to meet the accuracy needs of gravitational-wave obser-
vatories.

One issue that arises in frequency-domain models is with
the now-standard procedure to separately model (a) the sig-
nal in a coprecessing frame that tracks the precession, and
(b) the time- or frequency-dependent rotation transformation
between the inertial and co-precessing frames. These two
models are then combined to produce the final inertial-frame
model. This approach is motivated by the observation that
the signal multipoles take a simpler form in the co-precessing
frame [38], and is used in some form in all precessing Phenom,
SEOBNR and NRSurrogate models.

In the time domain the co-precessing frame defined with
respect to the ℓ = 2 multipoles is approximately the same
as that defined with respect to all multipoles, i.e., the direc-
tions that maximise the power emitted by either the ℓ = 2
multipoles or all multipoles are approximately the same. This
is not the case in the frequency domain. This is easiest to
see when considering the ringdown. The ringdown frequency
of the (ℓ, |m|) = (4, 4) multipole is roughly twice that of the
(ℓ, |m|) = (2, 2) multipole, and so in the frequency domain the
(4, 4) ringdown will begin at a frequency where there is no
longer any power remaining in the (2, 2). By contrast, in the
time domain the ringdown begins at roughly the same time for
all multipoles. We discuss this issue further in Sec. II, and the
approximations we use to circumvent the issue in the current
model.

A number of earlier models are referred to throughout
this paper. For ease of reference we summarize them here.
We start with Phenom models. The aligned-spin Phenom
model PhenomD [12, 13] includes only the dominant multi-
poles, and was tuned to simulations of (predominantly) single-
spin or equal-spin binaries, up to mass ratios of q = 18.
This was used as the basis of the coprecessing-frame model
for the precessing-binary models PhenomPv2 [14] and Phe-
nomPv3 [39]; NR calibration to in-plane-spin modifications
are added to produce PhenomDCP (DCP), which is the co-
precessing-frame model for the NR-tuned precession model
PNR [34]. The more recent aligned-spin models for the dom-
inant multipoles (IMRPhenomXAS (XAS) [19]) and higher
multipoles (IMRPhenomXHM [20]) are tuned to NR simu-
lations of unequal-spin binaries, and this is the basis of the
coprecessing-frame model for the precessing model IMRPhe-
nomXPHM (XPHM) [21]. In this work we incorporate NR in-
plane-spin tuning to produce IMRPhenomXHM-CP (XHM-
CP).

The precession dynamics are modeled in PhenomPv3 us-
ing a multi-scale analysis (MSA) approach [40], and these
are also adopted in XPHM. The MSA dynamics are aug-
mented by NR-tuned merger-ringdown modeling in PNR,
which we extend in this work. Alternatively, one may use a
frequency-domain parameterization of the time-domain spin
evolution used in the time-domain Phenom model IMRPhe-
nomTPHM (TPHM) [22]; these angles are used in the XPHM-
ST model [41], and an efficient method for solving and imple-
menting them is found in IMRPhenomXODE [42].

The SEOBNR models integrate the EOB equations of mo-
tion (with additional NR tuning) to calculate both the inspiral
phasing and precession dynamics, followed by smoothly con-
necting ringdown modes at merger. These models are tuned
only to aligned-spin NR waveforms, although precessing-
binary waveforms are used for verification of the final model.
In this paper we compare against the most recent SEOBNR
model, SEOBNRv5PHM (SEOBv5) [29].

Finally, the NRSurrogate model NRSur7dq4 (NR-
Sur) [32] is calibrated to precessing NR waveforms up to
q = 4, and can be used to analyze signals starting around
20 Hz with masses M ≳ 65 M⊙. Comparisons against NR
waveforms suggest that this is the most accurate model cur-
rently available, and we use it for comparisons where possible.
However, since it cannot be used for low-mass signals, and its
calibration region does not extend beyond q = 4 (we calibrate
our model up to q = 8), it cannot provide a definitive test of
our model across the full calibration parameter space. (Con-
versely, the lack of an extremely accurate full inspiral-merger-
ringdown model across the full binary parameter space is the
primary motivation for the work we present here.)

Sec. III outlines how the original DCP tuning is improved
and applied to XAS [19], as well as introduces the model
for the antisymmetric contributions added to the coprecess-
ing (ℓ, |m|) = (2, 2) multipoles. Information about the preces-
sion angles, including modifications to the PNR angles and
the mapping of these angles to higher multipoles is found in
Sec. IV. The performance of the final model is considered in
Sec. V, presenting mismatch and parameter estimation results
compared with other contemporary waveform approximants,
and we end with concluding remarks in Sec. VI.

In this paper we use geometric units, whereby G = c =
1. Unless otherwise stated, all frequencies are presented in
dimensionless units M f . We employ use of the symmet-
ric mass-ratio η = m1m2/(m1 + m2)2, the effective aligned-
spin parameter χeff [43, 44] and the precession spin param-
eter χp [45]. Finally we remark that results in this paper
were produced using the reviewed implementation of this
model in LALSuite [46, 47], where the model is called
IMRPhenomXO4a.

II. ON THE IMPORTANCE OF FRAME CHOICES

Precession introduces modulations in the amplitude and
phase of a gravitational-wave signal, and this complicates
both the signal and, as a result, the task of modeling it. One
common modeling technique is to make a time-dependent ro-
tation to a “coprecessing” frame that tracks the orbital preces-
sion. In such a frame the constituent parts of the signal —
the coprecessing-frame waveform and the time-dependent ro-
tation angles (with respect to the total angular momentum, J)
— take on simple forms that make them easier to model. In
addition, during the inspiral the coprecessing-frame signal can
be approximated well by the signal from an equivalent non-
precessing binary [38]. This is possible because, to a good
approximation, the orbital frequency and inspiral rate are de-
termined by the black-hole masses and the spin components
that are aligned with the orbital angular momentum, i.e., the
spins that constitute an aligned-spin system, and this orbital
motion is the dominant contribution to the GW signal; the
precession due to the in-plane spin components can be consid-
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ered as a time-dependent rotation applied to this aligned-spin
waveform.

This simplification, which is easy to motivate in the
quadrupole approximation to the signal from an orbiting bi-
nary, also extends to the sub-dominant multipoles [48], and,
although the aligned-spin mapping is no longer valid through
merger and ringdown [38, 49, 50], the coprecessing-frame
waveform and the time-dependent precession angles retain a
sufficiently simple morphology that the coprecessing frame
continues to be attractive for signal modeling.

Some form of coprecessing-frame decomposition has been
used in all precessing-binary models that have been used to
analyze LVK observations to date [14, 17, 21–24, 26, 29,
32, 34]. The coprecessing frame can be defined either using
the orbital dynamics of the binary, or a frame aligned with
the maximum strength of the gravitational-wave signal, re-
ferred to as either quadrupole alignment [48] or the optimal
emission direction [51, 52]. The SEOBNR [23, 24, 26] and
Phenom [14, 17, 21, 22, 42] models used the precession de-
fined via the orbital dynamics, while the more recent PNR
model [34], and the NRSurrogate models [30, 32] use the op-
timal emission direction, which is the correct transformation
between the coprecessing frame and the inertial frame of the
gravitational wave signal; the differences between coprecess-
ing frames defined with respect to either the signal or the dy-
namics, are discussed further in
Paper I.

Unfortunately, the approximate mapping between
precessing- and aligned-spin-binary waveforms does not
carry over to the frequency domain beyond the dominant
coprecessing-frame multipoles, (ℓ, |m|) = (2, 2): the optimal
emission direction no longer identifies a frame in which the
signal multipoles can be approximated by their aligned-spin
counterparts.

To illustrate this, first consider the early inspiral in a co-
precessing frame in the time domain. We make use of the
standard decomposition of the gravitational wave strain, h(t),
into spin-weighted spherical harmonics,

h(t) =
∑
ℓ,m

hℓ,m(t) −2Yℓ,m(θ, ϕ), (1)

where (θ, ϕ) are the standard polar and azimuthal angles in
spherical polar coordinates, and ℓ ≥ 2 and |m| ≤ ℓ. As already
noted, in this coprecessing frame the signal multipoles will
approximate those of an aligned-spin, non-precessing binary,
i.e.,

hNP
ℓm (t) = Aℓm(t)e−imΦ(t), (2)

where Φ(t) is the orbital phase of the binary and Aℓm(t) the
amplitude. At each time t, we can rotate the multipoles using
a set of Euler angles (α(t), β(t), γ(t)) to produce the multipoles
in the inertial frame.

Now consider the same early inspiral signal in the fre-
quency domain. We see from Eq. (2) that the frequency of
each multipole scales with m. If at time t0 the frequency of the
dominant (ℓ, |m|) = (2, 2) multipole is f0, then the frequency
of each other multipole is m f0/2. This means that the angles
(α(t), β(t), γ(t)) should be applied to the (2,2) multipoles at f0,
but to the (3,3) multipoles at 3 f0/2, the (4,4) multipoles at
2 f0, and so on. Conversely, if we now consider the signal at
only one frequency, f0, then the angles (α, β, γ) applicable to
rotate back to the inertial frame will be different for each m.

(This is what is currently done in the stationary phase approx-
imation [SPA] treatment of the twisting-up procedure in the
PhenomPv3HM and XPHM models [17, 21].)

Therefore, we cannot rotate between the coprecessing
frame as defined above and the inertial frame at each fre-
quency by a single set of Euler angles. Since the optimal
emission direction would be defined by a single rotation of
all of the multipoles at each frequency, it cannot be iden-
tified with the Fourier transform of the time-domain copre-
cessing frame waveform, unless we restrict our coprecessing-
frame signal to one value of m. This restriction is made
in the dominant-multipole frequency-domain models Phe-
nomPv2 and PhenomPv3, but not in the higher-multipole mod-
els PhenomPv3HM or XPHM.

If we wish to produce a frequency-domain model that com-
prises a coprecessing-frame model plus a model for the pre-
cession angles, then we must either define a new coprecessing
frame that includes all ℓ and reconsiders the current aligned-
spin mapping, or identify a generalization of the SPA fre-
quency mapping that is valid through the merger and ring-
down. In the model we present here, we choose the latter. For
the remainder of this paper we address the problem of how
to define and model a frequency-domain coprecessing-frame
signal that retains the aligned-spin mapping during the inspi-
ral.

III. COPRECESSING FRAME

In this section, we describe the symmetric and coprecess-
ing sector of XO4a, which includes NR-tuned modifications
that encode precession effects. These modifications are di-
rectly built upon IMRPhenomXHM [20], which is a model for
gravitational wave signals from non-precessing binary black
holes (BBHs), and the basis of the coprecessing waveform for
XPHM. Our approach for modifying IMRPhenomXHM mir-
rors that used for DCP, which is the coprecessing model pre-
sented in Paper I.

In Sec. III A we describe both the tuning of the dominant
symmetric (ℓ, |m|) = (2, 2) coprecessing multipoles, extending
the work that produced DCP in Paper I, and the use of an “ef-
fective ringdown frequency” [36] in the higher coprecessing
signal multipoles. The addition of antisymmetric contribu-
tions to the (ℓ, |m|) = (2, 2) coprecessing multipoles, modeled
in Ref. [37], is detailed in Sec. III B.

A. Higher order multipole coprecessing model

1. ℓ = m = 2 multipole calibration

We calibrate the (2, 2) multipole moments to NR simula-
tions. Our approach follows that of Paper I, in that calibra-
tion is done by applying deviations to XAS model parameters.
XAS is the successor to PhenomD within the IMRPhenomX
framework and describes the (ℓ, |m|) = (2, 2) emission in the
IMRPhenomXHM model. If λk is an XAS model parameter,
then our coprecessing model uses the modified parameter λ′k,

λ′k = λk + χ sin(θLS) uk, (3)

where uk is a deviation variable that is tuned to NR, and χ
and θLS are the primary black hole’s spin magnitude and mis-
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alignment (as in the single-spin simulations used to tune the
model), or, equivalently, the result of the single-spin mapping
of generic two-spin binaries, as described in Paper I . In im-
plementation, uk is denoted differently, according to physical
significance:

uk ∈ {µ1, µ2, µ3, ν0, ν4, ν5, ν6, ζ1, ζ2} . (4)

The physical significance of each version of uk is noted in
Table II.

Numerical tuning is achieved by first parameterizing XAS
by the set of n deviation variables {u0, u1, ...un} using the
LALDict infrastructure. This results in a version of XAS
that is deformable “on-the-fly”, meaning that LALSuite’s
swig-python interface allows for Python generation of
waveforms that have amplitudes and phase derivatives deter-
mined by the choice and values of each uk. As with DCP [34],
the deviation variables are applied to select amplitude and
phase model parameters.

On-the-fly tuning of select amplitude and phase parameters
results in a new model for the coprecessing frame multipole
moments that we will call XHM-CP.

The tuning of each uk entails (in order) determining a min-
imal set of model parameters to tune, numerically solving
for optimal values of uk for each calibration case (i.e., tun-
ing), modeling the set of optimal deviation variables across
(χ, θLS, η, δ =

√
1 − 4η), and then allowing the on-the-fly de-

formable version of XAS to be generated with modeled opti-
mal deviation variables.

The minimal set of deviation variables is listed in Table II.
The parameters listed there were selected to enable modifica-
tions of XAS to fit the NR waveforms (amplitude and phase
derivatives) within our calibration set. Given the choice of
deviation parameter, and this set of deviation variables, op-
timal values of the deviation variables were found by min-
imizing a representation error, which we defined to be the
sum of two positive definite quantities: the root-mean-square
error (RMSE) for the frequency domain waveform’s ampli-
tude, and the RMSE for the frequency domain phase deriva-
tive. Minimization of representation error was performed us-
ing scipy.optimize.

Each deviation variable was modeled as a multivariate poly-
nomial using a significantly refined version of the basis learn-
ing routine, gmvpfit, detailed in Ref. [53]. To avoid over-
fitting, the minimum allowed fractional change in represen-
tation error, i.e. gmvpfit’s estatol keyword input, was set
to 0.001. Further information about the specific tuning coeffi-
cients is found in Appendix A.

Outside of the calibration region (i.e. the runs presented in
Ref. [35]; q > 8, χ > 0.8, θLS > 150◦), XHM-CP transitions
smoothly to a version of IMRPhenomXHM that is modified
with the effective ringdown frequencies for precessing BBH
remnants [36]. This transition occurs separately along param-
eter space coordinates q, χ, and θLS according to a shifted cos
taper,

wv =
1
2

[
cos

(
v − vb

vw

)
+ 1

]
. (5)

In Eq. (5), v is one of the coordinate directions, i.e. v ∈
{q, χ, θLS }, vb is a calibration boundary, and vw describes the
transition width. For {q, χ, θLS }, the respective values of vb are
{8, 0.8, 150◦}. Note that while the factor of sin(θLS) in Eq. (3)

ensured that parameter deviations are zero in the spin-aligned
and anti-aligned limits, use of windowing in the θLS direction
has been found to slightly improve the smoothness of param-
eter deviations between θLS = 150◦ and θLS = 180◦. For
{q, χ, θLS }, the respective values of vw are {0.5, 0.02, 0.5}.

On the tuned parameter space’s boundaries, Eq. (3) takes
the form

λ′k = λk + W(q, χ, θLS) χ sin(θLS) uk , (6)

where

W(q, χ, θLS) = wq wθLS wχ . (7)

Concurrently, since the XHM-CP tuning is applied directly
atop IMRPhenomXHM (of which XAS is a component), the
remnant’s spin must transition from the non-precessing spin
within our calibration region, to the appropriate precessing fi-
nal spin outside. Thus on the parameter space boundaries, the
final black-hole (BH)’s dimentionless spin, a f , takes on the
following form

a f = (1 −W)aPrec.
f +WaNon-Prec.

f , (8)

as is needed to self-consistently determine related IMRPhe-
nomXHM model parameters, and the ringdown frequency ap-
propriate for precessing systems [20, 36].

2. Subdominant multipole moments

We do not directly calibrate the (ℓ, |m|) , (2, 2) multipole
moments. Instead, we adjust only the ringdown frequency
of the multipoles to account for the fact that the waveform
is modeled in the coprecessing frame. This frame is differ-
ent to that in which the ringdown frequencies are calculated
from perturbation theory, where the final spin is along the z-
direction. The correct treatment of the ringdown frequency
for precessing systems, and the relationship between the co-
precessing and inertial frames, is discussed in greater detail in
Ref. [36].

The effective ringdown frequency in the coprecessing frame
is given by [36],

ω′ℓm = ωℓm − m(1 − | cos βf |) (ω22 − ω21) . (9)

where βf is the final ringdown value of β taken from the fits
discussed in Sec. IV A and ωℓm are the ringdown frequencies
calculated from perturbation theory. In order to obtain the
mass and spin of the final black hole required to obtain the
ringdown frequencies, we use the aligned-spin fit for the final
mass given in [54] and a final spin given by

χf = sgn (cos βf) χf , (10)

where χf is given by Eq. (24). Taking the sign of the spin to
correspond to the sign of cos βf ensures that the prograde or
retrograde frequency is chosen correctly as we move across
the parameter space. The conceptual framework and physical
motivation behind this choice is described in detail in Sec. IV.
A of Ref. [36].
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B. Multipole asymmetry

Current inspiral-merger-ringdown waveform approximants
(from both the Phenom and SEOBNR families) model the −m
coprecessing-frame multipoles using the reflection symmetry,

hCP
ℓm = (−1)ℓhCP ∗

ℓ−m . (11)

This symmetry holds for aligned-spin binaries, but is broken
for systems with misaligned spins [50, 55–57]. This asym-
metry results in linear momentum radiation perpendicular to
the orbital plane, which can lead to large out-of-plane recoil
in the final black hole [58]. The phasing of the antisymmetric
signal contribution is affected by the direction of the in-plane
spin components, and for this reason we expect the inclusion
of the antisymmetric contribution in signal models to improve
the accuracy of the black-hole-spin measurements in GW ob-
servations. The NR surrogate model NRSur [32] does include
the antisymmetric contribution, and it was shown in Ref. [59]
that this contribution is indeed necessary to measure the full
spin information, and was also likely crucial in identifying
precession in the analysis of GW200129 in Ref. [60]; we ex-
pect the same to be true for the measurement of a large recoil
in GW200129 in Ref. [61].

Ref. [37] introduces a method to model the antisymmetric
contribution to the coprecessing-frame dominant multipoles
in the frequency domain. Here we adopt this procedure and
the model of the antisymmetric amplitude ratio in [37] to con-
struct the antisymmetric waveform from the already-existing
model of the symmetric (2,2) coprecessing-frame multipoles.
The XO4a model includes symmetric contributions to multi-
poles up to ℓ = 4. As shown in Fig. 1 of Ref. [37], if we
neglect symmetric contributions for ℓ ≥ 5, we can also ne-
glect higher-order antisymmetric contributions. As such, the
only antisymmetric contribution we include in XO4a is to the
(2,±2) multipoles.

Specifically, the coprecessing-frame (ℓ, |m|) = (2, 2) multi-
poles are split into symmetric and antisymmetric parts,

h22( f ) = As( f )eiϕs( f ) + Aa( f )eiϕa( f ), (12)
h2−2( f ) = As( f )e−iϕs( f ) − Aa( f )e−iϕa( f ). (13)

The symmetric (2,2) amplitude and phase, As( f ) and ϕs( f ),
are the amplitude and phase of the standard model that does
not include multipole asymmetries. The antisymmetric am-
plitude Aa( f ) is constructed as a rescaling of the symmetric
amplitude, so

Aa( f ) = κ( f )As( f ), (14)

where the model of the ratio κ( f ) is made up of a post-
Newtonian (PN) estimate and an NR-calibrated correction,
described by a single coefficient b as defined in Eq. (16) in
Ref. [37]. Note that the coefficient b showed no strong corre-
lation with spin magnitude, while the spin dependence of the
amplitude ratio was carried over from the PN estimate. There-
fore, κ( f ) was calibrated to the 80 simulations presented in
Ref. [35] by fitting an ansatz for κ across the parameter space
of mass-ratio and spin-misalignment. The model for the fit
coefficients b can be found in Eq. (18) in Ref. [37].

For single-spin systems the antisymmetric phase ϕa varies
as the combination of the orbital phase and the precession an-
gle, α, during the inspiral, and in the ringdown it matches the

symmetric phase, i.e.,

ϕa( f ) :=

 ϕs( f )
2 + α( f ) f < p fRD,

ϕs( f ) f ≥ p fRD ;
(15)

fRD is the ringdown frequency and p ∈ [0, 1] determines the
fraction of fRD at which the transition occurs. The transition
is made smooth by using a window function. The phase con-
struction in Eq. (15) shows an interesting unanimity across the
parameter space. In particular, it was possible to use the same
parameters of the window function across the full binary pa-
rameter space. Details of antisymmetric waveform calibration
and full description of both the amplitude and phase models
can be found in Ref. [37]. This model can be used to generate
the antisymmetric waveform for two-spin systems by map-
ping it to an equivalent single-spin configuration, like the one
used for the precession angles in Paper I . Note that the mul-
tipole asymmetry vanishes for equal mass binaries when both
spins are equal in magnitude and point in the same direction.
To accommodate this behavior we modify the definition of the
in-plane spin of the equivalent system, as given by Eq. (20) in
Ref. [37].

To construct the positive-frequency precessing-signal strain
in the frequency domain, XPHM follows the prescription out-
lined in Appendix E of Ref. [21]. Noting that in the copre-
cessing frame,

hℓm( f ) = h(S )
ℓm ( f ) + h(a)

ℓm( f ),

hℓ−m(− f ) = h(S )
ℓ−m(− f ) − h∗(a)

ℓ−m(− f ) ,

it is easy to see from Eqs. (E8) and (E9) that the symmetric
and the antisymmetric contributions to the polarizations in the
inertial J-frame can be treated independently as,

h̃J
+( f > 0) = h̃J,(S )

+ ( f ) + h̃J,(a)
+ ( f ), (16)

h̃J
×( f > 0) = h̃J,(S )

× ( f ) + h̃J,(a)
× ( f ). (17)

The symmetric parts h̃J,(S )
+ ( f ) and h̃J,(S )

× ( f ) are as given in
Eqs. (E18) and (E19) in Ref. [21], while for the antisymmetric
contributions we have,

h̃J,(a)
+ ( f > 0) =

1
2

2∑
m′>0

e−im′γh̃(a)
2−m′ ( f )

2∑
m=−2

(
A2

m−m′ − A2∗
mm′

)
,

(18)

h̃J,(a)
× ( f > 0) =

i
2

2∑
m′>0

e−im′γh̃(a)
2−m′ ( f )

2∑
m=−2

(
A2

m−m′ + A2∗
mm′

)
,

(19)

where we are considering only ℓ = 2 for the antisymmet-
ric contribution. The symbols Aℓ

mm′ ( f ) represent the transfer
functions for rotating to the inertial frame from a coprecessing
frame, as used in Ref. [21].

IV. PRECESSION ANGLES

In this section we describe the implementation of the pre-
cession angles into XO4a. Modifications to the original PNR
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model are outlined in Sec. IV A, including some checks and
windowing to improve their performance across and outside
the calibration region. In Sec. IV B we outline a new fit for
the final ringdown value of the β precession angle which is
used in the construction of the effective ringdown frequency
in Eq. (9) [36]. Further small modifications to XPHM to im-
plement the PNR angles are discussed in Sec. IV C. Finally, in
Sec. IV D we outline the procedure used to extend the domi-
nant PNR angles to higher signal multipoles.

A. Dominant-multipole precession angles

1. Basic form

The precession angles that describe the rotation of the dom-
inant multipole from the coprecessing frame into the J-frame
take the same form as described in detail in Paper I . In brief,
during inspiral the precession angles α and β are given by the
MSA angles outlined in Ref. [62]. The angle β is rescaled
using a PN expression so that it describes the precession of
the optimal emission direction, rather than the precession of
the orbital plane. The rescaling expression is discussed above
Eq. (43) in Paper I. 1 During merger and ringdown, the angles
are given by a phenomenological ansatz fit to data from NR
simulations. The two regimes are connected as described in
Sec. VIII of Paper I . The third precession angle γ is then cal-
culated numerically using the minimal rotation condition [52].

In this iteration of the model we have recalibrated the
merger-ringdown fits against the entirety of the 80 simulations
presented in Ref. [35]. These simulations are all single-spin
binaries, where the spin is placed on the larger black hole. We
therefore use the two-spin mapping outlined in Sec. VII C of
Paper I to obtain the form of the merger-ringdown angles for
two-spin systems.

We use the same phenomenological form for the merger-
ringdown angles as introduced in Paper I. 2 These are

α ( f ) − ⟨α ( f )⟩ = −
(

A1

f
+

A2
√

A3

A3 + ( f − A4)2

)
, (20)

β ( f ) − ⟨β ( f )⟩ = β ( f ) − B0 =
B1 + B2 f + B3 f 2

1 + B4 ( f + B5)2 , (21)

where the Ai and Bi are free coefficients. We now explicitly
enforce the non-spinning and (anti-) aligned-spin limits in the
expressions of these coefficients. In the case of most of these
coefficients, we want the value to tend towards zero as we
move into the non-precessing limit. However, B0, which rep-
resents the overall amplitude of β during ringdown, has a more
complicated behavior in the non-precessing limit.

Consider an aligned-spin system. In this case, the opti-
mal emission direction and the orbital angular momentum are

1 In the original paper, this expression contains an error. It is missing a factor
of two in the denominator of the arctan argument. The correct expression
is

β = 2 tan−1

 sec(ι/2)
(
c0 + c2v2 + c3v3

)
2
(
d0 + d2v2 + d3v3)

 .
2 Note the overall sign change in the expression for α. This is to make the

definition consistent with the LAL conventions.

aligned and both perpendicular to the plane of the binary. β
therefore measures the angle between the orbital angular mo-
mentum L and the total angular momentum J = L + S =(
|L| + sgn (L · S) |S|

)
L̂;

cos β = L̂ · Ĵ = sgn
(
|L| + sgn (L · S) |S|

)
. (22)

It is therefore obvious that when the spin of the binary is
aligned with the orbital angular momentum, we have β = 0.
However, in the case that the spin and the orbital angular mo-
mentum are anti-aligned, if |L| > |S|, then β = 0 as before, but
if |L| < |S| then β = π.

For us to be able to apply this intuition to precessing sys-
tems, we would need to know the magnitude of the orbital
angular momentum just prior to merger. Since this is a poorly
defined quantity in the non-linear regime, it is not possible to
directly infer the behavior of β as it tends towards the anti-
aligned-spin limit. Instead, we use the estimate of the final
spin direction, relative to the direction of the orbital angular
momentum.

The final spin for a precessing binary is calculated by com-
bining the aligned component χ∥f obtained from numerical
fits for aligned-spin binaries and the in-plane component χ⊥f ,
which is assumed to be conserved throughout the evolution of
the binary. We use the aligned-spin fits given in Ref. [54] with
the aligned-spin component given by our single-spin map-
ping: χ∥1 = χ cos θLS; χ∥2 = 0. The inclination of the final spin
relative to the orbital angular momentum just prior to merger
is then given by

cos θf =
χ∥f
χf
, (23)

where

χf =

√√(
χ∥f

)2
+

( q
1 + q

)2

χ⊥f

2

. (24)

For an aligned spin binary, we find χ f = |χ
∥

f | so cos θf = ±1
and so recover the correct limit. We find the transition in lim-
iting behavior occurs when χ∥f = 0. This is demonstrated in
Figs. 1 and 2. The mean value of β in the merger-ringdown
regime, B0 is modeled as a perturbation on top of the final
spin inclination.

Having now established the correct limiting behavior of the
precession angles, the coefficients in Eqs. (20) and (21) are
given by

A1 = χ sin θLS

(
ΛA

1

)2
, (25)

A2 = − χ sin θLS

(
ΛA

2

)2
, (26)

A3 =
(
ΛA

3

)2
, (27)

A4 =
(
ΛA

4

)2
, (28)

⟨β⟩ = B0 = θ f − χ sin θLSΛ
B
0 , (29)

B1 = χ sin θLS exp
(
ΛB

1

)
, (30)

B2 = − χ sin θLS exp
(
ΛB

2

)
, (31)

B3 = χ sin θLS

(
exp

(
ΛB

3

)
− 200

)
, (32)

B4 =
(
ΛB

4

)2
, (33)

B5 = −
(
ΛB

5

)2
, (34)
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FIG. 1. Evolution of the final spin inclination θf with the inclination of the initial spin of the binary χ. The left hand panel shows binaries with
a mass ratio q = 6, while the right hand panel shows those with mass ratio q = 8. The aligned-spin limit transitions from θf = 0 to θf = π
when χ ∼ 0.55 for q = 6 and 0.42 for q = 8– when the aligned component of the final spin is zero, as shown in Fig. 2. This transition is now
captured in the modeling of the merger-ringdown precession angle β.

0.08 0.10 0.12 0.14 0.16
η

0.4

0.6

0.8

1.0

χ

FIG. 2. Variation of the value of initial binary spin χ at which the
aligned component of the final spin goes to zero. Shown in dotted
black are configurations with q = 8, 6, 4, shown from left to right.
Capturing the correct limiting behavior of β is therefore particularly
important to model precessing systems with higher mass ratio.

where the ΛX
i are a 3-dimension polynomial expansion of the

form given by

ΛX
i =

3∑
p=0

3∑
q=0

4∑
r=0

λi
pqrη

pχq cosr θLS, (35)

(see Eq. (50) in Paper I for reference). Further information on
the values of the coefficients λi

pqr can be found in Appendix A.

2. Checks and fallback behavior for α and β

As has been previously noted [21], in certain parts of the pa-
rameter space, the MSA expressions used for α and β during
inspiral fail. In the case that these angles fail to generate, we
use the next-to-next-to-leading-order (NNLO) angles [63] in-
stead (for explicit expressions see e.g. [21]), as has been done
in previous models which employ the MSA angles [21]. The

NNLO expressions for the inspiral angles are then treated ex-
actly as described in the preceding subsection– i.e. rescaling,
two-spin mapping and connecting to the merger-ringdown ex-
pressions.

Considering α, as shown in e.g. the left-most panel of
Fig. 5, we see physically incorrect behavior for A1 < 0 (α
would decrease as a function of frequency) or A2 > 0 (the dip
in α would have the wrong sign). As it is only a small region
of parameter space in which this might happen, we enforce
the conditions that A1 > 0 by taking the absolute value of the
coefficients with the appropriate sign. For A2 we replace any
positive values with zero. Pathological behavior occurs for
A3 < 0. We limit A3 to have a value above 10−5 in order to pre-
vent the dip from becoming unphysically narrow. Finally, in
order to ensure that the dip in α does not become unphysically
deep, we enforce the following condition; A2 < −π

2 √A3.

For β, we impose the following checks. First, we use an
arctan window around β to ensure it is bounded between 0
and π (see Eq. (62) and surrounding discussion in Paper I for
further details). This ensures that it maintains a physically
meaningful value. To ensure that β does not become patho-
logical, if B4 ≤ 175 then we use B4 = 175. We determine the
correct root of β following the prescription set out in Sec. VI D
of Paper I . With the refitting of the coefficients, we also give
an updated condition for Eq. (69) in Paper I . This condition
now reads:

b
3a

>
B5

2
−

2141
90988

. (36)

The ansatz for β can take 3 possible morphologies demon-
strated in Fig. (10) in Paper I. In the left-hand and center pan-
els, the inflection point occurs at a higher frequency than the
maximum ( finf > fmax). In the center panel, the minimum oc-
curs at a higher frequency than the maximum ( fmin > fmax). In
either case, if the maximum occurs above a cutoff frequency
flow, then the connection frequency is given by Eq. (57) in Pa-
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per I. 3 Otherwise, the connection frequency is just flow, which
is defined by Eq. (58) in Paper I . In the third case (the right
hand panel) the connection frequency is defined to be

fc =

 fmin − 0.03 fmin ≥ 0.06
3
5 fmin fmin < 0.06

. (37)

In the cases shown in the center and right-hand panels of
Fig. (10) in Paper I , we set the ringdown value of β to be
constant, given by the value of the merger-ringdown ansatz at
that point. This occurs when fmin > finf . For cases like the one
on the left-hand panel, we allow β to taper to its asymptotic
value. To do this we set the connection frequency to 100.

We only evaluate rescaled inspiral β without attaching
merger-ringdown contribution in cases where: (i) The lower
(inspiral-merger) connection frequency is negative. This is
done by setting both connection frequencies to 100. (ii) The
lower connection frequency is less than 0.0009. (iii) The value
of the merger-ringdown model of β is negative at the lower
connection frequency. (iv) We find ourselves choosing the
wrong root of the expression for the merger-ringdown value
of β. This is determined by identifying cases where the value
of the merger-ringdown model at the lower connection fre-
quency is greater than 5 (⟨β⟩ + 0.5).

3. Outside the calibration region

Outside the calibration region, we enforce a smooth turnoff
of the precession angles so that the model transitions to the
inspiral expression for α and the PN-rescaled expression for
β. This is done using a windowing function of the form of
Eq. (5), which was

w(x) =
1
2

[
cos

(
x − xb

xw

)
+ 1

]
, (38)

where x is the variable to which we apply the window, xb is
value of the variable at the boundary of the window and xw is
the range of the values of the variable over which the window
is applied. This is the same functional form as is used to turn
off the coprecessing tuning outside the calibration region.

For the angles, we smoothly transition to the PN form of the
angles once the mass ratio q and single-spin mapped dimen-
sionless spin magnitude χ are beyond the calibration region.
The final window applied to the model is therefore a product
of these two windows (i.e. w(q)w(χ)). The parameters used in
the two windowing functions are

qb = 8.5, qw = 3.5, (39)
χb = 0.85, χw = 0.35. (40)

(41)

The final expression for the angles in this transition window
are

α = w(q) w(χ)αMR +
[
1 − w(q)w(χ)

]
αMSA, (42)

β = w(q) w(χ) βMR +
[
1 − w(q)w(χ)

]
βPN, (43)

3 Eq. (56) in Paper I, which defines a quantity dβc, which appears in Eq. (57)
is incorrect by a factor of 10, i.e. it should be,

dβc = 25 × 10−4 × dβ2
inf.

where αMR and βMR are the phenomenological expressions for
the merger-ringdown angles, αMSA is the inspiral expression
for α and βPN is the PN-rescaled expression for β.

B. Final β

In addition to the fit of the angle β in the merger-ringdown
regime, which implicitly gives the value to which β drops after
merger, we find it useful to produce an independent fit of this
ringdown value. The value from this independent fit is used in
calculating the effective ringdown frequency via Eq. (9). This
value is given by a fit

βf = θ f − χ sin θLSΛ
B
f , (44)

where ΛB
f is given by Eq. (35). From this it can be seen that

as with ⟨β⟩, we use θf (shown in Fig. 1) to inform the overall
shape of βf and the anti-aligned-spin limit in particular. De-
tails on the fit coefficient values is found in Appendix A.

A comparison of the final value of β as given by Eq. (44)
and that employed by other models is shown in Fig. 3. We
compare here against SEOBv5 [29] (right hand panel) and
TPHM [22] (middle panel) which both set the ringdown value
of β to a constant equal to the value of the inspiral angle
prescription at a specified attachment time. We do not con-
sider XPHM (MSA), where the inspiral angles are employed
through merger and ringdown and do not tend to a constant
value or XPHM-ST (Spin Taylor), which tends smoothly to
either 0 or π as determined by the PN treatment of the inspiral
angles.

It can clearly be seen from this figure that both SEOBv5
and TPHM tend to overestimate the ringdown value of β since
they do not capture the rapid drop in the value at merger. This
difference in the values may also be partially accounted for
by differences between the time-/frequency-domain values of
β. However, all three models show roughly the same behav-
ior in the antialigned-spin limit in that they tend either to 0 or
π depending on the binary configuration. The exact point at
which this transition occurs differs slightly between the mod-
els depending on the approximations employed (XO4a relies
on an approximation of the precessing final spin and remnant
quantity fits to NR data whereas SEOBv5 and TPHM use PN
information from the inspiral). These differences may cause
differences when using the various models for data analysis,
e.g., parameter estimation for high-mass signals.

C. Additional Changes

1. Enforcement of the Kerr limit

The XPHM model includes a check to make sure that
the individual spin components do not exceed the physical
Kerr limit. In our mapping of generic spins to an equivalent
single-spin configuration, there are regions of parameter space
where the effective single-spin magnitude exceeds one. This
is fine: the parameter no longer represents the physical spin
of a single black hole, but an effective spin parameter in the
model. As such, the Kerr-limit test in the code to populate the
IMRPhenomXPrecessionStruct is bypassed in the special
case of producing equivalent single-spin precession angles for
these cases.
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FIG. 3. Comparison of βf values between different models. Left: XO4a, center: TPHM, right: SEOBv5. Systems under consideration all have
q = 8.

2. Re-mapping of θJL

In LAL, the source frame is the frame instantaneously track-
ing the direction of the orbital angular momentum at the spec-
ified reference frequency [64]. This frame is related to the
J-frame in which the inertial waveform multipole moments
are defined by the two angles (θJL, φJL), where

θJL = arccos
(
Ĵ · L̂

)
, (45)

φJL = arctan
(

S y

S x

)
, (46)

with components defined in the LAL source frame. The ex-
pression for φJL follows from the fact that L̂ = ẑ in the LAL
source frame.

When modeling the J-frame signal using our angle model,
we are no longer mapping from a source frame determined by
the dynamics but rather by the maximal emission direction,
V̂ = ẑ, in which case the angle θJL as computed in Eq. (45)
is not necessarily correct. Instead, the angle θJV = β should
be used to map from the “maximal emission” source frame in
which the spins are defined to the J-frame.

D. Mapping of precession angles to subdominant multipoles

As discussed in Sec. II, complications arise when attempt-
ing to extend the same modeling assumptions used to produce
the quadrupolar precession angles to higher signal multipoles.
The notion that we can simply use the ℓ = 2 Euler angles for
the higher multipoles (as one can in the time domain [32]) dis-
solves, and we choose to instead produce a set of angles for
each (ℓ,m)-multipole included in the model.

Furthermore, as seen in Fig. 4, application of the inspi-
ral frequency rescaling is not sufficient to capture the full
frequency evolution of the higher multipole precession an-
gles. For this example we compute the FD precession an-
gles (α22, β22) and (α33, β33) from the the FD strain containing
only (ℓ, |m|) = (2, 2) and (ℓ, |m|) = (3, 3) in the coprecessing
frame, respectively. At low frequencies, the simple frequency
rescaling with azimuthal index works well, demonstrated by

the good agreement of the α22(2 f /3) and β22(2 f /3) curves
compared directly to α33 and β33 in Fig. 4. This simple map
does not work at high frequencies, where instead the high-
frequency behavior of the precession angles appears to be ap-
proximately governed by a shift in the input frequency equal
to the difference of the (2, 2)- and (3, 3)-multipole ringdown
frequencies in the coprecessing frame. The transition from
depending on m in the inspiral to depending on ℓ (through
the ringdown frequency scaling) in the merger and ringdown
should not come as a surprise, as it follows similarly to the ap-
proximate scalings seen in the higher signal multipoles [15].

We now discuss the specific details in mapping the tuned
precession angles detailed above to the higher multipoles.

1. (ℓ,m)-angle frequency map

To map the tuned, dominant (2, 2)-multipole precession an-
gles to rotate the higher multipoles, we follow a similar ap-
proach as detailed in Ref. [15]. At low frequencies, the fre-
quency is rescaled with respect to m and the inspiral contribu-
tions to the angle functions are evaluated at the velocity

v = (2πM f /m)1/3, (47)

much as is done in previous precessing higher-multipole Phe-
nom models [17, 21].

At the higher frequencies of the merger and ringdown, the
simple inspiral rescaling does not hold and we instead shift
the frequency so that each multipole’s ringdown frequency is
shifted to the (2, 2) ringdown frequency

f → f − ( fRD,ℓm − fRD,22). (48)

The two regions are then connected by a linear mapping be-
tween them.

A mapping of the tuned precession angles to rotate the
(ℓ,m)-multipole coprecessing signal is created by evaluating
the PNR angles using the frequency map described above,
e.g.,

αℓm( f ) ≡ α( f22( f )), (49)
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FIG. 4. The α and β precession angles computed from the
(q, χ, θLS) = (8, 0.6, 30◦) simulation shown in the top and bottom pan-
els, respectively. The angles αℓℓ and βℓℓ are computed from the FD
strain with only (ℓ, ℓ)-multipole moments in the coprecessing frame,
for ℓ ∈ {2, 3}. The red dash-dotted curves show the quadrupolar ℓ = 2
precession angles remaped using the approximate inspiral frequency
scaling, whereas the green dashed curves show the quadrupolar pre-
cession angles shifted in frequency by the difference of the ringdown
frequencies ∆ fRD = fRD,33 − fRD,22.

with

f22( f ) =


2 f /m f ≤ fPN
ξ1 ( f − fPN) + ξ0 fPN < f ≤ fMR
f − ( fRD,ℓm − fRD,22) f > fMR,

(50)

and linear coefficients,

ξ1 =
fMR − ( fRD,ℓm − fRD,22) − 2 fPN/m

fMR − fPN
, (51)

ξ0 = 2 fPN/m. (52)

We specify the lower and upper connection frequencies, fPN
and fMR respectively, based on connection frequencies defined
for both PNR α and β,

fPN = cPN m f1/2, (53)
fMR = cMR

(
fc + fRD,ℓm − fRD,22

)
, (54)

where f1 = 2A4/7 and fc is defined in Eq. (57) of Paper I. The
coefficients cPN and cMR are found by minimizing the joint

RMS error between the NR angles and frequency-mapped
PNR angles, added in quadrature, for both α and β separately.
The values of cPN = 0.65 and cMR = 1.1 were found to be a
good initial global fit, and any further tuning with dependence
on intrinsic parameters is left for future work. An example
comparison of the angles αℓm and βℓm against NR precession
angles is shown in Fig. 5.

We note one subtle issue with the angle frequency map. If
we are to re-map the precession angles by analogy with each
multipole’s frequency evolution, as described above, then for
consistency the anti-symmetric (2,2) contribution would be
rotated with the same angles as the (2,1) multipole, since that
most closely mimics the frequency evolution of the antisym-
metric (2,2) contribution [37]. We experimented with using
both the (2,2) and (2,1) angles, and found no appreciable dif-
ference in the accuracy with either choice. In this version of
the model we have used the (2,2) angles, but this should be
reconsidered in future work.

2. (ℓ,m)-angle interpolation

To compute the angles for the higher multipoles as in
Eq. (49) we use the cubic spline interpolant provided by the
GNU Scientific Library (gsl) [65]. This construction requires
us to first produce the tuned PNR precession angles α, β, and
γ over the frequency values used in the frequency map in
Eq. (50) and with appropriate frequency spacing.

Given a waveform generated between the frequency val-
ues fmin and fmax, the frequency map in Eq. (50) potentially
requires use of the tuned precession angles outside of the
specified frequency range f ∈ [ fmin, fmax]. To see this one
need only look at the mapping for low frequencies f < fPN,
where the lowest value is f22( fmin) = fmin/2 for the (4, 4)-
multipole angles. At high frequencies f > fMR, it is possible
for f22( fmax) > fmax when mapping to the (2, 1)-multipole,
where generally fRD,21 < fRD,22. This extension to the fre-
quency range must be accounted for to avoid extrapolation
errors in the spline evaluation.

To appropriately generate interpolants that will cover the
required frequency range, we specify modified minimum and
maximum frequency values, f̆min and f̆max respectively, be-
tween which we generate the angles. For the minimum fre-
quency, we set f̆min = 2 fmin/m for the largest value of m
contained in the list of signal multipoles desired in the wave-
form. To compute the maximum frequency, we specify f̆max =

fmax − ( fRD,21 − fRD,22) if the (2, 1)-multipole is desired; other-
wise we keep f̆max = fmax.

Finally, once we are equipped with the appropriate fre-
quency spacing ∆ f (see below), we pad the minimum and
maximum frequencies by 2∆ f to avoid potential extrapola-
tion due to truncation errors. Should f̆min − 2∆ f < 0, then
f̆min is close to zero and we instead take half of the minimum
frequency f̆min/2.

Generation of the precession angles used to construct the
cubic spline interpolants is done on a uniform frequency grid;
we now describe the methods used to estimate an appropri-
ate frequency spacing for that uniform frequency grid, follow-
ing loosely the work done on frequency multibanding of the
gravitational wave phasing and precession angles detailed in
Refs. [21, 66].

We initially consider single-spin cases, or cases for which
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FIG. 5. Comparison of the αℓℓ and βℓℓ precession angles computed from the (q, χ, θLS) = (4, 0.8, 90◦) simulation for ℓ ∈ {2, 3, 4}.

two-spin interactions are negligible, and work in units where
the total mass M = 1. In these cases, as discussed in Sec. VD
of [21], the most stringent requirement on ∆ f arises from the
behavior of α in the inspiral, which at leading PN order scales
with frequency as,

α ∼

(
−

5δ
64m1

−
35

192

)
(π f )−1. (55)

The work in [66] considers linear interpolation of the gravita-
tional wave phase and amplitude, and relates in their Eq. (2.5)
the frequency spacing ∆ f required to produce an interpolant
with a given error R to the second derivative of the function
being interpolated. In this work we are using cubic spline
interpolants with natural boundary conditions, and we may
therefore assume that the error scaling in this interpolation is
approximated by [67],

R( f∗) ≤ max
f0≤ f∗≤ f

5
384

α(4)( f∗)∆ f 4, (56)

for some f0 < f∗ < f .
Solving for ∆ f and using Eq. (55), we find,

∆ f = 4

√
2
5

3πR
[
1 +

√
1 − 4η

]
7 + 13

√
1 − 4η


1
4

( f̆min)
5
4 , (57)

where we have used m1 = (1 + δ)/2, δ =
√

1 − 4η, and the
fact that the fourth derivative Eq. (55) will be maximized for a
given set of parameters at the lowest evaluated frequency f̆min.
For the purposes of mapping the higher-multipole angles, we

set the default value of R = 0.01, though this error threshold
may be modified using the LALSimulation waveform flag
infrastructure (see Appendix A).

While the angle model was tuned to single-spin configura-
tions, the MSA precession angles used for frequencies cover-
ing the inspiral regime describe generic two-spin configura-
tions and may contain oscillations induced by changes in the
magintude of the total spin vector. In these cases the above
frequency spacing specified by Eq. (55) may not suffice and
we turn to a different method to predict the required spacing.
The oscillations in the total spin magnitude are given by [62],

S 2
0 = S 2

+(trr) +
[
S 2
−(trr) − S 2

+(trr)
]

sn[ψ(tpr, trr),m(trr)], (58)

where S 2
− and S 2

+ are the squared magnitudes of the minimum
and maximum total spin vector configurations, respectively,
trr is the radiation-reaction timescale, tpr ≪ trr is the preces-
sion timescale, ψ is the phase angle tracking the oscillation
between S − and S +, and m = (S 2

+ − S 2
−)/(S 2

+ − S 2
3).

The solution for ψ is given by Eq. (51) of [62],

ψ = ψ0 −
3g0δm

4
v−3

(
1 + ψ1v + ψ2v2

)
, (59)

where ψ0 is a constant of integration, v is the velocity defined
in Eq. (47), and the remaining terms are defined in [62]. We
will assume that over a small range of frequency values close
to f̆min, we can approximate

sn[ψ( f̆min),m] ≈ sin(ψ′ f̆min), (60)

where ψ′ is the first derivative of Eq. (59) with respect to f ,

|ψ′| =
πg0δm

4v6

(
3 + 2ψ1v + ψ2v2

)
. (61)
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Then to adequately resolve the oscillations in Eq. (60) we
choose to specify a sampling rate that places four frequency
points within one period of oscillation, i.e.,

∆ f =
1

4|ψ′|
. (62)

This approximation handles almost all cases of two-spin os-
cillations. For some configurations where the minimum and
maximum values of β satisfy 0 ≈ βmin < βmax we see sweep-
ing oscillations in β that drop close to zero, at which point the
coordinates of the rotation approach a singular point and α
sees sharp jumps of π. To predict these cases we compute the
minimum and maximum values that β can take following [21],

βmin = arctan
(
|S 1⊥ − S 2⊥|

L + S ∥

)
, (63)

βmax = arctan
(

S 1⊥ + S 2⊥

L + S ∥

)
, (64)

where L is the magnitude of the post-Newtonian orbital an-
gular momentum used by XPHM evaluated at f̆min, S ∥ is the
component of the total spin parallel to L, and S 1,2⊥ are the
components of S1 and S2 perpendicular to L, respectively.

When the conditions βmin < 0.01 and βmin/βmax < 0.55 are
both met, then we can assume that β is oscillating sufficiently
close to zero for jumps in α to be a potential concern. In this
case, we increase the resolution by dividing ∆ f in Eq. (62) by
a factor of 4,

∆ f =
1

16|ψ′|
. (65)

Parameter Value
M [M⊙] 34.7488472
q 15.1486886
χ1 (−0.04585042,−0.03174999, 0.65327636)
χ2 (−0.90498966, 0.31916086,−0.06208559)

TABLE I. Configuration used to generate Fig. 6. The angles were
produced with starting and reference frequencies of 10 Hz.

Finally, we use the minimum ∆ f computed from either
Eqs. (57), (62), or (65), and require that the final choice of
∆ f ≥ 10−2 so as not to saturate available memory when gen-
erating the waveform.

In Fig. 6 we show the impact of inadequate frequency
spacing on the interpolation of the oscillating precession an-
gles. The precession angles α and β are presented in the top
two panels of the figure for the configuration listed in Ta-
ble I, where the analytic evaluation of the angles with ∆ f =
1 × 10−3 Hz is shown in black solid curves. The blue dotted
and red dashed lines show the results of inerpolating the ana-
lytic α and β using the frequency step sizes given in Eqs. (62)
(∆ f = 0.027 Hz) and (57) (∆ f = 0.843 Hz), respectively. To
more clearly show the oscillatory behavior of α, we define α̃
to be α minus a quadratic polynomial fit to the analytic eval-
uation of α, thereby removing the dominant f 2 growth of the
angle with frequency.

Unsurprisingly, the oscillations in α and β require finer
frequency spacing to be accurately resolved compared to
the simple leading-order-in-frequency estimate provided from
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Eq. (57). This can be seen quite clearly from the absolute dif-
ferences between the interpolants and the analytic angles dis-
played in the lower panels of Fig. 6. As the period of the two-
spin oscillations eventually increases enough for the coarse
frequency resolution to resolve the oscillations (at roughly
the highest frequencies plotted in Fig. 6), the error from the
coarsely-sampled interpolation begins to drop.

V. MODEL PERFORMANCE AND PE RESULTS

We now look to assess the performance of XO4a by means
of both mismatches and parameter estimation (PE). We adopt
the definitions of the mismatch M and precessing mismatch
Mw discussed in Sec. XI A of Paper I. In computing mis-
matches we utilize the advanced LIGO power spectral density
at design sensitivity [68].

In Sec. V A we first analyze the perfomance of the under-
lying coprecessing XHM-CP model and also assess the im-
pact of adding the antisymmetric contribution. We then ex-
tend our analysis to look at precessing mismatches with sym-
metrized (ℓ, |m|) = (2, 2) coprecessing data in Sec. V B and
full ℓ = 2 coprecessing data in Sec. V C. Precessing mis-
matches using all available coprecessing frame multipoles and
the mapped HM-angles are presented in Sec. V D. Finally we
give results from PE recoveries performed with XO4a along-
side other contemporary models in Sec. V E.

A. Coprecessing frame mismatches

We start by computing mismatches between the tuned
(ℓ, |m|) = (2, 2) symmetric coprecessing model contribution
to XHM-CP and the 80 NR waveforms detailed in Ref. [35]
and compare the results to the modified aligned-spin ver-
son of XAS used in XPHM. All mismatches in this subsec-
tion use a total mass of 100 M⊙, starting frequency fmin =

min {20 Hz, fref + 5 Hz} and fmax = 1024 Hz.
As an initial result shown in Fig. 7, we verify that the per-

formance improvement seen in Paper I by tuning the domi-
nant quadrupolar contribution to the underlying coprecessing
model in DCP is retained in XHM-CP. Across the calibration
waveforms we see improvement in the mismatch performance
over the coprecessing model used in XPHM for the dominant
(ℓ, |m|) = (2, 2) contribution. This relative improvement is
maintained when comparing to the full (ℓ,m) = (2, 2) NR
coprecessing data without symmetrization, shown in Fig. 8.
While the mismatches for both XHM-CP and XPHM degrade
slightly in overall performance, a majority of the XHM-CP
mismatches remain below 10−3. For this set of matches, the
antisymmetric contributions to XHM-CP are enabled, and we
optimize the matches over rotations of the in-plane spin direc-
tion, thereby optimizing over the antisymmetric phase. Fig-
ure 8 nicely demonstrates the improvement in the coprecess-
ing model due to modeling the dominant multipole asymme-
try. Notably, for about a third of the cases, mismatches ∼10−3

were only attainable after adding the model of the antisym-
metric waveform to the coprecessing model.

Finally in this section we remark on the performance of
the higher multipole contributions to XHM-CP described in
Sec. III A 2, where no tuning has been done but the ringdown
frequencies used in each multipole are modified by Eq. (9).

Mismatches between individual coprecessing higher multi-
poles were computed for all 80 NR waveforms (except the
q = 1 configurations for the odd-m multipoles, where the co-
precessing contributions approximately vanish). In general
the performance improvement is lower compared to the re-
sults shown in Fig. 7, which is to be expected as the full tun-
ing to NR has not been done. On average the mismatches
improve across the parameter space when using the effective
ringdown frequency for each multipole, with larger improve-
ments seen at higher mass-ratios and spin magnitudes, and we
report the mean percentage improvement in the mismatches
for each (ℓ, |m|)-multipole: (2, 1): 0.09%, (3, 3): 0.17%, (3, 2):
0.05%, (4, 4): 0.14%.

We expect that explicit tuning of the higher multipoles
could achieve similar levels of accuracy to that achieved for
the co-precessing-frame (2,2) multipoles. However, this also
requires that the model accurately capture the relative phasing
between the multipoles. We will return to this point when we
consider full precessing matches in Sec. V D.

B. Symmetrized hCP
22 mismatches

We next consider the accuracy of both our underlying sym-
metric dominant-coprecessing-multipole and of the dominant
multipole precession angles to the waveform. As described
above, we have calibrated both the symmetric coprecessing
(2,2) multipole and the merger-ringdown part of the preces-
sion angles α and β to a set of 80 NR waveforms [35]. In
order to test the performance of this model and the validity of
the approximations made, we calculate the full SNR-weighted
precessing match between the ℓ = 2 multipoles of the model
in the inertial frame and the 80 calibration waveforms.

To do this, we use the cleaned and symmetrized NR wave-
forms used in the calibration process, more details of which
can be found in Paper I. The model data are produced by call-
ing XO4a with only the (2, 2) multipole activated in the copre-
cessing frame and the multipole asymmetries turned off. For
comparison, we also consider SEOBv5, which is also called
with only the (2, 2) multipole activated (and natively does not
include multipole asymmetries).

When calculating the match, we consider masses in the
range between 100M⊙ and 240M⊙ at intervals of 20M⊙. We
calculate the match at each of the inclination values in the set
{0, π/6, π/3, π/2}. The match is performed over the frequency
range fmin = max{20 Hz, f NR

min + 5Hz} to fmax = 512 Hz. This
set up is chosen to allow for direct comparison with results in
Sec. XI E in Paper I utilizing PNR.

The results of this comparison can be seen in the top panel
of Fig. 9. First, we can see that the improvements to the cali-
bration presented in this paper show an improvement of XO4a
over PNR on average across the parameter space. In particu-
lar, we see an improvement in the low-spin regime due to the
improved treatment of the zero-spin limit in the modeling of
the precession angles. It is important to note that PNR was
originally calibrated to a subset of just 40 of the numerical
waveforms, whereas XO4a has been calibrated to the entire
set. Fitting to just a subset of the waveforms with PNR en-
abled us to check that there was no overfitting or other issues.
We then calibrated XO4a against the additional 40 waveforms
to further improve accuracy. We note that the performance of
PNR for the additional spin magnitudes of {0.2, 0.6} is con-
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sistent with the accuracy achieved for the calibration set (i.e.
χ = [0.4, 0.8]). This indicates that the good matches seen here
are not purely a consequence of comparing to the calibration
set of waveforms.

We can also see the effect of the calibration on these
matches when compared to SEOBv5, a recent state-of-the-
art precessing model which does not calibrate precession ef-
fects to NR. XO4a performs better than SEOBv5 across the
parameter space, often by an order of magnitude. A compari-

son for these cases with the older models XPHM and SEOB-
NRv4PHM can be seen in Paper I. We see the same improve-
ment there when comparing a model with calibrated preces-
sion effects against those without.
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C. ℓ = 2 mismatches

We now consider the impact of the inclusion of higher or-
der multipoles and asymmetry on the model accuracy. We
first include all ℓ = 2 coprecessing multipoles used in each
model. XO4a and SEOBv5 contain the symmetric (2,±2)
and (2,±1) multipoles in the coprecessing frame, and XO4a
also includes the antisymmetric (2,±2) multipoles. The NR
waveforms contain all ℓ = 2 multipoles in the inertial frame
without further processing (i.e. no symmetrization). Once
again we calculate the full SNR-weighted precessing match
in the inertial frame. We consider systems with total mass
{60, 90, 120, 150}M⊙ and inclinations {0, π/3, π/2, 2π/3, π}.
The match is performed over the frequency range fmin =

max{20 Hz, 1.35 f NR
min} to fmax = 512 Hz. This is a slightly

different set up to that considered in the previous subsection.
Since we are now considering the effect of asymmetry on the
waveform, we now include inclinations greater than π/2. As
we are examining a greater number of systems than in Paper I
we sample the total mass parameter space less densely in or-
der to ensure that the analysis is computationally feasible.

First we consider the performance of XO4a against the
set of 80 calibration BAM waveforms, shown in the mid-
dle panel of Fig. 9. Here we show the mismatch value av-
eraged over all masses and inclinations. Since these results
have been produced using a slightly different set of choices
for the total masses and inclinations, they cannot be com-
pared directly with the results for the symmetrized (2, 2)-only
matches shown in the top panel. However, we can see that the
mismatch degrades by up to an order of magnitude with the
addition of the untuned (2, 1) multipoles in the coprecessing
frame and when considering the multipole asymmetries. It is
unclear which of these additions has the dominant impact on
the mismatches. For systems with spin magnitude below 0.4,
we see that the mismatches lie below 10−2 for all cases up to
q = 8. For systems with q ≥ 4 and spin magnitudes above 0.4,
the mismatch value starts to become notable. It is therefore
important to improve the calibration of the model in this part
of the parameter space. We also consider the performance of
SEOBv5 against the same set of waveforms. When consider-
ing just the ℓ = 2 multipoles, XO4a still outperforms SEOBv5
in almost all cases. This improved performance is particu-
larly significant for the higher mass ratio cases included in the
dataset.

It is worth noting here the uncertainty in the NR waveforms.
The mismatch uncertainty in the BAM waveforms is esti-
mated to be ∼10−3 [35]. We have also calculated mismatches
between BAM waveforms and SXS waveforms where equiva-
lent configurations exist, and those results are consistent with
the same level of disagreement. We therefore caution against
interpreting any significance to mismatch differences that are
smaller than this threshold, which is in general the level of
improvement between XO4a and SEOBv5 ℓ = 2 mismatch
results in the middle panel of Fig. 9 until we reach the cases
where q = 4 and χ = 0.6 (above case 50). For example, in
mismatch calculations where we replace the BAM waveforms
by equivalent NRSurwaveforms, we find that the relative per-
formance of XO4a and SEOBv5 often swaps, but changes are
not more than roughly 10−3.

We also consider single-spin NRSur configurations that
differ from those in our calibration set, i.e., with spin mag-
nitudes and misalignment angles in between those used for
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of NRSur, XO4a and SEOBv5. Considered 1024 two-spin config-
urations at four different total masses {60, 90, 120, 150}M⊙ and five
different inclinations {0, π/3, π/2, 2π/3, π} rad.
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the BAM simulations. We find similar levels of mismatch to
neighbouring configurations, again demonstrating that over-
fitting is not a significant source of error.

We also consider the performance of these two models
against a set of 1024 two-spin configurations generated using
NRSur. Due to the region of validity of the surrogate model,
these configurations only extend up to mass ratio q = 4. These
results are shown in Fig. 10. From this comparison we can
see that in general SEOBv5 slightly outperforms XO4a. A
closer inspection of the results shown in Fig. 10 reveals that
the performance is roughly comparable between the two mod-
els, with a tail extending towards higher mismatches present
for XO4a accounting for most of the difference. This effect is
less prevalent at higher total mass, where the signal consists
of mainly merger and ringdown. From this we can infer that
it is likely the inspiral part of XO4a which requires the great-
est improvement while the merger-ringdown part has already
been accurately tuned.

There are a number of possible reasons for the different pic-
tures of the model accuracy shown in Figs. 9 and 10. First and
foremost is the presentation of the data — in Fig. 9 we av-
erage over inclination and total mass, while in Fig. 10 we do
not, so extremely good/bad cases are more prominent. Sec-
ondly, the mismatch uncertainty between BAM and NRSur of
O(10−3) is reflected in the performance of the models against
three different “datasets.” Finally, the random sampling of the
two-spin parameter space in Fig. 10 very rarely samples the
large-mass-ratio large-primary-spin cases for which SEOBv5
shows poor matches in Fig. 9. The picture is however consis-
tent when examining calibration and non-calibration cases, so
we do not attribute the apparent change in performance to any
overtuning of the model. From this we conclude that SEOBv5
slightly outperforms XO4a in the bulk of the parameter space,
but is less accurate for more extreme configurations.

D. HM Mismatches

Finally, we consider the overall performance of the final
model. We use the same match set up as described in the pre-
ceding section. We consider a data set consisting of the 80 cal-
ibration BAM waveforms and 1024 two-spin configurations
generated using NRSur. We compare XO4a with the other
contemporary time- and frequency-domain waveform models.

The results of the comparison against the 80 calibration
BAM waveforms are shown in the bottom panel of Fig. 9.
We can see from a direct comparison with the middle panel
(which shows the mismatch results for just the ℓ = 2 multi-
poles) that the inclusion of the higher order multipoles further
degrades the performance of both XO4a and SEOBv5, and
we now see that the performance of the two models is roughly
comparable.

To explore the q ≤ 4 parameter space more thoroughly, we
also consider the 1024 configurations generated using NRSur.
The results of this study is shown in Fig. 11, from which we
can see that for the systems considered in this study, SEOBv5
performs best, followed by TPHM. The frequency-domain
models XPHM, with both the MSA and SpinTaylor angles,
and XO4a have a tail to larger mismatches which degrade the
overall performance of the model. It is our understanding,
informed by comparison with Fig. 10 and of the middle and
bottom panels in Fig 9, that this arises from the non-trivial

nature of the relative phasing of the higher multipoles in the
frequency domain, which has not yet been completely under-
stood. Once this issue has been resolved, further tuning to
the higher-order multipoles and extending the calibration to
two-spin systems is expected to reproduce the improvement
seen in the (2, 2)-only and ℓ = 2 multipoles. (We note that the
symmetric ℓ = 2 mismatches shown in Paper I illustrate that
tuning each ingredient in a Phenom model can lead in princi-
ple to competitive accuracy to NRSurrogatemodels, but with
far fewer input waveforms.) From Fig. 11 we can also see that
the broadening of the histograms toward lower mismatches
with increased total mass seen for the ℓ = 2 results is not as
strong when we consider systems which include higher order
multipoles.

We also consider an additional 216 single-spin cases with
the spin placed on the large black hole, thus mimicking the
data set against which the model was calibrated. A compar-
ison of the performance of the model against the single-spin
and two-spin cases shows that the tuning to single-spin sys-
tems is not currently the dominant source of error in XO4a,
given the comparable performance presented.

An alternative comparison of the performance of XO4a
against the other models considered in this study can be seen
in Fig. 12. This shows that the time domain models TPHM
and SEOBv5 generally perform better than the frequency do-
main models, which have a roughly comparable performance.
However, the improvement does not exceed a factor of ∼2 at
best. This is consistent with our expectation of the importance
of correctly modelling relative phase offsets between multi-
poles, which is likely incorporated more naturally in time-
domain models, where the relative phases are inherited from
the PN/EOB approximants.

We also considered the dependence of the mismatch on
the inclination of the system. The inclination here is mea-
sured with respect to the orbital plane of the binary at the
reference frequency. Since these are precessing systems, this
will change throughout the evolution of the binary. How-
ever, since these systems are uniformly distributed with q ≤ 4
|χ1,2| < 0.8 we do not expect the precession effects to be par-
ticularly strong for the majority of these systems — for ex-
ample, we do not expect to see transitional precession which
would cause a strong change in the orientation of the binary
during its evolution.

We observe that the spread of mismatch values is greatest
for systems that are face-on and face-off at the reference fre-
quency, i.e., both the best and the worst mismatches are seen
here. This is true for all models. It is for binaries which
are originally edge-on where we see the greatest difference
in model performance, with SEOBv5 showing a clear shift to-
wards lower mismatch values compared to the other models,
while for originally face-on/off systems the performance of
all models is much more comparable for the bulk of systems,
though the Phenom models have a noticeable tail to higher
mismatches.

Finally, we consider how the performance of XO4a varies
across the parameter space. The dependence on the mass
ratio and dominant spin effects is demonstrated in Figs. 13
and 14. From this we can clearly see that XO4a performs
best at low mass ratios and low in-plane spin values, as would
be expected. The worst mismatches occur for systems with
in-plane spin magnitudes above ∼0.6, with the very worst of
these seen for systems with q > 3. The dependence on χeff is
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FIG. 11. Mismatches between all multipoles up to ℓ = 4 in the J frame of NRSur and XO4a and SEOBv5. Considered 1024 two-spin
configurations at four different total masses {60, 90, 120, 150}M⊙ and five different inclinations {0, π/3, π/2, 2π/3, π} rad.

FIG. 12. Mismatches between all multipoles up to ℓ = 4 in the J frame of NRSur7dq4 and selected models. Considered 1024 two-spin
configurations at four different total masses {60, 90, 120, 150}M⊙ and five different inclinations {0, π/3, π/2, 2π/3, π} rad.

much less strong, with poorer mismatches seen at all values
of χeff . The best mismatches predominantly occur for systems
with |χeff | < 0.1.

E. Parameter Estimation Results

The mismatch study presented in Sec. V D describes the
accuracy of XO4a for single points in the parameter space.
Although it was found that XO4a performs best at low mass
ratios and low in-plane spin values, it only gives limited in-
sight into how XO4a performs for realistic GW applications
– for example inferring the properties of the binary through
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FIG. 13. Dependence of the mismatches between all multipoles up
to ℓ = 4 in the J frame of NRSur and XO4a on q and χp. Total mass
90M⊙, averaged over inclination.
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FIG. 14. Dependence of the mismatches between all multipoles up
to ℓ = 4 in the J frame of NRSur and XO4a on q and χeff . Total mass
90M⊙, averaged over inclination.

Bayesian inference, e.g. [69], and identifying GWs in noise,
e.g. [70, 71]. Previous attempts to correlate the mismatch
with the model’s performance for GW applications led to the
indistinguishability criterion [72]. Here, the mismatch was
shown to relate to an indistiguishability SNR, where biases
in parameter estimates may be observed for GWs with SNRs
larger than the indistinguishability SNR. We therefore assess
the accuracy of XO4a for realistic GW applications by per-
forming Bayesian inference on both synthetic and real GW
signals, with our choice of synthetic signal informed by iden-
tifying configurations where the SNR is above the indistin-
guishability SNR for all models. To quantify possible sys-
tematic biases, we compare the posterior distribution obtained
with XO4a with a) the distributions obtained with XPHM,
XPHM-ST, TPHM and SEOBv5, and b) the true source pa-
rameters when they are known. We note that although a typi-
cal Bayesian analysis compares ∼ 107 waveforms over a wide
parameter space, we still only consider isolated GW signals.
This means that we still only gain limited insight into the over-
all performance of XO4a over the full 15-dimensional param-
eter space.

The first two synthetic injections considered are generated
with NRSur as it most accurately resembles numerical rela-
tivity across its calibrated parameter space [32]. We injected
these signals into zero noise, which reflects the expected dis-
tribution when averaged over many different noise realiza-
tions. We use the expected detector sensitivities for the ad-
vanced LIGO and advanced Virgo GW detectors [2, 73]. For
all cases, we perform Bayesian inference with the dynesty
nested sampler [74], employed via the Bilby parameter es-
timation software [75, 76]. All analyses used 1000 live points
along with the bilby-implemented rwalk sampling algorithm

with an average of 60 accepted steps per MCMC. We consis-
tently used uninformative and wide priors, as defined in Ap-
pendix B.1 of Ref. [5].

First, we analyze a synthetic GW signal for a fiducial binary
black hole system with total mass M = 60 M⊙, mass ratio q =
4 and dimensionless spin vectors4 χ1 = [0.31, 0.47,−0.57]
and χ2 = [0.37, 0.71, 0.01]. The effective spin parameters are
χeff = −0.45 and χp = 0.53. The inclination angle of the
binary is set to ι = 0.98 rad, to emphasize the effect of higher-
order multipoles and precession in the signal, and the lumi-
nosity distance is chosen to ensure a network SNR of 20. All
other extrinsic parameters are randomly chosen. We perform
Bayesian inference on this specific binary configuration as we
found a large variance in the match between NRSur and each
of the models used in this study at the true source parame-
ters. This is therefore a suitable case to investigate how the
matches presented in Sec V D translate to performance with
Bayesian inference. The mismatches at the true source param-
eters between NRSur and XPHM, XPHM-ST, XO4a, TPHM
and SEOBv5 are 0.040, 0.036, 0.032, 0.018, 0.009 respec-
tively. Based on these mismatch results we would expect only
SEOBv5 to be indistinguishable from the injection with 90%
confidence; SEOBv5 is the only model with an indistinguish-
able SNR greater than the injected value5. This means that
we would expect SEOBv5 to recover the injected values most
accurately, with possible biases in the other models.

In Fig 15 we show the inferred two-dimensional marginal-
ized posterior distribution for the mass ratio q and effec-
tive precessing spin χp with contours showing the inferred
two-dimensional 90% confidence interval (hereafter simply
referred to as the 90% confidence interval unless otherwise
stated) and maximum likelihood samples. Although we see
the general trend that a model with a larger match more accu-
rately recovers the injected value, the trend is not trivial. For
instance, although the mismatches for XO4a and both variants
of XPHM are comparable and much lower than SEOBv5, the
inferred 90% confidence intervals are distinctly different. We
see that the inferred distribution obtained with XO4a is com-
parable to SEOBv5 despite the mismatch being ∼ 3.5× larger.
Although all models prefer q ∼ 4, only XO4a, SEOBv5 and
TPHM prefer large in-plane spins; both variants of XPHM
show significant biases in the inferred χp with the injected
value lying significantly outside of the 90% confidence inter-
val. Although the injected value is outside the 90% confidence
region of XO4a, we see that the maximum likelihood samples
for XO4a, SEOBv5 and TPHM are similarly spaced around
the injected value.

Next, we investigate XO4a’s performance when the to-
tal mass of the fiducial binary black hole is increased from
M = 60 M⊙ to M = 120 M⊙6. In Fig 15 we see that TPHM
recovers the injected values most accurately, with the injected
parameters lying within the 50% confidence interval. Judging

4 The spin vectors are defined at 18.66 Hz with respect to the orbital angular
momentum L̂

5 A quasi-circular binary black hole system has eight physical degrees of
freedom: the two masses and 6 components of each spin vector. With eight
degrees of freedom, the indistinguishable SNR is ρ =

√
6.68/M where M

is the mismatch.
6 The low (high) mass fiducial binary black hole with total mass M = 60 M⊙

(M = 120 M⊙) has individual component masses 48 M⊙ and 12 M⊙ (96 M⊙
and 24 M⊙).
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FIG. 15. The two-dimensional marginalized posterior distributions for the mass ratio q and effective precessing spin χp when analyzing two
gravitational wave signals simulated with NRSur: Left: low mass and Right: high mass. The indicated two-dimensional area shows the
inferred 90% credible region, the horizontal and vertical black lines show the injected mass ratio and effective precessing spin, and the markers
show the maximum likelihood position. The shaded region indicates the posterior probability density per pixel obtained with XO4a. The
low and high mass simulated signals were produced for a binary black system with mass ratios q = 4, effective spins χeff = −0.45, effective
precessing spins χp = 0.53, and total masses M = 60 M⊙ and M = 120 M⊙ respectively. The distance to the source was chosen so that the
simulated signals had signal-to-noise ratio SNR = 20.

solely on the inferred 90% confidence interval, we see that
SEOBv5 is the next best performing model, with the injected
values lying within the 90% confidence interval. All other
models show more significant biases, with the injected val-
ues lying outside of the inferred posterior distribution. When
inspecting the maximum likelihood positions, we see that
TPHM recovers a value close to the injected system, while
SEOBv5 and XO4a are similarly distributed. We note that the
posterior obtained with XO4a is significantly tighter than the
other models, which is why it lies outside the 90% confidence
region. Assuming that the 90% c onfidence interval scales lin-
early with SNR [77, 78] (this approximation is valid in the
strong-signal limit), we would expect SEOBv5 to no longer
recover the injected value within 90% confidence for a signal
with SNR ∼ 22. When comparing the posterior distributions
for the low and high mass cases, we see that for all models
the inferred posterior distributions widen. This is expected
as more massive binaries merge at lower frequencies, mean-
ing that they have significantly fewer cycles within sensitive
region of the detectors and consequently less information to
break well known degeneracies. We also see that only XO4a
prefers lower in-plane spins, with all other models preferring
larger spins than their lower mass counterparts.

In general, we have shown that we cannot rely solely on
the point-by-point match results to conclude whether a given
model is accurate enough to recover the source properties with
Bayesian inference. This is particularly highlighted by the fact
that although XO4a’s mismatch for the low mass synthetic in-
jection is ∼ 3.5× larger than SEOBv5, the inferred posterior
distribution is comparable. We stress that the matches pre-
sented in Sec V D are essentially draws from the likelihood

surface, and therefore a single point estimate of the true val-
ues is not sufficient to understand the full likelihood, and con-
sequently the model’s performance across the full parameter
space. This issue may be solved in the future by identifying
a more informative mapping between the mismatch and po-
tential biases in parameter estimates, or by sampling over the
waveform model and using a parameter space dependent prior
that describes the match manifold [79]. While waveform sys-
tematics will likely be an issue for loud GW signals with large
mass ratios and in-plane spins, where all models report rela-
tively large mismatches to NR, current estimates for the un-
derlying distribution of black holes implies that this will not
be an issue for the majority of observed signals [80].

Although we have only shown results for two synthetic in-
jections, we analysed a further 100 injections with XO4a. We
randomly drew binary parameters from a given prior distri-
bution, while ensuring that the duration of each signal is less
than 4 seconds. We injected each synthetic signal into Gaus-
sian noise colored by the expected detector sensitivities for
the advanced LIGO and advanced Virgo GW detectors, and
then performed Bayesian inference with XO4a. When com-
paring the inferred posterior distributions against the injected
values on a population level, we obtain the expectations from
a Gaussian likelihood.

Finally, we investigate XO4a’s performance when ana-
lyzing real gravitational wave candidates. We analyzed
GW150914 095045 [81, 82], GW190412 053044 (hereafter
GW190412) [83] and GW190814 211039 [84]. We focus
our attention on GW190412 as the models used in the orig-
inal LIGO-Virgo-KAGRA analysis [17, 26] gave conflicting
parameter estimates; this is most strikingly shown in the in-
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ferred mass ratio and effective aligned spin posterior distri-
butions, see Fig. 2 in [83]. Although not discussed in detail,
we note that the inferred posteriors for GW150914 095045
and GW190814 211039 were recovered as expected, and we
refer the reader to Refs. [85, 86] for additional analyses of
GW190412 which investigated potential model systematics.

GW190412 was the first GW event observed by the LIGO-
Virgo-KAGRA collaboration with confidently unequal com-
ponent masses, evidence for the (ℓ, |m|) = (3, 3) multipole and
marginal evidence for precession [83, 85–87]. Consequently,
models with more accurate precession dynamics will give a
more accurate reflection of the multipole structure of the ob-
served GW and will more likely return unbiased parameter
estimates.

FIG. 16. The two-dimensional marginalized posterior distributions
for the effective precessing and aligned spin, χp and χeff respectively,
when analyzing GW190412. The indicated two-dimensional area
shows the inferred 90% credible region and the markers show the
maximum likelihood position. The shaded region indicates the pos-
terior probability density per pixel obtained with XO4a.

To analyze GW190412, we use the strain data released by
the Gravitational Wave Open Science Center (GWOSC) [88]
and the publicly released power spectral densities and cali-
bration envelopes included in the GWTC-2.1 data release [7,
89]. Although the original LIGO-Virgo-KAGRA analysis em-
ployed a highly parallelized version of Bilby [90], we use the
standard configuration, as described above. All settings were
chosen to match the original LIGO-Virgo-KAGRA analysis.

In Fig 16 we show the inferred two-dimensional marginal-
ized posterior distribution for the effective precessing and
aligned spin, χp and χeff respectively. We see that although
SEOBv5 and TPHM recover a marginally tighter posterior for
χeff with slightly more support for larger χp, in general all
models show excellent agreement for the bulk of the poste-
rior. When comparing maximum likelihood samples, we see
that all models approximately agree, but we note that XO4a
and TPHM prefer more precession, χp ∼ 0.23 compared to
other models χp ∼ 0.15, and XPHM with the Spin Taylor pre-

cession angles prefers larger aligned spins. Importantly, the
two-dimensional 90% contours contain the maximum likeli-
hood samples for all models.

In a typical GW Bayesian analysis, the likelihood is evalu-
ated ∼ 107 times. Having a waveform model that not only ac-
curately describes the GW emitted from a binary merger, but
also quick to evaluate, is therefore crucial for GW analyses.
We find that the full XO4a waveform can be faster to evalu-
ate close to equal mass, and takes longer to evaluate at highly
asymmetric masses where the period of two-spin oscillations
becomes more comparable to the orbital period. At worst the
waveform generation is a factor of ∼ 2 slower than XPHM.
To check likelihood evaluation time we randomly drew 106

points from a standard prior distribution and evaluated the
likelihood for each point. We find that on average XO4a
is 1.6× and 1.2× slower than XPHM and XPHM with the
Spin Taylor precession angles respectively, 8.3× faster than
SEOBv5 and 3.4× faster than TPHM. More information about
waveform timing is available from the authors upon request.

VI. CONCLUSIONS

To date, analytic or semi-analytic binary-black-hole wave-
form models available for analysis of LVK observations have
not included any input from fully general-relativistic re-
sults (i.e., NR simulations) for precession effects through the
merger and ringdown, or the antisymmetric contribution to the
signal multipoles. A model that included NR tuning for the
dominant symmetric ℓ = 2 contribution, PNR, was presented
in Paper I . For this model to be used in analysis of real GW
signals, it would ideally be extended to include sub-dominant
multipoles. In lieu of a full NR tuning to the higher multi-
poles, the purpose of this work was to incorporate the pre-
cision dominant-multipole modeling of PNR into a state-of-
the-art higher-multipole model infrastructure, XPHM, and to
apply an approximate extension of the merger-ringdown pre-
cession dynamics to higher multipoles, and include a model
for the antisymmetric contribution [37], to make a series of
recent advances in precession modeling [34, 36, 37] available
for GW signal analysis.

In this first extension of the PNR approach to higher multi-
poles, we have not performed additional tuning to the higher
multipoles, but have instead applied an approximate extension
of the (2,2) results by (1) applying a model of the effective
ringdown frequency to the coprecessing-frame higher multi-
poles, as described in Ref. [36] and Sec. III A 2, and (2) ex-
tending the frequency-domain precession angles for the higher
multpoles beyond the SPA prescription used in earlier models,
to apply a frequency shift (rather than scaling) through the
merger and ringdown, as described in Sec. IV D. In addition,
we have incorporated a model of the antisymmetric contribu-
tion to the coprecessing-frame (2,2) multipoles, as described
in Ref. [37] and Sec. III B. We have also made several im-
provements to the tuning of the precession angles, and, given
the smooth behavior of the PNR model across the tuning pa-
rameter space, have retuned the model to use both the 40 cal-
ibration waveforms used in the original PNR model, plus an
additional 40 waveforms that were previously used for valida-
tion; all NR waveforms are publicly available and discussed
in Ref. [35].

As in the original PNR model, we find a significant im-
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provement in accuracy over all other models, if we consider
only the symmetric (2,2) contribution to the coprecessing
frame. If we also consider the antisymmetric contribution in
the coprecessing frame then, as we might expect, the accuracy
of all symmetric models degrades. Our inclusion of a model
for the antisymmetric contribution restores much of the accu-
racy.

For the full precessing model, the accuracy is limited by the
higher multipoles, and we find that the overall accuracy of all
of the state-of-the-art models that we consider is comparable;
in some measures XO4a does slightly better than others (the
NR comparison in Fig. 9, which extends up to q = 8), while
in other measures the SEOBv5 model is more accurate (e.g.,
mismatch histograms as shown in Figs. 11). We expect that
the most significant error in the XO4a higher multipoles is in
the relative time and phase offsets between the different multi-
poles, which we have not explicitly checked or modeled. This
may be a problem common to all frequency-domain mod-
els, since we find in parameter-estimation tests that the time-
domain models SEOBv5 and TPHM show less parameter
bias, despite including no precession tuning through merger
and ringdown, and (in the case of TPHM) no clear advantage
in mismatch comparisons.

As noted in Sec. II, some of the advantages of the “twist-
up” procedure of modeling precessing-binary signals are lost
when we move beyond the dominant multipole in the fre-
quency domain. If we consider the frequency-domain mul-
tipoles in the QA frame, these will neither approximate those
from a non-precesing binary in the inspiral, nor exhibit the
simple structure of non-precessing-binary multipoles. Con-
vsersely, if we wish to use non-precessing-binary multipoles
in the coprecessing frame (as we do here) then we do not have
a well-defined prescription for the precession angles. In this
work we have been guided by the precession angles we cal-
culate from considering only the ℓ = 2 multipoles, then the
ℓ = 3 multipoles, and so on. We do not have a procedure to
determine the “correct” angles, against which we could check
our model. In future one must either find a way around these
issues in order to produce accurate frequency-domain models.

Assuming that there is a way to move beyond these fun-
damental issues in frequency-domain modeling, XO4a needs
to be improved in several ways: we need to model two-spin
effects and the relative time and phase shifts between the
higher multipoles. We also see that even the symmetric (2,2)
coprecessing-frame modeling needs to be improved for con-
figurations with high mass ratios and high spins. As noted
in Paper I , besides potential improvements in the ansätze to
model the precession angles, one may also need to introduce
an intermediate frequency region (and make use of longer NR
waveforms), and model the evolution of the direction of Ĵ.

If we look more generally at the suite of state-of-the-art
waveform models, we are less concerned with which is most
accurate; the differences in accuracy vary significantly across
the parameter space, and no model is significantly and consis-
tently more accurate than any other. Of far more interest is that
none are sufficiently accurate for upcoming observations. If
we make the conservative accuracy requirement that the mis-
match must be lower than ∼1/ρ2 for an SNR of ρ [72], then at
ρ = 30 we require a mismatch accuracy below ∼10−3, and at
ρ = 40 we require mismatch uncertainties below ∼10−4. This
is a conservative estimate, but given that the typical mismatch
uncertainty is above 10−3 for all precessing-binary models,

a dramatic increase in accuracy is needed. The possible ex-
ceptions are the NR surrogate models, but these are currently
limited to high-mass binaries. As such it is possible that sys-
tematic errors due to model innacuracy will be an issue for
the loudest (and therefore most interesting) signals in O4, and
almost certainly in future observing runs, unless there is a sig-
nificant (i.e., order of magnitude) increase in overall accuracy
of the state-of-the-art models.

We also require a more complete understanding of the un-
certainties in NR waveforms, both as input to models as for
validation, and a more robust methods to quantify the im-
pact of model uncertainties on parameter measurements. It
is well known that the indistinguishability SNR is a conserva-
tive measure of waveform accuracy, and this is illustrated in
Sec. V E, where we see that mismatch error of each model at
the true parameters does not reflect the relative performance
of each model in parameter recovery. Given that model accu-
racy is likely to be an important issue for the most interest-
ing observations, there is an urgent need for better methods to
quantify the measurement uncertainties that will result from
modelling errors.
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Appendix A: LALSuiteWaveform Implementation

In this section we provide a brief description of the wave-
form parameters available for using in XO4a and the locations
of the specific fit coefficients mentioned throughout the text.

In Table II we present the tuning parameters for the copre-
cessing tuning outlined in Sec. III A 1 and listed in Eq. (4).

uk Name in LAL code XAS parameter (λk)
u0 MU1 pAmp->v1RD

u1 MU2 pAmp->gamma3

u2 MU3 V2

u5 NU4 pPhase->cL

u6 NU5 pWF->fRING

u7 NU6 pWF->fDAMP

u8 ZETA1 pPhase->b4

u9 ZETA2 pPhase->b1

TABLE II. Deviation variables for tuning of the
(ℓ, |m|) = (2, 2) multipole moment: Changes are
made within LALSimIMRPhenomX internals.c and
LALSimIMRPhenomX precession.c at or shortly after the
definition of related structure parameters.

These variables are presented alongside their names in the LAL
code and the associated XAS parameter they modify. The fi-
nal values of these fit coefficients are available within the file
LALSimIMRPhenomX PNR deviations.c in LALSuite [46].

The fit coefficients for the tuned precession angles
discussed in Sec. IV A 1, along with the fit coeffi-
cients for the βf fit detailed in Sec. IV B, may be
found in the file LALSimIMRPhenomX PNR coefficients.c
in LALSuite. All results in this paper were pro-
duced with the coefficients found in the git hash:
08b90494b3a4a7dc966ca108e6c98eaa3f6e18a7.

In Table III we show the available waveform parameter
flags used to modify the behavior of IMRPhenomXO4a present
in LALSimulation, along with a description of the behav-
ior that each parameter controls. One should note that,
at present, enabling PhenomXAntisymmetricWaveform also
requires enabling PhenomXPNRUseTunedAngles for the an-
tisymmetric contributions to be present, otherwise an error is
raised upon waveform generation.
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Parameter name in LAL code Description Values Default
PhenomXPNRUseTunedAngles Enables tuned precession angles in XPHM framework. 0,1 0
PhenomXPNRUseTunedCoprec Enables tuned (ℓ,m) = (2, 2) coprecessing model in XPHM framework. 0,1 0
PhenomXPNRInterpTolerance Sets the interpolation residual error threshold R detailed in Eq. (57). Float 0.01
PhenomXAntisymmetricWaveform Enables the antisymmetric contribution to the (ℓ,m) = (2,±2) coprecessing multipole. 0,1 0

TABLE III. The available waveform parameters added to XPHM to activate the various contributions that make up the XO4a model,
coded in LALSimulation as IMRPhenomXO4a. Currently PhenomXAntisymmetricWaveform only activates when the flag is enabled and
PhenomXPNRUseTunedAngles is also activated.
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