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Time-delay interferometry (TDI) is a crucial step in the on-ground data processing pipeline of the
the Laser Interferometer Space Antenna (LISA), as it reduces otherwise overwhelming laser noise and
allows for the detection of gravitational waves (GWs). This being said, several laser noise couplings
have been identified that limit the performance of TDI. First, on-board processing, which is used to
decimate the sampling rate from tens of MHz down to a few Hz, requires careful design of the anti-
aliasing filters to mitigate folding of laser noise power into the observation band. Furthermore, the
flatness of those filters is important to limit the effect of the flexing-filtering coupling. Secondly, the
post-processing delays applied in TDI are subject to ranging and interpolation errors. All of these
effects are partially described in the literature. In this paper, we present them in a unified framework
and give a more complete description of aliased laser noise and the coupling of interpolation errors.
Furthermore, for the first time, we discuss the impact of laser locking on laser noise residuals in
the final TDI output. To verify the validity of the analytic power spectral density (PSD) models
we derive, we run numerical simulations using LISA Instrument and calculate second-generation
TDI variables with PyTDI. We consider a setup with six independent lasers and with locked lasers
(locking configuration N1-12). We find that laser locking indeed affects the laser noise residual in
the TDI combination as it introduces correlations among the six lasers inducing slight modulations
of the PSDs compared to the case of six independent lasers. This implies further studies on laser
noise residuals should consider the various locking configurations to produce accurate results.

I. INTRODUCTION

The Laser Interferometer Space Antenna (LISA) is a
space mission led by the European Space Agency (ESA),
expected to be launched in the 2030s. Its goal is to detect
gravitational waves (GWs) in a frequency band ranging
from 10−4 Hz to 1Hz [1]. High precision interferomet-
ric measurements will be made via the exchange of laser
beams among three spacecraft orbiting the Sun and sepa-
rated by 2.5 million kilometers, in order to determine the
variations in the distance between free-falling test masses
aboard each spacecraft to picometer precision. In these
measurements, the laser phase noise is the primary noise
source and is 8 orders of magnitude larger than the GW
signals that one hopes to detect. Time-delay interferom-
etry (TDI) is a data processing technique that combines
the LISA measurements to construct virtual equal-arm
two-beam interferometers in order to reduce the laser
phase noise to levels sufficiently low such that GWs be-
come detectable [2, 3]. In TDI the measurements are
time-delayed by multiples of the LISA arm lengths and
combined in a specific scheme to achieve laser phase noise
reduction. Second-generation TDI, which is the current
baseline laser phase noise reduction strategy for LISA,
applies to the case in which the arm lengths of the LISA
constellation evolve slowly and linearly in time [4, 5]. In
second generation TDI, laser phase noise is strongly sup-
pressed and the residual ia fundamentally limited by the
arm length mismatch of the virtual interferometer [6].

There exist other approaches to perform laser phase

noise suppression. In TDI-∞ [7], the observables that
cancel laser phase noise are obtained numerically by solv-
ing for the null space of the design matrix, i.e., the way
the various noise sources enter the interferometric mea-
surements, for an arbitrary time dependence of the arm
lengths. The likelihood function that is used in GW
source parameter estimation can then be written directly
in the time domain in terms of the LISA interferometric
measurements without having to reformulate the entire
problem in terms of algebraically defined TDI variables.
While the study in [7] was limited to an idealized toy
model with a single Michelson interferometer, the au-
thors of [8] applied TDI-∞ to the full LISA constellation
with time-evolving arms. Computationally, TDI-∞ has
the drawback that it requires the storage and manipula-
tion of very large matrices.

In [9], starting from the interferometric measurements
and for non-evolving LISA arms, the authors first form a
matrix of integer-delayed measurements, which they de-
compose using principal component analysis (PCA) into
high and low variance components. The latter corre-
spond to the components for which the laser phase noise
is significantly suppressed. This approach, dubbed “au-
tomated Principal Component Interferometry”, or aPCI,
is formulated in both the time and frequency domain.
In [10], the same authors extend this approach to the
case of time-evolving arms. Note that in [10], aPCI is
shown not to perform as well as second-generation TDI
in suppressing the laser phase noise.

While approaches such as TDI-∞ and aPCI offer some
interesting perspectives for a flexible data-driven formu-
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lation of TDI, “traditional” TDI can be formulated an-
alytically. It is therefore tractable, better understood,
and exact analytic transfer functions exist to describe
the instrumental noise residuals present in the TDI vari-
ables. For instance, secondary noises such as for example
test-mass acceleration noise and optical metrology sys-
tem noise are dealt with in [11], clock noise is studied
in [12, 13], and tilt-to-length coupling in [14]. Note also
that laser noise coupling residuals were discussed previ-
ously in [15, 16]. It is also worth stressing that a good
understanding of the noise content in the final TDI out-
put is crucial to characterize the performance of LISA
and guide the design of the instrument and that data
analysis and parameter estimation will require accurate
noise models in order to work reliably, making these stud-
ies particularly relevant for LISA.

In addition to the analytic and numerical studies avail-
able in the literature, there exist several hardware demon-
strators that test various aspects of TDI experimentally.
The LISA interferometry test-bed [17], while it could
not reproduce the signal delays in a realistic way, did
demonstrate for the first time that using first genera-
tion TDI, both the laser and clock noise could be sup-
pressed by 9 and 4–5 orders of magnitude, respectively.
In UFLIS [18, 19], using electronic phase delay units al-
lowing for time-varying delays of the laser phases, the
authors were able to demonstrate the efficacy of second-
generation TDI. In more ecent work [20], the Hexagon
experiment demonstrated that clock synchronization can
be achieved to sufficient accuracy to match the LISA re-
quirements. Moreover, the authors find residual laser
noise after TDI-like processing due to flexing-filtering,
aliasing, and interpolation error. The LISA on table
(LOT) experiment [21] (for recent progress see [22]) is
an electro-optical setup aiming primarily at testing the
laser noise suppression performance of TDI. In [22], the
validity of second-generation TDI was demonstrated for
linearly evolving LISA arms. It was also shown using
an analytic model that the residual noise could be ex-
plained by the cascade integrator comb filtering and the
decimation stages that are applied to the data.

In this paper, we study the coupling of laser noise resid-
uals in standard TDI. We focus on the residual laser noise
due to systematic effects and neglect most other noise
sources. The one exception is noise in the ranging mea-
surements which are used as delays in TDI, and which in
principle couple to laser frequency noise. Following [13],
we assume this noise source will be strongly suppressed
to the level of the highly-precise sideband interferome-
ter readouts, such that its impact on the laser noise re-
duction is minor. We still include it in so as to have a
more complete description of the post-processing delay.
We consider the effect of on-board processing (i.e. fil-
tering and decimation), and the influence of TDI which
uses post-processing delay operations that are subject to
ranging and interpolation errors, see Figure 1. We com-
pute analytic formulae for all laser noise residuals induced
by these processing steps and compare those to numerical

simulations obtained using LISA Instrument and PyTDI.
We do so for six independent lasers and also for locked
lasers in the N1-12 locking scheme [23, 24].

The laser noise residuals induced by the processing
steps we derive below are already partially described in
the literature. The flexing-filtering effect arising from the
non-commutativity of the filtering and delay operation
was previously discussed in [15]. The impact of ranging
errors, i.e. modulation noise and ranging biases, in TDI
was derived in [13], while a preliminary models for the
aliased laser noise due to decimation and interpolation
errors were derived in [16]. Here, we gather these results
in a unified framework and check them against the most
up-to-date instrumental setups. In addition, we include
the effect of laser locking in our models, an important
feature of LISA that was previously neglected. We show
that laser locking can amplify the laser noise residual in
the TDI combinations, so that future performance stud-
ies on laser noise coupling should consider the influence of
the various locking configurations that are available. Fi-
nally, we correct the preliminary models presented in [16],
which did not show perfect agreement with simulation re-
sults.

The paper is organised as follows. In section II, we
introduce the interferometric measurements available in
LISA, the notion of discretely sampled time series and
how filtering and decimation apply to discretized data.
In section III we discuss the residual laser noise induced
by the non-commutativity of the on-board filtering and
decimation operations with the propagation delays. The
interpolation and ranging residuals, which both arise
from the on-ground processing steps, are discussed in sec-
tion IV. In section V, we apply the results of the previous
sections to the case of the second-generation TDI Michel-
son variables for six independent lasers and for locked
lasers. Additional details are given in four appendices.

II. INTERFEROMETRIC MEASUREMENTS

LISA produces two main interferometric measurements
per movable optical sub-assembly (MOSA) relevant for
laser noise reduction1. Those are the inter-spacecraft and
reference interferometers given by

isiij(t) = SF
(
Dijϕji(t)− ϕij(t)

)
, (1a)

rfiij(t) = SF
(
ϕik(t)− ϕij(t)

)
. (1b)

Each measurement represents the beatnote phase formed
by two laser beams, whose phases are denoted by ϕ and
labeled by the index pair ij. Here, we follow the conven-
tions in [6], where i denotes the hosting spacecraft and j
the spacecraft from which MOSA ij receives light. The

1 The split interferometry configuration involves a third interfer-
ometer, the test-mass interferometer, which is not relevant for
the purpose of this study
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Figure 1. Illustration of the formation of interferometric beatnote phases and successive on-board processing steps on the left
and post-processing TDI on the right. The propagation and post-processing delay are defined in section II and section IV,
respectively

inter-spacecraft interferometer isiij tracks the phase dif-
ference between the distant laser ϕji that is propagated
to the local MOSA and the local laser ϕij . Beam prop-
agation is equivalent to applying the delay operator Dij

defined as

Dijϕji(t) = ϕji(t− dij(t)). (2)

Here, dij(t) is the pseudo-range, which includes the light
travel time in some chosen global frame and any refer-
ence frame transformation accounting for the fact that
the phases ϕji are defined in their respective reference
frame, j. In order to relate phases on the left and right
MOSAs on each spacecraft2, the reference interferometer
rfiij combines the local and the adjacent lasers.

It is useful to decompose the total laser phase ϕij(t) or
the frequency νij(t) = ϕ̇ij(t) into two variables because,
as we shall see below, the instrumental and data pre-
processing effects we will describe (see the diagram of
fig. 1) couple differently to the phase ramp ϕo

ij(t) and
any in-band fluctuations ϕϵ

ij(t). We thus write

ϕij(t) = ϕo
ij(t) + ϕϵ

ij(t), (3)

νij(t) = νoij(t) + νϵij(t), (4)

where νoij(t) = ϕ̇o
ij(t) describes any slowly-varying drifts

around the central laser frequency ν0 = 281.6THz and
νϵij(t) = ϕ̇ϵ

ij(t) accounts for any rapidly varying random
fluctuations. This in-band part is dominated by laser fre-
quency noise with an amplitude spectral density (ASD)√
Sṗ = 30Hz/

√
Hz.

The beatnote phases of the interferometers are read
out using a digital phase locked loop running at 80MHz.
Multiple decimation stages reduce the sampling rate

2 Each spacecraft is equipped with two MOSAs. The left-handed
MOSA on spacecraft i refers to the one facing spacecraft i + 1,
while the right-handed MOSA refers to the one facing space-
craft i− 1 (indices ranging from 1 to 3 cyclic).

down to 4Hz in order to produce the final data streams
telemetered to ground. Each decimation stage consists
of an anti-aliasing filter, F, and a downsampling stage,
S, which downsamples the data by an integer factor. In
this work, we compare the analytic models that we de-
rive with the most recent LISA simulation codes, which
run at rates that are much lower than the 80MHz quoted
above, and thus only use a single decimation stage. This
being said, the results obtained in this paper can easily
be generalized to multiple decimation stages.

We shall express signals in continuous time so as to
be compatible with the recent literature on TDI. How-
ever, the application of finite impulse response (FIR) fil-
ters, decimation, and interpolation requires some notion
of discretely sampled time series. We will therefore make
use of the Whittaker-Shannon interpolation formula [e.g.,
25],

x(t) =

∞∑
n=−∞

sinc(fst− n) · xn, (5)

which reconstructs the continuous time signal x(t) from
discrete samples xn.

Let us first describe the onboard processing, which con-
sists of the application of a FIR filter and a decimation
stage. A FIR filter is equivalent to a discrete convolution
of the input time series xn with filter taps hm,

yn =
∑
m

hm · xn−m. (6)

We use eq. (5) to represent the output yn in continuous
time and find

y(t) =

∫
R

∑
m

hmδ(τ −mTs)︸ ︷︷ ︸
hF(τ)

x(t− τ) dτ = Fx(t), (7)

where we introduce the integral over the Dirac-delta dis-
tribution δ(t) to shift the time argument of x(t). It fol-
lows that the application of a FIR filter is equivalent
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to a continuous time convolution with the filter kernel
hF(τ) defined above. Using the usual definition of the
one-sided power spectral density (PSD), the PSD of the
filtered process in eq. (7) is given by

Sy(f) =
∣∣∣h̃F(f)

∣∣∣2 Sx(f) = F̃Sx(f) (8)

with h̃(f) the Fourier transform of h(t), while Sx(f) is
the PSD of x(t).

Let us now discuss the decimation operator which we
use to reduce the sampling rate by an integer factor M .
On a discrete time grid, the resulting signal is given by

yn = xn·M . (9)

Again, we make use of eq. (5) to find the corresponding
continuous time representation,

y(t) = Sx(t) =

∞∑
n=−∞

sinc(fst− n) · xn·M . (10)

Here, fs denotes the sampling rate after decimation, and
S symbolizes the action of the decimation operation in
continuous time. The right-hand side of eq. (10) is ex-
actly equal to x(t) if and only if it has a band limit that
is less than the Nyquist rate after decimation, fn = fs/2.
Otherwise aliasing occurs, which folds power from fre-
quencies above fn into the band [0, fn]. This effect be-
comes apparent when looking at the corresponding one-
sided PSD,

Sy(f) = S̃Sx(f) = rect

(
f

fs

)M−1∑
n=0

S(n)
x (f) . (11)

Here, S̃Sx(f) is a shorthand notation representing the
action of the decimation operator in Fourier space on the
PSD of x(t) and the rectangular function is defined to be
equal to zero for |f | > fn and equal to one for |f | < fn
such that the decimated signal is band-limited up to the
new Nyquist rate. Finally, the nth alias, S(n)

x (f), on the
right-hand-side of eq. (11), is given by

S(n)
x (f) =

{
Sx(nfn + f) if n is even,
Sx((n+ 1)fn − f) if n is odd.

(12)

Equations (11) and (12) highlight the typical folding into
band of any spectral component that resides at frequen-
cies higher than the new Nyquist rate (up to the highest
frequency Mfn, which corresponds to the Nyquist rate
before decimation).

III. COMMUTATOR RESIDUALS

When computing TDI laser noise residuals, expressions
of the form

[A,B]ϕij(t) = ABϕij(t)−BAϕij(t) (13)

appear, with operators A and B that act on the time
series ϕij(t). We call two operators non-commutative if
eq. (13) is non-vanishing. As an example, the funda-
mental limit for laser noise suppression in TDI can be
described by a commutator of time-dependent delay op-
erators, see e.g. [6]. This is discussed in more detail in
section V).

Let us now outline how the filtering and sampling op-
erators enter as additional commutators in TDI.

The basic building block of every TDI combination is
the set of intermediary variables ηij (defined later in sec-
tion V). In the idealized case for which none of the data
processing steps depicted in fig. 1 are considered (i.e.,
F = S = 1 and D̂ij = Dij) the variable ηij simplifies
to the difference between a local laser phase with a dis-
tant laser phase delayed by the light travel time between
spacecraft i and j. For the left-handed MOSAs, one has

ηij(t) = Dijϕjk(t)− ϕij(t). (14)

The expression for the right-handed MOSAs is similar
but the indexing is different. Under these conditions,
i.e., with the specific algebraic form of eq. (14), the fun-
damental laser noise limit is the the usual delay commu-
tator (see e.g. eq. (52)).

If we instead insert the interferometric measurements
of eq. (1) into the definition of ηij given in eq. (38a), the
resulting expression cannot be recast into the algebraic
form of eq. (14). This is because of the order in which
the filtering, decimation, and delay operations arise in
eq. (1a). If one introduces the following commutator into
eq. (1) ,

[SF,Dij ]ϕji(t) = (SF)Dijϕji(t)−Dij(SF)ϕji(t), (15)

the delay operator Dij switches places with the decima-
tion stage SF such that eq. (1a) becomes

isiij(t) = DijSFϕji(t)−SFϕij(t)+[SF,Dij ]ϕji(t). (16)

This expression has the same algebraic form as eq. (14)
if we make the replacement ϕij → SFϕij , with the ex-
ception that the inter-spacecraft interferometric measure-
ment now also contains the commutator [SF,Dij ]ϕji.
This commutator comes as an additional residual in the
final TDI expressions (this is reminiscent of the way read-
out noise enters the measurements, see [11]).

Using common commutator rules we can further
split [SF,Dij ]ϕji into a filter-delay commutator and a
decimation-delay commutator

[SF,D]ϕ(t) = S[F,D]ϕ(t) + [S,D]Fϕ(t), (17)

and compute explicit analytic expressions for each con-
tribution, see section IIIA and section III B.

A. Flexing-filtering coupling

Let us derive the contribution coming from the commu-
tator [F,D], first described in [15] and dubbed “flexing-
filtering coupling”. We assume that the delay d(t) is
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slowly varying over the filter length and that its first
derivative ḋ(t) is small. We use eq. (7), and expand
[F,D]ϕ(t) at leading order in ḋ(t) to find

[F,D]ϕ(t) ≃ ḋ(t)DGν(t). (18)

where G is a filter operator defined similarly to F in
eq. (7) with hG(τ) = τ · hF(τ).

Because of the orbital dynamics of the LISA constella-
tion, ḋ(t) will vary on time scales of several months and,
as a result, so will the level of the laser noise residual in-
troduced by the flexing-filtering coupling. However, over
sufficiently short observation times we can assume ḋ to
be constant. In such a case the PSD of eq. (18) reads

S
[F,D]
δϕ (f) = ḋ2

∣∣∣∣∣ 1

2π

dh̃F(f)

df

∣∣∣∣∣
2

Sν(f). (19)

For longer observation times, one can use the maximum
value of ḋ as given by current predictions for the orbital
dynamics of LISA in order to derive an upper bound for
this PSD.

B. Decimation-delay commutator

The second commutator appearing in eq. (17) is the
commutator of the decimation and delay operations,

[S,D]ϕ(t) = SDϕ(t)−DSϕ(t). (20)

Those operations do not commute due to the non-linear
nature of the decimation process. The PSD of this ex-
pression can be derived using the definition in eq. (10).
The different aliases that are folded in band are modu-
lated by a sine-squared factor. We obtain

S
[S,D]
δϕ (f) = 4 ·

M−1∑
n=1

cn(d) · S(n)
ϕ (f), (21)

where the modulating factor cn is given by

cn(d) =

{
sin2

(
πfsd

n
2

)
for n even,

sin2
(
πfsd

n+1
2

)
for n odd.

(22)

In the special case where the delay d becomes an integer
multiple of the sampling time Ts = 1/fs decimation and
delay operations commute and the residual becomes zero.
For a time-varying delay, this particular residual is non-
stationary because its power is modulated as d evolves
in time. To account for this, we later consider only the
upper bound obtained for cn = 1 for all n,

S
[S,D]
δϕ (f) ≤ 4 ·

∞∑
n=1

S
(n)
ϕ (f). (23)

This bound is independent of the delay, and corresponds
to the case of full anti-correlation between SDϕ(t) and
DSϕ(t) in eq. (20).

0.0 0.2 0.4 0.6 0.8 1.0

Frequency (Hz)

10−9

10−8

10−7

10−6

10−5

10−4

A
S

D
δ
ν

(H
z/
√

H
z)

simulation

decimation-delay commutator (aliasing)

flexing-filtering effect

Figure 2. Commutator residuals from filtering and decima-
tion. We compare the numerically simulated data (yellow)
against analytic models (dashed lines). In purple we show
the model for the coupling of the decimation-delay commuta-
tor (aliasing) and in indigo the flexing-filtering effect.

C. Comparison with numerical simulations

The numerical simulations that are used in this work
to validate the analytic models are performed in units of
frequency in order to preserve numerical precision3. As
shown in [6], any delay operation on frequency data can
be represented by the usual shift of the argument and a
multiplicative Doppler factor,

Ḋν(t) = (1− ḋ(t)) · ν(t− d(t)). (24)

We can then easily rewrite the commutator given in
eq. (17) in terms of frequency data by replacing every
occurrence of the delay operator D by its Doppler equiv-
alent. It reads

[SF, Ḋ]ν(t) = SFḊν(t)− ḊSFν(t). (25)

Here, we need to account for the Doppler factor to cancel
laser noise to first order. However, we find that it only
has a negligible impact on the laser noise residual, and

3 A beatnote frequency of several MHz results in a rapidly increas-
ing phase ramp. This would require a large number of significant
digits to deal with its dynamic range (∼ 1014 cycles after 1 yr at
a required precision of at least µcycles which results in 20 sig-
nificant digits). On the other hand, its derivative, the beatnote
frequency, stays roughly constant and a double precision float
(approximately 16 significant digits) is sufficient to represent it.
Here, the µcycles requirement with a knee at 2mHz corresponds
to a precision of approximately 20 nHz which gives 15 orders of
magnitude when considering a 20MHz beatnote frequency.
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we can write for the PSDs

S
S[F,Ḋ]
δν (f) ≃ S̃

(2πf)2ḋ2

∣∣∣∣∣ 1

2π

dh̃F(f)

df

∣∣∣∣∣
2

Sν(f)

 ,

(26a)

S
[S,Ḋ]F
δν (f) ≃ 4

∞∑
n=1

cn(d)
(
F̃Sν

)(n)

(f). (26b)

We note that for the full commutator in eq. (17), we
need to apply S to the flexing-filtering contribution and
account for the fact that laser noise is filtered prior to
passing it through the decimation-delay commutator. In
our numerical implementation, the effect of decimating
the flexing-filtering residual was negligible compared to
the in-band contribution. Nevertheless, we include it for
completeness as it strongly depends on the filter design.

In order to test the validity of the theoretical model
given by eq. (26), we compare it to numerical simulations
that generate time series corresponding to eq. (25). We
consider white laser frequency noise in ν(t) with an ASD
of 30Hz/

√
Hz4 and neglect the central laser frequency

of 2.816 × 1014 Hz (its coupling to the commutator is
vanishing). The simulation is performed at a sampling
rate of 16Hz and is then decimated down to 4Hz. Anti-
aliasing is performed using an FIR designed according to
appendix A. The delay operator is modeled by numerical
interpolation of the data using Lagrange polynomials (c.f.
section IV).

In fig. 2 we compare the simulated data against the
analytical model presented in eq. (26). We use the Welch
method from the SciPy package [26] to estimate the PSD
of the time series. The numerical result is explained by
aliasing at low frequencies and by flexing-filtering at high
frequencies.

IV. POST-PROCESSING RESIDUALS IN TDI

The working principle of TDI is to time-shift the
recorded beatnote phase measurements and linearly com-
bine them in order to reduce laser frequency noise in the
resulting combinations. To achieve this we require an in-
terpolation method and estimates of the aforementioned
time shifts. In the following we denote a delay opera-
tion that is performed in on-ground data processing as
D̂. This operator acts on a discrete time series and is
therefore only a numerical approximation. Furthermore,
time-shifting is performed with imperfect knowledge of
the delay. The discreteness of the data and the error in

4 In reality, we expect laser noise to increase towards lower frequen-
cies. In this manuscript, we assume that it is a white noise to
easily study the shape of various residuals. However, the residual
transfer functions derived here hold for any laser noise spectrum.

ranging produce a residual with respect to the true prop-
agation delay D. To distinguish between these effects,
we write the residual due to the imperfections of D̂ as

(D̂ −D)ϕ(t) = (D̂ − D̂)ϕ(t) + (D̂ −D)ϕ(t), (27)

where the first term on the right-hand side represents the
interpolation residual and the second term the residual
stemming from ranging errors. In the following we study
both effects in detail.

A. Interpolation residual

We follow [27] and implement a post-processing delay
in TDI as an interpolation with a fractional delay filter.
Lagrange interpolation has demonstrated its suitability
in this context, and we thus use it as the baseline in this
work. In general, we can model post-processing delays
as FIR filters. For convenience, we split the delay into
an integer shift j and a fractional shift ϵ ranging from 0
to 1. The latter defines the coefficients of the interpola-
tion kernel kn(ϵ) with −N/2 ≤ n ≤ N/2 − 1, which is
convolved with the discrete data samples ϕn,

(D ϕ)n =

N/2−1∑
m=−N/2

km(ϵ) · ϕn−j−m. (28)

Before the convolution of eq. (28) is performed, the data
samples are shifted by the integer shift j. The above
formula holds for interpolation kernels of even length N .
For odd N , a similar expression can be derived. Using
eq. (7), we find

hD(τ) =

N/2−1∑
m=−N/2

km(ϵ) · δ(τ − (j +m)Ts). (29)

We define the additional phase residual caused by the
interpolation error as

δϕD(t) = (D −D)ϕ(t) = D (D−1D − 1)︸ ︷︷ ︸
∆

ϕ(t) (30)

and use eq. (8) to derive the residual in terms of PSD.
We find

SD
δϕ(f) =

∣∣∣h̃D(f)e2πifd − 1
∣∣∣2︸ ︷︷ ︸

∆̃

Sϕ(f). (31)

In general, the interpolation kernel km(ϵ) has to be ad-
justed for every sample n to account for time-dependent
time shifts. Therefore, the flexing arms of LISA will pro-
duce a non-stationary interpolation residual as the frac-
tional delay ϵ scans through different values. At ϵ = 0
and ϵ = 1, the delay is a pure integer shift and the resid-
ual vanishes. Assuming that the worst case is obtained
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for ϵ = 0.55, we can derive an upper bound for the resid-
ual induced by interpolation.

As suggested in [27], and already mentioned at the be-
ginning of this section, a suitable interpolation method
is Lagrange interpolation, and we use in this work. The
interpolation kernel km is derived from fitting a Lagrange
polynomial through a set of neighboring samples. This
method is known for producing a maximally flat fre-
quency response at DC and is therefore well suited for
LISA data processing, as it performs well over the entire
LISA band (10−4 Hz to 1Hz) when using high interpola-
tion orders6. Alternative interpolation kernels are under
study that use less coefficients and optimize their perfor-
mance over the entire band (and not only at DC).

B. Ranging residual

Any estimate of the delay d̂(t) differs from the true
delay d(t) by a ranging error r(t). We define the corre-
sponding delay operator as

D̂ϕ(t) = ϕ(t− d(t)− r(t)) ≃ Dϕ(t)− r(t)Dϕ̇(t), (32)

where we have assumed r(t) to be small and performed
a series expansion to first order. The ranging residual is
then given by

δϕD̂(t) = (D̂ −D)ϕ(t) = −r(t)Dν(t) (33)

with ν(t) = ϕ̇(t). Similarly to laser phase or frequency,
c.f. eq. (4), we decompose the ranging error r(t) into
an out-of-band component ro(t) and an in-band compo-
nent rϵ(t). Here, ro(t) absorbs ranging biases that are of
the order of 3 ns [13] and might be slowly drifting. The
in-band component rϵ(t) has a root-mean-squared value
of ∼ 100 fs (assuming the PSD in eq. (71)). Therefore,
rϵ(t) ≪ ro(t) and we find as the prominent in-band con-
tributions the coupling of laser noise to the ranging bias
and the coupling of ranging noise to the MHz beatnote
frequency

r(t)Dν(t) ≃ ro(t)Dνϵ(t) + rϵ(t)Dνo(t). (34)

For completeness, in appendix D we present the coupling
of the stochastic in-band ranging error to laser frequency
noise.

To simplify the calculations we assume the out-of-band
components of the ranging error and the beatnote fre-
quency to be constant. We can readily write down the
PSD of eq. (33) as

SD̂
δϕ(f) = (ro)2Sν(f) + (νo)2Sr(f). (35)

5 A rigorous proof is needed to validate this assumption which was
only found to be true empirically, in our work, and specifically
for Lagrange interpolation.

6 Assuming a sampling rate of 4Hz, typical filter lengths used for
post-processing delays in TDI are in the range 32 to 66.
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Figure 3. Processing residuals in application of the fractional
delay filter containing ranging errors. We compare the numer-
ically simulated data (yellow) against the analytical models
for the ranging residual caused by ranging noise (green) and
a constant bias (wine). Additionally, we plot models for the
interpolation residual (teal) for different interpolation kernel
lengths N = 8, 14, 62.

C. Comparison with numerical simulations

Once again, we check the validity of our analytic model
using simulations performed in units of frequency. Using
eq. (24), we write down the expression corresponding to
the left-hand-side of eq. (27) for frequency data as

δνD̂(t) = (1− ˙̂
d(t)) · D̂ν(t)− (1− ḋ(t)) ·Dν(t). (36)

In order to simulate time series data corresponding to
eq. (36), we first generate a generic beatnote frequency
with a constant offset of 10MHz and a white laser fre-
quency noise component with an ASD of 30Hz/

√
Hz at

a sampling frequency of 4Hz. Both the post-processing
delay D̂ and the propagation delay D are implemented
as fractional delay filters. To simulate the latter, we use
a very high interpolation order (N = 502), such that
the interpolation error becomes negligible in comparison
to that of the post-processing delay. The ranging er-
ror present in the post-processing delay is modeled by
a bias B = 10−8 s, and ranging noise7 with an ASD of
10−15 s/

√
Hz

(
Hz
f

)
. The nominal value of the delay is

taken to be equal to d = 8.125 s. This yields the worst
case interpolation error, with a fractional part ϵ = 0.5.

In fig. 3 we compare the PSD of the numerical time
series corresponding to eq. (36) with the analytic expres-
sions for each of the two components of eqs. (31) and (35)

7 We choose a red tilt for ranging noise to be easily distinguish-
able from coupling of the ranging bias to laser frequency noise.
The level is comparable with realistic models of modulation noise
discussed in section V.
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Figure 4. Illustration of intermediary variables defined in
eq. (38) and locking configuration N1-12. The intermediary
variables are depicted as an arrow representing the synthe-
sized photon path of the long arm. They are incrementally
build up from the previously defined ones such that the last
variable σ is represented by the entire path. Additionally, the
chain of locked lasers for the locking configuration N1-12 is
shown. The primary laser is highlighted by the grey box.

re-expressed for frequency data, i.e.,

SD
δν(f) = ∆̃Sν(f), (37a)

SD̂
δν(f) = (2πf)2 · SD̂

δϕ(f). (37b)

The interpolation residual (dashed teal) is strongly de-
pendent on the length N of the interpolation kernel. For
this reason, we show the interpolation residual obtained
for N = 8, 14, and 62. The post-processing delay used
in the numerical implementation is performed with an
interpolation order N = 14. As shown in the figure, the
model of eq. (37) agrees with the data for all frequencies.

V. SECOND-GENERATION MICHELSON
COMBINATIONS

In this section we present how the effects stemming
from commutators and post-processing appear in the
second-generation TDI combination X2. In order to opti-
mize numerical precision and to save computational cost,
we calculate X2 in several stages using the following in-
termediary variables. To start with, the variable η is
constructed from the inter-spacecraft and reference in-
terferometers. This step reduces the number of lasers
from six to three. Then, the variables π, ρ and σ are
constructed from η by building round trip interferome-

ters of increasing complexity. We thus have

ηij =

{
isiij − D̂ij

rfijk−rfiji

2 if ϵijk = 1,

isiij +
rfiik−rfiij

2 if ϵijk = −1,
(38a)

πij = ηij + D̂ijηji, (38b)

ρij = πij + D̂ijiπik, (38c)

σij = ρij + D̂ijikiρik. (38d)

Figure 4 provides an illustration of the intermediary vari-
ables as they synthesize two-beam interferometers with
a long and a short arm. The long arm is depicted as an
arrow propagating around the LISA constellation. Us-
ing the variable σ we can finally express the second-
generation Michelson combination X2 as

X2 = σ13 − σ12. (39)

The contracted post-processing delays Di1···iN appearing
in eq. (38) are applied in two steps. First, the nested
delay di1···iN is calculated, and then, the fractional delay
filter is applied. The nested delay can be calculated using
the recursive operation8

di1···iN = di1i2 +Di1i2di2···iN . (40)

Alternatively, contracted post-processing delays can be
decomposed into atomic delay operations

Di1···iN → Di1i2 · · · DiN−1iN . (41)

Note that the expressions on the left and right of the ar-
row are not equivalent and will produce a different over-
all interpolation residual in TDI, see below. Whether a
single contracted delay operator or its decomposition in
atomic delays performs better depends on the numerical
values of the delays. As a general rule, delaying a time
series by a small fractional delay is favorable over delay-
ing a time series with a large one, since the interpolation
residual vanishes for an integer delay.

To obtain an explicit expression for the residual in X2

we use the factorization given in eqs. (38) and (39) to-
gether with the expressions for the inter-spacecraft and
reference interferometers in eqs. (1b) and (16). As the
couplings discussed in sections III and IV apply only
to either the beatnote frequency offsets or the beatnote
phase fluctuations, we split up the interferometers into
those contributions. For brevity, we define aij = ˙isi

o

ij

and bi = ˙rfi
o

ij = − ˙rfi
o

ji
9 as in [13]. The beatnote phase

fluctuations are given by

isiϵij = DijSFpji − SFpij + [SF,Dij ]pji, (42a)

rfiϵij = SFpik − SFpij . (42b)

8 The interpolation error arising in this operation might also be
relevant as it contributes to the ranging error. To suppress it
below the modulation noise level we use an appropriate interpo-
lation orders (order 5 seems sufficient) in our numerical studies.

9 This relation holds for ij = 12, 23, 31 as adjacent reference inter-
ferometers track the same beatnote up to a sign.
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Here, pij denotes the phase noise of laser ij. In the fol-
lowing we write as a short-hand notation p̄ij = SFpij .

Next, we replace each occurrence of the post-processing
delay D̂ij by the relation given in eq. (27). Here, we
neglect all second-order terms in the residuals. Doing so,
we find that X2 breaks down into the following residuals

X2 = δX
[SF,D]
2 + δXD

2 + δXD̂
2 + δX2, (43)

where the origin of the first three terms on the right-
hand side is described in sections III and IV. Additionally,
the residuals are propagated through TDI and therefore
appear multiple times with different delays. The fourth
term in eq. (43) is the usual delay commutator describing
the arm length mismatch in the virtual interferometer.

In the following we discuss the constituents of eq. (43)
individually. To simplify the expressions we assume equal
arms and denote the transfer that is common to all resid-
uals as

C ≡ (1−D4)(1−D2), (44)

C̃ ≡ 16 sin2(2πfd) sin2(4πfd). (45)

The residuals induced by filtering and decimation enter
in the inter-spacecraft interferometer (cf., eq. (16)) and
are thus only propagated through TDI. This is consistent
with [15], and they read

δX
[SF,D]
2 = C{[SF,D13]p31 +D[SF,D31]p13

− [SF,D12]p21 −D[SF,D21]p12}.
(46)

The interpolation residual depends on the factorization
scheme used to compute the TDI variables. Using the
factorization from eq. (38) with “contracted delays”, we
obtain

δXD
2 = CD[∆12p̄21 −D∆31p̄13 −∆13p̄31

+D(∆13+∆31−∆12+∆121−∆131)p̄12].
(47)

If one instead performs the interpolation with “atomic
delays” (i.e., turning D̂i1···iN into D̂i1i2 · · · D̂iN−1iN ), one
obtains

δXD
2 = CD{∆12p̄21 +D∆21p̄12

−D∆31p̄13 −∆13p̄31}.
(48)

To compute the TDI residual induced by the ranging
error we need a description of the ranging measurement
and any additional processing employed to reduce this
ranging error. In LISA, two additional modulations on
the laser beam are used to measure the inter-satellite
range: the pseudo-random noise (PRN) modulation (ab-
solute ranging) and the clock sidebands. The ranging
processing described in appendix B, which is mostly
adopted from [13], combines both measurements. The
resulting ranging estimates d̂ij inherit a bias Bij from the
PRN measurements and a stochastic term from the side-
band measurements. Therefore, the ranging error reads

rij(t) = Bij −DijMj(t) +Mi(t), (49)

where Mi denotes the modulation noise on left-handed
MOSAs. The resulting residual δXD̂

2 can be decom-
posed into the component originating from the ranging
bias δXB

2 and the modulation noise δXM
2 . These two

contributions are consistent with [13] and read

δXB
2 = C{D2B31 ˙̄p13 +DB13 ˙̄p31

−D2B21 ˙̄p12 −DB12 ˙̄p21},
(50a)

δXM
2 = C{(a13 − a12 + (1−D2)b1)M1

−Da21M2 +Da31M3},
(50b)

where ˙̄pij is the time derivative of the filtered and deci-
mated laser phase fluctuations.

Let us finally give the expression for the usual TDI
delay commutator that fundamentally limits laser noise
reduction. Due to the flexing of the LISA constellation
the round-trip times of any synthesized two-beam inter-
ferometer are not exactly identical. Hence, laser noise in
the two beams does not cancel but enters into the TDI
combination proportional to the arm length mismatch
∆d. For the second-generation Michelson variable X2,
the residual reads

δX2 = [D13121,D12131]SFϕ12 (51)

≃ −∆dX2
D131212131

d

dt
SFϕ12. (52)

In the second line we use the property that a delay
commutator acts like a derivative, as already described
in [4, 6, 13, 28]. The arm length mismatch in a second-
generation Michelson interferometer is given by

∆dX2
(t) = d131212131(t)− d121313121(t). (53)

Equation (52) can be further split up into a deterministic
out-of-band drift and an in-band component by plugging
in eq. (4). As the deterministic part, we recover10

δXo
2 = −∆dX2

D131212131ν
o
12, (54)

where the travel time difference can be efficiently com-
puted from the time delays dij as described in ap-
pendix C. Additionally, a model for the absolute laser
frequency νo12 must be provided to subtract the trend.
The stochastic in-band component of the delay commu-
tator is characterized by its PSD

SδX2
(f) = (∆dX2

)
2
(2πf)2 S̃F̃Sp(f). (55)

For this derivation we have assumed that ∆dX2 is con-
stant. In reality, the amplitude of residual laser noise is
modulated due to orbital dynamics governing the motion

10 As the phase ramp produced by the THz central laser frequency
is unaffected by filtering and decimation we can drop both oper-
ations.
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of the three spacecraft. We expand the travel time differ-
ence ∆dX2

up to second order in velocity ḋiji and up to
first order in acceleration d̈iji to derive a good approxi-
mation of ∆dX2 [6],

∆dX2
= (d131ḋ121 − d121ḋ131)(ḋ121 + ḋ131)

− (d131d̈121 − d121d̈131)(d121 + d131),
(56)

which is of the order 10−12 s [13].
In previous studies [e.g., 11], it was demonstrated that

laser locking does not affect the coupling of path-length
noises in TDI combinations. At first this seems counter-
intuitive as locked lasers generate echoes of any path-
length noise imprinted on the reference beam. However,
those echos are canceled out in TDI since any in-band
component in all six laser phases is, by construction,
strongly suppressed by the algorithm.

The couplings described above introduce residual laser
phase in the TDI combinations. Thus, laser noise and
path-length noises imprinted on the laser will enter the
combination. However, the effect of the latter is subdom-
inant, because laser noise dominates the residuals. The
impact of locking is thus only relevant for laser noise.
In the following sections we first describe the residuals
assuming six independent lasers, i.e., when each laser
is locked to an individual cavity; then, we derive the
same residuals assuming the standard locking configu-
ration N1-1211 introduced in [23].

A. Six independent lasers

For the case of six lasers stabilized to their individual
cavities, we assume that their in-band phase noises pij
are independent. Thus, we can compute the total PSD
as the sum of the PSDs of each laser’s contribution.

Using eq. (19) and the upper bound given in eq. (23),
it is easy to compute the PSD of eq. (46) corresponding
to the coupling of the filter-delay and decimation-delay
commutator. It reads

S
S[F,D]
δX2

(f) = 4C̃S̃

 ¯̇
d2

∣∣∣∣∣ 1

2π

dh̃F(f)

df

∣∣∣∣∣
2

Sṗ(f)

 , (57a)

S
[S,D]F
δX2

(f) ≤ 16C̃ ·
∞∑

n=1

(F̃Sp)
(n)(f), (57b)

with the effective squared delay derivative

¯̇
d2 =

ḋ212 + ḋ221 + ḋ213 + ḋ231
4

. (58)

Next, we investigate the PSD of the interpolation resid-
ual contribution. For six independent lasers we choose to

11 Note that in this work, we shall use the locking configuration
naming convention introduced in [24].

use atomic delays over contracted delays because it re-
sults in much simpler couplings. Furthermore, we assume
the worst-case interpolation error in order to derive an
upper bound on the interpolation error. We use eqs. (31)
and (48) and find

SD
δX2

(f) ≤ 4C̃∆̃S̃F̃Sp(f). (59)

Here, ∆̃ (without indices) represents the worst case in-
terpolation error coupling.

Finally, using eqs. (35) and (50), the contribution from
the ranging error yields a PSD equal to [13]

SD̂
δX2

(f) = C̃
(
4B̄2(2πf)2S̃F̃Sp(f)

+AM
X2

(f)SM (f)
)
,

(60)

with an effective squared bias B̄2 and a modulating func-
tion AM

X2
(f) defined as

B̄2 =
B2

12 +B2
21 +B2

13 +B2
31

4
, (61)

AM
X2

(f) = (a12 − a13)
2 + a221 + a231

− 4b1(a12 − a13 − b1) sin
2(2πfd).

(62)

B. Locked lasers

The baseline design of LISA foresees locked lasers to
ensure that all beatnote frequencies fall into the sensitive
bandwidth of the photoreceivers onboard the spacecraft
(5MHz to 25MHz). To achieve this the primary laser
is stabilized using a cavity that serves as a frequency
reference. The five remaining lasers are frequency off-
set locked in succession to the primary following a lock-
ing topology. Laser locking of one laser is achieved by
adjusting the frequency of this laser source so that the
beatnote frequency of the locking interferometer follows a
predetermined offset frequency oij . The so-called locking
conditions for the inter-spacecraft and reference locking
interferometer are given by

˙isiij = Ḋijνji − νij = oij (63a)
˙rfiij = νik − νij = oij (63b)

where νji and νik, respectively, denote the frequencies
of the reference lasers and νij is the frequency of the
laser that is controlled. As the offset frequencies oij only
have out-of-band components, any locked laser is simply
“echoing” the incoming phase noise of the reference laser.
Therefore, laser noise becomes correlated among the six
lasers.

In this section, we take as an example the N1-12 lock-
ing configuration as depicted in fig. 4. Here, N1 specifies
the locking topology and 12 the index of the primary
laser (see [23, 24] for an overview of the locking topolo-
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gies). For this particular locking configuration the in-
band phase noise of the six lasers is given by

p12 = p, p23 = D21p, p31 = D31p,

p13 = p, p32 = D31p, p21 = D21p.
(64)

For better readability we drop the index on p = p12
denoting the in-band phase fluctuations of the primary
laser. We proceed by inserting the expressions of eq. (64)
into the general expressions for laser noise related resid-
uals listed in section V. To simplify the expressions we
make use of the commutator rule

[SF,Dij ]Djk = [SF,Dijk]−Dij [SF,Djk]. (65)

We note that the following results are very particular to
the choice of locking configuration. Moreover, results for
X2, Y2 and Z2 no longer exhibit rotational symmetry in
the indices as it is broken by laser locking; this is easily
verified from eq. (64).

As an example, we derive the laser noise residuals for
the second-generation Michelson X2 variable. In gen-
eral, we find that expressions simplify. This is due to the
fact that the locking configuration N1-12 inherently gen-
erates round-trip measurements required to build X2

12.
For Y2 and Z2 we find more complicated expressions in-
volving more terms. However, the TDI transfer function
remains and additional factors only modulate the resid-
ual slightly. Those are caused by cross-spectral densities
among correlated laser noise residuals.

For the [SF,D] commutator we recover

δX
[SF,D]
2 = C([SF,D121]− [SF,D131])p. (66)

We split it up further (as in eq. (17)) into contributions
from the filter-delay commutator and sample-delay com-
mutator, respectively. The PSD of the flexing-filtering
coupling is given by eq. (57a) with an effective squared
delay derivative equal to

¯̇
d2 =

(ḋ121 − ḋ131)
2

4
. (67)

For the sample-delay commutator, the upper bound given
in eq. (57b) is still valid. Furthermore, we note that both
residuals vanish non-trivially if the round-trip delays d121
and d131 become equal (for the flexing-filtering coupling,
their derivatives must also be equal).

To simplify the coupling of the interpolation error to
laser noise for locked lasers we use contracted delays (see
eq. (47)). We obtain

δXD
2 = CD2(∆131 −∆121)SFp. (68)

Again, the upper bound given in eq. (59) still holds and
the residual vanishes for equal round-trip times d121 and
d131.

12 For example, the inter-spacecraft measurements isi12 ∼ π12 and
isi13 ∼ π13.

Finally, we discuss the residual caused by ranging er-
rors. The contribution coming from modulation noise in
eq. (50b) stays unchanged as the laser noise component
of the beatnote is not involved. The contribution of the
ranging biases in each arm, see eq. (50a), is given by

δXB
2 = CD2(B12 +B21 −B13 −B31)SFp. (69)

Therefore, the PSD of ranging error contributions is ex-
pressed as eq. (60) with an effective squared bias equal
to

B̄2 =
(B12 +B21 −B13 −B31)

2

4
. (70)

C. Comparison with numerical simulations

We now compare the theoretical model described
above to simulated LISA data, obtained using LISA
Instrument [24, 29] to generate the LISA measurements
and PyTDI [30] to calculate the second-generation Michel-
son variables. To compare the couplings described above
to the simulated data, individually, we run three simula-
tions with increasing complexity. In the first simulation,
all sources of noise are disabled. Any residual in the TDI
variables can be attributed to numerical effects that are
due to rounding errors in the simulated floating-point
variables. In the second simulation, we add white laser
frequency noise with an ASD equal to 30Hz/

√
Hz. This

gives rise to the residuals caused by the flexing-filtering
effect, the coupling of the sampling-delay commutator
and interpolation errors. Finally, we introduce modu-
lation noise and ranging biases of the order of 30 ns (a
factor 10 higher than in [13] in order to accentuate the
coupling) to produce the couplings related to ranging er-
rors. The ASD of the modulation noise on left-handed
MOSAs is given by

√
SM (f) = 8.3× 10−15 s/

√
Hz

(
f

Hz

)−2/3

, (71)

while on the right-handed MOSAs it a factor of 10
larger [31]. As already presented in [12, 13], we can ob-
tain an estimate of the pseudo-range d̂ij that is free of
the modulation errors of the right-handed MOSAs.

All simulations span approximately 3 days in duration
with the LISA constellation following realistic heliocen-
tric orbits provided by ESA. Physics is simulated at 16Hz
and the filter presented in appendix A is used for anti-
aliasing before decimating to 4Hz. Here, the filter design
is not optimized using a trade-off between the number of
taps and the level of laser noise residual but rather chosen
such that the processing residuals are above numerical
noises and can be validated against analytical models.
LISA Instrument produces measurements in units of

frequency in order to circumvent numerical issues specific
to phase units. As a result, the data produced contains
the total beatnote frequencies of the inter-spacecraft and



12

10−4 10−3 10−2 10−1
10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4
A

S
D
Ẋ
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[S,D]F
2

model δẊ
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Figure 5. ASDs of the second-generation Michelson variable Ẋ2 for six independent lasers. The dashed lines correspond to the
theoretical predictions (upper bound for aliasing) for the different TDI residuals. Solid lines are numerical estimates resulting
from the three simulations described in the text. The black vertical at 10−1 Hz divides the x-axis into logarithmically and
linearly scaled. Note that the effects of interpolation appears for frequencies larger than 1Hz and are shown in fig. 7.

the reference interferometers, which have offsets between
5MHz to 25MHz. In addition to the carrier-to-carrier
beatnotes, sideband beatnotes that precisely track the
delay derivatives are also available.

Prior to any processing all measurements are converted
from a 64-bit to an 80-bit floating-point variable. This
makes sure that no additional numerical noise is intro-
duced downstream. In the first processing step we ex-
tract the high-precision ranging information from the
sidebands (see appendix B). Then, the second-generation
Michelson variable X2 is calculated using the factoriza-
tion expression in eq. (38). Here, we use Lagrange in-
terpolation with n = 62 coefficients. To convert our
expressions to frequency units, all delay operators D̂ij

are replaced by ˙̂Dij , which are defined analogously to
eq. (24). In the last processing step, we subtract any out-
of-band drifts from the Michelson combinations to reduce
the effect of spectral leakage at DC. This is achieved by
computing the differential Doppler shift, as explained in
appendix C, and inserting it into the time derivative of
eq. (54).

The resulting ASDs of the simulations for six inde-
pendent and locked lasers are presented in figs. 5 to 7.
To match the analytical models at high frequencies (i.e.
flexing-filtering effect and interpolation error) with the

numerical ASDs for locked lasers we had to relax the
equal-arms assumption and use the expressions for six
unequal but constant arms. Figures 5 and 6 show that
for the laser-noise-only simulations, the residuals are well
explained by the commutator residuals. For both six
independent and locked lasers, we plot the same upper
bound for aliased laser noise from eq. (57b). We note that
the locked case exhibits a slightly reduced noise level,
which can be explained by partial cancellation of the two
contributions appearing in eq. (66). Adding modulation
noise and ranging bias to the simulation completely dom-
inates the aforementioned effects. Indeed, the residual in
X2 is now dominated by the ranging and interpolation
residuals, which are again well explained by their ana-
lytical counterparts. At very low frequencies (10−4 Hz to
10−3 Hz) we observe deviations from the models. Those
can explained by the numerical noise floor arising from
rounding-errors in the simulation. We also observe this
numerical limit in the noiseless simulation shown in grey.

In fig. 7, we show the PSDs of interpolation errors
for six independent and locked lasers using either con-
tracted or atomic delays, respectively. As a side note,
this residual only affects frequencies outside the LISA
band (> 1Hz) and thus should be irrelevant from the
point of view of the performance of TDI. This being said,
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2

model δẊ
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the focus of this paper is to correctly model the residu-
als, which is why we include this computation. In the
left hand plot, we show the exact models (assuming six
unequal but constant arms) which can be seen to match
the numerical results. In the right hand plot, we show
a similar plot but for locked lasers. On the one hand,
we find that, in this particular case, it is indeed advanta-
geous to use contracted delays to calculate X2 for locked
lasers in the N1-12 locking configuration as it produces a
residual that is smaller by approximately a factor of two
compared to using atomic delays. On the other hand, for
six independent lasers we virtually see no difference. As
discussed earlier in this section, there is no general rule
for the optimal factorization of delays as it is dependent
on their particular value. However, in the worst case
scenario (ϵ = 0.5), atomic delays outperform contracted
delays for six lasers and vice versa for locked lasers (see
eqs. (48) and (68)).

VI. CONCLUSION

In this paper, we have presented a comprehensive
study of residual laser noise in the TDI variables for
LISA. We have identified two categories of couplings.
First, onboard processing steps, namely filtering and dec-
imation, give rise to additive noise in the inter-spacecraft
interferometers due to non-commutation with the de-
lay operation. Secondly, the post-processing delays em-
ployed to calculate TDI combinations only partially mit-
igate laser noise. This is because this offline computation
relies on an interpolation method which induces interpo-
lation errors, and because the offline delays used for TDI
include ranging errors. For both categories of laser noise
couplings, we provide analytical models for the residuals
in the second-generation TDI combination X2; we vali-
date those models using numerical simulations.

In the existing literature, the flexing-filtering effect [15]
and the coupling of ranging errors [13] for six indepen-
dent lasers are already described and preliminary models
of laser noise residuals due to aliasing and interpolation
errors are presented in [16]. In this study, we remedy
the shortcomings of the latter and present all laser noise
couplings in a consistent framework. Furthermore, we
investigate the impact of laser locking by discussing the
example of the locking configuration N1-12. Finally, be-
cause we perform TDI in total frequency units, we ex-
plain the deterministic trend that is present in second-
generation TDI combinations: differential Doppler shifts
in the round-trip paths of the synthesized beams produce
a beatnote of a few mHz. This trend depends solely on
the out-of-band delays due to orbital dynamics and the
THz frequency of the involved laser. It can therefore be
computed and removed by appropriately modeling the
orbits and the THz frequency evolution. This detrend-
ing step is a reversible (the trend can always be added in
again) part of pre-processing. It occurs before parame-
ter estimation and reduces spectral leakage in PSD esti-

mates, a feature which is relevant for the present study.
Contrary to unsuppressed noises [11] (e.g. path length

noises), the coupling of laser noise residuals is dependent
on the underlying locking configuration. This can be ex-
plained by the fact that locked lasers follow the primary
laser with configuration-specific time lags, which intro-
duce correlations among all lasers. To be consistent with
the existing literature, we first derive analytical models
for six independent laser. Then, we repeat the calcula-
tion for locked lasers, more specifically the configuration
N1-12. In this configuration, the spacecraft 2 and 3 act
as transponders directly sending light back to spacecraft
1. This means the inter-spacecraft interferometer beat-
notes recorded on spacecraft 1 already represent the sig-
nal combinations η12+D12η21 and η13+D13η31 for laser
noise, simplifying the expression for the Michelson X2

variable. However, this simplification does not apply to
Y2 and Z2. In general, analytic models become more com-
plicated for locked lasers due to the introduced correla-
tions. Furthermore, we find that generally the worst case
scenario in terms of laser noise residuals can be larger for
locked lasers than for six independent laser. Hence, fu-
ture worst case studies should account for all possible
locking configurations.

The level of additional noise due to onboard processing
(filtering and decimation) is strongly dependent on the
design of the anti-aliasing filter. In this study, we used a
FIR filter with a transition band ranging from 0.1Hz to
2Hz so as to relax requirements on filter implementation
(the number of taps is reduced to 103 compared to 145 in
the standard LISA Instrument implementation) and ac-
centuate the flexing-filtering coupling in the LISA band.
In theory, the flexing-filtering coupling can be mitigated
by flattening the response of the filter in the pass-band on
ground. The appropriate design of compensation filters
is the subject of on-going efforts in the LISA community.
Indeed, any aliased noise due to insufficient attenuation
in the stop-band cannot be reduced in post-processing
and has to be taken care of before decimation.

Laser noise residuals stemming from post-processing
delays depend on the interpolation method and the rang-
ing performance. In this paper, we extensively rely on La-
grange interpolation, which has a maximal flat response
at DC. Alternative interpolation kernels are given by the
family of “windowed sinc” kernels [27] or numerically op-
timized kernels. These are currently under study. Inter-
polation kernels of shorter length have smaller computa-
tional cost and result in less truncation at the boundaries
(where the interpolation kernel does not completely over-
lap with the data). This problem becomes more critical
in the presence of gaps. In this paper, we also studied
the impact of contracting processing delays, i.e., combin-
ing nested delays first to form a single delay operation.
We find that the best delay contraction strategy depends
on the locking configuration and the particular numerical
values of the delays.

The results presented in this paper should be invariant
under the time reference frames the measurements are
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defined in. Therefore, the general findings should still
be valid for measurements sampled according to realistic
clocks that are processed using “Time-delay interferome-
try without clock synchronization” presented in [13]. Ad-
ditionally to flexing arms due to orbital dynamics, clock
drifts of the order of 10−7 become relevant for the flexing-
filtering effect. Furthermore, extra care must be taken
when extracting the delay estimates from the sideband
measurements since measured pseudo-ranges have an in-
band component. Here, appropriate compensation fil-
ter are crucial since sideband beatnotes are also subject
to anti-alias filtering. Any departure from unity in the
filter’s transfer function will produce additional ranging
noise in the delay estimates.
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Appendix A: Anti-aliasing filter design

The main objective of the anti-aliasing filter is to pre-
vent folding of power during decimation. In the numeri-
cal simulations performed in this work, we simulate the
physics at 16Hz and decimate to 4Hz. Therefore, we
need to design the anti-aliasing filter such that it cuts off
at a Nyquist frequency of 2Hz. We use the routines from
the SciPy Python package to design a FIR filter with the
so called “window method”. Here, we assume a pass-band
frequency of 0.1Hz, a stop-band frequency of 2Hz and a
minimum attenuation of 181 dB. The resulting transfer
function and its derivative which is of relevance for the
flexing-filtering coupling (see section III A) are plotted in
fig. 8.

Appendix B: Ranging processing

The ranging processing discussed in this section is
mostly adopted from [13] and we introduce only minor
changes to the algorithm. The main differences are that

0 1 2 3 4 5 6 7 8

Frequency (Hz)

10−12

10−10

10−8

10−6

10−4

10−2

100

M
a
g
n

it
u

d
e

(-
)

/
(H

z−
1
)

transfer function

derivative

Figure 8. Magnitude of filter transfer function (blue) and its
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we write it down in units of phase and reformulate the
suppression of modulation noise contributions originating
from right-handed optical benches. Additionally, we as-
sume that the sideband phases are read out using a feed-
forward scheme. This measure avoids tracking the carrier
phase redundantly and also accounts for the difference in
modulation frequencies on each MOSA. Therefore, the
sideband phases of the inter-spacecraft and reference in-
terferometer read

isisbij = Dijϕ
m
ji − ϕm

ij − (νmji − νmij )t, (B1a)

rfisbij = ϕm
ik − ϕm

ij − (νmik − νmij )t, (B1b)

where the phase of the modulation is given by

ϕm
ij(t) = νmij · (t+Mij(t)). (B2)

Here, Mij(t) accounts for timing jitter due to modulation
noise. Inserting this definition into eq. (B1) yields

isisbij = −νmjidij +Dijν
m
jiMji − νmijMij , (B3a)

rfisbij = νmikMik − νmijMij , (B3b)

which has a similar algebraic structure to the carrier
phases (c.f. eq. (1)) where the product νmijMij takes the
place of the laser phase ϕij . We now use the definition
of the intermediary variable ηij for the sidebands13 (see
eq. (38a)) to cancel modulation noise contributions stem-
ming from right-handed MOSAs,

ηsbij = −νmjidij +Dijν
m
jkMj − νmijMi. (B4)

13 The post-processing delays required to calculate ηsbij have much
more relaxed error requirements than is the case for laser noise
cancellation. We can therefore use the delay estimates from the
PRN.
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Here, we use the shorthand notation M1 = M12, M2 =
M23 and M3 = M31.

Finally, the variables ηsbij have to be scaled by the re-
spective modulation frequency and multiplied by −1 in
order to yield a low noise estimate of the delay

d̂ij = −
ηsbij
νmji

= dij −Dij

νmjk
νmji

Mj +
νmij
νmji

Mi. (B5)

Assuming that modulation frequencies only differ by a
fraction of a percent we can approximate the above ex-
pression by setting the ratios of frequencies to 1. Doing
so, we recover the stochastic component in eq. (49).

In practice, we process data in frequency units. Hence,
the above procedure is rewritten in frequency by taking
a global time derivative. By doing so, eq. (B5) yields an
accurate measurement of the delay derivative ˙̂

dij , which
then needs to be integrated to recover the delay itself, re-
quired for TDI. The integration constant is derived from
the PRN ranging measurement [13].

Appendix C: Differential Doppler shift

As explained in section V, any TDI combination repre-
senting a virtual two-beam interferometer does not cancel
the laser phase perfectly for flexing arms but is limited
by a residual given by the delay commutator. The origin
of this residual is the travel time difference ∆d between
the two virtual beams. The deterministic component of
this residual can be calculated and subtracted from the
TDI observable (see eq. (54)). Here, we present an effi-
cient scheme to calculate ∆d. First we recognize that the
delay dij can be written as

dij(t) = t−Dijt, (C1)

which has the same algebraic structure as ηij up to a sign.
Here, the time argument t takes the place of the laser
phase ϕi and ϕj (c.f. eqs. (1) and (38)). Using ηij = dij
as inputs to TDI yields the travel time difference ∆d as

X = −[DA,DB ]t = dAB − dBA = ∆d, (C2)

where AB and BA denote the paths of the counter-
propagating beams of an arbitrary TDI combination X
representing a two-beam interferometer.

As processing is performed in frequency units in this
paper we are more interested in the derivative of ∆d. To
avoid numerical problems we thus operate on the delay
derivatives ḋij directly and form ∆ḋ = Ẋ following the
procedure explained in [6].

Appendix D: Coupling of ranging noise to laser noise

In section IV, we neglect the coupling of the stochas-
tic component of the ranging error to laser noise as it
appears to be much weaker compared with the coupling

to the MHz beatnote frequency. However, for the sake
of completeness and as it becomes relevant in processing
pipelines where one removes the phase ramp operates on
the fluctuations directly we present the coupling mecha-
nism below.

To suppress all other laser noise couplings in the final
TDI combination we consider a setup where we have al-
ready removed the phase ramp from the interferometric
measurements such that they only track the differential
phase noise pij of the six lasers,

isiij(t) = Dijpji(t)− pij(t), (D1a)
rfiij(t) = pik(t)− pij(t). (D1b)

For simplicity we omit the anti-aliasing filtering and dec-
imation that was considered in eq. (1).

Next, we insert eq. (D1) into eq. (38a) where the
post-processing delay D̂ is used and only accounts for
a stochastic ranging error r(t). We can express ηij for
the left and right-handed MOSAs as

ηij = D̂ijpj − pi − (D̂ij −Dij)pji. (D2)

Here, we use the short-hand notation p1 = p12, p2 = p23
and p3 = p31. We recognize that the last term in eq. (D2)
is already a laser noise residual and we neglect higher
order couplings in the following. Then, we use the inter-
mediary variables, πij , ρij and σij defined in eqs. (38)
and (39) to find the total laser noise residual in the
second-generation Michelson combination X2. It consists
of the residual in eq. (D2) that is propagated through
TDI as well as the commutator of post-processing delay
operators

[D̂13121, D̂12131] = [D13121,D12131]

+ (D̂131212131 −D131212131)

− (D̂121313121 −D121313121)

(D3)

applied to p1. Here, we split the commutator into the
“usual” delay commutator and two additional terms that
produce further laser noise residuals. For equal arms, the
full residual in X2 reads

δXD̂
2 = C{D(r31Dṗ13) + (r13Dṗ31)

−D(r21Dṗ12)− (r12Dṗ21)}
+C{r12 +Dr21 − r13 −Dr31} ·D8ṗ1,

(D4)

where we have used eq. (33) and have approximated
nested ranging noise as

rijikikiji ≃ riji +D2riki +D4riki +D6riji, (D5a)
riji ≃ rij +Drji. (D5b)

Finally, we compute the PSD of eq. (D4) by assuming
that all laser and ranging noise terms are uncorrelated
and have identical noise properties. We find

SD̂
δX2

(f) = 4C̃(Sr(f
′) ∗ Sṗ(f

′))(f)

+ 4(C̃Sr(f
′) ∗ Sṗ(f

′))(f),
(D6)
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where we have neglected any cross terms between the
first two lines and the last line in eq. (D4). The ∗ sign

denotes convolution (in frequency domain) which stems
from the time domain products of ranging and laser noise
contributions.
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