
Supplemental Methods and Materials

Participants

The included bipolar patients met the criteria for euthymia for at least 2.5 months prior to recruitment, as

indicated by the Beck Depression Inventory (BDI,  [96]),  Altman Self-Rating Mania Scale ([97]),  Hospital

Anxiety  and Depression  Scale  (HADS,  [98]),  and  State-Trait  Anxiety  Inventory  (STAI,  [99]).  The  healthy

individuals  did  not  have  neurological  or  mental  health  conditions  and  were  not  currently  taking  any

medication  for  anxiety  or  depression.  Participants  in  both  groups  were  right-handed,  had  normal  or

corrected-to-normal vision, and demonstrated the ability to perform controlled finger movements. 

The BDI  ranges from 0 to 63, with values above 14 denoting light to severe depression. The Altman Self-

Rating Mania Scale ranges from 0 to 20, with values up to 5 considered normal. The HADS, which assesses

anxiety and depression separately, ranges from 0 to 21, with normal scores in the range of 0 to 7. We

additionally assessed state anxiety on the day of the experimental session to determine potential group

differences, which could affect decision-making [70]. We used the state subscale of the Spielberger State-

Trait Anxiety Inventory (Spielberger, 1983), ranging from 0 to 80, with values up to 30 considered low to

medium.

In addition, in both cohorts, we assessed cognitive performance including executive functioning using the

Trail Making Test (TMT, part 1 and 2, [100,101]), and reversal learning using the Wisconsin Card Sorting

Test (WCST,[102]).  Cognitive impairment was assessed with the Mini-Mental State Examination (MMSE,

[103]) scale. See the test scores Table 1.

Sample size

Power analysis  was informed by a recent study assessing between-group differences in mean volatility

estimates in a similar paradigm in healthy individuals with high and low trait anxiety levels ([37]; non-

parametric probability of superiority, Δ ~ 0.74, equivalent to a Cohen’s d of 0.91, resulting in a minimum of

20 participants  per  group for  80% power).  Differences  in  frequency-domain  amplitude changes during

belief updating in that study were associated with a non-parametric effect size of  Δ ~ 0.735, equivalent to a

Cohen’s d of 0.89, resulting in a minimum of 21 participants per group for 80% power. Although larger

effects in volatility and neural differences between bipolar patients and their healthy counterparts were

anticipated, we recruited 22 BD patients to account for potential variations in effects across computational

and neural variables

Reward-based motor sequence learning task 

Before commencing the main task, participants performed 20 simple sequences of eight finger movements:

1-2-3-4 rightwards and 4-3-2-1 downwards, corresponding to the index, middle, ring, and little fingers on a



four-button response box (Figure 1A). Each button press produced a specific sound with pitch values E5, F5,

G5, A5 (Figure 1A). This served as a baseline measure of their fine motor skills.

The primary task had both a familiarisation and test phase. In the familiarisation phase, participants learnt

two sequences of four finger presses, each linked to a specific fractal image (Figure 1A). The test phase

comprised two blocks, totalling 320 trials. In each trial, participants selected between two fractal images,

playing the corresponding motor sequence (sequence1, sequence2) for a reward. These sequences, and the

corresponding fractals,  were implicitly associated with reward values of 5 (rewarded) or 0 points (non-

rewarded).  The probability of a sequence yielding a reward was reciprocal (p(sequence1|reward) = 1 -

p(sequence2|reward)),  and shifted pseudorandomly  every 26-38 trials.  The probability  mappings  could

adopt values of 0.9/0.1, 0.7/0.3, 0.1/0.9, 0.3/0.7, or 0.5/0.5 in each block (Figure 1B). Participants received

feedback post-trial, indicating 'You earned 5 points' or 'You earned 0 points'. They had a 3000 [± 250] ms

window  to  start  and  finish  the  sequence.  Feedback  was  presented  1250  [±  250]  ms  after  sequence

completion and remained visible for 1900 [± 100] ms. If participants took over 3300 ms (time out) or made

a sequencing error, they were notified of either the delay or mistake, respectively, and garnered no points.

Control analyses on the pseudo randomised probabilistic mappings demonstrated that both participant

samples experienced the same true volatility. See details in next section.

Validation of paradigm and probabilistic structure

The contingencies were generated pseudorandomly in each participant, which could result in both groups

experiencing differences in the true volatility by chance. We examined this possibility by comparing the

true rate of contingency change in each group: average number of trials where a change takes place across

both blocks. A greater number here would denote smaller true volatility( i.e. changes occur less frequently).

On average, contingencies changed every 32 trials in both groups (32.3 [SEM 0.25] in HC, 32.9 [ SEM 0.42]

in BD), and Bayes factor analysis supported they were equivalent (BF10 = 0.61, anecdotal evidence; P =

0.1957, non-significant difference).

MEG recording  and preprocessing 

Initial preprocessing of the MEG signals consisted of correcting for head movements, reducing noise, and

eliminating bad channels using the temporally extended signal-space separation (tSSS) method (Taulu and

Hari, 2009), integrated into the Elekta Neuromag software (Maxfilter, Elekta Neuromag). The settings were

adjusted to a sliding window of 10 seconds and a subspace correlation threshold of 0.9.



Assessing practice effects in general task performance 

Bayesian multilevel modelling (BML) estimates approximate posterior probability distributions for model

parameters and incorporate accurate uncertainty estimates, even with unbalanced data and small sample

sizes  [104].  We conducted BML using  the  R  package  brms [52,  53],  employing  informative priors  and

estimating models by Markov-Chain Monte-Carlo (MCMC) sampling. This process involved drawing 20,000

samples across four chains, discarding the first 1000 iterations of each chain as warm-up. We validated

chain convergence using the Gelman–Rubin statistics (R-hat ≤ 1.1; [105]).

For the mIKI analysis  and, separately, for the RT analysis,  we employed a series of Bayesian multilevel

models with a Gaussian distribution. These models included fixed effects, such as Group (BD, HC; with HC as

reference) or Trial (1:320), and random effects, capturing the individual variation of subject effects on the

intercept and/or slope. Fixed effects refer to effects that are assumed not to vary across subjects, while

random effects are considered to vary among individuals (e.g., in their intercept or slope).

Models incorporating Group as a fixed effect facilitated the calculation of  the posterior  distribution of

parameters for the HC group (used as the reference) and the posterior distribution of differences between

the BD and HC groups. The most complex model (Model 8 in  Table S1) included Group, Trial, and their

interaction as fixed effects and permitted individual variation in both intercepts and slopes. This approach

aimed  to  reveal how  tempo/RT  evolved  across  trials  in  each  participant.  For  comparative  purposes,

additional  models  with  varying  degrees  of  complexity  were  constructed  (refer  to  Table  S1).  Trial-wise

outliers in mIKI or RT, defined as values exceeding three standard deviations from the mean, were excluded

from the analysis.  Moreover,  we applied a natural  logarithmic  transformation to mIKI  to normalise  its

distribution, referred to as log_mIKI (in log-ms). A similar strategy was employed for the analysis of practice

effects on RT.

Model comparison was conducted using leave-one-out cross-validation (LOO-CV) with Pareto-smoothed

importance sampling [106]. The best-fitting model was identified based on the highest expected log point-

wise predictive density (ELPD). We also ensured that the absolute mean difference in ELPD between the

two top models (elpd_diff in brms)  exceeded twice the standard error of these differences (2se_diff). If

elpd_diff was smaller than 2se_diff, we opted for the more parsimonious model.

Table  S1.  Bayesian  Multilevel  Models  with  a  Gaussian  distribution  assessing  practice  effects  on  tempo or  RT.

Increasingly complex models were constructed to assess practice effects on tempo (logmIKI, measured in log-ms) or,

separately,  on  RT  (logRT,  in  log-ms).  The  same  models  were  assessed  for  each  dependent  variable,  separately,

denoted by “y” in the table. Models 1, 2, and 3 explain y through the fixed effects of group (BD, HC; with HC as the

reference group; fixed here denotes an effect assumed not to be changing across subjects) and trial (1:320), or their

additive combination, while Model 4 includes their interaction effect. Models 5-7 incorporate the random effect of the

intercept by subject, thus modelling how the intercept changes across subjects. The most complex model, Model 8,



allows for individual variation in both intercepts and slopes, potentially revealing how individual subjects' tempo/RT

changes over trials. Models 4, 7, and 8 enable the assessment of slope differences between BD and HC groups in the

practice effect.

Model # Model

1 y ~ 1 + group

2 y ~ 1 + trial

3 y ~ 1 + group + trial

4 y ~ 1 + group*trial

5 y ~ 1 + trial + (1|subject)

6 y ~ 1 + group + trial + (1|subject)

7 y ~ 1 + group*trial + (1|subject)

8 y ~ 1 + group*trial + (1 + trial|subject)

The brms family was Gaussian

In all models, we used a default prior distribution for the intercept, and a normal distribution for each

population-level  effect  (effect  of  group and trial:  normal  prior  with  mean 0 and standard deviation  2;

interaction term group x trial: normal prior with mean 0 and standard deviation 1). For the priors on the

standard deviation (sd) parameters associated with the group-level effects (individual subjects, trials), we

used the default half Student-t prior with 3 degrees of freedom, as recommended by [52]. In Model 8, the

prior on the LKJ-Correlation was set to 2. 

Modelling decision-making behaviour using hierarchical Gaussian filters 

We employed a validated Bayesian framework with a Hierarchical Gaussian Filter (HGF) to model how input

about probabilistic reward outcomes and their change over time is integrated with prior beliefs during 

learning, resulting in posterior beliefs about the hidden states causing the observed outcomes [23,24]. 

Drawing inspiration from Behrens et al. [20], in the HGF a sequence of hidden states {x1
(k), x2

(k) ,..., xn
(k)}—

with k representing a trial or unit of time—is conceptualised within a generative model consisting of 

hierarchically coupled Gaussian random walks. These walks are coupled through their variance (inverse 

precision) and evolve over time. 

The HGF generates dynamic and adaptive learning rates, capturing the process of learning under 

uncertainty in a volatile environment. In this hierarchy, higher levels represent the dynamic structure of the

world, and the step size of each random walk is influenced by the state at the level above. Inverting this 



generative model using variational approximation provides update rules for the temporal trajectories of 

beliefs held by the agent.

The modelling framework consists of two components: a perceptual model and an observational model. 

The perceptual model delineates how sensory input—here, reward outcomes—is mapped to the hidden 

states of the world that generate these inputs. The observational model describes the mapping from the 

agent’s probabilistic representations or beliefs to the produced responses. In other words, the response 

model accounts for how the decisions of the agent we are observing are derived based on their perception,

encompassing both their observations and the inferences drawn from them.

To estimate each participant’s individual learning characteristics and belief trajectories during our binary 

reward-based learning task in a volatile setting, we implemented the three-level perceptual HGF for binary 

categorical inputs.  At the lowest level, the hidden state x1 corresponds to the binary categorical variable of 

the experimental stimuli: whether sequence 1 is rewarded in trial k (x1
(k)= 1) or not (x1 

k)= 0). Beliefs are 

represented on the second and third levels and modelled as Gaussian distributions. The second level 

represents the trajectory of participants’ beliefs about the contingency between actions (sequence 1 or 2) 

and their outcomes (rewarded or not), and the third level represents the rate of change in that tendency 

(volatility). Gaussian belief distributions are represented by their posterior mean (μ2
(k) , μ3

(k) for levels 2 and 

3 respectively) and posterior variance (uncertainty: σ2, σ3). Precision is the inverse variance or uncertainty, 

πi (i = 2 and 3). Belief updating on each level i (i = 2 and 3) and trial k is driven by PEs , modulated by 

precision ratios, weighting the influence of precision or uncertainty in the current level and the level below:

∆μi
k
=μi

(k )−μi
(k−1 )∝

π̂ i−1
(k )

π i
(k )
δ i−1

(k )
(4)

Following equation (4), the expectation of the posterior mean on level i, μi
(k-1), is updated to its current level 

μi
(k)

 proportionally to the prediction error of the level below, δi-1
(k). The influence of PEs is weighted by the 

ratio of precision values, with the prediction (denoted by “^”) of the precision of the level below in the 

numerator and the precision of the current level (inverse uncertainty, σi) in the denominator. Here we 

assume the prediction from trial k-1 remains constant until the beginning of the current trial, without 

drifting to a new value before the agent observes the outcome. Therefore, μ̂i
(k )
=μi

( k−1 )
.  See Weber and 

colleagues [107] for a generalised version of the HGF that explicitly models drifts in the prediction.

In the HGF for binary outcomes, the precision ratio updating beliefs on level 2 in equation (4) is reduced to 

σ2
(k)  (1/ π2

(k)), as shown in equation (1) in the main text. Accordingly, the posterior mean of the belief about 

the action-outcome contingencies is updated via low-level PE about action (stimulus) outcomes, scaled by 



the degree of informational uncertainty. For level 3, the precision ratio is proportional to the uncertainty 

about volatility, σ3
(k) (inverse precision on level 3: 1/ π3

(k)).

The HGF perceptual model was coupled with a unit-square sigmoid response model where choice 

probability is shaped by a free fixed (time-invariant) parameter ζ, interpreted as inverse decision noise: the 

sigmoid approaches a step function as ζ tends to infinity. The mapping between the predictive probability 

m(k) for an outcome on trial k onto the probability that the individual will choose response 1 or 0, p(y(k) = 1) 

and p(y(k) = 0) respectively, takes this form (omitting trial index k again for simplicity):

p ( y|m ,ζ )=( mζ

mζ+ (1−m )
ζ )
y

.( (1−m )
ζ

mζ+ (1−m )
ζ )

(1− y )

                                         (5)

See further detail in Eq. 18 in Mathys et al.[23]. This combination constituted our first perceptual-response 

model (M1). Next, we used a perceptual 2-level HGF model with volatility fixed to a constant level and 

coupled it with this unit-square sigmoid response model (M2). Our third model combined the 3-level HGF 

with a response model where the sigmoid function depends on the trial-wise prediction of log-volatility,

ζ=e−μ3
(k−1 )

, (M3; [22]).  In this observational model, higher estimates of volatility lead to a 'noisier' 

relationship between beliefs and decision making. As a result, there is an increased likelihood of choosing 

responses that deviate from predictions. Last, model M4 was constructed similarly to M3 but replaced the 

free parameter ω2 with κ[28].

Selection of priors for HGF models

We selected prior values for our HGF models based on estimates obtained from our data through an ideal

observer model. An ideal observer is defined as a model that adopts a range of parameter values aimed at

minimising the overall surprise an agent experiences upon receiving a series of inputs (refer to Weber et al.

[108] and [71] for different applications of an ideal observer model). This approach was preferred over the

use of previously reported prior values for the binary categorical HGF model, primarily because the code in

the  TAPAS  toolbox  has  undergone  modifications  and  optimisations,  leading  to  improved  parameter

recovery compared to earlier versions. Consequently, prior values used in previous studies may not be

directly applicable to newer model implementations. We used the HGF release v7.1 in Matlab R2020b, and

functions ‘tapas_ehgf_binary’.

Using ideal model observer models, the group median of the prior values estimated separately for HC and

BD were:

ω2, ω3 : = [-2.5 -0.5] in HC

ω2 , ω3: = [-2.6 -0.1] in BD

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003810


These values were comparable between groups (BF10  =  0.4219, 0.7014, support for H0, based on anecdotal

and substantial evidence; P = 0.3447, 0.1458, no significant differences). Accordingly, in our main analyses,

we  selected the median  values for [ω2,  ω3]  from the full  sample (N = 49),  which were  [-2.6 -0.3] .  For

complete details on our prior parameters, see Table S2. 

In  a  control  analysis  employing  group-specific  priors,  we  evaluated  the  consistency of  our  main

computational findings. This analysis, however, should be interpreted with caution due to the comparison

of computational variables derived from distinct models for each group. We observed significant group

differences in ω2 (PFDR = 0.0049), as well as in volatility at onset and average volatility  (PFDR = 0.0049, 0.0056

respectively). Interestingly, the evidence for differences between groups was stronger than that obtained

using common prior settings, with Bayes Factors exceeding 9. This indicates substantial evidence supporting

the alternative hypothesis (H1).

Table S2. Priors (means and variances) on perceptual parameters and starting values of the belief 

distributions for the winning HGF model M3

Prior Mean Variance

κ log(1) 0

ω2 -2.6 4

ω3 -0.3 4

μ2
(0)

0 0

σ2
(0)

log(0.1) 0

μ3
(0)

log(1) 1

σ3
(0)

log(1) 1

Quantities are estimated in their native space when they are unbounded, such as ω2, ω3. Conversely, quantities with a

natural lower bound at zero, like κ,  μ3
(0), and σ3

(0), are estimated in log-space. In the winning HGF  model M3, ω2, ω3,

μ3
(0),  σ3

(0) were  free  parameters  (κ,  σ2
(0), μ2

(0)  were  fixed). The  prior  variances  are  in  the  space  in  which  the

corresponding parameter is estimated. 

Assessing motor invigoration  

We additionally  investigated  whether  trial-by-trial  expectations  about  the  probabilistic  action-outcome

mapping differentially influenced motor performance in our groups. Considering the association of BD with

altered reward  sensitivity,  even  during  euthymic  phases,  we aimed to assess  how expectations about

reward probability affect motor sequence performance in our task, focusing on performance tempo and RT.

Notably, faster sequence completion would expedite the display of the outcome (at 1000 [± 250] ms post-

performance).



In the HGF for binary categorical inputs,  μ̂2
(k )

represents beliefs about the tendency of the action-outcome

contingency. A positive value suggests a higher expectation of reward for sequence 1, and a negative value

the reverse (sequence 2 is expected to be more likely to be rewarded). The absolute value, |μ̂2
(k )|, denotes

the strength of predictions about the reward contingency's tendency, regardless of which specific sequence

is more likely to be rewarded.

Our hypothesis was that this relationship would exhibit a non-zero (negative) slope, indicating that stronger

beliefs  about  probabilistic  contingencies  correlate with faster  sequence performance.  Furthermore,  we

posited that performance tempo in euthymic bipolar patients might exhibit increased sensitivity to the

strength of  predictions[4,47],  reflected in a comparatively  steeper slope than that observed in healthy

controls. 

To evaluate our motor vigour hypotheses, we constructed a series of BML models with the dependent

variable being the logarithm of performance tempo (log_mIKI, in log-ms), in line with our previous work

[48].  The  most  complex  model  (Table  S3),  incorporated  an  interaction  between  group  (a  categorical

variable distinguishing between HC and BD participants) and the centred continuous variable |μ̂2
(k )| at trial k.

This centring step of the continuous predictor is recommended to improve model stability and facilitate the

interpretability of the intercept. The interaction term allowed us to determine group-specific associations

between predictions and tempo. Additionally, the model included a random effects structure to account for

subject-specific  variations  in  intercepts  and  slopes  for  the  centred  predictor,  as  well  as  trial-to-trial

variations. 

Subsequent models of decreasing complexity were constructed by successively omitting random effects or

interaction terms. HC served as the reference group for between-group comparisons, providing posterior

distributions of differences in slopes and intercepts (see Table S3 for a full list of models).

For model comparison, we applied the same LOO-CV approach with Pareto-smoothed importance sampling

as used in the practice effects analysis. The selection of models was based on the highest ELPD (further

details in General Performance).

Table S3. Bayesian Multilevel Models with a Gaussian distribution assessing the effect of strength of predictions on

tempo or RT. Models of decreasing complexity were defined to assess whether a timing variable(tempo [logmIKI] or

logRT, represented by  y) was modulated by the strength of predictions about the tendency of the action-outcome

contingency, |μ̂2
(k )|. This predictor variable was centred and is denoted by prediction.c in the table. The most complex

model included the random effect  of  trials,  and the random effect  of participants  on the slope of  the timing by

prediction association and the intercept. 



Model # Model

1 y ~ 1 + prediction.c

2 y ~ 1 + group*prediction.c

3 y ~ 1 + prediction.c + (1|subject)

4 y ~ 1+ group*prediction.c + (1|subject)

5 y ~ 1+ prediction.c+(1+prediction.c|subject)

6 y ~ 1+ group*prediction.c + (1+prediction.c|subject)

7 y ~ 1+ group*prediction.c + (1+prediction.c|subject) + (1|trial)

The brms family was Gaussian

As for the models listed in Table S1, we applied a default prior distribution for the intercept in all models,

and a  normal  distribution for  each fixed effect  (assuming a constant  effect  of  group and prediction.c:

normal prior with mean 0 and standard deviation 2; interaction term group x trial: normal prior with mean

0 and standard deviation 1).  For  the priors  on the  sd parameters  associated with  the random effects

(individual subjects, trials), we also employed the default half Student-t prior with 3 degrees of freedom.

Models 5-7 include a prior on the LKJ correlation coefficient set to 2.

Source reconstruction of MEG signals 

To source reconstruct MEG signals, integrating planar gradiometers and magnetometers, we used Linearly

Constrained Minimum Variance beamforming (LCMV[55]) in the MNE-Python toolbox. We used individual

T1-weighted magnetic resonance imaging (MRI)  images to establish  surface-based cortical  divisions  for

each hemisphere with  Freesurfer  6.0 software([56,57];  http://surfer.nmr.mgh.harvard.edu/).  MRIs were

unavailable for two BD participants; consequently, in those cases, we utilised the fsaverage template brain’

files provided by Freesurfer.

We selected the Desikan-Killiany–Tourville atlas (DKT)  atlas, which parcellates the cerebral cortex into 68

distinct anatomical regions[58]. The alignment of MRI and MEG coordinate systems was achieved with an

automated procedure within the MNE-Python toolbox (mne.gui.coregistration). This process relied on head

position indicator coils and the registered points on the head's surface. Additionally, we ensured that the

alignment of three fiducial anatomical points (both preauricular points and the nasion) was accurate across

the coordinate systems.

http://surfer.nmr.mgh.harvard.edu/


Next, forward modelling was implemented with boundary element conductivity models (BEM) for each

participant, with the inner skull surface serving as the chosen volume conductor layout. We then generated

a surface-based source space at an "oct6" resolution, which provided 4098 positions (vertices) for every

hemisphere with an average adjacent distance of 4.9 mm.

Solving the inverse problem with LCMV beamforming involved computing adaptive spatial filters using a

data-covariance  matrix  for  a  target  interval,  selected  based  on  expectations  of  task  effects  on  neural

activity. Informed by prior research indicating modulation of oscillatory activity by pwPE in similar decision-

making tasks[37,38], we defined the target interval as 0–1.8 s post-outcome. The noise-covariance matrix

for this analysis was estimated from -1 to 0 seconds pre-outcome. 

To analyse modulation of activity in the theta (4–7 Hz), alpha (8–12 Hz) and beta (13–30 Hz) frequency

bands, the MEG signals were first filtered with a 1–40 Hz band-pass filter, prior to LCMV beamforming.

Separately, to assess activity in the gamma frequency range (32–100 Hz), the data were band-pass filtered

within 30–124 Hz (as in [37]).

Subsequently, we extracted time courses for individual vertices within cortical labels corresponding to our

regions of interest (ROIs), focusing on brain areas consistently associated with decision making, reward-

based learning and belief updating under uncertainty. Our selected ROIs included: (1) the ACC, (2) the OFC

along with the ventromedial Prefrontal Cortex (vmPFC),  (3) the dorsomedial Prefrontal Cortex (dmPFC), (4)

the  dorsolateral  PDC  (dlPFC).  The  ACC  and  medial  PFC  are  central  to  emotional  regulation,  reward

processing,  and  decision  making[35,60,61].  Within  the  medial  PFC,  the  vmPFC  is  associated  with

representing reward probability, magnitude, and outcome expectations[62]. Gamma activity in the dmPFC

has been correlated with unsigned reward prediction errors during exploration-exploitation behaviour[35].

On the other hand, the dlPFC has been shown to encode belief uncertainty prior to making a decision[63],

though some reports link this region to belief updating under uncertainty[64]. Concerning the OFC, this

region is crucial for emotional processing and reward/punishment decision making[62], yet different OFC

circuits make unique contributions to flexible decision making[109]. Research has associated the medial

OFC  (mOFC)  with  encoding  reward  value,  and  the  lateral  OFC  (lOFC)  with  processing  nonreward  and

punishment[110].  In  rats,  specific  OFC  circuits  have  been  causally  linked  to  different  computations

underlying reversal learning[109]. This evidence is particularly pertinent in the context of bipolar disorder

as  individuals  with  this  condition  exhibit  impairments  in  fronto-striatal  reward  circuitry,  including  the

anterior insula and ventral striatum, but also cortical areas such as the vmPFC, dlPFC[4,10,66,67].

In  addition,  we  included (5)  the  primary  motor  cortex  (M1)  and (6)  premotor  cortex  (PMC)  to  assess

modulation of motor activity during belief updating, and the effect of decision making on motor vigour[68]. 

Overall, our study's ROIs correspond to sixteen bilateral labels in the DKT atlas, encompassing eight distinct

areas: (1) rostral and caudal ACC (rACC, cACC); (2) lateral and medial OFC (lOFC, mOFC), which include the



vmPFC according to some MEG studies[111,112]; but see[113] for a debate on the vmPFC delineation); (3)

superior frontal gyrus (SFG), representing the dmPFC and the supplementary motor area (SMA); (4) rostral

middle frontal gyrus (rMFG); (5) precentral gyrus (M1), and (6) caudal MFG (cMFC).

The representative time series for each label were derived using the 'PCA flip' method in MNE-Python. This

method employs  singular  value decomposition (SVD) on the time courses  associated with  each vertex

within a specific  brain  region or  label.  Its  primary  function is  to  extract  the first  right  singular  vector,

representing the direction of maximal power in each source. Following this extraction, the singular vector

undergoes scaling and sign-flipping, which then yields the time course for the region of  interest (ROI).

Although the 'flip'  operator  was not relevant  for  our  time-frequency (TF)  analysis,  it  was essential  for

preparing the source-reconstructed time series for subsequent connectivity analysis. 

Convolution modelling of time-frequency responses during outcome processing

We employed a general linear model (GLM) to investigate the frequency-domain, trial-by-trial amplitude

changes  associated  with  belief  updating  and  processing  uncertainty  following  the  presentation  of  the

outcome. In the winning HGF model, the trajectories of beliefs at levels 2 and 3 are updated proportionally

to the magnitude of pwPEs: low-level pwPEs about the action-outcome contingencies, termed ε 2, and high-

level pwPEs about the environmental volatility, ε3. As the sign of pwPE changes updating level 2 is arbitrary

in the binary categorical HGF, previous studies have opted for using the unsigned |ε 2| as a regressor in GLM

analyses  of  neural  activity[37,38].  Variable  |ε2|  represents  precision-weighted  Bayesian  surprise  about

reward outcomes, independent of whether they are related to sequence 1 or 2. Given the collinearity of ε 3

and |ε2|(in each participant, the trajectories were highly correlated, Pearson R in range 0.52–0.94, P < 10-10

in all cases), we selected |ε2| as our primary parametric regressor, modulating induced oscillatory activity

following the outcome presentation. Additional parametric regressors included informational uncertainty,

σ2, and level 3 uncertainty, σ3, as the relevant (inverse) precision terms for the GLM. Furthermore, our GLM

incorporated discrete regressors coding for win and lose outcomes, and error trials (performance errors or

timeouts).

We implemented the GLM on the time series of induced responses over multiple frequencies using a linear

convolution model developed by Litvak and colleagues[69]. This approach, an adaptation of the classical

GLM used in fMRI analysis for time-frequency data, has been successfully employed in previous work to

identify frequency-resolved neural correlates of belief updating, precision, and predictions during decision-

making and perceptual learning[36,37,38]. It facilitates assessing the modulation of TF responses on a trial-

by-trial  basis  by  a  specific  explanatory  regressor  while controlling  for  the  effects  of  other  regressors

included in the model.



This  outcome-locked convolution model was solved in the source space after applying LCMV to the time

series of concatenated epochs of MEG data (see previous section). We tested the hypothesis that bipolar

patients  exhibit  changes  in  gamma and  concomitant  alpha/beta  activity  during  the  encoding  of  pwPE

signals. Additionally, we hypothesised that euthymic BD individuals would show alterations in alpha/beta

oscillatory activity during the representation of precision weights.

To conduct the convolution GLM, we estimated standard TF representations of the source-level time series

using  Morlet  wavelets.  TF  spectral  power  was  extracted  between  4  and  100  Hz  and  transformed  to

amplitude, following ref.  [69].  For the theta (4–6 Hz),  alpha (8–12 Hz),  and beta (13–30 Hz) frequency

ranges, we used 5-cycle wavelets shifted at every sampled point in bins of 2 Hz. For gamma-band activity

(32–100 Hz), 7-cycle wavelets sampled in steps of 2 Hz were employed. To represent any physiological

response shape,  the convolution GLM approach considers  a generic  basis  set  (e.g.,  sines and cosines).

Regressors  were  constructed  by  convolving  a  set  of  basis  functions  with  a  set  of  input  functions

representing the events of interest. We chose a 20th-order Fourier basis set (comprising 40 basis functions:

20 sines and 20 cosines). Each discrete and parametric regressor was convolved with this set. This setting

allowed the GLM to resolve modulations of  TF responses up to approximately 8.7 Hz (20 cycles /  2.3

seconds, or ~115 ms). See further details in the original methodological publication[69].



Figure S1. Convolution General Linear Model (GLM).  This figure illustrates the standard pseudo-continuous time-

frequency (TF) representations of the source-reconstructed MEG signal (Y), estimated using Morlet wavelets. In the

GLM framework, the signal Y is modelled as a linear combination of explanatory variables or regressors (contained in

matrix X), modulated by regression coefficients (β), with an additional noise term (ϵ). The design matrix X, depicted in

the  lower  left  inset,  is  constructed  by  convolving  Fourier  functions  (m  =  20;  comprising  20  sine  and  20  cosine

functions) with input functions that represent the timings and values of relevant discrete or parametric events. For

this example, six regressors were used (from left to right in the figure): Outcome Win, Outcome Lose, Outcome No

Response, and absolute precision-weighted prediction error (pwPE) on level 2, σ2, and σ3, each defined over time. The

solution to the convolution GLM yields response images (represented by the TF estimate in arbitrary units in the

figure) as a combination of the basis functions m and the regression coefficients βi for each specific regressor type i,

across frequencies f and basis functions m. Consequently, the convolution GLM effectively estimates deconvolved TF

responses (shown as the TF estimate in the rightmost bottom image) to event types and their associated parametric

regressors. See details in Litvak and colleagues[69].

Frequency-resolved connectivity 

To assess functional connectivity between frequency-resolved activity in our reconstructed sources,  we

employed  a  robust  metric  of  directed  information  flow  between  time  series:  time-reversed  Granger

causality  (TRGC,[73,74].  This  metric  builds  upon  Granger  causality  (GC),  a  statistical  method  used  to

determine directional information flow between signals[114]; frequency  domain: [115]). GC operates on

the principle that, if information from the past of signal x(t) improves the prediction of the present of signal

y(t) relative to what can be predicted by the past of y(t) alone, then x(t) is said to 'Granger-cause' y(t). 

Simulation work demonstrated that GC is influenced by volume conduction and source leakage, affecting its

robustness[73].  To address these limitations, TRGC was developed. Haufe and colleagues[73] proposed

using time-reversed data as surrogates for statistical  testing when assessing GC between pairs  of  time

series  in  a  multivariate  setting.  Spurious  directional  flow between  time series,  explainable  by  volume

conduction and corresponding to zero-lag directional influences, is expected to persist in the time-reversed

analysis.  By correcting the GC coefficients with those from the time-reversed GC analysis,  an unbiased

estimate of directional flow is obtained, one not influenced by volume conduction or source leakage. This

approach has been validated through simulation work, establishing TRGC as a robust metric for inferring

the correct directionality of information flow. In addition to mitigating the influence of hidden common

drivers, TRGC can mitigate the influence of measurement noise[116,117].

In our study, we estimated frequency-domain TRGC to assess directional information flow between our 16

ROIs  (8  bilateral  ROIs).  Following  the  recommendations  of  Pellegrini  et  al.  [74],  we  used  the  source-

reconstructed  time  series  in  our  ROIs  obtained  through  LCMV  beamforming.  This  process  included  a

dimensionality reduction step with PCA/SVD to select a singular vector associated with the direction of



maximal power in each source (refer to the Source reconstruction of MEG signals section). We focused the

TRGC  analysis  on  the  alpha  and  beta  frequency  ranges,  and  assessed  the  directionality  of  functional

coupling during  the 0.5–1 s interval of outcome processing for trials with larger unsigned pwPEs updating

beliefs at level 2 (median split per participant). The TRGC analysis was implemented using the ROIconnect

plugin for EEGLAB in MATLAB from ref. [74], available at https://github.com/sccn/roiconnect. We adapted

the code for application to our LCMV output obtained in MNE-python. 

Statistical analyses

To address the multiple comparisons problem, which arises in contexts such as several post-hoc analyses,

we control the false discovery rate (FDR) using an adaptive linear step-up procedure [118], set to a level of

q = 0.05. This provides an adapted threshold p-value (PFDR). In the case of pairwise statistical analyses, we

provide  estimates  of  non-parametric  effect  sizes  for  pairwise  comparisons,  along  with  associated

bootstrapped confidence intervals [75,76]. The between-group effect sizes are estimated as the probability

of superiority (Δ).

Supplemental Results

Demographics

Age and sex distribution were comparable across groups (Age: P = 0.4921, no-significant differences; BF10 =

0.3472, providing anecdotal evidence for H0; Sex: Chi-squared statistic,  χ2= 1.6559,  df = 1, P = 0.1849, no

significant; BF10 = 1.102, no evidence for H0 or H1). 

BD and HC groups did not significantly differ in their anxiety or depression scores (BDI score, PFDR = 0.1038,

BF10 = 0.8668, anecdotal evidence for H0;  State-Trait Anxiety Inventory, state subscale: PFDR = 0.4571, BF10 =

0.3833,  anecdotal  evidence for  H0;  HADS,  depression subscale:  PFDR =  0.4003,  BF10 =  0.3824,  anecdotal

evidence against  group  differences;  anxiety,  PFDR =  0.64,  BF10 =  0.31,  substantial  evidence for  the null

hypothesis). Altman’s Mania scores were also simlar between groups (PFDR = 0.2040, BF10 = 0.5652). Refer to

Table 1.

Regarding cognitive abilities,  we identified significant group differences in the second part of the TMT,

assessing  executive  functioning  (independent-sample  permutation  test,  PFDR =  0.0022;  non-parametric

effect size estimator: Δ = 0.80, CI = [0.63, 0.92]). By contrast, BD and HC participants performed similarly in

the less challenging first  TMT part  (PFDR = 0.2216,  BF10 =  0.5296, providing anecdotal  evidence for  H0).

Differences  in  Wisconsin  Card  Sorting  Test  were  not  significant  after  FDR  control  (P =  0.0364;  non-

significant, as the adjusted significance level was 0.0022;  BF10 = 1.6560, anecdotal evidence for H1). Last,



both samples had similar MMSE scores (P = 0.8678, BF10 = 0.2875, providing substantial evidence for the

null hypothesis).

Altered reward-based decision dynamics in bipolar disorder during euthymia 

BD  showed  changes  in  the  expression  of  win-stay/lose-shift  behaviour  relative  to  HC(see  main  text).

Notably, there was no between-group difference in their decision to switch strategies post-loss, based on

anecdotal  evidence (lose-shift rate:  P =   0.0966,  non-significant  difference;  BF10 =  0.8905;  Figure  2d).

Overall, when considering all types of switches, BD individuals changed their responses more than healthy

participants (total switch rate, 0.16 [0.019] in HC, 0.23 [0.049] in BD; PFDR =   0.0160; Δ = 0.70, CI = [0.55,

0.85]). Both groups committed errors at a similar rate during the task performance (around 1%, P =  0.1482,

non-significant difference; BF10 =   0.6867, anecdotal evidence for H0).

We next examined these behavioural results further using the HGF as a computational framework. Applying

Bayesian  model  selection  to  models  M1-M4  in  the  total  sample,  we  found  that  the  M3  model

outperformed  the  other  models  across  all  subjects  (exceedance  probability,  Pexc =   0.77;  expected

frequency, Freqexp = 0.45; Table S4). Model M3 was also the winning model separately for HC group (Pexc

= .52,  Freqexp = 0.41), and BD group (Pexc = .70,  Freqexp = 0.43). In the M3 response model, decisions

depend  on dynamic trial-by-trial  estimates of  log-volatility.  A heightened expectation of  environmental

volatility on the current trial results in higher decision noise, implying a noisier belief-response mapping.

Conversely,  when the environment is  anticipated to be more stable, the coupling between the current

belief  and  the  ensuing  decision  becomes  more  deterministic.  This  model  also  allows  for  individual

differences in ω2, the tonic volatility of action-outcome associations, as well as time-invariant volatility on

the third level, ω3; free model parameters also include the initial values μ3
(0) and σ3

(0).

Table S4. Bayesian model  selection (BMS). Log model evidence was used for model comparison using

random-effects Bayesian model selection[119]. The columns display the exceedance probability, Pexc, and

expected frequency, Freqexp, for models M1-M4. Model M3 best explained the data in our total sample (N

= 49), and in each group separately (HC, N = 27; BD, N = 22).  BMS was implemented using code from the

MACS toolbox[120]. 

Model, Sample Pexc Freqexp

M1, HC+BD 0 0.0239

M2, HC+BD 0.1920 0.3226

M3, HC+BD 0.7701 0.4484

M4, HC+BD 0.0379 0.2050



M1, HC 0 0.04

M2, HC 0.44 0.38

M3, HC 0.52 0.41

M4, HC 0.04 0.17

M1, BD 0 0.05

M2, BD 0.12 0.26

M3, BD 0.7 0.43

M4, BD 0.19 0.26

Simulations conducted to assess  the accuracy  of  parameter  estimation in  the winning HGF model  M3

demonstrated that parameters ω2 and μ3
(0) were estimated with high accuracy. By contrast, ω3 and σ3

(0) were

recovered  with  less  accuracy,  as  previously  reported[27,70].  See  Figure  S2 for  details.  Specifically,  we

simulated behavioural responses of 50 agents across six different values of ω2 and, separately, six values of

ω3, using the input observed for one of our participants (ID 47). This resulted in 300 simulated agents for

each  individual  ω2  or  ω3  value.  To determine the estimation accuracy  of  parameters  μ3
(0)  and  σ3

(0),  we

conducted similar simulations with 50 agents across six values each for μ3
(0) and σ3

(0).



Figure S2.  HGF parameter recovery. This figure illustrates the estimation of HGF parameters using the input observed

from one of our participants (ID 47). Panels a-d display boxplots (showing the median, 25th, and 75th percentiles) of 

parameter estimation results for ω2 (a), ω3 (b), μ3
(0)(c), and σ3

(0)(d). The x-axis represents the parameters set in the 

simulated responses (labelled “sim”), and the y-axis shows the corresponding estimated values of those parameters 

(labelled “fit”). Parameters ω2 and μ3
(0) were estimated with high accuracy, indicated by a significant correlation 

between simulated and estimated (fit) values: Pearson R = 0.8158, P << 1 x 10-6 for ω2, and R = 0.8049, P << 1 x 10-6 for 

μ3
(0). By contrast, parameter ω3 showed less accuracy in estimation: R = 0.2761, P << 1 x 10-6, as did σ3

(0): R = -0.0093, P 

= 0.6920. The prior values for ω2, ω3 , σ3
(0), and μ3

(0 used in the configuration file for estimating each parameter from 

the simulated responses, as defined in Table S2 for the best fitting model M3, were: ω2  = -2.6, ω3  = -0.3 (with a 

variance of 4 for both); μ3
(0) = 1, σ3

(0) = 1 (with a variance of 1 for both in log space).

Using the winning model to assess between-group differences in the model parameters ω2, ω3, μ3
(0), as well

as in the mean log-volatility estimate over trials, μ3, we reported in the main text significant differences in

ω2, ω3, μ3
(0), μ3. In particular, initial volatility and its trial-average were higher in BD than in HC, while ω2  was

lower.  Parameter  ω2  influences  the  coupling  of  beliefs  between  levels  2  and  3  through  changes  in

environmental  uncertainty,  defined as  exp(  κμ3
(k-1) +  ω2)[24].  Thus,  despite  BD  patients  perceiving  the

environment as more volatile, their belief updates about reward contingencies were not as influenced by

this expectation compared to the HC group. As expected, log-volatility estimates correlated with the total

switch rate, accounting for response stochasticity (Figure S3). Last, there were no significant differences in

tonic volatility on level 3, ω3 (P = 0.0730, anecdotal evidence suggesting group differences, BF10 =  1.09).

Figure  S3.  Non-parametric  rank  correlation  between  phasic  log-volatility  and  total  switch  rate.  There  was  a

significant positive Spearman rank correlation between the total switch rate and the average phasic log-volatility,  μ3

(N = 49; ρ = 0.79 [95% CI: 0.65, 0.88], P = 1.7 x 10 -11). Individual participant data points are depicted as blue circles. The



black line indicates the non-linear fit estimated using the Locally Weighted Scatterplot Smoothing (LOESS) method via

the geom_smooth() function in R, employing the ggplot2 library. The graphic also features the 95% confidence interval

as a shaded blue area.

Figure S4. Simulated belief trajectories and precision weight terms on level 2. a. In the winning model, M3, belief 

trajectories for μ2  were simulated using input data from one participant (ID 47), with priors set at μ2
(0) = 0, σ2

(0) = 0.1, 

μ3
(0) = 1, σ3

(0) = 1, κ = 1, ω3 = -0.5, but with ω2 being modulated. This parameter, ω2 , represents the tonic part of the 

variance in the Gaussian random walk for x2 and modulates the learning rate about response outcomes at the lowest 

level. We demonstrate that decreasing ω2  (represented by changes from orange to magenta lines) is associated with 

smaller update steps in the belief about the action-outcome contingency tendency, μ2. b. In line with (a), decreasing 

ω2 also reduces the estimation uncertainty about the reward tendency, σ2.  Since σ2 represents the precision weights 

term scaling belief updating at level 2, this simulation suggests that lower tonic volatility, ω2, has a slowing effect on 

belief updating about the action-outcome contingency tendency .

Correlations between HGF parameters and residual symptoms

To assess associations between residual symptoms and HGF parameters, we conducted non-parametric

Spearman rank correlations, given that residual symptoms are represented as ordinal data. Utilising the R

library “correlation” and the method “spearman”, we identified a significant positive correlation between

volatility estimates and trait anxiety (Figure S5A),  as well  as a negative association between mania and

estimation uncertainty σ2 (Figure S5B). However, no significant correlation was found between depression

and σ2, as detailed in the main document.

Exploring  whether  the  significant  correlations  in  the  BD  sample  extended to  the  full  sample  (N  =  49

participants), we observed that log-volatility and trait anxiety were indeed significantly correlated (ρ = 0.31,

95% confidence interval [0.02, 0.55], PFDR = 0.033). Mania scores and σ2 were, however, not associated in

the full sample (N = 48; ρ = -0.17 [-0.42, 0.08] , P = 0.740, BF10 = 0.740).



Figure  S5.  Non-parametric  rank  correlation  between  residual  symptoms  and  relevant  HGF  variables.  a.  The

Spearman rank correlation between trait anxiety levels and the mean expectation on log-volatility was positive and

significant (N = 22; ρ = 0.46, 95% confidence interval [0.04, 0.75], PFDR = 0.030). The purple circles denote individual BD

values, while the black line illustrates the non-linear fit estimation (LOESS). The 95% confidence interval is represented

as a shaded purple area. b. Same as a but variables σ2, estimation uncertainty, and mania scores in BD. There was a

significant negative association between these variables (N = 21;  ρ = -0.46 [-0.75, -0.02], PFDR = 0.037; mania scores

were not available in one patient).

Behavioural results relative to an ideal Bayesian observer

To assess whether deviations in decision-making behaviour in BD could be ascribed to larger departures

from the expected learning patterns of an ideal Bayesian observer than in HC, we simulated the behavioural

responses of agents observing the input of each participant in both cohorts. Using the same priors as in the

primary modelling  analysis,  we  extracted  the  time series  of  behavioural  responses  in  each  agent  and

computed the simulated win rates, win-stay and lose-shift rates (Figure 2cd). 

First, we confirmed that these rates were comparable between two groups of ideal observers, representing

HC and BD. This demonstrated that the pseudorandomised task structure was balanced across groups (P =

0.2496, 0.5663, 0.07; BF10 = 0.5200,  0.3295,  0.5450: substantial  and anecdotal  evidence supporting no

differences for win rates, win-stay and lose-shift rates, respectively). 



Subsequently, we found that both win rates and win-stay rates were significantly lower in the participant

groups compared to the simulated values, as expected. This was the case for both HC and BD (HC: PFDR =

0.0004 for win rate, 0.0002 for win-stay rate; BD: PFDR = 0.0002 for both metrics).  Lower win-stay rates in

our participant groups than in the simulated agents indicated that they were more likely to change after

securing a win on a trial.

In  terms  of  lose-shift  behaviour,  healthy  participants  exhibited  rates  akin  to  those  of  ideal  Bayesian

observers (P = 0.1076, with the difference being non-significant; BF10 = 0.6775, offering anecdotal evidence

for H0). Conversely, BD patients demonstrated a more pronounced tendency to shift after a loss compared

to their ideal Bayesian learner counterparts, which was significant (PFDR = 0.0004).

Similar timing of actions during motor decision-making in euthymic bipolar and healthy participants

Baseline  motor  performance  in  bipolar  participants  was  slower  compared  to  healthy  individuals

(performance tempo assessed as average inter-key press-interval, IKI, in ms: 266 [12.2] ms in HC, 323 [19.1]

ms in BD, P = 0.02; Δ = 0.73, CI = [0.54, 0.87]). By contrast, during the primary motor decision-making task,

both groups performed motor sequences at similar tempi, approximately three key presses per second

(mean IKI, mIKI: 339 [16.6] ms in HC, 354 [18.2] ms in BD, P =  0.6223;  BF10  = 0.33, indicating substantial

evidence against group differences). Regarding reaction time—the interval before participants initiated the

sequence—both groups were comparable, though this is based on anecdotal evidence (mean RT 501 [20.1]

ms in HC, 553 [32.2] ms in BD, P = 0.2262;  BF10  = 0.55). 

We subsequently examined practice effects to assess improvements in performance tempo and RT across

trials.  For  both  of  our  timing  dependent  variables  (DV),  log-mIKI  and  log-RT  (Figure  3a,  d),   LOO-CV

identified the most complex model, model 8 (Table S1) as the best fit (Table S5). For log-mIKI, the absolute

mean difference in ELPD between the model 8 and the second best fitting model (model 7) was 763.8061

and the  standard error  of  the  differences  (se_diff)  was  46.66605 (elpd_diff  >  2*se_diff).   When ELPD

differences between two models are larger than four, and if the number of observations is > 100, and the

model is moderately well specified, then the standard error is a good estimate of the uncertainty in the

difference between models[116,121].

This  model  described  changes  in  motor  performance  (either  log-mIKI  or  log-RT)  across  trials  for  the

reference group of healthy controls,  captured by the fixed effect of the trial.  The modulation of these

practice effects by group was represented by the interaction term group*trial. This interaction reflects the

differences in slopes between BD and HC groups, illustrating how changes in timing across trials varied

between groups. In addition, the inclusion of the random effects term (1 + trial|subject) in the structure of

this model allows for both the intercept (baseline DV) and the slope (change in DV across trials) to vary by

subject, directly capturing the individual differences in how practice affects tempo or RT.



Posterior  predictive  checks  indicated  that  the  best  model  for  tempo  demonstrated  robust  predictive

accuracy across the range of the  DV (Figure S6a). The predictive strength of the best model for RT  was,

however, lightly diminished (Figure S6b). Table S5 presents a summary of the posterior point estimates for

the winning model.

Figure S6. a. Illustration of the posterior predictive checks where the distribution of the observed outcome

variable (y, in our case performance tempo, log-transformed) is compared to simulated datasets (y rep) from

the posterior predictive distribution (100 draws). b. same as a, but for log-RT.

Table  S5. Summary parameter estimates for the winning Bayesian multilevel model assessing practice

effects.

Dependent Variable Parameter (Population-level effects) Estimate l-95% CI u-95% CI R-hat

Performance tempo

(log-mIKI, in log-ms)

(model8)

Intercept 5.79014  5.68824 5.89292 1.02

Group (BD - HC) 0.08536 -0.04126 0.21718 1.02

Trial -0.00008 -0.00012 -0.00003 1.00

Group:Trial -0.00022 -0.00029 -0.00016 1.00

Reaction time

(log-RT, in log-ms)

(model8)

Intercept 6.21087 6.11646 6.30298 1.00

Group (BD - HC) 0.11165 -0.02092 0.24376 1.00



Trial -0.00037 -0.00063 -0.00013 1.00

Group:Trial -0.00031 -0.00067 0.00005 1.00

Estimate = posterior  mean;  CI  =  credible  interval  based on quantiles.  Gelman-Rubin  statistics  demonstrate  chain

convergence (R-hat < 1.1; [105]). 

Bayesian multilevel modelling indicated that both groups started with comparable timing (log-mIKI and log-

RT:  the  95%  credible  interval,  CI,  for  the  difference  in  intercept  estimates  overlapped  with  zero).  In

addition, for both DV there was a credible fixed effect of trial number on changes in timing performance

(HC as reference group; negative slope: the 95% CI of the estimated slope for HC did not include zero). This

means that performance timing (mIKI and RT) improved across trials in HC. Notably, the BD group exhibited

more rapid improvements in their performance tempo across trials (steeper slope: Figure 3bc)  than their

healthy counterparts (the 95% CI for the estimate of slope differences did not encompass zero). This was

not the case for RT (no credible effect for slope differences; Table S5). 

In conclusion, while baseline motor performance varied between groups, the timing of actions during the

main motor decision-making task was similar across both groups. Nevertheless, BD participants displayed a

more pronounced slope for practice effects on tempo.

Expectation about reward probability invigorates motor performance similarly in euthymic bipolar and

healthy participants

We next  asked whether  decision-making differences  between bipolar  and  healthy  participants  lead  to

distinct motor invigoration effects. In a similar task, we previously showed that the strength of predictions

about action-outcome contingencies is associated with faster performance tempo in sequences of finger

movements[48]. BD individuals, including those in euthymic phases, have been reported to mobilise more

effort, confidence, and energy while expecting and receiving rewards[47]. Beyond the observed practice

effects in BD patients compared to HCs, we therefore considered that BD individuals might exhib it altered

invigoration effects on a trial-by-trial  basis,  influenced by their  expectations about the action-outcome

mapping.

BML modelling assessing the association between log-mIKI and  |μ̂2
(k )| revealed that  three of  the tested

models  equally  well  explained  the  data,  as  indicated  by  LOO-CV  (models  5–7:  Table  S3).  Since  the

difference in ELPD was smaller than twice the standard error (2*se_diff) for these models, we selected the

most parsimonious model, model 5. The ELPD difference to the next best model met our criterion elpd_diff

>  2*se_diff ( 29.641673 > 2 * 9.086587). Model 5, which did not include group differences or trial-specific

random effects, effectively explained performance tempo through the strength of participants' predictions



about  reward  contingencies  (|μ̂2
(k )|),  while  also  accounting  for  individual  variability  on  the  slope  and

intercept (subject included to model random effects). Posterior point estimates for the effects in the best

model are shown in Table S6.

The posterior predictive checks demonstrated that the observed outcome variable y (log-mIKI) overlapped

well with the simulated datasets yrep from the posterior predictive distribution (Figure S7a). 

Table S6. Summary parameter estimates for the winning Bayesian multilevel model assessing the effect of strength

of predictions on timing performance. 

Dependent Variable Parameter (Population-level effects) Estimate l-95% CI u-95% CI R-hat

Performance tempo

(log-mIKI, in log-ms)

(model5)

Intercept 5.78357  5.71471 5.85564 1.00

Predictions -0.00753 -0.01452 -0.00046 1.00

Reaction time

(log-RT, in log-ms)

(model5)

Intercept 6.14696 6.06355 6.23095 1.00

Group (BD-HC) 0.06542 -0.05844 0.18618 1.00

Predictions 0.01003 -0.00556 0.02522 1.00

Group:Predictions -0.00799 -0.03083 0.01492 1.00

Estimate = posterior  mean;  CI  =  credible  interval  based on quantiles.  Gelman-Rubin  statistics  demonstrate  chain

convergence (R-hat < 1.1). The predictor “Predictions” denotes the centred values of the strength of participants'

predictions about reward contingencies (|μ̂2
(k )|).

   

Model 7,  the most complex for  RT, emerged as the best  based on  ELPD criteria.  Although this  model

showed relatively good posterior predictive accuracy, it was slightly lower than the model for tempo. It

revealed no credible effects of the strength of predictions on log-RT among participants, nor were there

group effects, as the 95% CI for these effects included zero (Table S6; Figure S7b)



Figure S7.  a. Illustration of the posterior predictive checks for  log-mIKI BML model 5, where the distribution of the

observed outcome variable (y, in our case performance tempo, log-transformed) is compared to simulated datasets

(yrep) from the posterior predictive distribution (100 draws). b. same as a, but for log-RT.

Neural representation of pwPE updating beliefs about the action-outcome contingencies



Figure  S8. Attenuated gamma increase and alpha-beta suppression during encoding unsigned precision-weighted

prediction errors  about  stimulus  outcomes  in  bipolar  disorder.  Same as  Figure  4 but  in  additional  ROIs  where

between-subject differences were observed after FWER control at 0.025: rACC, mOFC, caudal and rostral MFG. Labels

denote the rostral anterior cingulate cortex, rACC; caudal ACC, cACC; superior frontal gyrus, SFG; lateral and medial

orbitofrontal cortex, lOFC and mOFC; primary motor cortex, M1; caudal and rostral middle frontal gyrus, cMFG, rMFC.

Figure S9. Modulation of alpha and beta activity by uncertainty regressors in each group. a-d. Same as Figure 4, but

showing alpha and beta activity modulation by uncertainty regressors σ2
 and σ3 in healthy control (HC, left) and bipolar

disorder  (BD,  right)  participants.  For  HC participants,  significant  increases  in  8-30Hz activity  were observed  with

estimation uncertainty, σ2, in regions cACC, rACC, cMFG, rMFG, lOFG, M1, and SFG (PFWER = 0.0130, effects in regions

lOFG and SFG are illustrated in panels a-b. No significant within-subject effects were found in BD, and there were no

significant between-group differences after FWER control either (P = 0.1928, 0.2358 for σ2 and σ3,  respectively). c-d.

Regressor σ3  was not associated with any significant within-subject or between-group differences after FWER control.



Figure S10.  Modulation of theta activity by win and lose events in bipolar and healthy control groups. a-d . Same as

Figure 4 but for the discrete win and lose events. As expected, the discrete win (ab) and lose (cd) regressors elicited

robust and significant increases in theta activity in both participant groups from 0.1 to 0.4 s (PFWER  = 0.0240, 0.0010  for

win events and HC and BD, respectively;  PFWER   = 0.0070, 0.0010 for lose events in each group). These effects were

more pronounced in the caudal and rostral ACC, caudal and rostral MFG,  lOFC, and mOFC, and extended for at least

200 ms  (one  cycle  at  5 Hz)  in  these  regions.  The  effects  lasted  longer  in  the  bipolar  group,  extending  from

approximately 0.1 to 0.6 s. Bipolar and healthy control groups did not differ significantly with regard to the increase in

theta activity in response to win or lose events (P = 0.1808, 0.3397 for win and lose regressors, respectively). 

Changes in Raw Power Spectral Density During the Inter-Trial Interval

The convolution modelling results  from outcome processing revealed that BD patients exhibited a less

pronounced suppression in the alpha and beta bands when encoding pwPEs. In a  post-hoc exploratory

analysis, we aimed to determine whether this attenuated suppression of alpha and beta activity might be

associated with a smaller dynamic range of spectral power in these frequency bands in BD during task

performance, namely, a reduced alpha and beta raw power.



To investigate this, we analysed the raw power spectral density (PSD, in fT) during the inter-trial intervals

(ITI), a period when participants were at rest, awaiting the next stimulus to make a new choice and perform

the corresponding action sequence. We extracted ITI epochs between 1.7 and 0 seconds preceding the

stimulus  presentation  and  conducted  LCMV  as  previously  described.  The  data  covariance  matrix  was

estimated from -1.5 to 0 s, and the noise covariance matrix from -1.7 to -1.5 s.

The analysis revealed a significant group effect on the ITI PSD, attributed to a pronounced reduction in the

low beta PSD in BD compared to HC (relative suppression in the 13–20 Hz range, PFDR = 0.006). This effect

was observed across the lateral and medial OFC, and cACC and rMFG.

Figure S11. Power spectral density (PSD) during inter-trial-intervals.  Grand-average  of the  raw PSD (in fT) during

inter-trial-intervals in healthy control (HC, green) and bipolar disorder (BD, purple) participants. A significant between-

group difference was obtained within 13–20 Hz (PFDR = 0.006).  This effect emerged in most ROIs where the pwPE

effect  was expressed (illustrated in Figure4 and Figure S8). The cluster-average in each group is represented by the

continuous lines, while shaded areas denote SEM. 



Frequency-domain connectivity patterns during pwPE processing

Figure  S12.  Non-parametric  rank  correlation  between  average  power  spectral  density  (PSD)  during  inter-trial-

intervals and functional connectivity metrics. Our analyses in  Figure S11 had shown a  reduction in the  raw power

spectral density (PSD, in fT) during inter-trial-intervals (ITI) within 13-20 Hz in BD compared to HC, denoting reduced

signal-to-noise ratio (SNR) in the beta band in that time window in the bipolar group. Because SNR can influence the

estimation of  time-reversed Granger causality (TRGC) metrics [74], a measure of directional functional connectivity,

we  examined the association between beta-band ITI PSD and beta-band TRGC metrics. A BF-based  Spearman rank

correlation provided evidence for a lack of association between both variables (N = 49; ρ = -0.04 [-0.30, 0.24],  P =

0.644; BF10 = 0.355, supporting H0 based on anecdotal evidence). Thus, the main result of a significant beta-band TRGC

increase in the bipolar group relative to HC (Figure 5) cannot be explained by an association between raw ITI PSD and

functional connectivity metrics.
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