
Supplemental Methods and Materials

Participants

The included bipolar patients met the criteria for euthymia for at least 2.5 months prior to recruitment, as

indicated by the Beck Depression Inventory (BDI, [105]), Altman Self-Rating Mania Scale [106], Hospital

Anxiety and Depression Scale (HADS, [107]), and State-Trait Anxiety Inventory (STAI, [108]). The healthy

individuals  did  not  have  neurological  or  mental  health  conditions  and  were  not  currently  taking  any

medication  for  anxiety  or  depression.  Participants  in  both  groups  were  right-handed,  had  normal  or

corrected-to-normal vision, and demonstrated the ability to perform controlled finger movements. 

The BDI ranges from 0 to 63, with values above 14 denoting light to severe depression. The Altman Self-

Rating Mania Scale ranges 0–20, with values up to 5 considered normal. The HADS, which assesses anxiety

and depression separately, ranges from 0 to 21, with normal scores in the range of 0 to 7. We additionally

assessed state anxiety on the day of the experimental session to determine potential group differences,

which could affect decision-making [59]. We used the state subscale of the Spielberger State-Trait Anxiety

Inventory [108], ranging from 0 to 80, with values up to 30 considered low to medium.

In addition, in both cohorts, we assessed cognitive performance including executive functioning using the

Trail Making Test (TMT, part 1 and 2, [109,110]), and reversal learning using the Wisconsin Card Sorting

Test (WCST, [111]). Cognitive impairment was assessed with the Mini-Mental State Examination (MMSE,

[112]) scale. See the test scores in  Table 1.  In the BD sample, the average duration of BD was 7.4 years

(SEM  1),  and  the  average  duration  of  euthymia  was  12.9  months  (SEM  2.6).  All  BD  participants  had

depression as their last episode, in line with one of the inclusion criteria of the study.

Blinding of data collection and analysis

The experimenter conducting the study was not blinded to the group allocation. Preprocessing of MEG,

MRI, and behavioural data was not blinded. 

Sample size

Power analysis  was informed by a recent study assessing between-group differences in mean volatility

estimates in a similar paradigm in healthy individuals with high and low trait anxiety levels ([45]; non-

parametric probability of superiority, Δ ~ 0.74, equivalent to a Cohen’s d of 0.91, resulting in a minimum of

20 participants  per  group for  80% power).  Differences  in  frequency-domain  amplitude changes during

belief updating in that study were associated with a non-parametric effect size of Δ ~ 0.735, equivalent to a

Cohen’s d of 0.89, resulting in a minimum of 21 participants per group for 80% power. Although larger
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effects in volatility and neural differences between bipolar patients and their healthy counterparts were

anticipated, we recruited 22 BD patients to account for potential variations in effects across computational

and neural variables.

Reward-based motor sequence learning task 

Before commencing the main task, participants performed 20 simple sequences of eight finger movements:

1-2-3-4 rightwards and 4-3-2-1 downwards, corresponding to the index, middle, ring, and little fingers on a

four-button response box (Figure 1a). Each button press produced a specific sound with pitch values E5, F5,

G5, A5 (Figure 1a). This served as a baseline measure of their fine motor skills.

The sequences used in the primary task were selected from our previous study [57] and were chosen in

that  study,  based  on  pilot  work,  to  be  matched  in  RT,  tempo,  and  error  rate.  In  the  current  study,

performance in both tasks was also similar. See below (“Task validation: Similar performance of sequences

1 and 2”). 

The primary task had both a familiarisation and test phase. In the familiarisation phase, participants learnt

two sequences of four finger presses, each linked to a specific fractal image (Figure 1a). First, they practiced

the  sequences  for  15  trials  each,  without  a  concurrent  probabilistic  task,  followed by  practice  of  the

probabilistic task: 10 trials at a fixed contingency mapping of 70/30, as in our previous work [45,59]. This

practice aimed at helping participants understand the timeline of stimuli and the type of feedback they

would  receive.  Regarding  the  memorisation  of  the  motor  sequences,  we  validated  that  participants

performed without errors in the last 5 of the 15 practice trials, which was achieved in all cases as the

sequences were short (4 key presses). There were no accuracy criteria set for the practice version of the

probabilistic task, in line with previous work [45,59,61].

The test phase comprised two blocks, totalling 320 trials. In each trial, participants selected between two

fractal images,  playing the corresponding motor sequence (sequence1, sequence2) for a reward. These

sequences, and the corresponding fractals, were implicitly associated with reward values of 5 (rewarded) or

0 points (non-rewarded). The probability of a sequence yielding a reward was reciprocal (p(sequence1|

reward)  =  1  -  p(sequence2|reward))  and  shifted  pseudorandomly  every  26-38 trials.  The  probability

mappings could adopt values of 0.9/0.1,  0.7/0.3,  0.1/0.9,  0.3/0.7, or 0.5/0.5 in each block (Figure 1b).

Participants received feedback post-trial, indicating 'You earned 5 points' or 'You earned 0 points'. They had

a 3300 [± 125] ms window to start and finish the sequence. Feedback was presented 1000 [± 200] ms after

sequence completion and remained visible for 1900 [± 100] ms. If participants took over 3300 ms (time out)

or made a sequencing error, they were notified of either the delay or mistake, respectively, and garnered

no points. The inter-trial-interval (ITI) was 1750 [±250] ms. Control analyses on the pseudo randomised
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probabilistic mappings demonstrated that both participant samples experienced the same true volatility.

See details in next section.

Validation of paradigm: Probabilistic structure

The contingencies were generated pseudorandomly in each participant, which could result in both groups

experiencing differences in the true volatility by chance. We examined this possibility by comparing the the

true rate of contingency change in each group: the average number of trials where a change takes place

across both blocks. A greater number here would denote smaller true volatility (i.e. changes occur less

frequently). On average, contingencies changed every 32 trials in both groups (32.3 [SEM 0.25] in HC, 32.9

[  SEM 0.42]  in  BD),  and Bayes factor  analysis  supported they were equivalent  (BF 10 =  0.61,  anecdotal

evidence; P = 0.1957, non-significant difference).

Validation of paradigm: Similar performance of sequences 1 and 2

Difficulty in both sequences was similar (as expected based on [57]). First, we assessed reaction time (RT,

time from stimulus to first key press) and performance tempo (mean inter-key press interval in a sequence,

mIKI; used  interchangeably).  RT and performance tempo did not differ between sequences 1 and 2, as

indicated by substantial evidence for the null hypothesis from Bayes Factor analysis (BF in range 1/10 to

1/3). This was assessed in each group separately and in the full cohort. On average, RT was 0.523 seconds

(SEM 0.02) for sequence 1 and 0.529 seconds (SEM 0.02) for sequence 2 (joint sample, N = 49, P = 0.3154,

BF10  = 0.2568). The performance tempo was 0.348 seconds (SEM 0.01) and 0.347 seconds (SEM 0.01) for

sequence 1 and 2, respectively (P = 0.7382, BF10 = 0.1650). The error rate was also similar between the two

sequences (error rate < 1% in both cases, P = 0.3036, BF10 = 0.2589). Similar statistical results were obtained

in each group separately.

General task performance 

Following [45,59], win-stay rates were estimated as the ratio of the number of trials in which participants

repeated the same sequence following a win, divided by the total number of win (rewarded) trials. The

remaining  types  of  trials  after  a  win  were  either  win-shift  or,  in  very  few  instances,  win-error  trials

(denoting an error following a win trial). Accordingly, p(win-stay) =1 – p(win-shift) – p(win-error). Similarly,

lose-shift rates were calculated as the ratio of trials in which a response was changed after losing (no

reward), divided by the total number of loss trials. And p(lose-shift) = 1 - p(lose-stay) – p(lose-error). Due to

the near-perfect complementarity between win-stay and win-shift rates (except for a very small error rate,
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see  Supplementary  Results),  and  similarly  between  lose-shift  and  lose-stay  rates,  we  did  not  analyse

between-group differences in win-shift and lose-stay rates to avoid redundancy and additional multiple

comparisons.

Control analyses assessed whether any differences between groups in our primary dependent variables

(DV) could be confounded by differences in error rates. Two types of errors were considered, as in [57]:

performance errors, resulting from participants making a sequence performance error (e.g., playing at least

one incorrect  note  in the sequence),  and timeouts,  when participants  did not complete the sequence

within the allocated 3300 ms.

Modelling decision-making behaviour using hierarchical Gaussian filters 

We employed a validated Bayesian framework with a Hierarchical Gaussian Filter (HGF) to model how input

about probabilistic reward outcomes and their change over time is integrated with prior beliefs during 

learning, resulting in posterior beliefs about the hidden states causing the observed outcomes [26,27]. 

Drawing inspiration from Behrens et al. [22], in the HGF a sequence of hidden states {x1
(k), x2

(k) ,..., xn
(k)}—

with k representing a trial or unit of time—is conceptualised within a generative model consisting of 

hierarchically coupled Gaussian random walks. These walks are coupled through their variance (inverse 

precision) and evolve over time. 

The HGF generates dynamic and adaptive learning rates, capturing the process of learning under 

uncertainty in a volatile environment. In this hierarchy, higher levels represent the dynamic structure of the

world, and the step size of each random walk is influenced by the state at the level above. Inverting this 

generative model using variational approximation provides update rules for the temporal trajectories of 

beliefs held by the agent.

The modelling framework consists of two components: a perceptual model and an observational model. 

The perceptual model delineates how sensory input—here, reward outcomes—is mapped to the hidden 

states of the world that generate these inputs. The observational model describes the mapping from the 

agent’s probabilistic representations or beliefs to the produced responses. In other words, the response 

model accounts for how the decisions of the agent we are observing are derived based on their perception,

encompassing both their observations and the inferences drawn from them.

To estimate each participant’s individual learning characteristics and belief trajectories during our binary 

reward-based learning task in a volatile setting, we implemented the three-level perceptual HGF for binary 

categorical inputs.  At the lowest level, the hidden state x1 corresponds to the binary categorical variable of 

the experimental stimuli: whether sequence 1 is rewarded in trial k (x1
(k)= 1) or not (x1

(k)= 0). Beliefs are 

represented on the second and third levels and modelled as Gaussian distributions. The second level 
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represents the trajectory of participants’ beliefs about the contingency between actions (sequence 1 or 2) 

and their outcomes (rewarded or not), and the third level represents the rate of change in that tendency 

(volatility). Gaussian belief distributions are represented by their posterior mean (μ2
(k), μ3

(k) for levels 2 and 3

respectively) and posterior variance (uncertainty: σ2, σ3). Precision is the inverse variance or uncertainty, πi 

(i = 2 and 3). As described in the main text, the HGF includes several forms of uncertainty used in different 

modelling frameworks [26,60,61,113]: irreducible, estimation and volatility uncertainty, which are 

represented by σ1, σ2, σ3. While estimation (also known as informational) and volatility uncertainty can be 

reduced through learning, irreducible uncertainty is not: it emerges from the probabilistic relationships 

between responses and their outcomes, which is an inherent property of most real-world interactions. 

Another form of uncertainty that can be assessed in the HGF, aligning with previous models [22,60], is 

environmental uncertainty, which is induced by changes in the environment (volatility), and is defined as 

exp (κμ3
(k−1) + ω2).   

Belief updating on each level i (i = 2 and 3) and trial k is driven by PEs, modulated by precision ratios, 

weighting the influence of precision or uncertainty in the current level and the level below:

∆μi
k
=μi

(k )−μi
(k −1 )∝

π̂ i−1
(k )

π i
(k )
δ i−1

(k )
(4)

Following equation (4), the expectation of the posterior mean on level i, μi
(k-1), is updated to its current level 

μi
(k)

 proportionally to the prediction error of the level below, δi-1
(k). The influence of PEs is weighted by the 

ratio of precision values, with the prediction (denoted by “^”) of the precision of the level below in the 

numerator and the precision of the current level (inverse uncertainty, σi) in the denominator. Here we 

assume the prediction from trial k-1 remains constant until the beginning of the current trial, without 

drifting to a new value before the agent observes the outcome. Therefore, μ̂i
(k )
=μi

( k−1 )
.  See Weber and 

colleagues [114] for a generalised version of the HGF that explicitly models drifts in the prediction.

In the HGF for binary outcomes, the precision ratio updating beliefs on level 2 in equation (4) is reduced to  

σ2
(k) (1/ π2

(k)), as shown in equation (1) in the main text. Accordingly, the posterior mean of the belief about 

the action-outcome contingencies is updated via low-level PE about action (stimulus) outcomes, scaled by 

the degree of informational uncertainty. For level 3, the precision ratio is proportional to the uncertainty 

about volatility, σ3
(k) (inverse precision on level 3: 1/ π3

(k)).
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The HGF perceptual model was coupled with a unit-square sigmoid response model where choice 

probability is shaped by a free fixed (time-invariant) parameter ζ, interpreted as inverse decision noise: the 

sigmoid approaches a step function as ζ tends to infinity. The mapping between the predictive probability 

m(k) for an outcome on trial k onto the probability that the individual will choose response 1 or 0, p(y(k) = 1) 

and p(y(k) = 0) respectively, takes this form (omitting trial index k again for simplicity):

p ( y|m ,ζ )=( mζ

mζ+ (1−m )
ζ )
y

.( (1−m )
ζ

mζ+ (1−m )
ζ )

(1− y )

                                                (5)

See further detail in Eq. 18 in Mathys et al. [27]. This combination constituted our first perceptual-response 

model (M1). Next, we used a perceptual 2-level HGF model with volatility fixed to a constant level and 

coupled it with this unit-square sigmoid response model (M2). Our third model combined the 3-level HGF 

with a response model where the sigmoid function depends on the trial-wise prediction of log-volatility,

ζ=e−μ3
(k−1 )

, (M3; [25]).  In this observational model, higher estimates of volatility lead to a 'noisier' 

relationship between beliefs and decision making. As a result, there is an increased likelihood of choosing 

responses that deviate from predictions. Last, model M4 was constructed similarly to M3 but replaced the 

free parameter ω2 with κ [32].

Figure S1. Same as Figure 2b in the main manuscript, but with an overlay of the probability of reward for sequence 2 

(p(reward|seq2) = 1 - p(reward|seq1)). The chosen variables, |μ̂2
(k )|, |ε2|, and μ3 represent the regressors used in the 

Bayesian multilevel modelling (top), one regressor used in the GLM analysis (middle), and the trajectory of log-
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volatility, respectively.  Top: The strength of predictions about response-outcome contingencies is higher (closer to 1) 

for probabilistic blocks 90/10 and 10/90, as expected, while volatility is lower in these phases (bottom).

Figure S2.  Representation of the three levels of the HGF for binary outcomes and the associated belief trajectories 

across the total 320 trials in a representative participant (same as in Figure S1). At the lowest level, the inputs u 

correspond to the rewarded outcome of each trial (1 = sequence2, 0 = sequence1; shown as green dots). The 

participant’s responses y are shown in orange dots tracking those trial outcomes (errors as “x”). The learning rate 

about stimulus outcomes at the lowest level is also given in black. The posterior expectation of inputs (in red) is a 

sigmoid transformation of beliefs on level 2, s(μ2). Middle: The belief on the second level, μ2 (σ2), represents the 

participant’s estimate of the stimulus tendency x2 and the step size or variance of the Gaussian random walk for x2 

depends on parameters κ and ω2, in addition to the estimates of the level above, x3. The belief on the third level, μ3 

(σ3), represents estimates of volatility x3, whose step size is governed by parameter ω3. Figure created using the HGF 

toolbox function tapas_hgf_binary_plotTraj().

Selection of priors for HGF models

We selected prior values for our HGF models based on estimates obtained from our data through an ideal

observer model. An ideal observer is defined as a model that adopts a range of parameter values aimed at

minimising the overall surprise an agent experiences upon receiving a series of inputs (refer to Weber et al.

[115] and [80] for different applications of an ideal observer model). This approach was preferred over the

use of previously reported prior values for the binary categorical HGF model, primarily because the code in

the  TAPAS  toolbox  has  undergone  modifications  and  optimisations,  leading  to  improved  parameter

recovery compared to earlier versions. Consequently, prior values used in previous studies may not be

directly applicable to newer model implementations. We used the HGF release v7.1 in Matlab R2020b, and

functions ‘tapas_ehgf_binary’.
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Using ideal observer models, the group median of the prior values estimated separately for HC and BD

were:

ω2, ω3: = [-2.5 -0.5] in HC

ω2, ω3: = [-2.6 -0.1] in BD

These values were comparable between groups (BF10 = 0.4219, 0.7014, support for H0, based on anecdotal

and substantial evidence; P = 0.3447, 0.1458, no significant differences). Accordingly, in our main analyses,

we selected the median values for [ω2,  ω3]  from the full  sample (N = 49),  which were  [-2.6 -0.3].  For

complete details on our prior parameters, see Table S1.

In  a  control  analysis  employing  group-specific  priors,  we  evaluated  the  consistency  of  our  main

computational findings. This analysis, however, should be interpreted with caution due to the comparison

of computational variables derived from distinct models for each group. We observed significant group

differences in ω2 (PFDR = 0.0049), as well as in volatility at onset and average volatility (PFDR = 0.0049, 0.0056

respectively). Interestingly, the evidence for differences between groups was stronger than that obtained

using common prior settings, with Bayes Factors exceeding 9. This indicates substantial evidence supporting

the alternative hypothesis (H1).

Table S1. Priors (means and variances) on perceptual parameters and starting values of the belief distributions for 

the winning HGF model M3.

Prior Mean Variance

κ log(1) 0

ω2 -2.6 4

ω3 -0.3 4

μ2
(0) 0 0

σ2
(0) log(0.1) 0

μ3
(0) log(1) 1

σ3
(0) log(1) 1

Quantities are estimated in their native space when they are unbounded, such as ω2, ω3. Conversely, quantities with a

natural lower bound at zero, like κ, μ3
(0),  and σ3

(0), are estimated in log-space. In the winning HGF  model M3, ω2,  ω3,

μ3
(0),  σ3

(0) were  free  parameters  (κ,  σ2
(0), μ2

(0)  were  fixed). The  prior  variances  are  in  the  space  in  which  the

corresponding parameter is estimated. 
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Assessing motor invigoration  

The nigrostriatal  dopamine pathway,  central  to the 'dopamine hypothesis'  of  BD [54,55],  is  crucial  for

invigorating  future  movements  [53].  This  hypothesis  posits  that  aberrant  dopamine  processing  is  a

cornerstone of the disorder, with dopamine dysregulation hypothesised to underlie both manic episodes

and the broader episodic features of BD [54,55]. Previous research has shown that dopaminergic pathways,

essential for  motivating movement,  play a key role  in modulating motor vigour in response to reward

[53,116].  Moreover,  recent  animal  studies  provide  robust  mechanistic  evidence  of  how  dopamine

modulates  vigour,  partly  by  synchronising  with  cholinergic  activity  in  the basal  ganglia  and integrating

inputs from the cerebellum [117,118].

Accordingly, an open question in BD research is whether the hypothesised dopamine dysregulation results

in  motor  vigour alterations.  Empirical  studies  have shown that  individuals  with  BD exhibit  heightened

energy and effort following success, indicating enhanced motor vigour effects [4,56]. Moreover, a recent

longitudinal study monitoring mood, physical activity, energy, and sleep found that changes in physical

activity and energy precede mood changes, rather than the reverse [119]. This underscores the importance

of understanding motor vigour alterations in BD.

Here, we aimed to determine whether trial-wise expectations about the tendency of the action-outcome

contingencies would be associated with faster performance tempo in sequences of finger movements, an

invigoration effect that we described previously in a similar task [57]. Additionally, we assessed whether

decision-making differences between bipolar and healthy participants led to distinct motor invigoration

effects. This was motivated by findings that BD individuals, including those in euthymic phases, mobilise

more effort, confidence, and energy while expecting and receiving rewards [56]. We investigated whether

trial-by-trial expectations about the probabilistic action-outcome mapping differentially influenced motor

performance in our groups, focusing on performance tempo and, separately, RT. Notably, faster sequence

completion would expedite the display of the outcome (at 1000 [± 250] ms post-performance).

This analysis was implemented using Bayesian multilevel regression modelling (BML) with the logarithm of

trial-wise timing variables as the DVs. BML models were separately implemented using timing variables: (i)

RT  and  (ii)  performance tempo (mIKI),  both measured  in  milliseconds and  transformed to logarithmic

milliseconds (log-ms) for BML.

BML estimates  approximate  posterior  probability  distributions  for  model  parameters  and  incorporates

accurate uncertainty estimates, even with unbalanced data and small sample sizes [120]. We conducted

BML using the R package brms [121,122], employing informative priors and estimating models by Markov-
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Chain Monte Carlo (MCMC) sampling. This process involved drawing 20,000 samples across four chains,

discarding the first 1000 iterations of each chain as warm-up. We validated chain convergence using the

Gelman–Rubin statistics (R-hat ≤ 1.01; [123,124]).  As an additional convergence indicator,  we used the

effective sample size (ESS). As recommended by [124], ESS should exceed 100 for each chain (> 400 in our

analysis with four chains; criterion applied to the  bulk-ESS—the effective sample size based on the rank

normalized draws—and the tail effective sample size, tail-ESS). This recommendation is valid also for larger

numbers of draws (16000 post-warmup in our case). 

Following Tecilla et al. [57], given the sign of μ̂2
(k )

 in the HGF is arbitrary, we used as predictor for BML the

absolute  value,|μ̂2
(k )|,  representing  the  strength of  those  predictions,  and  assessed  its  association with

performance variables (log-tempo, logRT) as DVs. Our hypothesis was that the relationship between  |μ̂2
(k )|

and performance tempo would exhibit a non-zero (negative) slope, indicating that stronger beliefs about

probabilistic  contingencies  correlate  with  faster  sequence  performance.  Furthermore,  we  posited  that

performance tempo in  euthymic  bipolar  patients  might  exhibit  increased sensitivity  to  the strength of

predictions [4,56], reflected in a comparatively steeper slope than that observed in healthy controls. Similar

analyses  were  conducted  for  RT,  to  determine  whether  the  invigoration  effects  were  specific  to

performance tempo, as shown previously in this task [57].

To evaluate our motor vigour hypotheses, we first constructed a series of BML models for tempo as DV

[57]. The most complex model (Table S2) incorporated an interaction between group (a categorical variable

distinguishing between HC and BD participants) and the centred continuous variable  |μ̂2
(k )| at trial  k. This

centring step of the continuous predictor is recommended to improve model stability and facilitate the

interpretability of the intercept. The interaction term allowed us to determine group-specific associations

between predictions and our DV. Additionally, the model included a random effects structure to account

for subject-specific variations in intercepts and slopes for the centred predictor,  as well  as trial-to-trial

variations.  

Subsequent models of decreasing complexity were constructed by successively omitting random effects or

interaction terms. HC served as the reference group for between-group comparisons, providing posterior

distributions of differences in slopes and intercepts (see Table S2 for a full list of models).

Model comparison was conducted using leave-one-out cross-validation (LOO-CV) with Pareto-smoothed

importance sampling [125]. The best-fitting model was identified based on the highest expected log point-

wise predictive density (ELPD). We also ensured that the absolute mean difference in ELPD between the
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two top models (elpd_diff in brms)  exceeded twice the standard error of these differences (2se_diff). If

elpd_diff was smaller than 2se_diff, we opted for the more parsimonious model.

Similar models were constructed to assess the association between the strength of predictions and logRT,

which we expected to be less robust than for performance tempo, as shown in [57] for this task. However,

the aim of the RT models was to assess whether the invigoration effects were specific to performance

tempo or extended to RT as well.

In all models, trial-wise outliers in performance tempo or RT, defined as values exceeding three standard

deviations from the mean, were excluded.  On average, we removed 4.37 (SEM 0.4) trials from the mIKI

dataset and 3.67 (SEM 0.3) trials from the RT dataset.

Table S2. Bayesian Multilevel Models with a Gaussian distribution assessing the effect of strength of predictions on

tempo or RT. Models of decreasing complexity were defined to assess whether a timing variable (tempo [logmIKI] or

logRT, represented by  y) was modulated by the strength of predictions about the tendency of the action-outcome

contingency, |μ̂2
(k )|. This predictor variable was centred and is denoted by prediction.c in the table. The most complex

model included the random effect  of  trials,  and the random effect  of participants  on the slope of  the timing by

prediction association and the intercept. 

Model # Model

1 y ~ 1 + prediction.c

2 y ~ 1 + group*prediction.c

3 y ~ 1 + prediction.c + (1|subject)

4 y ~ 1+ group*prediction.c + (1|subject)

5 y ~ 1+ prediction.c+(1+prediction.c|subject)

6 y ~ 1+ group*prediction.c + (1+prediction.c|subject)

7 y ~ 1+ group*prediction.c + (1+prediction.c|subject) + (1|trial)

The brms family was Gaussian

We applied a default prior distribution for the intercept in all models, and a normal distribution for each

fixed effect (assuming a constant effect of group and prediction.c: normal prior with mean 0 and standard

deviation 2; interaction term group x trial: normal prior with mean 0 and standard deviation 1). For the

priors on the standard deviation (sd) parameters associated with the random effects (individual subjects,
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trials), we also employed the default half Student-t prior with 3 degrees of freedom. Models 5-7 include a

prior on the LKJ correlation coefficient set to 2.

Control analyses: Assessing practice effects in timing performance

We controlled for between-group differences in the timing of sequence performance and practice effects

over trials using a series of Bayesian multilevel models with a Gaussian distribution for performance tempo

and, separately, for RT. These timing variables were log-transformed (log-ms) to serve as DVs. The models

included fixed effects, such as Group (BD, HC; with HC as the reference) and Trial (1:320), and random

effects, capturing individual variation in subject effects on the intercept and/or slope. Fixed effects refer to

effects that are assumed not to vary across subjects, while random effects are considered to vary among

individuals (e.g., in their intercept or slope).

The most complex model (Model 8 in Table S3) included Group, Trial, and their interaction as fixed effects

and  permitted  individual  variation  in  both  intercepts  and  slopes.  This  approach  aimed  to  reveal  how

tempo/RT  evolved  across  trials  in  each  participant.  For  comparative  purposes,  additional  models  with

varying degrees of complexity were constructed (refer to Table S3). Trial-wise outliers in mIKI or RT, defined

as values exceeding three standard deviations from the mean, were also excluded from the analysis. 

For model comparison, we applied the same LOO-CV approach with Pareto-smoothed importance sampling

as used in the motor vigour analysis. The selection of models was based on the highest ELPD as noted in

previous section.

Table  S3.  Bayesian  Multilevel  Models  with  a  Gaussian  distribution assessing  practice effects  on  tempo or  RT.

Decreasingly complex models were constructed to assess practice effects on tempo (logmIKI, measured in log-ms) or,

separately,  on  RT  (logRT,  in  log-ms).  The  same  models  were  assessed  for  each  dependent  variable,  separately,

denoted by “y” in the table. Models 1, 2, and 3 explain y through the fixed effects of group (BD, HC; with HC as the

reference group; fixed here denotes an effect assumed not to be changing across subjects) and trial (1:320), or their

additive combination, while Model 4 includes their interaction effect. Models 5-7 incorporate the random effect of the

intercept by subject, thus modelling how the intercept changes across subjects. The most complex model, Model 8,

allows for individual variation in both intercepts and slopes, potentially revealing how individual subjects' tempo/RT

changes over trials. Models 4, 7, and 8 enable the assessment of slope differences between BD and HC groups in the

practice effect.

Model # Model

1 y ~ 1 + group

2 y ~ 1 + trial
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3 y ~ 1 + group + trial

4 y ~ 1 + group*trial

5 y ~ 1 + trial + (1|subject)

6 y ~ 1 + group + trial + (1|subject)

7 y ~ 1 + group*trial + (1|subject)

8 y ~ 1 + group*trial + (1 + trial|subject)

The brms family was Gaussian

As for the models listed in  Table S2, we used a default prior distribution for the intercept, and a normal

distribution  for  each  population-level  effect  (effect  of  group  and  trial:  normal  prior  with  mean 0  and

standard deviation 2; interaction term group x trial: normal prior with mean 0 and standard deviation 1).

For the priors on the sd parameters associated with the group-level effects (individual subjects, trials), we

used the default half Student-t prior with 3 degrees of freedom, as recommended by [121]. In Model 8, the

prior on the LKJ-Correlation was set to 2. 

MEG recording and preprocessing 

Initial preprocessing of the MEG signals consisted of correcting for head movements, reducing noise, and

eliminating  bad  channels  using  the  temporally  extended  signal-space  separation  (tSSS)  method  [126],

integrated into the Elekta Neuromag software (Maxfilter, Elekta Neuromag). The settings were adjusted to

a sliding window of 10 seconds and a subspace correlation threshold of 0.9.

Source reconstruction of MEG signals 

To source reconstruct MEG signals, integrating planar gradiometers and magnetometers, we used Linearly

Constrained Minimum Variance beamforming (LCMV [65]) in the MNE-Python toolbox. We used individual

T1-weighted magnetic resonance imaging (MRI)  images to establish  surface-based cortical  divisions  for

each hemisphere with Freesurfer 6.0 software ([66,67];  http://surfer.nmr.mgh.harvard.edu/). MRIs were

unavailable for two BD participants; consequently, in those cases, we utilised the fsaverage template brain’

files provided by Freesurfer.

We selected the Desikan-Killiany  atlas (DK) atlas,  which parcellates the cerebral  cortex into 68 distinct

anatomical  regions  [68].  The  alignment  of  MRI  and  MEG  coordinate  systems  was  achieved  with  an
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automated procedure within the MNE-Python toolbox (mne.gui.coregistration). This process relied on head

position indicator coils and the registered points on the head's surface. Additionally, we ensured that the

alignment of three fiducial anatomical points (both preauricular points and the nasion) was accurate across

the coordinate systems.

Next, forward modelling was implemented with boundary element conductivity models (BEM) for each

participant, with the inner skull surface serving as the chosen volume conductor layout. We then generated

a surface-based source space at an "oct6" resolution, which provided 4098 positions (vertices) for every

hemisphere with an average adjacent distance of 4.9 mm.

Solving the inverse problem with LCMV beamforming involved computing adaptive spatial filters using a

data-covariance  matrix  for  a  target  interval,  selected  based  on  expectations  of  task  effects  on  neural

activity. Informed by prior research indicating modulation of oscillatory activity by pwPE in similar decision-

making tasks [45,46], we defined the target interval as 0–1.8 s post-outcome. The noise-covariance matrix

for this analysis was estimated from -1 to 0 seconds pre-outcome. 

To analyse modulation of activity in the theta (4–7 Hz), alpha (8–12 Hz) and beta (13–30 Hz) frequency

bands, the MEG signals were first filtered with a 1–40 Hz band-pass filter, prior to LCMV beamforming.

Separately, to assess activity in the gamma frequency range (32–100 Hz), the data were band-pass filtered

within 30–124 Hz (as in [45]).

Subsequently, we extracted time courses for individual vertices within cortical labels corresponding to our

regions of interest (ROIs), focusing on brain areas consistently associated with decision making, reward-

based learning and belief updating under uncertainty. Our selected ROIs included: (1) the ACC, (2) the OFC

along with the ventromedial Prefrontal Cortex (vmPFC), (3) the dorsomedial Prefrontal Cortex (dmPFC), (4)

the  dorsolateral  PDC  (dlPFC).  The  ACC  and  medial  PFC  are  central  to  emotional  regulation,  reward

processing,  and  decision  making  [43,70,71].  Within  the  medial  PFC,  the  vmPFC  is  associated  with

representing reward probability, magnitude, and outcome expectations [72]. Gamma activity in the dmPFC

has been correlated with unsigned reward prediction errors during exploration-exploitation behaviour [43].

On the other hand, the dlPFC has been shown to encode belief uncertainty prior to making a decision [73],

though some reports link this region to belief updating under uncertainty [74]. Concerning the OFC, this

region is crucial for emotional processing and reward/punishment decision making [72], yet different OFC

circuits make unique contributions to flexible decision making [127]. Research has associated the medial

OFC  (mOFC)  with  encoding  reward  value,  and  the  lateral  OFC  (lOFC)  with  processing  nonreward  and

punishment  [128].  In  rats,  specific  OFC  circuits  have  been  causally  linked  to  different  computations

underlying reversal learning [127]. This evidence is particularly pertinent in the context of bipolar disorder
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as  individuals  with  this  condition  exhibit  impairments  in  fronto-striatal  reward  circuitry,  including  the

anterior insula and ventral striatum, but also cortical areas such as the vmPFC and dlPFC [4,9,76,77].

In  addition,  we  included (5)  the  primary  motor  cortex  (M1)  and (6)  premotor  cortex  (PMC)  to  assess

modulation of motor activity during belief updating, and the effect of decision making on motor vigour [78].

Overall, our study's ROIs correspond to sixteen bilateral labels in the DK atlas, encompassing eight distinct

areas: (1) rostral and caudal ACC (rACC, cACC); (2) lateral and medial OFC (lOFC, mOFC), which include the

vmPFC according to some MEG studies [129,130]; but see [131] for a debate on the vmPFC delineation); (3)

superior frontal gyrus (SFG), representing the dmPFC and the supplementary motor area (SMA); (4) rostral

middle frontal gyrus (rMFG); (5) precentral gyrus (M1), and (6) caudal MFG (cMFC).

The representative time series for each label were derived using the 'PCA flip' method in MNE-Python. This

method employs  singular  value decomposition (SVD) on the time courses  associated with  each vertex

within a specific  brain  region or  label.  Its  primary  function is  to  extract  the first  right  singular  vector,

representing the direction of maximal power in each source. Following this extraction, the singular vector

undergoes scaling and sign-flipping, which then yields the time course for the region of  interest (ROI).

Although the 'flip'  operator  was not relevant  for  our  time-frequency (TF)  analysis,  it  was essential  for

preparing the source-reconstructed time series for subsequent connectivity analysis. 

Convolution modelling of time-frequency responses during outcome processing

We employed a general linear model (GLM) to investigate the frequency-domain, trial-by-trial amplitude

changes  associated  with  belief  updating  and  processing  uncertainty  following  the  presentation  of  the

outcome. In the winning HGF model, the trajectories of beliefs at levels 2 and 3 are updated proportionally

to the magnitude of pwPEs: low-level pwPEs about the action-outcome contingencies, termed ε 2, and high-

level pwPEs about the environmental volatility, ε3. As the sign of pwPE changes updating level 2 is arbitrary

in the binary categorical HGF, previous studies have opted for using the unsigned |ε 2| as a regressor in GLM

analyses of  neural  activity [45,46].  Variable |ε2| represents precision-weighted Bayesian surprise about

reward outcomes, independent of whether they are related to sequence 1 or 2. Given the collinearity of ε 3

and |ε2| (in each participant, the trajectories were highly correlated, Pearson R in range 0.52–0.94, P < 10-10

in all cases), we selected |ε2| as our primary parametric regressor, modulating induced oscillatory activity

following the outcome presentation. Additional parametric regressors included informational uncertainty,

σ2, and level 3 uncertainty, σ3, as the relevant (inverse) precision terms for the GLM. Furthermore, our GLM

incorporated discrete regressors coding for win and lose outcomes, and error trials (performance errors or

timeouts).
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We implemented the GLM on the time series of induced responses over multiple frequencies using a linear

convolution model developed by Litvak and colleagues [79]. This approach, an adaptation of the classical

GLM used in fMRI analysis for time-frequency data, has been successfully employed in previous work to

identify frequency-resolved neural correlates of belief updating, precision, and predictions during decision-

making and perceptual learning [44-46]. It facilitates assessing the modulation of TF responses on a trial-by-

trial basis by a specific explanatory regressor while controlling for the effects of other regressors included in

the model.

This outcome-locked convolution model was solved in the source space after applying LCMV to the time

series  of  concatenated  epochs  of  MEG  data  within  −0.5–1.8  s  (see  previous  section).  We  tested  the

hypothesis that bipolar participants exhibit changes in gamma and concomitant alpha/beta activity during

the encoding of pwPE signals.  Additionally,  we hypothesised that euthymic BD individuals  would show

alterations  in  alpha/beta  oscillatory  activity  during  the  representation  of  uncertainty  variables  σ 2

(corresponding with precision weights for level 2), and σ3.

To conduct the convolution GLM, we estimated standard TF representations of the source-level time series

using  Morlet  wavelets.  TF  spectral  power  was  extracted  between  4  and  100  Hz  and  transformed  to

amplitude, following ref.  [79].  For the theta (4–6 Hz),  alpha (8–12 Hz),  and beta (13–30 Hz) frequency

ranges, we used 5-cycle wavelets shifted at every sampled point in bins of 2 Hz. For gamma-band activity

(32–100 Hz), 7-cycle wavelets sampled in steps of 2 Hz were employed. To represent any physiological

response shape,  the convolution GLM approach considers  a generic  basis  set  (e.g.,  sines and cosines).

Regressors  were  constructed  by  convolving  a  set  of  basis  functions  with  a  set  of  input  functions

representing the events of interest. We chose a 20th-order Fourier basis set (comprising 40 basis functions:

20 sines and 20 cosines). Each discrete and parametric regressor was convolved with this set. This setting

allowed the GLM to resolve modulations of  TF responses up to approximately 8.7 Hz (20 cycles /  2.3

seconds, or ~115 ms). See further details in the original methodological publication [79].
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Figure S3. Convolution General Linear Model (GLM).  This figure illustrates the standard pseudo-continuous time-

frequency (TF) representations of the source-reconstructed MEG signal (Y), estimated using Morlet wavelets. In the

GLM framework, the signal Y is modelled as a linear combination of explanatory variables or regressors (contained in

matrix X), modulated by regression coefficients (β), with an additional noise term (ϵ). The design matrix X, depicted in

the  lower  left  inset,  is  constructed  by  convolving  Fourier  functions  (m  =  20;  comprising  20  sine  and  20  cosine

functions) with input functions that represent the timings and values of relevant discrete or parametric events. For

this example,  six  regressors were used (from left to right  in  the figure):  Outcome Win,  Outcome Lose,  Outcome

Error/No Response, and absolute precision-weighted prediction error (pwPE) on level 2, σ2, and σ3, each defined over

time. The solution to the convolution GLM yields response images (represented by the TF estimate in arbitrary units in

the figure) as a combination of the basis functions m and the regression coefficients βi for each specific regressor type

i, across frequencies f and basis functions m. Consequently, the convolution GLM effectively estimates deconvolved TF

responses (shown as the TF estimate in the rightmost bottom image) to event types and their associated parametric

regressors. See details in Litvak and colleagues [79].
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Frequency-resolved connectivity 

To assess functional connectivity between frequency-resolved activity in our reconstructed sources,  we

employed  a  robust  metric  of  directed  information  flow  between  time  series:  time-reversed  Granger

causality  (TRGC,  [82,83].  This  metric  builds  upon Granger  causality  (GC),  a  statistical  method used  to

determine directional information flow between signals [132]; frequency domain: [133]). GC operates on

the principle that, if information from the past of signal x(t) improves the prediction of the present of signal

y(t) relative to what can be predicted by the past of y(t) alone, then x(t) is said to 'Granger-cause' y(t). 

Simulation work demonstrated that GC is influenced by volume conduction and source leakage, affecting its

robustness [82]. To address these limitations, TRGC was developed. Haufe and colleagues [82] proposed

using time-reversed data as surrogates for statistical  testing when assessing GC between pairs  of  time

series  in  a  multivariate  setting.  Spurious  directional  flow between  time series,  explainable  by  volume

conduction and corresponding to zero-lag directional influences, is expected to persist in the time-reversed

analysis.  By correcting the GC coefficients with those from the time-reversed GC analysis,  an unbiased

estimate of directional flow is obtained, one not influenced by volume conduction or source leakage. This

approach has been validated through simulation work, establishing TRGC as a robust metric for inferring

the correct directionality of information flow. In addition to mitigating the influence of hidden common

drivers, TRGC can mitigate the influence of measurement noise [134,135].

In our study, we estimated frequency-domain TRGC to assess directional information flow between our 16

ROIs  (8  bilateral  ROIs).  Following  the  recommendations  of  Pellegrini  et  al.  [83],  we  used  the  source-

reconstructed  time  series  in  our  ROIs  obtained  through  LCMV  beamforming.  This  process  included  a

dimensionality reduction step with PCA/SVD to select a singular vector associated with the direction of

maximal power in each source (refer to the Source reconstruction of MEG signals section). We focused the

TRGC  analysis  on  the  alpha  and  beta  frequency  ranges,  and  assessed  the  directionality  of  functional

coupling during the 0.5–1 s interval of outcome processing for trials with larger unsigned pwPEs updating

beliefs at level 2 (median split per participant). The TRGC analysis was implemented using the ROIconnect

plugin for EEGLAB in MATLAB from ref. [83], available at https://github.com/sccn/roiconnect. We adapted

the code for application to our LCMV output obtained in MNE-python. 

Statistical analyses

To address the multiple comparisons problem, which arises in contexts such as several post-hoc analyses,

we control the false discovery rate (FDR) using an adaptive linear step-up procedure [136], set to a level of

q = 0.05. This provides an adapted threshold p-value (PFDR). In the case of pairwise statistical analyses, we
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provide  estimates  of  non-parametric  effect  sizes  for  pairwise  comparisons,  along  with  associated

bootstrapped confidence intervals [84,85]. The between-group effect sizes are estimated as the probability

of superiority (Δ).

Supplemental Results

Demographics

Age and sex distribution were comparable across groups (Age: P = 0.4921, no-significant differences; BF10 =

0.3472, providing anecdotal evidence for H0; Sex: Chi-squared statistic,  χ2= 1.6559,  df = 1, P = 0.1849, no

significant; BF10 = 1.102, no evidence for H0 or H1). 

BD and HC groups did not significantly differ in their anxiety or depression scores (BDI score, PFDR = 0.1038,

BF10 = 0.8668, anecdotal evidence for H0; State-Trait Anxiety Inventory, state subscale: PFDR = 0.4571, BF10 =

0.3833,  anecdotal  evidence for  H0;  HADS,  depression subscale:  PFDR =  0.4003,  BF10 =  0.3824,  anecdotal

evidence against  group  differences;  anxiety,  PFDR =  0.64,  BF10 =  0.31,  substantial  evidence for  the null

hypothesis). Altman’s Mania scores were also similar between groups (PFDR = 0.2040, BF10 = 0.5652). Refer

to Table 1.

Regarding cognitive abilities,  we identified significant group differences in the second part of the TMT,

assessing  executive  functioning  (independent-sample  permutation  test,  PFDR =  0.0022;  non-parametric

effect size estimator: Δ = 0.80, CI = [0.63, 0.92]). By contrast, BD and HC participants performed similarly in

the less challenging first  TMT part  (PFDR = 0.2216,  BF10 =  0.5296, providing anecdotal  evidence for  H0).

Differences  in  Wisconsin  Card  Sorting  Test  were  not  significant  after  FDR  control  (P =  0.0364;  non-

significant, as the adjusted significance level was 0.0022;  BF10 = 1.6560, anecdotal evidence for H1). Last,

both samples had similar MMSE scores (P = 0.8678, BF10 = 0.2875, providing substantial evidence for the

null hypothesis).

Altered reward-based decision dynamics in bipolar disorder during euthymia 

BD showed  changes  in  the  expression  of  win-stay/lose-shift  behaviour  relative  to  HC  (see  main  text).

Notably, there was no between-group difference in their decision to switch strategies post-loss, based on

anecdotal evidence (lose-shift rate: P = 0.0966, non-significant difference; BF10 = 0.8905; Figure 2d). Overall,

when  considering  all  types  of  switches,  BD  individuals  changed  their  responses  more  than  healthy

participants (total switch rate, 0.16 [0.019] in HC, 0.23 [0.049] in BD;  PFDR =  0.0160; Δ = 0.70, CI = [0.55,

0.85]).  Both  groups  committed  errors  at  a  similar  rate  during  the  task  performance  (around  1%;
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performance  errors:  P =  0.1806,  non-significant  difference;  BF10 =  0.5812,  anecdotal  evidence  for  H0;

timeouts: P = 0.5161, non-significant difference; BF10 =   0.3557, anecdotal evidence for H0).

We next examined these behavioural results further using the HGF as a computational framework. Applying

Bayesian  model  selection  to  models  M1-M4  in  the  total  sample,  we  found  that  the  M3  model

outperformed  the  other  models  across  all  subjects  (exceedance  probability,  Pexc =  0.77;  expected

frequency, Freqexp = 0.45; Table S4). Model M3 was also the winning model separately for HC group (Pexc

= .52,  Freqexp = 0.41), and BD group (Pexc = .70,  Freqexp = 0.43). In the M3 response model, decisions

depend on dynamic trial-by-trial  estimates of  log-volatility.  A heightened expectation of  environmental

volatility on the current trial results in higher decision noise, implying a noisier belief-response mapping.

Conversely,  when the environment is  anticipated to be more stable, the coupling between the current

belief  and  the  ensuing  decision  becomes  more  deterministic.  This  model  also  allows  for  individual

differences in ω2, the tonic volatility of action-outcome associations, as well as time-invariant volatility on

the third level, ω3; free model parameters also include the initial values μ3
(0) and σ3

(0).

Table S4. Bayesian model selection (BMS). Log model evidence was used for model comparison using random-effects

Bayesian  model  selection [137].  The columns  display the  exceedance probability,  Pexc,  and  expected frequency,

Freqexp,  for models M1-M4. Model M3  best explained the data in our total  sample (N = 49), and in each group

separately (HC, N = 27; BD, N = 22).  BMS was implemented using code from the MACS toolbox [138]. 

Model, Sample Pexc Freqexp

M1, HC+BD 0 0.0239

M2, HC+BD 0.1920 0.3226

M3, HC+BD 0.7701 0.4484

M4, HC+BD 0.0379 0.2050

M1, HC 0 0.04

M2, HC 0.44 0.38

M3, HC 0.52 0.41

M4, HC 0.04 0.17

M1, BD 0 0.05

M2, BD 0.12 0.26

M3, BD 0.7 0.43

M4, BD 0.19 0.26
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Simulations conducted to assess  the accuracy  of  parameter  estimation in  the winning HGF model  M3

demonstrated that parameters ω2 and μ3
(0) were estimated with high accuracy. By contrast, ω3 and σ3

(0) were

recovered with less accuracy, as previously reported [32,59].  See  Figure S4 for details.  Specifically,  we

simulated behavioural  responses of  50 agents across a 6 x  6 grid of  ω2 and ω3  values,  using the input

observed for one of our participants (ID 47). For each ω2 (ω3) value, this resulted in 300 simulated agents,

derived  from  50  simulations  at  each  of  the  six  ω3  (ω2)  values.  To  assess the  estimation  accuracy  of

parameters μ3
(0) and σ3

(0), we conducted similar simulations with 50 agents across a 6 x 6 grid of μ3
(0) and σ3

(0)

values.

Figure S4.  HGF parameter recovery. This figure illustrates the estimation of HGF parameters using the input observed

from one of our participants (ID 47). Panels a-d display boxplots (showing the median, 25th, and 75th percentiles) of 

parameter estimation results for ω2 (a), ω3 (b), μ3
(0)(c), and σ3

(0)(d). The x-axis represents the parameters set in the 

simulated responses (labelled “sim”), and the y-axis shows the corresponding estimated values of those parameters 

(labelled “fit”). Parameters ω2 and μ3
(0) were estimated with high accuracy, indicated by a significant correlation 

between simulated and estimated (fit) values: Pearson R = 0.8158, P << 1 x 10-6 for ω2, and R = 0.8049, P << 1 x 10-6 for 

μ3
(0). By contrast, parameter ω3 showed less accuracy in estimation: R = 0.2761, P << 1 x 10-6, as did σ3

(0): R = -0.0093, P 

= 0.6920. The prior values for ω2, ω3, σ3
(0), and μ3

(0 used in the configuration file for estimating each parameter from 
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the simulated responses, as defined in Table S1 for the best fitting model M3, were: ω2  = -2.6, ω3  = -0.3 (with a 

variance of 4 for both); μ3
(0) = 1, σ3

(0) = 1 (with a variance of 1 for both in log space).

Using the winning model to assess between-group differences in the model parameters ω2, ω3, μ3
(0), as well

as in the mean log-volatility estimate over trials, μ3, we reported in the main text significant differences in

ω2,  ω3,  μ3
(0),  μ3.  Initial volatility and its trial-average were higher in BD than in HC, while  ω2 was lower.

Parameter ω2  influences the coupling of beliefs between levels 2 and 3 through changes in environmental

uncertainty, defined as exp(κμ3
(k-1) + ω2) [27]. Thus, despite BD patients perceiving the environment as more

volatile,  their  belief  updates  about  reward  contingencies  were  not  as  influenced  by  this  expectation

compared to the HC group.  As  expected, log-volatility  estimates  correlated with the total  switch rate,

accounting for response stochasticity (Figure S5; Spearman ρ = 0.79, 95% CI [0.65, 0.88], P = 1.7 x 10-11).  A

similar result was obtained within the BD sample (ρ = 0.69, 95% CI [0.37, 0.86],  PFDR = 3.8 x 10-4), and HC

sample (ρ = 0.74, 95% CI [0.49, 0.88], PFDR = 1.1 x 10-5).

Figure S5. Non-parametric rank correlation between phasic log-volatility and relevant response rates. a. There was a

significant positive Spearman rank correlation between the total switch rate and the average phasic log-volatility, μ3 (N

= 49 joint sample; ρ = 0.79, 95% CI [0.65, 0.88], PFDR = 1.7 x 10-11). Individual participant data points are depicted as

blue circles. The black line indicates the non-linear fit estimated using the Locally Weighted Scatterplot Smoothing

(LOESS) method via the geom_smooth() function in R, employing the ggplot2 library. The graphic also features the

95% confidence interval as a shaded blue area.  b. Same as  (a)  but for the win-stay rate, which was found to be

significantly higher in BD than HC participants in the main analysis (Figure 2d). There was a significant negative non-

parametric rank correlation between the win-stay rate and μ3 (N = 49, ρ = -0.80, 95% CI [-0.89, -0.67], PFDR = 1 x 10-16).

See text.

Next, in light of  our key behavioural  finding that BD participants were less likely to stay after winning

(Figure 2d), we assessed whether the win-stay rate was associated with μ3. Non-parametric rank correlation

analysis revealed that the win-stay rate and μ3 were highly negatively correlated (Spearman ρ = -0.80, 95%
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CI [-0.89, -0.67], PFDR = 1 x 10-16), indicating that individuals with higher estimates of log-volatility were less

likely to repeat a response that just won. When assessing this correlation specifically within the BD group,

the results  were very similar  (ρ  = -0.81, 95% CI [-0.92, -0.58],  PFDR = 5.3 x 10-6).   In the HC group, the

correlation results were also consistent (ρ = -0.69, 95% CI [-0.85, -0.41], PFDR = 1 x 10-4).

Last, there were no significant differences in tonic volatility on level 3, ω3 (P = 0.0730, anecdotal evidence

suggesting group differences, BF10 = 1.09).

Figure S6. Simulated belief trajectories and precision weight terms on level 2. a. In the winning model, M3, belief 

trajectories for μ2 were simulated using input data from one participant (ID 47), with priors set at μ2
(0) = 0, σ2

(0) = 0.1, 

μ3
(0) = 1, σ3

(0) = 1, κ = 1, ω3 = -0.5, but with ω2 being modulated. This parameter, ω2, represents the tonic part of the 

variance in the Gaussian random walk for x2 and modulates the learning rate about response outcomes at the lowest 

level. We demonstrate that decreasing ω2 (represented by changes from orange to magenta lines) is associated with 

smaller update steps in the belief about the action-outcome contingency tendency, μ2. b. In line with (a), decreasing 

ω2 also reduces the estimation uncertainty about the reward tendency, σ2. Since σ2 represents the precision weights 

term scaling belief updating at level 2, this simulation indicates that lower tonic volatility, ω2, has a slowing effect on 

belief updating about the action-outcome contingency tendency.

Correlations between HGF parameters and residual symptoms

To assess associations between residual symptoms and HGF parameters, we conducted non-parametric

Spearman rank correlations, given that residual symptoms are represented as ordinal data. Utilising the R

library “correlation” and the method “spearman”, we identified a significant positive correlation between

volatility estimates and trait anxiety (Figure S7a),  as well  as a negative association between mania and

estimation uncertainty σ2 (Figure S7b). However, no significant correlation was found between depression

and σ2, as detailed in the main document.

Exploring  whether  the  significant  correlations  in  the  BD  sample  extended to  the  full  sample  (N  =  49

participants), we observed that log-volatility and trait anxiety were indeed significantly correlated (ρ = 0.31,
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95% confidence interval [0.02, 0.55], PFDR = 0.033). Mania scores and σ2 were, however, not associated in

the full sample (N = 48; ρ = -0.17 [-0.42, 0.08], P = 0.740, BF10 = 0.740).

Figure  S7.  Non-parametric  rank  correlation  between  residual  symptoms  and  relevant  HGF  variables.  a.  The

Spearman rank correlation between trait anxiety levels and the mean expectation on log-volatility was positive and

significant (N = 22; ρ = 0.46, 95% confidence interval [0.04, 0.75], PFDR = 0.030). The purple circles denote individual BD

values, while the black line illustrates the non-linear fit estimation (LOESS). The 95% confidence interval is represented

as a shaded purple area. b. Same as a but variables σ2, estimation uncertainty, and mania scores in BD. There was a

significant negative association between these variables (N = 21;  ρ = -0.46 [-0.75, -0.02], PFDR = 0.037; mania scores

were not available in one patient).

Behavioural results relative to an ideal Bayesian observer

To assess whether deviations in decision-making behaviour in BD could be ascribed to larger departures

from the expected learning patterns of an ideal Bayesian observer than in HC, we simulated the behavioural

responses of agents observing the input of each participant in both cohorts. Using the same priors as in the

primary  modelling  analysis,  we  extracted  the  time series  of  behavioural  responses  in  each  agent  and

computed the simulated win rates, win-stay and lose-shift rates (Figure 2cd). 
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First, we confirmed that these rates were comparable between two groups of ideal observers, representing

HC and BD. This demonstrated that the pseudorandomised task structure was balanced across groups (P =

0.2496, 0.5663, 0.07; BF10 = 0.5200,  0.3295,  0.5450: substantial  and anecdotal  evidence supporting no

differences for win rates, win-stay and lose-shift rates, respectively). 

Subsequently, we found that both win rates and win-stay rates were significantly lower in the participant

groups compared to the simulated values, as expected. This was the case for both HC and BD (HC: PFDR =

0.0004 for win rate, 0.0002 for win-stay rate; BD: PFDR = 0.0002 for both metrics).  Lower win-stay rates in

our participant groups than in the simulated agents indicated that they were more likely to change after

securing a win on a trial.

In  terms  of  lose-shift  behaviour,  healthy  participants  exhibited  rates  akin  to  those  of  ideal  Bayesian

observers (P = 0.1076, with the difference being non-significant; BF10 = 0.6775, offering anecdotal evidence

for H0). Conversely, BD patients demonstrated a more pronounced tendency to shift after a loss compared

to their ideal Bayesian learner counterparts, which was significant (PFDR = 0.0004).

Control  of  medication  effects  on  computational  variables  used  for  correlation  analyses  and  main

between-group analyses

In our BD cohort, none of the included patients received therapy with benzodiazepines. In addition, despite

the relatively high representation of antipsychotics in the therapeutic regimens, high-potency D2-receptor

blockers (such as Haloperidol and Amisulprid; [139]) were absent among them, except for two participants,

who  were  taking  small  doses  of  Zuclopenthixol  and  Flupentixol.  The  most  widely  used  were  either

antipsychotics with low affinity for dopamine receptors (e.g., Quetiapine) or partial D2 receptors agonists

(e.g., Aripiprazole). Taken together, the findings of our study have low risk of being explained by the effect

of medications on the dopaminergic system in the BD group. However, it is important to asses this explicitly,

therefore we conducted control analyses.

To assess potential medication effects on these associations, we performed exploratory analyses comparing

these variables among BD participants based on their medication type. Specifically, we compared those

with and without antipsychotic medication (N = 14 vs 8). Antipsychotic medications included drugs such as

Aripiprazole, Quetiapine, Flupentixol, Cariprazine, Olanzapine, Zuclopenthixol, and Levomepromazine. We

also compared BD subgroups based on the effect of the drug on dopaminergic transmission: those taking

dopamine-blocking/modulating drugs (N = 14) and those taking drugs with no direct or some agonistic

dopaminergic  effects,  including  unmedicated  participants  (N  =  8).  Importantly,  the  subgroups  were

identical, whether splitting participants by antipsychotic use or dopamine-blocking/modulating effects. This

is  because  one  participant  on  Aripiprazole  was  also  taking  Amantadine  (a  dopamine  modulator),  and
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another participant on Aripiprazole was taking Biperiden, which indirectly affects dopamine by balancing it

with acetylcholine.

These control analyses follow the approach used by Pizzagalli et al. [140], who conducted similar analyses to

account for potential dopaminergic-blocking effects of drugs. Our results revealed no significant differences

between subgroups in any of the variables used for correlation analyses:

Table S5.  Between-group statistical  results  assessing BD participants  either  taking dopamine-blocking/inhibiting

drugs (N = 14) or taking drugs with no direct or some agonistic dopaminergic effects (N = 8).

Variable with vs. without antipsychotic medication (14 vs 8) / with vs without dopamine-

blocking/modulating drugs (same 14 vs 8)

μ3  P = 0.5441, BF10 = 0.4507

σ2 P = 0.9508, BF10 = 0.3955

HADS anxiety  P = 0.5441, BF10 = 0.4365

Mania P = 0.6341, BF10 = 0.4281

HADS depression  P = 0.7397, BF10 = 0.4091

Reported p-values are not-corrected for multiple comparisons.

Similar results were obtained when comparing subgroups of participants with or without antidepressants or

mood stabilisers  (non-significant  differences  between subgroups,  P >>  0.05 in  all  cases,  anecdotal  and

substantial evidence for H0).

 

In addition, if  we were only to consider participants not taking antipsychotics (N = 8) and assess their

differences with respect to healthy participants in the main computational variables used in the manuscript

(μ3, ω2) we obtain that in the BD subset the expectation on volatility is higher (P = 0.0446, uncorrected), and

tonic volatility is lower (P = 0.0354) as in the main analysis with the full sample (but note the small sample

size of N = 8 BD participants in this cohort).

Expectation about reward probability invigorates motor performance similarly in euthymic bipolar and

healthy participants

Expectations  about  the  tendency  of  the  action-outcome  probability  similarly  influenced  performance

tempo in BD and HC groups. BML  assessing the association between performance tempo (logmIKI) and

|μ̂2
(k )| revealed that three tested models (models 5–7) explained the data equally well, as indicated by LOO-

CV (Table S2). 
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When ELPD differences between two models are larger than four, and if the number of observations is >

100,  and  the  model  is  moderately  well  specified,  then  the  standard  error  is  a  good  estimate  of  the

uncertainty in the difference between models [134,141]. The smallest difference in ELPD between models

5–7 was less than twice the standard error (2*se_diff), leading us to select the most parsimonious model,

model 5. This model, which did not include group differences or trial-specific random effects, effectively

explained performance tempo through the strength of participants' predictions about reward contingencies

(|μ̂2
(k )|), while also accounting for individual variability on the slope and intercept (subject included to model

random effects). Posterior point estimates for the effects in the best model are shown in Table S6.

Posterior predictive checks confirmed that the observed outcome variable y (tempo: logmIKI) overlapped

well with the simulated datasets yrep from the posterior predictive distribution (Figure S8a). 

Table S6. Summary parameter estimates for the winning Bayesian multilevel model assessing the effect of strength

of predictions on timing performance.  

Dependent Variable Parameter (Population-level effects) Estimate l-95% CrI u-95% CrI R-hat

Performance tempo

(logmIKI, in log-ms)

(model5)

Intercept 5.78357  5.71471 5.85564 1.00

Predictions -0.00753 -0.01452 -0.00046 1.00

Reaction time

(logRT, in log-ms)

(model5)

Intercept 6.14696 6.06355 6.23095 1.00

Group (BD-HC) 0.06542 -0.05844 0.18618 1.00

Predictions 0.01003 -0.00556 0.02522 1.00

Group:Predictions -0.00799 -0.03083 0.01492 1.00

Estimate = posterior mean; CrI = credible interval based on quantiles. Gelman-Rubin statistics demonstrate excellent

chain convergence (R-hat < 1.01). The effective sample size (ESS) was >> 400 for each parameter estimate, denoting

good convergence. The predictor “Predictions” denotes the centred values of the strength of participants' predictions

about reward contingencies (|μ̂2
(k )|). Credible effects are considered when the 95% lower and upper-bound CrI around

the Bayesian point estimate do not include zero (denoted by bold font).
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Model 5 demonstrated that stronger predictions led to faster performance in the joint sample, confirmed

by the negative slope of this association (with the 95% credible interval [CrI] not including zero, denoting a

credible non-zero estimate; Figure S9ac).

Conversely, logRT was not modulated by the strength of predictions or other variables (Table S6). Model 7,

the  most  complex  for  RT,  emerged  as  the  best  based  on  ELPD criteria.  Although  this  model  showed

relatively good posterior predictive accuracy, it was slightly lower than the model for tempo. It revealed no

credible effects of the strength of predictions on logRT among participants, nor were there group effects, as

the 95% CrI for these effects included zero (Table S6; Figure S8b)

Figure S8.  a. Illustration of the posterior predictive checks for  logmIKI BML model 5, where the distribution of the

observed outcome variable (y, in our case performance tempo, log-transformed) is compared to simulated datasets

(yrep) from the posterior predictive distribution (100 draws). b. same as a, but for logRT.

Figure  S9.  Effects  of  expectations of  action-outcome contingencies  on performance timing.  a-c.  Invigoration  of

performance  tempo  by  the  strength  of  predictions  about  the  tendency  of  the  action-outcome  contingencies.
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Performance tempo was measured as  the logarithm of  the mean inter-key press  interval  (logmIKI,  in  log-ms).  a.

Histogram of the strength of predictions about reward contingencies |μ̂2
(k )| in the BD (purple) and HC (green) groups,

showing similar distributions. b. Bayesian multilevel modelling demonstrated that performance tempo (logmIKI, in log-

ms) was shorter in trials  when participants had a stronger expectation on the reward tendency,  as the posterior

estimate of the slope of this association was negative, and the 95%-CrI did not include zero (c). Thus, in the joint

cohort, individuals speed up sequence performance when they hold stronger predictions about the action-outcome

contingencies. c. Illustration of the posterior distribution of the slope estimate, including the posterior point estimate

(grey vertical line) and 95%-CrI (denoted by the grey area under the curve). 

Control analyses: Assessing practice effects in timing performance

Control  analyses  evaluated  practice  effects  in  timing  performance,  excluding  the  effect  of  reward

contingency predictions (Table S3). The most complex model, model 8, best described changes in timing

performance (logmIKI and logRT:  Figure S10a, d) across trials for both DVs (Table S7).  For both DVs, the

absolute mean difference in ELPD between the model 8 and the second-best fitting model (model 7)  was

larger than twice the standard error of the differences (elpd_diff > 2*se_diff). 

This model described changes in motor performance (either logmIKI or logRT) across trials for the reference

group of healthy controls, captured by the fixed effect of the trial. The modulation of these practice effects

by group was represented by the interaction term group*trial. This interaction reflects the differences in

slopes between BD and HC groups, illustrating how changes in timing across trials varied between groups.

In addition, the inclusion of the random effects term (1 + trial|subject) in the structure of this model allows

for both the intercept (baseline DV) and the slope (change in DV across trials) to vary by subject, directly

capturing the individual differences in how practice affects tempo or RT.

Posterior  predictive  checks  indicated  that  the  best  model  for  tempo  demonstrated  robust  predictive

accuracy across the range of the DV (Figure S11a). The predictive strength of the best model for RT was,

however, lightly diminished (Figure S11b). Table S7 presents a summary of the posterior point estimates

for the winning model.

Table S7. Summary parameter estimates for the winning Bayesian multilevel model assessing practice effects.  

Dependent

Variable

Parameter

(Population-level effects) Estimate l-95% CrI u-95% CrI R-hat

Performance tempo

(logmIKI, in log-ms)

(model8)

Intercept 5.79014  5.68824 5.89292 1.02
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Group (BD - HC) 0.08536 -0.04126 0.21718 1.02

Trial -0.00008 -0.00012 -0.00003 1.00

Group:Trial -0.00022 -0.00029 -0.00016 1.00

Reaction time

(logRT, in log-ms)

(model8)

Intercept 6.21087 6.11646 6.30298 1.00

Group (BD - HC) 0.11165 -0.02092 0.24376 1.00

Trial -0.00037 -0.00063 -0.00013 1.00

Group:Trial -0.00031 -0.00067 0.00005 1.00

Estimate = posterior mean; CrI = credible interval based on quantiles. Gelman-Rubin statistics demonstrate excellent

chain convergence in most parameters (R-hat < 1.01; [123]). The effective sample size (ESS) was >> 400 for each

parameter estimate, denoting good convergence.

Figure S10. Effects of practice on performance timing. a-c. Practice effects on performance tempo, measured as the

logarithm of the mean inter-key press interval (logmIKI, in log-ms). a. Distribution of logmIKI (“tempo” in the graphics)

in the BD (purple) and HC (green) cohorts. b. Output of the Bayesian multilevel model that provided a better fit to the

data  (see  main  text).  The  graphic  represents  the  association  between  trial  number  and  performance  tempo,

represented as logmIKI, in each cohort. The bold lines and shaded areas denote the posterior mean and the 95% CrI

(shaded areas) in each group. In the reference HC group, participants sped up their performance across trials.  c.

Illustration of  the posterior  distribution of  the between-group difference in  slopes,  including the posterior  point
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estimate  (grey  vertical  line)  and  95%-CrI  (denoted  by  the  grey  area  under  the  curve).  The  BD  minus  HC  slope

difference was negative, and the 95%-CrI did not overlap with zero, supporting that performance in the BD group sped

up more throughout the task. d-e. Same as a-c but for the logarithm of reaction time, logRT (in log-ms). The reference

HC group also demonstrated a reduction in RT over trials (panel e). The 95% CrI of the between-group slope difference

included zero, indicating a credible effect for a similar change over time in RT in both groups. f. Posterior distribution

of the fixed effect of trials, showing negative changes in RT over time. The black vertical line represents a zero-change

difference, which did not overlap with the 95% CrI of the estimate, suggesting a 95% probability of a negative change

in RT over trials (speeding up).

Figure S11. a. Illustration of the posterior predictive checks where the distribution of the observed outcome variable

(y,  in  our case performance tempo, log-transformed) is  compared to simulated datasets  (yrep)  from the posterior

predictive distribution (100 draws). b. same as a, but for logRT.

The results of this analysis revealed that both groups started with comparable timing (logmIKI and logRT:

the 95% credible interval, CrI, for the difference in intercept estimates overlapped with zero). In addition,

for both DVs there was a credible fixed effect of trial number on changes in  timing performance (HC as

reference group; negative slope: the 95% CrI of the estimated slope for HC did not include zero, denoting a

meaningful effect). This means that performance timing (tempo and RT) improved across trials in HC.

Notably,  the  BD  group  exhibited  more  rapid  improvements  in  their  performance  tempo  across  trials

(steeper slope, negative slope difference: Figure S10bc) than their healthy counterparts (the 95% CrI for the

estimate of slope differences did not encompass zero). This was not the case for RT (no credible effect for

slope differences between groups; Figure S10ef; Table S7).

Complementing these findings, baseline motor performance in bipolar participants was slower compared to

healthy individuals when playing simple sequences upwards and downwards (the average performance
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tempo was 266 [12.2] ms in HC, 323 [19.1] ms in BD,  P = 0.02;  Δ = 0.73, CI = [0.54, 0.87]). This outcome

suggests that when playing a non-rewarded simple motor task, BD participants were slower than HC. 

In conclusion, while baseline motor performance varied between groups, the timing of actions during the

main motor decision-making task was similar across both groups. Nevertheless, BD participants displayed a

more pronounced slope for practice effects on tempo.

Neural representation of pwPE updating beliefs about the action-outcome contingencies

Figure S12. Attenuated gamma increase and alpha-beta suppression during encoding unsigned precision-weighted

prediction errors  about  stimulus  outcomes  in  bipolar  disorder.  Same as  Figure  3 but  in  additional  ROIs  where

between-subject differences were observed after FWER control at 0.05 (two-sided tests, effects considered if PFWER <

0.025): rACC, mOFC, caudal and rostral MFG.  Labels denote the rostral anterior cingulate cortex, rACC; caudal ACC,

cACC; superior frontal gyrus, SFG; lateral and medial orbitofrontal cortex, lOFC and mOFC; primary motor cortex, M1;

caudal and rostral middle frontal gyrus, cMFG, rMFC.
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Figure S13. Modulation of alpha and beta activity by uncertainty regressors in each group. a-d. Same as Figure 3, but

showing alpha and beta activity modulation by uncertainty regressors σ2
 and σ3 in healthy control (HC, left) and bipolar

disorder  (BD,  right)  participants.  For  HC participants,  significant  increases  in  8-30Hz activity  were observed with

estimation uncertainty, σ2, in regions cACC, rACC, cMFG, rMFG, lOFG, M1, and SFG (PFWER = 0.0130, effects in regions

lOFG and SFG are illustrated in panels a-b. No significant within-subject effects were found in BD, and there were no

significant between-group differences after FWER control either (P = 0.1928, 0.2358 for σ2 and σ3,  respectively). c-d.

Regressor σ3 was not associated with any significant within-subject or between-group differences after FWER control.
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Figure S14. Modulation of theta activity by win and lose events in bipolar and healthy control groups. a-d . Same as

Figure 3 but for the discrete win and lose events. As expected, the discrete win (ab) and lose (cd) regressors elicited

robust and significant increases in theta activity in both participant groups from 0.1 to 0.4 s ( PFWER = 0.0240, 0.0010 for

win events and HC and BD, respectively; PFWER = 0.0070, 0.0010 for lose events in each group). These effects were more

pronounced in the caudal and rostral ACC, caudal and rostral MFG, lOFC, and mOFC, and extended for at least 200 ms

(one cycle at 5 Hz) in these regions. The effects lasted longer in the bipolar group, extending from approximately 0.1

to 0.6 s. Bipolar and healthy control groups did not differ significantly with regard to the increase in theta activity in

response to win or lose events (P = 0.1808, 0.3397 for win and lose regressors, respectively). 

Changes in Raw Power Spectral Density During the Inter-Trial Interval

The convolution modelling results  from outcome processing revealed that BD patients exhibited a less

pronounced suppression in the alpha and beta bands when encoding pwPEs. In a post-hoc exploratory

analysis, we aimed to determine whether this attenuated suppression of alpha and beta activity might be

associated with a smaller dynamic range of spectral power in these frequency bands in BD during task

performance, namely, a reduced alpha and beta raw power.

To investigate this, we analysed the raw power spectral density (PSD, in fT) during the inter-trial intervals

(ITI), a period when participants were at rest, awaiting the next stimulus to make a new choice and perform
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the corresponding action sequence. We extracted ITI epochs between 1.7 and 0 seconds preceding the

stimulus  presentation  and  conducted  LCMV  as  previously  described.  The  data  covariance  matrix  was

estimated from -1.5 to 0 s, and the noise covariance matrix from -1.7 to -1.5 s.

The analysis revealed a significant group effect on the ITI PSD, attributed to a pronounced reduction in the

low beta PSD in BD compared to HC (relative suppression in the 13–20 Hz range, PFDR = 0.006). This effect

was observed across the lateral and medial OFC, and cACC and rMFG.

Figure S15. Power spectral density (PSD) during inter-trial-intervals.  Grand-average of the raw PSD (in fT) during

inter-trial-intervals in healthy control (HC, green) and bipolar disorder (BD, purple) participants. A significant between-

group difference was obtained within 13–20 Hz (PFDR = 0.006).  This effect emerged in most ROIs where the pwPE

effect was expressed (illustrated in Figure 3 and Figure S12). The cluster-average in each group is represented by the

continuous lines, while shaded areas denote SEM. 
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Frequency-domain connectivity patterns during pwPE processing

Figure  S16.  Non-parametric  rank  correlation  between  average  power  spectral  density  (PSD)  during  inter-trial-

intervals and functional connectivity metrics. Our analyses in  Figure S15 had shown a  reduction in the  raw power

spectral density (PSD, in fT) during inter-trial-intervals (ITI) within 13-20 Hz in BD compared to HC, denoting reduced

signal-to-noise ratio (SNR) in the beta band in that time window in the bipolar group. Because SNR can influence the

estimation of  time-reversed Granger causality (TRGC) metrics [83], a measure of directional functional connectivity,

we  examined the association between beta-band ITI PSD and beta-band TRGC metrics. A BF-based  Spearman rank

correlation provided evidence for a lack of association between both variables (N = 49;  ρ = -0.04 [-0.30, 0.24],  P =

0.644; BF10 = 0.355, supporting H0 based on anecdotal evidence). Thus, the main result of a significant beta-band TRGC

increase in the bipolar group relative to HC (Figure 4) cannot be explained by an association between raw ITI PSD and

functional connectivity metrics.
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