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Abstract: Infections caused by yeasts of the genus Candida are likely to occur not only in immunocom-
promised patients but also in healthy individuals, leading to infections of the gastrointestinal tract,
urinary tract, and respiratory tract. Due to the rapid increase in the frequency of reported Candidiasis
cases in recent years, diagnostic research has become the subject of many studies, and therefore, we
developed a polyclonal aptamer library-based fluorometric assay with high specificity and affinity
towards Candida spec. to quantify the pathogens in clinical samples with high sensitivity. We recently
obtained the specific aptamer library R10, which explicitly recognized Candida and evolved it by
mimicking an early skin infection model caused by Candida using the FluCell-SELEX system. In
the follow-up study presented here, we demonstrate that the aptamer library R10-based bioassay
specifically recognizes invasive clinical Candida isolates, including not only C. albicans but also strains
like C. tropcialis, C. krusei, or C. glabrata. The next-generation fluorometric bioassay presented here can
reliably and easily detect an early Candida infection and could be used for further clinical research or
could even be developed into a full in vitro diagnostic tool.

Keywords: Candida; biosensor; DNA aptamer; in vitro diagnostics

1. Introduction

More than 20 species of the genus Candida are known to cause infections, with Candida
albicans being the most prominent [1–3]. In the last three decades, candidiasis has emerged
as the fourth most common case of blood infections in hospitals, due to the widespread
use of antibiotics that destroy the competing bacterial flora and the prolonged systemic
immunosuppressive treatments after organ transplantation and chemotherapy [4–8]. Other
factors that predispose to candidiasis are pregnancy or the use of hormonal contraceptives
that reduce the acidity of the vaginal environment and can lead to Vulvovaginitis can-
didomycetica, which leads to an annual loss of productivity of up to USD 14–39 billion in
high-income countries [9,10]. Furthermore, invasive candidiasis is the cause of more than
250,000 infections and 50,000 deaths worldwide [11–16]. This makes Candida’s timely and
accurate detection crucial for diagnosis and the subsequent treatment. The conventional
diagnostic approach is to accurately identify Candida spp. in clinical samples based on mor-
phological and physiological characteristics, which is complex and can be time-consuming;
however, more rapid commercial systems may also inevitably face serious sensitivity prob-
lems [17,18]. Newer detection methods, such as matrix-assisted laser desorption/ionization
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time-of-flight mass spectrometry (MALDI-ToF), may also be impractical for many laborato-
ries in developing countries as such complex methods mostly rely on pure cultures, and
they are not only highly expensive but also very time-consuming [19–23]. Other standard
detection methods based on quantitative PCR (qPCR) have their drawbacks due to their
restricted sensitivity and limited specificity for only a rather small and pre-defined set of
Candida spec. [24–26]. Therefore, novel techniques that can identify Candida easily, quickly,
and successfully with respect to the economic aspects appear to be of particular importance.

In the last three decades, aptamers have emerged as new ligands that not only have
similar properties to antibodies but are more stable and easier to synthesize and modify
and have higher affinity towards their dedicated targets [27–34]. Therefore, aptamers can
be used as ligands instead of antibodies to detect pathogens like bacteria or fungi [35,36].
Fluorometric aptamer-mediated whole-cell detection methods are recognized as a promising
tool for the development of fast, specific, and clinically applicable bioassays [37,38]. In fact,
functional aptamer-based assays have been introduced against a variety of health-relevant
target organisms, including major pathogens [39–47], as well as for potential probiotic human
gut bacteria [48]. However, what most of these approaches have in common is that they
require additional technical components like different types of (nano)particles or they rely on
sandwich-type assay principles [49]. In contrast, more simple assays have been suggested;
these were based on the direct labeling of the intended target with enriched (also known as
polyclonal) aptamer libraries or individual aptamers without the need for secondary binding
molecules or enzyme-mediated signal amplification [47–53].

With C. albicans, C. auris, and C. parapsilosis as target cells for a whole-cell SELEX
process (Systematic Evolution of Ligands by EXponential enrichment) [32,33], we devel-
oped an enriched aptamer library against this class of important human pathogens in a
previous study [50]. This library was already sufficient to label these Candida species with
fluorescence and allowed fungal cells to be distinguished from human dermal fibroblast
(HDF) cells via fluorescence microscopy in a skin early infection model [50]. However, the
intensity of the unspecific background signals obtained with the HDF cells in a fluorometric
suspension assay suggested a considerable potential to improve the sensitivity of such
an enriched SELEX library while simultaneously enhancing the specificity for Candida
spec. and improving their differentiation from human cells. Thus, additional rounds
of SELEX were performed, again with a mixture of the three Candida spec. and counter
selection using human fibroblasts. The intended improvements were verified using not
only HDF cells but also a set of three additional lines of somatic cells, including colorectal
adenocarcinoma cells (HT29), pancreatic cancer cells (MIA-PaCa-2P), and breast cancer
cells (MCF7). Enriched aptamer libraries of this type, in their fluorescently labeled versions,
offer an efficient option with which to label target cells with high specificity, allowing
sensitive measurements simply by using fluorometric suspension assays. Without the
need for additional assay components or signal amplification measures, it was possible to
distinguish a set of 87 clinical isolates from invasive infections with different Candida spec.
from the human cells. This final library was also characterized by high affinities against the
Candida spec., with dissociation constants in a low nanomolar range and a low detection
limit. The sensitivity, but also the intriguing ease with which the cells of Candida species
were efficiently distinguished from human cells in this suspension assay measured with
the standard fluorometer equipment may open new avenues for clinical diagnostics of
pathogens based on enriched libraries or selected individual aptamers labeled with fluores-
cent dyes. We believe that this Candida spec.-specific assay may represent a prototype assay,
and we suggest the name FluCandA-Assay (“Fluorescence Candida Aptamer”) and hope
to inspire other researchers to develop similar concepts, which could rapidly enlarge the
portfolio of fast and reliable detection technologies for health-threatening organisms.

2. Results

Based on the published enriched anti-Candida SELEX library R8 [50], two additional
rounds of selection were performed to evaluate the resulting affinities against the Candida
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target strains and their specificities with HDF cells and three further cell lines as controls.
As intended, both the affinity and the specificity increased significantly, with the affinity
improving up to twofold in the resulting novel final library R10. In addition, R10 showed no
binding and thus no fluorescent labeling of the human cell lines (Figure 1a). This allowed a
lower detection limit (defined as 50% of the maximal observable fluorescence at the given
amount of aptamers) of 2000 cells per milliliter for C. auris, but as low as 20 cells for both
C. albicans and C. parapsilosis. Accordingly, the dissociation constants (Kd values) were found to
be reasonably low and were in the nanomolar range from 10 to 13 nM, respectively. The curves
could be fitted by a typical single site-specific binding model [51] and showed reasonably low
dissociation constants (Kd values) of 12.96 nM, 9.715 nM, and 9.611 nM, respectively.
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Figure 1. Increased aptamer affinities towards Candida spec. cells allows their differentiation from four
human cell lines. (a) Based on the aptamer library R8 [50], two additional rounds of SELEX delivered
libraries R9 and R10. Human cell lines to be differentiated from C. auris, C. albicans, and C. parapsilosis
were HDF, HT29, MIA-PaCa-2P, and MCF7. Binding assays were performed using Cy5-labeled R8,
R9, and R10 aptamer libraries. The fluorescence intensity can be correlated with the affinity of the
aptamers against the given target. p values < 0.05 were considered significant. * p denotes < 0.05,
** denotes p < 0.01, *** denotes p < 0.001 and **** denotes p < 0.0001. (b) Determination of lower
detection limits (black lines) of aptamer library R10. Relative fluorescence against logarithmically
scaled cell numbers of C. auris, C. albicans, and C. parapsilosis with 10 pmol of Cy5-labeled aptamer.
Linearly fitted plot represents lower detection limit X = lg(cell number), Y = (relative fluorescence
intensity). (c) Determination of dissociation constants (Kd values) (black dotted lines) of the aptamer
library R10 for C. auris, C. albicans, C. parapsilosis by determination of the percentage of bound
aptamers (y-axis) against an increasing of aptamer concentration up to 15 pmol. By performing an
exponential fit Kd values of 12.96 nM for C. aurius, 9.715 nM for C. albicans, and 9.611 for C. parapsilosis
were computed. All experiments were conducted as triplicates (n = 3).
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The sensitivity and specificity of the enriched R10 library suggested that our aim to
develop an easy but reliable assay to distinguish Candida spec. from human cells might
be achievable and realistic. The suggested assay follows the workflow demonstrated in
Figure 2a and consists of three principal steps: (1) binding, (2) washing, and (3) elution,
prior to the final fluorescence measurement involving only two subsequent centrifugation
steps in the experiment (Figure 2a).
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Figure 2. (a) Schematic of binding assay with Cy5 fluorescent-labeled R10 aptamer library. The
fluorescent aptamers are first incubated with the target cells, centrifuged, and resuspended in PBS
buffer. The resulting aptamer target complexes are then separated by denaturation at 95 ◦C for
5 min. The solution is centrifuged, and the fluorescence of the supernatant is measured. (b) Binding
assay of aptamer library R10 against a multitude of clinical isolates of Candida (n = 87) of 6 different
species, C. albicans, C. dubliniensis, C. krusei, C. orthopsilosis, C. tropicalis, C. glabrata (sorted by sampling
number), were conducted, with A, B, C representing the human cell lines (HT29, MIA-PaCa-2P,
MCF7). The laboratory strain C. albicans ATCC90028 was used as the control and represents a
relative fluorescence of 100%. A detection window was found by determining the average relative
fluorescence of the clinical isolates (solid black line) and calculating the 1 sigma interval (dotted black
lines) 0.98 ± 0.21.

As a proof of concept, to show the principal functionality of this assay’s workflow,
we intended to demonstrate that a considerably large ensemble of real clinical isolates of
the genus Candida (Candida spec.) could be differentiated from the human control cells as
desired. During a sampling campaign, 87 individual isolates were collected in the university
hospital Ulm and were provided anonymously for this study (numbered according to the
order of their date of sampling in the campaign, as given in Figure 2b). This ensemble
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harbored C. albicans as the predominant species, represented by 74 individual strains as
well as 5 additional Candida species. Among these, with seven representatives, C. glabrata
was the second most frequent species, followed by C. orthopsilosis and C. tropicalis with two
isolates each, and C. dublinensis and C. krusei were each represented by only a single isolate.
Interestingly, as expected for a larger German hospital, C. auris, which is probably the most
relevant and health-threatening Candida pathogen emerging in various other regions of
the world, was not present in the cohort of patients who delivered the 87 clinical samples.
The assay was performed as described for the 87 clinical isolates and the laboratory strain
C. albicans ATCC 90028 as a reference. Moreover, the target negative controls represented
by the set of human cell lines were again also included, and it was found, as expected,
that they delivered a zero-fluorescence signal. The fluorescence signal of C. albicans ATCC
90028 was judged to be the reference and was set to 100% labeling efficiency, and all the
other measurements were normalized accordingly. The arithmetical mean was calculated
for all the samples (except the human cell lines), and the positive and negative standard
deviations were used to define a detection window (0.98 ± 0.21). The vast majority of
isolates delivered fluorescence signals within or above the borders of the detection window,
with only four individual C. albicans isolates falling slightly short of the lower border.
Interestingly, the non-albicans Candida strains could also be confidently measured and thus
distinguished from human cells.

3. Discussion

With the finding that polyclonal aptamer libraries originating directly from SELEX
processes may outperform the individual aptamers [52] selected from these libraries, we
introduced such enriched or “polyclonal” aptamer libraries as valuable tools for the flu-
orescent labeling of target structures and thus the specific quantification of a series of
microbial symbionts and pathobionts [52–57]. Moreover, the functionality of this concept
was further demonstrated with different tissues of plant roots [58] and by using specific
enriched libraries for the construction of electronic gFET-based biosensors to measure
pre-diabetes-related biomarkers [59]. The considerable general potential of oligonucleotide
aptamers for the detection of pathogens and, in turn, for the development of assays for
monitoring, and therefore disease control involving a variety of aptamer-based bioassays,
including lateral flow assay concepts and colorimetric assays, as well as fluorescence-
based concepts, is widely accepted and has recently been nicely reviewed by Wan and
coworkers [60]. One key challenge in diagnostic assays for pathogen detection is to dis-
criminate the dedicated harmful microbes in the sample preparations for analysis from
“contaminating” human cells. We have recently shown that an enriched library against
different Candida strains could already be used to distinguish the yeast cells from human
cells in this case and was exemplified solely by human dermal fibroblasts (HDF), which
served as so-called counterselection targets during the respective SELEX process [50]. It
turned out that background detection of HDF cells and other human cell lines was low
but significant, particularly in fluorometric binding assays, suggesting a remnant affinity
for (experimentally yet undefined) epitopes on human cells. According to the dogma of
directed evolution “you get what you screen for”; we decided to use the power of SELEX
and to improve the specificity of the library by eliminating the vexatious background
affinity with a few additional harsh rounds of selection and counterselection. Interestingly,
in addition to this, the affinity of the final library for its dedicated target cells was also
significantly enhanced, as measured by the fluorescence-labeling intensity of the different
Candida strains. The affinity towards the reference Candida strains C. albicans, C. auris, and
C. parapsilosis was in a reasonably low nanomolar range that was comparable to established
diagnostic antibodies and aptamers [61–66]. This resulting high affinity-enriched aptamer
library was used to test the FluCandA concept in a fast and easy assay for the detection
of Candida spec. that could distinguish the Candida spec. from the human cells in the
background. The strains from the set of clinical isolates were preponderantly encompassed
positively by the assay, leaving only 4 of the 87 tested samples as false-negatives, but in
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these cases, the high fluorescence values lay just outside the detection window at the lower
limit. We believe that this proof of the FluCandA concept may serve as the experimental
basis with which to approach a feasible diagnostic assay for the further in-depth evaluation
of its general potential to detect different Candida species. This evaluation should include
larger cohorts of clinical isolates as well as larger ensembles of Candida reference strains.
The same enriched aptamer library may also serve as a valuable pool of diverse sequences
to isolate individual aptamers against specific Candida species or even strains. We hope that
the portfolio of possible applications may also inspire and enable the development of assay
systems of higher complexity, like the construction of electronic biosensors.

4. Materials and Methods
4.1. Cell Lines and Cell Culture

Experimental yeast strains, including C. auris (DSMZ-No. 21092), C. albicans (ATCC90028),
C. parapsilosis (ATCC22019), and the clinic isolates, were inoculated in 5 mL of RPMI (Roswell
Park Memorial Institute) medium (Thermo Fisher Scientific, Waltham, MA, USA) and cultured
at 37 ◦C. All the clinical isolates of the Candida species were identified by matrix-assisted laser
desorption ionization time-of-flight mass spectrometry (Maldi-ToF MS, Bruker Corporation,
Billerica, MA, USA) and provided by patient samples sent to the microbiology department
for diagnostic purposes. The strains were collected anonymously; thus, it was not possible
to assign the strains to patients. The accreditation number of the microbiology department
is DIN EN ISO15189:2014 (DAkks). The human cells, including HDF, HT29, MCF7, and
MIA-PaCa-2P, were incubated in DMEM medium, 1% (v/v) Minimal Essential Medium
Non-Essential Amino Acids, MEM NEAA(Life Technologies, Carlsbad, CA, USA), 1% (v/v)
Penicillin/Streptavidin (Life Technologies, Carlsbad, CA, USA), 15% (v/v) Fetal Calf Serum
(FCS) (Life Technologies, Carlsbad, CA, USA), and 83% (v/v) Dulbecco’s Modified Eagle
Medium (DMEM) (Life Technologies, Carlsbad, CA, USA) and cultured in a 37 ◦C cell culture
incubator containing 5% CO2.

4.2. Cell Pretreatment

After treatment with Accutase® (Life Technologies, Carlsbad, CA, USA), 20,000 cells
were removed, added to a 96-well plate, and incubated at 37 ◦C for 24 h in a cell incubator.

4.3. Cell SELEX
4.3.1. Pretreatment before Counter SELEX

After being treated with Accutase®, the desired HDF cells were removed and added
to 96-well plates (20,000 cells) or 24-well plates (100,000 cells), followed by incubation at
37 ◦C for 24 h in a cell culture incubator to re-adhere the cells. The cells were carefully
washed once with 1× PBS after removing the medium before the screening.

4.3.2. Pretreatment before Target SELEX

C. auris, C. albicans, and C. parapsilosis were centrifuged at 9000× g for 2 min and
washed with 1× PBS.

4.3.3. Aptamer Activation

Add the aptamer library to 500 µL of 1× PBS, incubate at 95 ◦C for 5 min, place in an
ice bath for 5 min, and then leave for 20 min at room temperature.

4.3.4. Screening

The screening process for rounds 1–8 can be found in the previous article [50]; this
was followed by two additional rounds of screening, as shown in Table 1.
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Table 1. SELEX procedure for rounds 9–10.

SELEX Rounds Aptamer
[pmol] Counter SELEX with HDF Target SELEX with Candida Wash Times BSA/tRNA

[pmol]

9 0.1 20,000 cells 250 µL OD600 = 1 8 3000
10 0.1 100,000 cells 250 µL OD600 = 1 8 3000

The activated library was incubated with adherent HDF cells at 37 ◦C for 1 h. The
supernatant was then carefully aspirated; BSA (100 mg/mL) and tRNA (10 mg/mL) were
added to increase stringency and incubated with Candida at 37 ◦C for 30 min, followed by
centrifugation at 9000× g for 2 min, the removal of the supernatant, and the final washing
with 1× PBS to remove unbound aptamer from the precipitate (see Table 1).

4.3.5. Elution

The cells from the previous step were resuspended in 100 µL of 1× PBS and incubated
at 95 ◦C for 5 min, followed by centrifugation at 11,000× g for 1 min to collect the Candida-
bound aptamer.

4.3.6. Library Amplification

PCR further amplified the aptamers collected in the previous step. The amplification
conditions were as follows: 3 min at 95 ◦C, followed by 25 cycles of 30 s at 94 ◦C; 30 s at 56 ◦C;
10 s at 72 ◦C; and finally, 2 min at 72 ◦C. Next, the PCR products were purified (MACHEREY-
NAGEL GmbH & Co. KG, Düren, Germany). The resulting double-stranded DNA was
broken down into single-stranded DNA by λ-nucleic acid exonuclease catalysis (New
England Biolabs, Ipswich, MA, USA) and finally purified by an optimized PCR purification
kit (MACHEREY-NAGEL GmbH & Co. KG, Düren, Germany). The binding buffer required
for this purification process was supplemented with 1.5 volumes of isopropanol and 10 µL
of natrium acetate solution (pH 5) to increase the yield of single-stranded DNA.

4.3.7. Binding Assay
Candida Binding Assay

After washing the yeast according to Section 4.3.2, 20,000 cells were used for analyses
and incubated with 5 pmol of activated aptamer library in 500 µL of PBS for 30 min at
37 ◦C. Next, the culture was centrifuged at 9000× g for 2 min to remove the supernatant
and washed once. The precipitate was resuspended in 100 µL of 1× PBS buffer to obtain
the eluted cell junctional aptamers, and the fluorescence intensity was determined by
measuring at an excitation wavelength of 637 nm and an emission wavelength of 670 nm
using an Infinite M200 spectrophotometer (TECAN, Männedorf, Switzerland).

Cell Binding Assay

After re-culturing 20,000 individual cells in 24-well plates, the cells were incubated
with 5 pmol of activated aptamer library in 500 µL of PBS at 37 ◦C for 30 min. The
supernatant was removed and treated with 200 µL of accutase. After centrifugation for
3 min at 2000× g, the cells were washed once with 500 µL PBS and measured according to
Section 4.4.

4.4. Affinity Analysis

The binding affinity of the selected aptamer libraries was determined by incubating
20,000 C. auris, C. albicans, and C. parapsilosis in 500 µL of PBS with different concentrations
of the aptamers. Finally, the dissociation constants (Kd) of the aptamer libraries were deter-
mined by fitting the dependence of the fluorescence intensity on the aptamer concentration
to the equation Y = Bmax × X/(Kd + X) using GraphPad PRISM 8. (GraphPad Software, San
Diego, CA, USA), with Y = the measured fluorescence, Bmax = the maximal fluorescence,
and X = concentration of the aptamers).
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4.5. Sensitivity Test

The sensitivity of the aptamers was determined by analyzing the linear relationship
between fluorescence intensity and the log value of the cell number for each yeast.

4.6. Detection of Clinic Isolates

One milliliter of clinic isolates with an OD of 0.01 was incubated with 5 pmol of
aptamer library, and the fluorescence intensity of the C. albicans strains under the same
conditions as above was compared to determine the ability of the aptamer library to detect
Candida in practice.
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