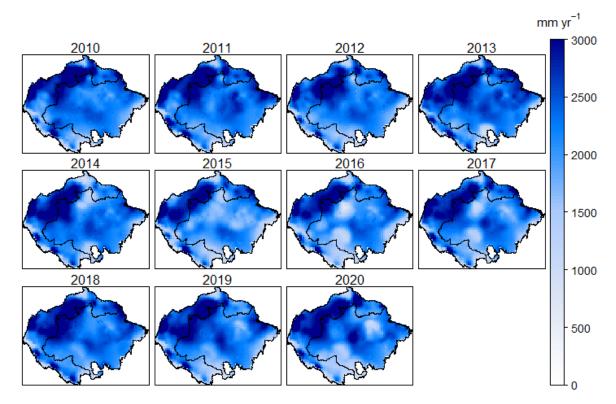
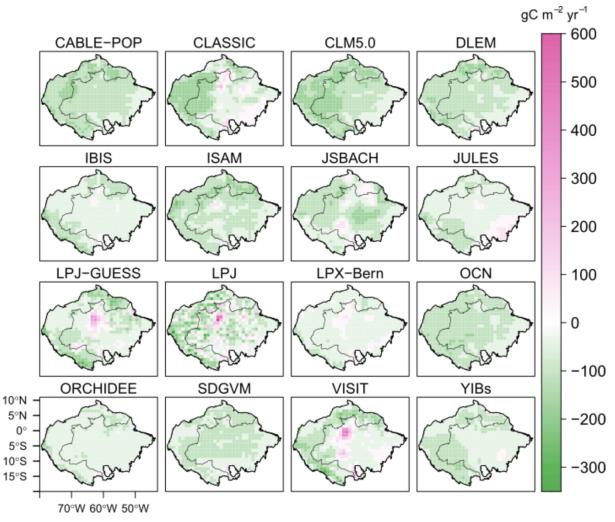

Supporting Information

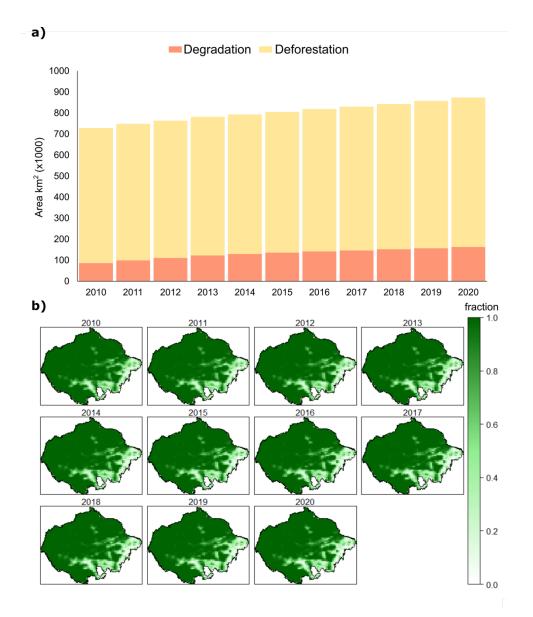
Supporting figures and tables of "Synthesis of the land carbon fluxes of the Amazon region between 2010 and 2020" by Rosan et al.

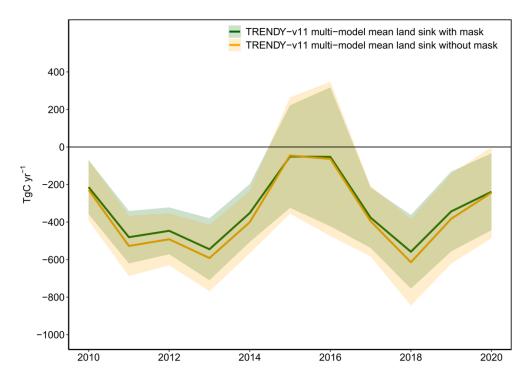


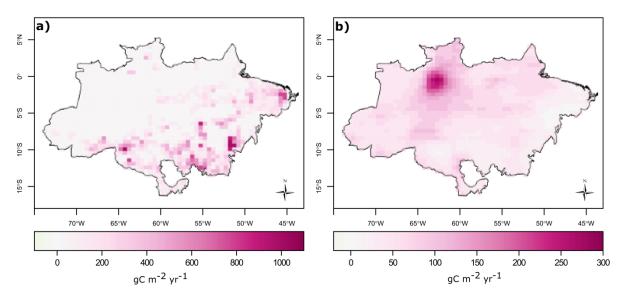
Supplementary Figure 1 Amazon Forest cover in 2020 with the limits of Brazilian Amazon (hatched area) and the whole Biogeographical Amazon (pink area). Source of the Amazon Forest cover is MapBiomas Amazonia collection v4.0.

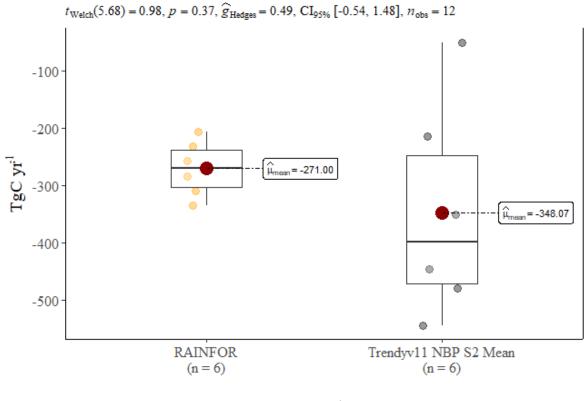


Supplementary Figure 2 El Niño–Southern Oscillation (ENSO) events between 2010 and 2020. a) Bimonthly Multivariate ENSO index (MEIv2) from the National Oceanic and Atmospheric Administration (NOAA); shaded pink areas highlight the ENSO occurrence between 2010 and 2020. b) Correlation between old-growth forest sink simulated by the TRENDY-v11 DGVMs (Tg C yr⁻¹) and the Annual Maximum Cumulative Water Deficit (MCWD mm yr⁻¹) for the Brazilian Amazon. c) Correlation between old-growth forest sink simulated by the TRENDY-v11 DGVMs (Tg C yr⁻¹) and the Annual Maximum Cumulative Water Deficit (MCWD mm yr⁻¹) for the Brazilian Amazon. c) Correlation between old-growth forest sink simulated by the TRENDY-v11 DGVMs (Tg C yr⁻¹) and the Annual Maximum Cumulative Water Deficit (MCWD mm yr⁻¹) for the whole Biogeographical Amazon. Dashed line represents the correlation between the old-growth forest sink and the MCWD and the Pearson's correlation, the Pearson correlation coefficient (R) and p-value at 95% confidence level are in the bottom-right

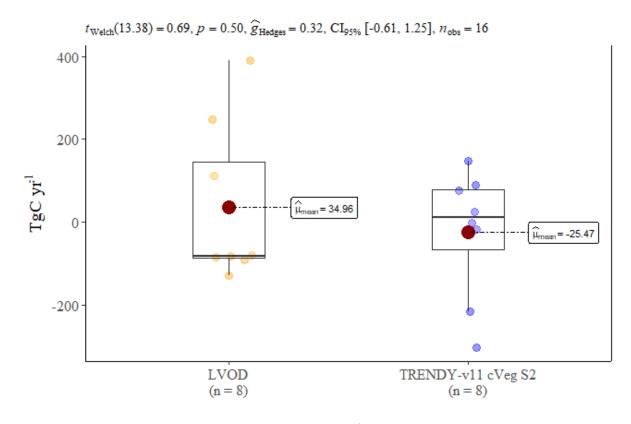

of plots b and c, respectively.


Supplementary Figure 3 Amazon annual total precipitation (mm yr⁻¹) between 2010 and 2020 from CRUJRA2.4 used as input for the DGVMs in TRENDY-v11.

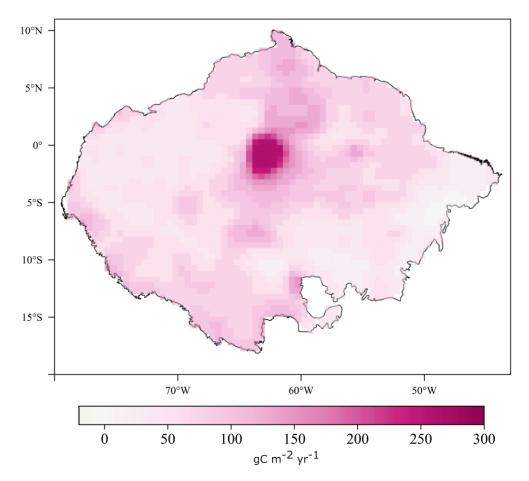

Supplementary Figure 4 Mean Amazon old-growth forest sink (gC m⁻² yr⁻¹) between 2010 and 2020 from each DGVMs used in TRENDY-v11.


Supplementary Figure 5 Correction of TRENDY-v11 sink estimates using an oldgrowth areas mask. a) Accumulated deforestation and degradation area in the Brazilian Amazon (km² x1000); b) Whole biogeographical Amazon old-growth forest fraction mask based on the annual accumulated disturbance area of deforestation and degradation from INPE.

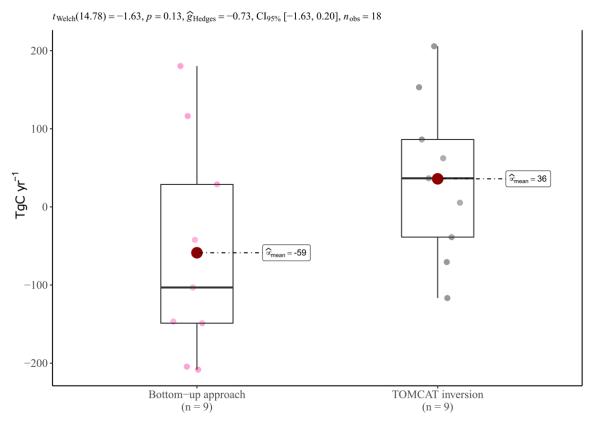
Supplementary Figure 6 Annual intact sink over the whole Biogeographical Amazon simulated by TRENDY-v11 DGVMs with and without the accumulated disturbance mask (Supplementary Figure 2) applied.



Supplementary Figure 7 Spatial uncertainty of main Figure 1. a) Average spatial uncertainty (2010-2020) of the disturbance fluxes in the Brazilian Amazon; **b)** Spatial average uncertainty (2010-2020) of the intact sink from TRENDY-v11 DGVMs in the Brazilian Amazon. Data in gC m⁻² yr⁻¹.

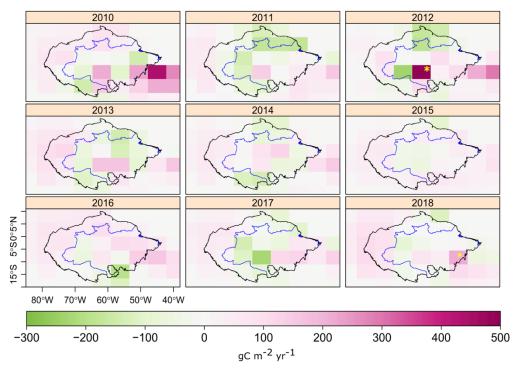

 $\log_{\rm e}({\rm BF}_{01}) = 0.46, \ \hat{\delta}^{\rm posterior}_{\rm difference} = 44.93, \ {\rm CI}^{\rm ETI}_{95\%} \ [-80.53, \ 182.71], \ r^{\rm JZS}_{\rm Cauchy} = 0.71$

Supplementary Figure 8 Welch's t-test of the comparison between the mean intact sink from RAINFOR and TRENDY-v11 over 2010-2015; n is equal the number of years available for the analysis of each estimate (2010-2015).

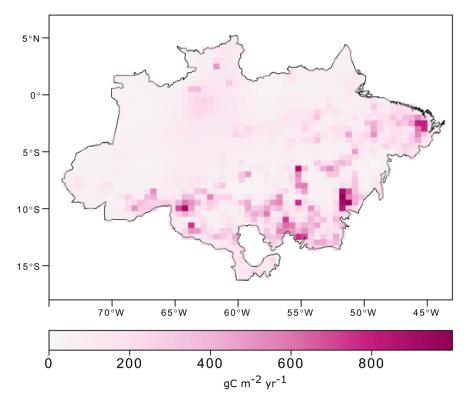


 $\log_{e}(\mathrm{BF}_{01}) = 0.69, \, \delta_{difference}^{\mathrm{posterior}} = 36.75, \, \mathrm{CI}_{95\%}^{\mathrm{E11}} \, [-103.40, \, 187.16], \, r_{\mathrm{Cauchy}}^{\mathrm{JZS}} = 0.71$

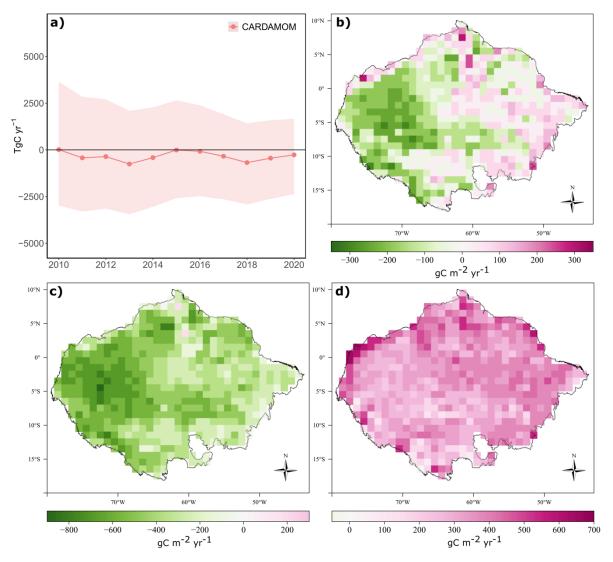
Supplementary Figure 9 Welch's t-test of the comparison between the intact aboveground carbon changes from L-VOD⁸ and TRENDY-v11 multi-model mean 2011-2019, n is equal the number of years available for the analysis of each estimate.



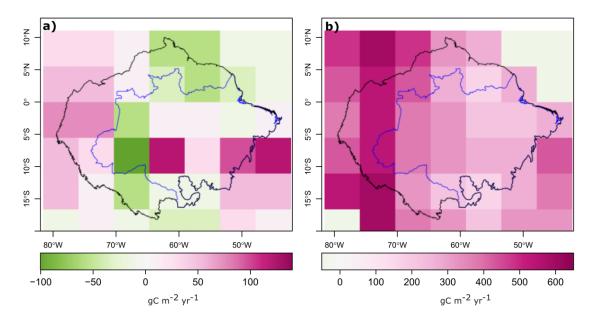
Supplementary Figure 10 Average intact sink uncertainty from TRENDY-v11 DGVMs over the whole biogeographical Amazon (gC m⁻² yr⁻¹).

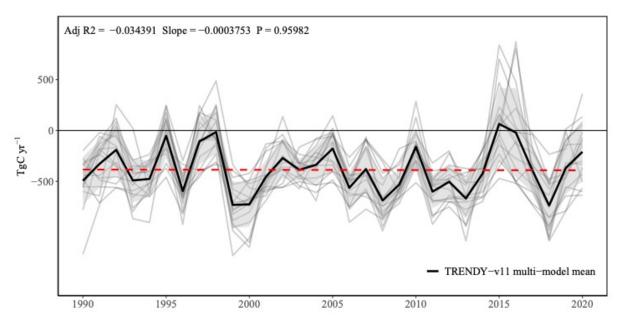

 $[\]log_{e}(BF_{01}) = 0.01, \ \hat{\delta}_{difference}^{posterior} = -64.39, \ CI_{95\%}^{ETI} \ [-182.29, 34.90], \ r_{Cauchy}^{IZS} = 0.71$

Supplementary Figure 11 Welch's t-test to compare the net land carbon fluxes from bottom-up approach and top-down inversion over 2010-2018 for the Brazilian Amazon.



Supplementary Figure 12 Annual spatial net land carbon flux from TOMCAT atmospheric inversion (gC m⁻² yr⁻¹). The black line is the biogeographical Amazon


limits, and the blue line is the Brazilian Amazon limits. Grid-cell with yellow star have the highest fluxes in 2012 and 2018 maps.


Supplementary Figure 13 Spatial Brazilian Amazon net land carbon flux uncertainty from the bottom-up approach over 2010-2020 (gC $m^{-2} yr^{-1}$).

Supplementary Figure 14 Net land carbon fluxes from CARDAMOM. a) Annual net land carbon fluxes for the whole biogeographical Amazonia; b) Spatial average net land carbon fluxes (gC m⁻² yr⁻¹) of from CARDAMOM between 2010 and 2020; c) Spatial average uncertainty (gC m⁻² yr⁻¹) of CARDAMOM between 2010 and 2020 (CI 97.5%); d) Spatial average uncertainty (gC m⁻² yr⁻¹) of CARDAMOM between 2010 and 2020 (CI 97.5%); d) Spatial average uncertainty (gC m⁻² yr⁻¹) of CARDAMOM between 2010 and 2020 (CI 97.5%); d) Spatial average uncertainty (gC m⁻² yr⁻¹) of CARDAMOM between 2010 and 2020 (CI 97.5%); d) Spatial average uncertainty (gC m⁻² yr⁻¹) of CARDAMOM between 2010 and 2020 (CI 97.5%); d) Spatial average uncertainty (gC m⁻² yr⁻¹) of CARDAMOM between 2010 and 2020 (CI 97.5%); d) Spatial average uncertainty (gC m⁻² yr⁻¹) of CARDAMOM between 2010 and 2020 (CI 97.5%).

Supplementary Figure 15 Spatial fluxes from the top-down atmospheric inversion. a) TOMCAT atmospheric inversion net land carbon fluxes over 2010-2018 (gC m⁻² yr⁻¹); b) average uncertainty estimate over 2010-2018 from TOMCAT atmospheric inversion (gC m⁻² yr⁻¹). The blue line is the Brazilian Amazon limits and the black line the biogeographical Amazon limits.

Supplementary Figure 16 Multi-model mean of TRENDY-v11 old-growth forest sink between 1990 and 2020 (TgC yr⁻¹) over the whole biogeographical Amazon. The red dotted line is the linear trend line.

Supplementary Table 1 INPE-EM parameters to quantify the E_{LUC} and degradation fluxes. Source: INPE-EM website and Aguiar et al., 2012.

Description	Value	Source
Deforestation		
Accumulated deforestation area up to the initial	Spatial	PRODES INPE
year of the model		
Yearly deforestation rate	Spatial	PRODES INPE
Forest area in the initial year of the model	Spatial	PRODES INPE
Biomass		
Forest aboveground live biomass	Spatial	
Percentage of belowground biomass in relation to	20%	MCTI 2016
the aboveground biomass		
Percentage of litter in relation to the aboveground	4%	MCTI 2016
biomass		
Percentage of dead wood in relation to the	7%	MCTI 2016
aboveground biomass		
Vegetation removal		
Percentage of the remain AGB	0%	n.a. (clear-cut)
Percentage of AGB that goes to wood products	15%	Aguiar et al. 2012
Percentage of AGB that will release carbon via fire	42,5%	Aguiar et al. 2012
Percentage of AGB that will release carbon via	42,5%	Aguiar et al. 2012
decomposition		
Percentage of remain BGB	0%	n.a. (clear-cut)
Percentage of BGB that will be burned	0%	Aguiar et al. 2012
Percentage of BGB that will release carbon via	0,0%	Aguiar et al. 2012
decomposition aboveground		
Percentage of BGB that will release carbon via	100,0%	Aguiar et al. 2012
decomposition belowground		
Percentage of litter that will release carbon via fire	50%	Aguiar et al. 2012
Percentage of litter that will release carbon via	50%	Aguiar et al. 2012
decomposition		
Percentage of dead wood that will release carbon	50%	Aguiar et al. 2012
via fire		
Percentage of dead wood that will release carbon	50%	Aguiar et al. 2012
via decomposition		
Number of years to burn the residues	3 years	Aguiar et al. 2012
Percentage of carbon non released by combustion	2%	Houghton et al. 2000, Aguiar et al.
and will slowly decompose as elemental carbon		2012
Decay rate of wood products	0,1	Houghton et al. 2000, Aguiar et al.
		2012

Decay rate of AGB	0,4	Houghton et al. 2000, Aguiar et al.
		2012
Decay rate of BGB by decomposition belowground	0,7	Aguiar et al. 2012
Decay rate of BGB by decomposition aboveground	0,4	Aguiar et al. 2012
Decay rate of remain AGB and will slowly	0,001	Houghton et al. 2000, Aguiar et al.
decompose as elemental carbon		2012
Emission factors		
Conversion factor of biomass to carbon	0,47	Longo et al. 2009
Conversion factor of biomass to CO2 by decay	1,72249	Longo et al. 2009
Conversion factor of biomass to CO2 by fire	1,601	Longo et al. 2009
Conversion factor of biomass to CH4 by fire	0,00625	Longo et al. 2009
Conversion factor of biomass to N20 by fire	0,0002	Longo et al. 2009
Conversion factor of biomass to NOx by fire	0,00017	Longo et al. 2009
Conversion factor of biomass to CO by fire	0,1078	Longo et al. 2009
Global warming potential		
Global warming potential CO2	1	IPCC 2013
Global warming potential CH4	28	IPCC 2013
Global warming potential N20	265	IPCC 2013
Global warming potential NOx	0	IPCC 2013
Global warming potential CO	0	IPCC 2013
Secondary vegetation		
Percentage of secondary vegetation area	0.21*	TerraClass
Time that the area will be abandoned after	2 anos	Aguiar et al. 2012
deforestation		
Percentage of the original biomass to be recovered	70%	Houghton et al. 2000, Aguiar et al.
in the period 1		2012
Time of regrowth period 1	25 anos	Houghton et al. 2000, Aguiar et al.
		2012
Percentage of the original biomass to be recovered	30%	Houghton et al. 2000, Aguiar et al.
in the period 2		2012
Time of regrowth period 2	50 anos	Houghton et al. 2000, Aguiar et al.
		2012
Number of years that 50% of the secondary	5**	Almeida 2009, Aguiar et al 2012
vegetation will be cut again		
Complementary parameter of half life: number of	3	Almeida 2009, Aguiar et al, 2012
abandonment years needed to satellite images		
detect secondary vegetation		
Degradation		
Average biomass in a cell unit	spatial	Brazilian Third National GHG
		Inventory (MCTIC, 2017)

Percentage of cell unit identified as degraded that	spatial	DEGRAD/INPE
year by fire/logging events		
Percentage of AGB lost as result of the event	54,2%	Rappaport et al., 2018
Percentage of BGB lost as result of the event	0	
Percentage of dead wood lost as result of the	46.90%	Withey et al., 2018
event		
Percentage of litter lost as result of the event	46.90%	Withey et al., 2019
Rates of regeneration of the AGB along the years		Based on Rappaport et al., 2018
		relationship between: a) intact and
		1x burned forest; b) intact and 2x
		burned forest

	Carbon stocks												
Primary Vegetation Type	Primary - Veg C	Secondary - Veg	Pasture - Veg C	Crop - Veg C	Primary - Soil C	Secondary - Soil	Pasture - Soil C	Crop - Soil C					
		С				С							
Tropical evergreen forest	200	150	18	5	117 88	88 87.75		58					
Tropical deciduous forest	160	120	18	5	117	88	87.75 58						
Raingreen shrubs	27	27	18	5	69 69	69 69		34					
C4 natural grasses	18	18	18	5	42	42	42	21					
	Harvest												
	Fraction of	Fraction of	Fraction of	Fraction of	Fraction of	Minimum soil C	Time of soil						
	roundwood	roundwood	roundwood	vegetation	vegetation	following harvest	carbon to reach						
	assigned to	assigned to	assigned to	carbon	carbon		minimum (as						
	decay pools	decay pools	decay pools	transferred dead	transferred dead		found following						
	after harvest,	after harvest,	after harvest,	to soil at	to soil at		harvest)						
	1yr	10yr	100yr	clearing for	clearing for								
				primary forest	secondary forest								
Tropical evergreen forest	0.9	0.04	0.06	0.785	0.71	76	5						
Tropical deciduous forest	0.9	0.04	0.06	0.86	0.81	76	5						
Raingreen shrubs	1	0	0	0.86	0.81	44.8	5						
C4 natural grasses	1	0	0	0.86	0.81	27.3	5						
	Clearing												
	Fraction of	Fraction of	Fraction of	Fraction of	Soil carbon after	Time of rapid soil	Time of soil						
	vegetation	vegetation	vegetation	vegetation	initial, rapid loss	carbon loss	carbon to reach						
	carbon assigned	carbon assigned	carbon assigned	carbon	after clearing		minimum (as						
	to decay pools	to decay pools	to decay pools	transferred dead			found under						
				to soil at			cultivation)						

Supplementary Table 2 Tropical vegetation parameters of BLUE to estimate E_{LUC}. Values in Tg/ha. Source: adapted from GCB (2022).

	after clearing,	after clearing,	after clearing,	clearing (1-				
	1yr	10yr	100yr	SUM(product				
				pools))				
Tropical evergreen forest	0.4	0.27	0	0.33	70	3	15	
Tropical deciduous forest	0.4	0.27	0	0.33	70	3	15	
Raingreen shrubs	0.4	0.1	0	0.5	41	3	15	
C4 natural grasses	0.5	0	0	0.5	25	3	15	
	Recovery from ha	rvest/clearing		L	I			
	Time required	Time required						
	for biomass	for soil carbon						
	carbon to	to recover (to						
	recover (to	secondary land)						
	secondary land)	after abandoned						
	after abandoned							
Tropical evergreen forest	50	15						
Tropical deciduous forest	50	15						
Raingreen shrubs	25	15						
C4 natural grasses	5	15						

Supplementary Table 3 Processes relevant for SLAND in addition to CO ₂ fertilization and climate included in the DGVMs from GCB. Source:
adapted from GCB 2022.

	DGVMs															
	CABLE-	CLASSIC	CLM5.0	DLEM	IBIS	ISAM	JSBACH	JULES-	LPJ-	LPJ	LPX-	OCNv2	ORCHID	SDGVM	VISIT	YIBs
	POP							ES	GUESS		Bern		EEv3			
Fire	no	yes	yes	no	yes	no	yes	yes	yes	yes	yes	no	no	yes	yes	no
simulation																
and/or																
suppression																
Carbon-	yes	no	yes	yes	no	yes	yes	yes	yes	no	yes	yes	yes	yes	no	no
nitrogen																
interactions,																
including N																
deposition																

References

- 1. Silva Junior, C. H. L. *et al.* The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade. *Nature Ecology and Evolution* **5**, 144–145 (2021).
- Trancoso, R. Changing Amazon deforestation patterns: Urgent need to restore command and control policies and market interventions. *Environmental Research Letters* 16, (2021).
- 3. West, T. A. P. & Fearnside, P. M. Brazil's conservation reform and the reduction of deforestation in Amazonia. *Land Use Policy* **100**, 105072 (2021).
- Rappaport, D. I. *et al.* Quantifying long-term changes in carbon stocks and forest structure from Amazon forest degradation. *Environmental Research Letters* 13, (2018).
- Barlow, J., Peres, C. A., Lagan, B. O. & Haugaasen, T. Large tree mortality and the decline of forest biomass following Amazonian wildfires. *Ecology Letters* 6, 6– 8 (2003).
- Silva, C. V. J. *et al.* Drought-induced Amazonian wildfires instigate a decadalscale disruption of forest carbon dynamics. *Philosophical Transactions of the Royal Society B: Biological Sciences* 373, (2018).
- 7. Silva, C. V. J. *et al.* Estimating the multi-decadal carbon deficit of burned Amazonian forests. *Environmental Research Letters* **15**, (2020).
- 8. Fawcett, D. *et al.* Declining Amazon biomass due to deforestation and subsequent degradation losses exceeding gains. *Global Change Biology* **n/a**,.