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We develop a multi-state generalisation of the recently proposed mapping approach to surface
hopping (MASH) for the simulation of electronically nonadiabatic dynamics. This new approach
extends the original MASH method to be able to treat systems with more than two electronic states.
It differs from previous approaches in that it is size consistent and rigorously recovers the original
two-state MASH in appropriate limits. We demonstrate the accuracy of the method by application
to a series of model systems for which exact benchmark results are available, and find that the
method is well suited to the simulation of photochemical relaxation processes.

I. INTRODUCTION

The Born-Oppenheimer approximation is foundational
to the study of modern molecular science and is highly
accurate for the majority of systems at equilibrium. How-
ever, for many non-equilibrium processes, particularly
those involving light–matter interaction, the approxima-
tion breaks down.1–6 Such processes are central to a wide
range of important fields including atmospheric chem-
istry, astrochemistry, as well as artificial and biological
light harvesting. The ability to accurately simulate elec-
tronically nonadiabatic dynamics is therefore an essential
tool in modern chemistry. Unfortunately, without the
Born-Oppenheimer approximation, molecular dynamics
are significantly more complicated to simulate, and the
development of new trajectory methods remains an area
of active research.7–18

The simplest approach to the simulation of nonadi-
abatic dynamics is Ehrenfest theory,19–21 where nuclei
evolve under the mean-field potential of the current elec-
tronic state. While still very popular, the mean-field na-
ture of the force can lead to unphysical nuclear dynamics
particularly in molecular photochemistry where it fails
to correctly describe wavepacket bifurcation. In 1990
Tully suggested an approach to overcome these issues,22

called fewest switches surface hopping (FSSH), in which
the nuclei always evolve on an adiabatic potential with
stochastic hops between the surfaces determined by the
electronic dynamics. FSSH has become the go-to method
for simulating electronically nonadiabatic dynamics.3–6

Its popularity can be attributed to a number of key fac-
tors, including reasonable accuracy in describing simple
photochemical problems and its ease of interpretation.
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Perhaps most importantly, however, is that it is highly
economical with its use of information about the elec-
tronic structure of the system, making it well suited to
ab-initio simulation.
However, FSSH is not without its own issues. A review

of FSSH by Subotnik et al.4 summarised its three key
drawbacks as

1. Overcoherence error: Although FSSH avoids the
often unphysical mean-field force of Ehrenfest, in
systems with multiple avoided crossings the wave-
function can become inconsistent with the active
surface leading to errors.23–31

2. Diabatic initialisation and measurement: It is un-
clear how to correctly initialise in or measure a di-
abatic population.9,32–35

3. Quantum Classical Liouville Equation (QCLE):
The QCLE provides a rigorous framework for
mixed quantum–classical simulations, however,
FSSH is not rigorously derivable from the quantum
classical Liouville equation (QCLE).36–41

Each of these issues can in part or whole be attributed
to the ad-hoc nature of the original FSSH algorithm, and
hence ultimately to the final of the three drawbacks.
A large effort has gone into deriving FSSH from the
QCLE.36–41 While a connection can be made, it requires
rather restrictive assumptions.40 This perhaps explains
why, although many suggestions have been made to ad-
dress the drawbacks of FSSH, no one solution has be-
come universally adopted. Without a rigorous derivation
from the QCLE no modification can be unambiguously
deemed ‘correct’, leading to continued debate around the
optimal algorithm. This ambiguity has also led to a vari-
ation in the details of the algorithm, including contin-
ued discussion over the correct way to treat frustrated
hops,32,42–44 and a range of ways for performing momen-
tum rescaling.45
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Recently a new surface hopping method has been
proposed, the mapping approach to surface hopping
(MASH).13 Like FSSH, MASH is an independent clas-
sical trajectory method, in which the nuclei predomi-
nantly evolve on a single adiabatic surface with occa-
sional hopping events between the surfaces. It is there-
fore of comparable computational cost to FSSH. Unlike
FSSH, however, MASH is a rigorous short time approx-
imation to the QCLE.13 This has a number of benefits;
not only is there a unique momentum rescaling and treat-
ment of frustrated hops, but also a unique prescription
for how to initialise and calculate diabatic populations.
Furthermore, the MASH trajectories cannot become in-
consistent in the way that they can in FSSH, and this
has been shown to significantly reduce the effect of the
overcoherence error.46,47 Finally, its connection to the
QCLE allows MASH to be systematically improved via
a “quantum jump” procedure, and for rigorous decoher-
ence corrections to be derived.13

Unfortunately, the original MASH method was only
derived in the special case of two electronic states.13 Re-
cently, Runeson and Manolopoulos have proposed a ver-
sion of MASH for multiple electronic states.48,49 How-
ever, their method does not recover the original two-state
version of MASH. While this may not be an issue in
certain systems, we shall argue that for the kind of pho-
tochemical problems we are interested in studying, their
method is not an ideal solution to the problem of general-
ising MASH to multiple states. It is therefore the aim of
this paper to develop a generalisation of MASH to mul-
tiple states that recovers the original two-state theory.
The resulting theory should not only recover the original
theory for two-state problems, but should also be size
consistent, so as to recover the original theory even when
treating a multi-state problem in the limiting case that
two states are uncoupled from the others.

II. BACKGROUND

Before introducing our multi-state generalisation of
MASH, we begin by reviewing some of the key ideas of
the original two-state MASH approach and discussing the
challenges with its generalisation to multiple states. One
of the key practical differences between MASH and FSSH
is that in MASH the active surface is obtained determin-
istically. In the two state case it is determined based on
which wavefunction coefficient is largest, such that, la-
belling the upper adiabat 2 and the lower adiabat 1 the
active state, n, is defined as

n = h(|c2|2 − |c1|2) + 1, (1)

where h(x) is the Heaviside step function. This can more
naturally be cast in terms of the Bloch sphere

S(2,1)
x = c2c

∗
1 + c∗2c1 (2a)

S(2,1)
y = i[c2c

∗
1 − c∗2c1] (2b)

S(2,1)
z = |c2|2 − |c1|2. (2c)

The active surface is then defined according to which
hemisphere of the Bloch sphere the system is in, with

n = h(S
(2,1)
z ) + 1. One might be worried that, because

the active surface is deterministic, MASH like Ehrenfest
would be unable to describe wavepacket splitting. How-
ever, just as with other mapping approaches,14 MASH
overcomes this issue by representing a pure initial elec-
tronic state in terms of an ensemble over the Bloch
sphere. For example, to measure the time-dependent
population of a system which starts in the pure adia-
batic state 2, the ensemble is sampled from the distribu-

tion ρ2(S
(2,1)
z ) = 2h(S

(2,1)
z )|S(2,1)

z |, with S(2,1)
x and S

(2,1)
y

chosen uniformly from the corresponding circle on the
Bloch sphere. In this way MASH replaces the stochastic
nature of the hops in FSSH with sampling over the initial
conditions.

The challenge with generalising the MASH approach
to more than two states stems from the fact that map-
ping approaches are inherently not size extensive. By this
we mean that methods such as the Meyer–Miller–Stock–
Thoss mapping (MMST)50,51 and spin-mapping14 do not
give the same result if an uncoupled subsystem is treated
separately or as part of a larger set of states.52–54 One of
the most obvious effects of this is that it can lead to un-
physical transitions between uncoupled states. This issue
will also be present in any generalisation of MASH that
evolves an initial distribution of wavefunction coefficients
under the time-dependent electronic Schrödinger equa-
tion and determines the active state based on which state
has the largest wavefunction coefficient. To some extent
this error is reduced in MMST and spin-mapping by the
non-positive definite nature of the statistics. In Rune-
son and Manolopoulos’s version of MASH, they modified
the method to be closer to other mapping approaches
by introducing non-positive definite statistics and ac-
cepting the lack of size extensivity. To avoid ambigu-
ity, and since their method is different to the original
MASH even for two states, we will in the following refer
to their method as a surface hopping inspired approach
to mapping (SHIAM). In our multi-state generalisation
of MASH, however, we would like to exactly recover the
original two-state MASH and have a method that is size
extensive with respect to the inclusion of additional un-
coupled states.
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III. THEORY: A MULTI-STATE
GENERALISATION OF MASH

A. Dynamics

In our proposed multi-state generalisation of MASH,
we introduce a separate effective Bloch sphere to describe
the interaction between the active surface, n, and each
of the other N − 1 electronic states, S(n,b). The spheres
are defined such that for a given active surface all N − 1

spheres satisfy the condition, S
(n,b)
z > 0. Between hop-

ping events we define the force on the nuclei to be given
by the usual surface hopping expression

F = −∂Vn
∂q

(3)

and the dynamics of each sphere to obey the equation

ℏṠ(n,b) =

 0∑
k

2ℏ
mk
d
(n,b)
k (q)pk

Vn(q)− Vb(q)

× S(n,b), (4)

i.e. evolving as if the two states n and b were treated
as an isolated subsystem. For this reason we call our
new method the uncoupled spheres MASH (unSMASH)
approach.

Hopping events are a trivial generalisation of the two
state case. A hopping event between the active state and

another adiabatic state, b, occurs when S
(n,b)
z (thop) = 0.

This hopping event can only be successful (i.e., result in
a change of active state) provided that the kinetic en-
ergy along the nonadiabatic coupling vector (NACV) is
greater than the energy gap between the new state, i.e.

E
(d)
kin =

1

2

(p̃ · d̃)2

d̃ · d̃
> Vb(q)− Vn(q), (5)

where p̃k = pk/
√
mk and d̃k = d

(n,b)
k /

√
mk are the mass-

weighted momentum and derivative coupling vectors re-
spectively. In the event that the trajectory does not have
sufficient energy to hop, it is “forbidden” and the compo-
nent of the mass-weighted momentum along the deriva-
tive coupling vector is reversed

p̃← p̃− 2d̃
p̃ · d̃
d̃ · d̃

. (6)

In the case that there is sufficient energy to hop the active
state changes from ni = n to nf = b and the momentum
along the derivative coupling vector is scaled so as to
conserve energy

p̃← p̃+


√√√√E

(d)
kin + Vn(q)− Vb(q)

E
(d)
kin

− 1

 d̃
p̃ · d̃
d̃ · d̃

. (7)

After a successful hop, the spheres are relabelled accord-
ing to the following rule

S(nf ,µ) ←

{
S(ni,µ) if µ ̸= ni
S(nf ,µ) if µ = ni

, (8)

-20 -10 0 10 20
q
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FIG. 1. Diagram illustrating a typical unSMASH trajectory.
Black lines show adiabatic potentials, the red line illustrates
the path of a typical trajectory and the grey line illustrates
the initial density in position space. As there are three states
there are always two effective Bloch spheres between the ac-
tive surface and the other two states. The two Bloch spheres
are shown at the corresponding values of q along the trajec-
tory, with their vertical positioning indicating the new sur-
face that the system would hop to if the Bloch vector of that
sphere switched hemisphere. After a successful nonadiabatic
transition, the Bloch sphere not involved in the hop is then
relabelled according to Eqs. (8) and (9).

where it is helpful to make use of the following identity,
that follows trivially from the definition of the Bloch-
sphere

S
(b,a)
x

S
(b,a)
y

S
(b,a)
z

 =

 S
(a,b)
x

−S(a,b)
y

−S(a,b)
z

 . (9)

Relabelling the spheres, rather than say resampling or
using the relations in Appendix B, is of course a choice.
However we note that this definition of relabelling ensures
that the dynamics is equivalent to the original MASH
method in the two-state case, and is size extensive with
respect to the addition of states that are entirely un-
coupled from or have trivial crossings with the states of
interest.

A schematic of a typical unSMASH trajectory involv-
ing two hops and the resulting relabelling of spheres is
shown in Fig. 1.
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B. Initial Conditions and observables

Let us start by considering the definition of a time-
dependent expectation value in the Schrödinger repre-
sentation

⟨A(t)⟩ = Tr
[
ρ̂tÂ

]
(10)

in which Tr[. . .] denotes a quantum trace over both the
nuclear and electronic degrees of freedom. For a time-
independent Hamiltonian the time-evolved density oper-
ator is given by

ρ̂t = e−iĤt/ℏ ρ̂ e+iĤt/ℏ. (11)

Here we choose to put t as a subscript in order to high-
light that we can consider ρ̂t as a set of density operators
labelled by the continuous variable, t. Taking a partial
Wigner transform over the nuclear coordinates then gives

⟨A(t)⟩ = 1

(2πℏ)f

∫
dqt

∫
dpt tr

[
Ŵt(pt, qt)Â

w(pt, qt)
]
(12)

where tr[. . .] denotes a quantum trace over the electronic
coordinates only, and we have chosen to label the inte-
gration variables by the time t to emphasise that this is
a phase space integral over a (pseudo) density at time

t. The partial Wigner transform of the operator Â is
defined as

Âw(p, q) =

∫
d∆q eip·∆q/ℏ

〈
q +

∆q

2

∣∣∣∣Â∣∣∣∣q − ∆q

2

〉
(13)

and we define the Wigner transformed density operator
(Wigner distribution operator) as Ŵt(p, q) = ρ̂wt (p, q).

1. Adiabatic populations

Before we consider how to treat general initial condi-
tions and observables, we start by considering the sim-
plest case where both Âw(p, q) and Ŵ0(p, q) contain only
diagonal elements in the adiabatic basis

Âw(p, q) =
∑
a

Aw
aa(p, q) |a⟩⟨a| (14)

Ŵ0(p, q) =
∑
a

W aa
0 (p, q) |a⟩⟨a| . (15)

In this case the unSMASH approximation to the time-
dependent expectation value is a trivial generalisation of
the two-state case, and can be written as

⟨A(t)⟩ ≈

trcl

[
ρP(S)

∑
ab

W bb
0 (p, q)Pb(S)A

w
aa

(
p(t), q(t)

)
Pa(S(t))

]
(16)

where p(t), q(t) and S(t) are the unSMASH time evolved
positions, momenta and effective Bloch spheres respec-
tively. The projections onto adiabatic populations are
replaced by Pb(S) and Pa(S(t)) which measure whether
the system is in the corresponding active state e.g.

Pa(S(t)) = δa,n(S(t)). (17)

In this special case the initial density over the effective
Bloch spheres is given by

ρP(S) =
∏
µ̸=n

2|S(n,µ)
z |. (18)

To complete the specification we define the classical trace
over the nuclear and electronic coordinates as

trcl[. . . ] =
1

(2πℏ)f

∫
dq

∫
dp

∫
dS . . . (19)

where the integral over the effective Bloch spheres is given
by ∫

dS =

N∑
n=1

∏
µ̸=n

∫
dS(n,µ)h(S(n,µ)

z ) (20)

in which each of the integrals over the individual effective
Bloch spheres can be written in the form∫

dS(n,µ) =
1

2π

∫ 2π

0

dϕ(n,µ)
∫ π

0

dθ(n,µ) sin θ(n,µ) (21)

with

S(n,µ)
x = sin θ(n,µ) cosϕ(n,µ) (22a)

S(µ)
y = sin θ(n,µ) sinϕ(n,µ) (22b)

S(n,µ)
z = cos θ(n,µ). (22c)

2. Adiabatic coherences and diabatic populations

In the general case the initial density and the observ-
ables may involve adiabatic coherences, for example for
a system initialised in a diabatic population. To arrive
at the final unSMASH expression for such systems one
can trivially generalise the results from the original two-
state MASH paper.13 The unSMASH approximation to
Eq. (12) is thus defined in terms of the unSMASH ap-
proximation to the time-dependent Wigner distribution
operator,

Ŵt(pt, qt)

(2πℏ)f
≈ trcl[δ(pt−p(t))δ(qt−q(t))ω̂t(p, q,S)] (23)

where the diagonal elements of ω̂t(p, q,S) are given by〈
aq(t)

∣∣ω̂t(p, q,S)
∣∣aq(t)〉 =WP

0 (p, q,S)Pa(S(t)) (24)
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and the off-diagonal elements (a ̸= b) by〈
aq(t)

∣∣ω̂t(p, q,S)
∣∣bq(t)〉 =WC

0 (p, q,S)σab(S(t)) (25)

note that
∣∣aq(t)〉 indicates the adiabatic state at the un-

SMASH time evolved nuclear position q(t). The mea-
surement of the adiabatic population Pa(S(t)) is defined
in Eq. (17), and the coherence observables are defined as

σab(S(t)) =
S
(a,b)
x (t)− iS(a,b)

y (t)

2

(
δn(t),a + δn(t),b

)
. (26)

The final term, WX
0 (p, q,S), X = P or C, is the un-

SMASH transformed Wigner distribution operator de-
fined as

WX
0 (p, q,S) = tr

[
ŵX(q,S)Ŵ0(p, q)

]
. (27)

where for populations we have

ŵP(q,S) = ρP(S) |n(S)⟩⟨n(S)|

+
∑

a ̸=n(S)

(|n(S)⟩⟨a|+ |a⟩⟨n(S)|)S(n(S),a)
x

+
∑

a ̸=n(S)

i (|n(S)⟩⟨a| − |a⟩⟨n(S)|)S(n(S),a)
y

(28)

and for coherences we have

ŵC(q,S) = 2 |n(S)⟩⟨n(S)|

+
3

2

∑
a̸=n(S)

(|n(S)⟩⟨a|+ |a⟩⟨n(S)|)S(n(S),a)
x

+
3

2

∑
a̸=n(S)

i (|n(S)⟩⟨a| − |a⟩⟨n(S)|)S(n(S),a)
y .

(29)
Note to simplify notation the dependence of the adiabatic
states on q has been suppressed, i.e. |a⟩ = |aq⟩. These
definitions guarantee that unSMASH recovers the origi-
nal two-state MASH in the case that only two states are
coupled. It therefore follows that unSMASH inherits the
connection of MASH to the QCLE for systems in which
only two states are coupled at a given time.

Given these definitions, the unSMASH observables for
combinations of electronic operators can be obtained us-
ing simple matrix algebra. For instance, to calculate a
diabatic population P̂ dia

j (t) = |j(t)⟩⟨j(t)|

⟨P dia
j (t)⟩ ≈

trcl

[∑
ab

〈
j
∣∣aq(t)〉〈aq(t)∣∣ω̂t(p, q,S)

∣∣bq(t)〉〈bq(t)∣∣j〉
]
.

(30)
An example for how to compute ω̂t(p, q,S) for an initial
diabatic density is given in Appendix A.

IV. RESULTS AND DISCUSSION

In the following, in order to assess the accuracy of the
unSMASH method, we consider a series of model systems
for which exact results can be calculated for comparison.

In each case, the same number of trajectories (100000)
and time step were used for both the FSSH and un-
SMASH calculations. Note the large number of trajecto-
ries were used to ensure that the differences between the
methods was not due to statistical noise. In practice, one
can use far fewer trajectories to obtain reasonable results.
In fact, for adiabatic populations it is trivial to prove that
unSMASH and FSSH require the same number of trajec-
tories to achieve the same statistical convergence.

A. Generalised Tully Model - Model X

The first system we consider is a three-state avoided
crossing model (Model X) proposed by Subotnik in
Ref. 55, for which the elements of the potential energy
matrix in a diabatic basis can be written as

V11(q) = A [tanh(Bq) + tanh(B(q + 7))] (31a)

V22(q) = −A [tanh(Bq) + tanh(B(q − 7))] (31b)

V33(q) = −A [tanh(B(q + 7))− tanh(B(q − 7))] (31c)

V12(q) = C exp
(
−q2

)
(31d)

V13(q) = C exp
(
−(q + 7)2

)
(31e)

V23(q) = C exp
(
−(q − 7)2

)
, (31f)

where A = 0.03, B = 1.6 and C = 0.005 with a mass of
m = 2000, all in atomic units. This model can be con-
sidered as a three-state generalisation of a Tully I type
model.22 We consider here an initial Wigner density op-
erator

Ŵ0(p, q) = 2 |3a⟩⟨3a| exp
(
−γ(q − q0)2 −

1

ℏ2γ
(p− p0)2

)
(32)

where |3a⟩ corresponds to the upper adiabatic state and
the wavepacket starts on the left of all of the nonadiabatic
crossings moving towards the right, γ = 1/2, q0 = −15,
p0 =

√
2mEkin with Ekin = 0.03. Note as the bulk of

the distribution is far away from coupling regions this is
equivalent to an initial wavepacket of the form

|ψ(q)⟩ = |3a⟩
√
γ

π
exp
(
−γ
2
(q − q0)2 + ip0q/ℏ

)
. (33)

Figure 1 depicts the model and initial position distribu-
tion. Before considering the numerical results it is help-
ful to first consider the qualitative features of the model.
As the initial wavepacket is on state |3a⟩ it should be
essentially unaffected by the avoided crossing between
states |2a⟩ and |1a⟩ at q = −7. Instead one expects
that the wavepacket should stay on state |3a⟩ until it
reaches the avoided crossing between |3a⟩ and |2a⟩ at
q = 0, at which point it should bifurcate, with part of
the wavepacket accelerating and dropping onto state |2a⟩
and the remainder continuing on state |3a⟩. Finally the
wavepacket on state |2a⟩ should bifurcate upon reaching
the second avoided crossing between states |2a⟩ and |1a⟩,
with essentially no effect to the wavepacket on state |3a⟩.



6

0.0

2.0

4.0

6.0

8.0
(q

) 
×

1
0

2
Exact Exact

FSSH

20 40 60 80
q

0.0

2.0

4.0

6.0

8.0

a
(q

) 
×

10
2

Exact
SHIAM

20 40 60 80
q

Exact
Naive

unSMASH

ρ
aρ

a = 3

a = 2

a = 1

FIG. 2. State dependent position distributions for Model X55,
at time t = 200 fs. For clarity the SHIAM results are given as
a dotted, solid and dashed line for adiabatic states, 3, 2 and
1 respectively. (Note as mentioned in the main text SHIAM
refers to the method of Runeson and Manolpoulos that they
called “multi-state MASH” with cap initial conditions, re-
named here to avoid confusion.)

This therefore mimics the behaviour of a photochemi-
cally excited system that experiences a series of sequen-
tial avoided crossings. In order to probe the accuracy
with which each bifurcation event is described we calcu-
late the state-resolved nuclear density after the system
has passed through all regions of nonadiabatic coupling,
at t = 200 fs, which can be formally defined as

ρa(q, t) =
〈
δ(q̂(t)− q) |a(t)⟩⟨a(t)|

〉
. (34)

Exact results were calculated for comparison using a sim-
ple split-operator approach.56

In order to understand how the accuracy of unSMASH
compares to other similar approaches, we also simulate
the dynamics using FSSH, SHIAM and a naive multi-
state generalisation of MASH. In all three methods the
momentum rescaling at frustrated and successful hops
were treated in the same way as for unSMASH. For
SHIAM the initial wavefunction coefficients were sam-
pled using the cap method proposed in Ref. 48. We
have designed unSMASH to be size consistent with re-
spect to adding additional uncoupled electronic states,
and to do so have introduced a modified electronic dy-
namics [Eq. (4)]. For comparison we therefore also con-
sider a naive size-inconsistent generalisation of MASH.
This naive approach differs from SHIAM as it retains
the sampling and electronic observables used in the orig-
inal two-state MASH, but is similar to SHIAM in that

the wavefunction coefficients are evolved under the time-
dependent Schrödinger equation and the active surface
is determined as the state with the largest coefficient.57

When thinking in terms of wavefunction coefficients it is
perhaps not immediately obvious how to generalise the
original MASH sampling to multiple states. However,
using the mapping between normalised two-state Bloch
spheres and wavefunction coefficients described in Ap-
pendix B we can simply use the same sampling as un-
SMASH for the sampling of the naive generalisation of
MASH. As discussed in Sec. II this method will be size
inconsistent for the same reason as other mapping meth-
ods.
Figure 2 compares the predicted state dependent den-

sity ρa(q, t) at t = 200 fs, where all trajectories have
reached the product asymptotes, for all four methods
against the exact result. Both MASH and FSSH are es-
sentially in perfect agreement with the exact result. This
indicates that both methods are capable of accurately
capturing the correct wavepacket bifurcation at the two
successive avoided crossings, and that they are not af-
fected by any spurious transitions in regions of coupling
between unpopulated states.
In contrast, both SHIAM and the naive generalisation

of MASH show clear differences when compared to the
exact result. Considering first the naive generalisation
of MASH (bottom right panel) one sees that the lack of
size consistency results in errors in the branching ratios
(peak areas) as well as shifts to the peaks, which can
be attributed to spurious transitions between the sur-
faces that then result in unphysical forces being felt by
the nuclei. In addition to these errors, the most obvi-
ous error in SHIAM is the presence of negative peaks
in the probability distribution. We note that this is not
unique to three state systems and the same behavior is
already observed in two state systems (as illustrated in
Appendix C). These negative peaks can be attributed to
the non-positive definite statistics introduced by the def-
inition of the electronic observables suggested by Rune-
son and Manolopoulos. This is unsurprising given similar
negative probabilities are also observed in related map-
ping approaches such as MMST and spin-mapping. We
stress, however, that SHIAM is not universally less ac-
curate than the naive generalisation of MASH, or than
unSMASH. In particular SHIAM has been shown to give
very accurate results for the electronic populations in ex-
citon models, such as those of the Fenna—Matthews—
Olson complex, where the dynamics are in the fast nu-
clear (small reorganisation energy) limit.48,49 However,
for this kind of system, involving a series of avoided cross-
ings, it is clear that unSMASH is the preferred multi-
state generalisation of MASH.

B. Three-State Electron-Transfer Model

One of the advantages of MASH is that it does not suf-
fer from the same inconsistency (overcoherence) error as
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FSSH.13 This has been shown to lead to a significant im-
provement in the calculation of nonadiabatic rates in the
limit of weak diabatic coupling,46 i.e. the Marcus Theory
regime and of photodissociation product yields in molec-
ular systems.47 In order to test whether this advantage is
retained in a multi-state system we consider a generali-
sation of the spin-boson model to three electronic states.
We define the Hamiltonian in a diabatic basis, and de-
compose it into system and system-bath components

Ĥ = ĤS + ĤSB . (35)

The system Hamiltonian is given (in mass-weighted co-
ordinates) by

ĤS =
P̂ 2

2
+

1

2
Ω2
(
Q̂+ σ̂(0,2)

z

κ

Ω2

)2
+εσ̂(0,2)

z +∆(σ̂(0,1)
x + σ̂(1,2)

x )

(36)

with

σ̂(i,j)
z = |i⟩⟨i| − |j⟩⟨j| (37a)

σ̂(i,j)
x = |i⟩⟨j|+ |j⟩⟨i| . (37b)

Here Q̂ can be thought of as a reaction coordinate along
which the diabatic potentials corresponding to states |0⟩,
|1⟩ and |2⟩ are harmonic. The coupling between the di-

abatic states, mediated by ∆(σ̂
(0,1)
x + σ̂

(1,2)
x ), allows for

transitions between the diabatic states in the vicinity of
the crossings between diabats 0 & 1, and diabats 1 & 2.
The system-bath part of the Hamiltonian describes the
coupling of the reaction coordinate to a nuclear bath in
the renormalised form

ĤSB =

Nb∑
k=1

p̂2k
2

+
1

2
ω2
k

(
q̂k +

ckQ̂

ω2
k

)2

. (38)

The effect of the bath on the system is encapsulated by
the spectral density, which we take to be purely Ohmic

JSB(ω) =
π

2

Nb∑
k=1

c2k
ωk
δ(ω − ωk) = γω. (39)

This Hamiltonian acts as a simple model of sequential
electron transfer from state 1 to 2 and then from state
2 to state 3. Treating either of these pairs of states on
their own gives a spin-boson model with a Marcus theory
reorganisation energy defined as

λ =
κ2

2Ω2
. (40)

Exact results can be calculated for this model using
the hierarchical equations of motion (HEOM).58,59 All
HEOM calculations were performed using the HEOM-
Lab code60,61 and technical details are given in Ap-
pendix E.

The parameters here are chosen to mimic the spin-
boson model considered in Fig. 11 of Ref. 13. The param-
eters thus consist of a reorganisation energy, βλ = 1.5,
a low diabatic coupling, β∆ = 0.25, and a driving force
βε = 2.5 that corresponds to the Marcus inverted regime
(ε > λ). The original model was a spin boson model with
a Debye spectral density with βℏωc = 1/20, which cor-
responds here to βℏΩ2/γ = 1/20 and Ω ≫ ωc. The fre-
quency and friction were therefore taken to be βℏΩ = 0.5
and γ = 10Ω. We consider initial conditions correspond-
ing to an initial diabatic population on state |0⟩ with the
nuclei in thermal equilibrium corresponding to the dia-
batic potential of state |1⟩. The low frequency along the
reaction coordinate ensures that nuclear quantum effects
such as tunneling and zero-point energy are minimal, and
allows us to take the classical limit of the initial ther-
mal Wigner distribution. Additionally, for FSSH and
unSMASH one can exactly integrate out the bath dy-
namics to give an additional Langevin friction and ran-
dom force (with friction coefficient γ) along the reaction
coordinate.62–65 Having integrated out the bath, the ini-
tial reduced Wigner distribution operator is given by

Ŵ0(P,Q) = βℏΩ |0⟩⟨0| e−β
(

P2

2 + 1
2Ω

2Q2
)
. (41)

In order to compare unSMASH to FSSH we need to
use a version of FSSH where both the initial density and
the observables are diabatic populations. A number of
different ways of doing this have been proposed.9,32–35

Here we use the density matrix approach proposed by
Landry et al. as this most closely resembles the way that
diabatic initialisation and observables are treated within
the MASH formalism. That they should be so similar
is unsurprising given that Landry et al. based their ap-
proach on an analysis of the QCLE. Full details are given
in Appendix D. So as to compare to the most accurate
version of FSSH we perform momentum rescaling at hops
and frustrated hops in the same way as for MASH along
the nonadiabatic coupling vector (which we label FSSH-
nacv). We note, however, that despite the long standing
literature arguing that this should be the preferred treat-
ment of momentum rescaling,66,67 it is often not imple-
mented in practice when using FSSH. For this reason,
in addition to performing FSSH using the same momen-
tum rescalings as MASH, we also consider here one of
the most commonly used alternatives: rescaling along
the velocity vector (which we label FSSH-vel).68–70 This
approach is popular because it can be used with elec-
tronic structure methods that do not provide access to
the nonadiabatic coupling vector. However, it is not a
size-consistent method (with respect to additional nu-
clear degrees of freedom). For this system–bath model,
due to the formally infinite nature of the bath, it is in
fact equivalent to performing no momentum rescaling at
all.
Figure 3 shows the population of each of the diabatic

states calculated using unSMASH and FSSH compared
to the exact results. One sees immediately that rescaling
along the velocity vector leads to a total failure of FSSH
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FIG. 3. Diabatic populations for the three-state electron-
transfer model illustrated in the top-right panel. The time
step was 0.01βℏ.

to correctly thermalise in the long time limit. While
rescaling along the NACV improves the results at long
time, the inconsistency (overcoherence) error leads to no-
ticeable errors in the predicted timescale of the popula-
tion transfer. In contrast we see that unSMASH very ac-
curately recovers the exact result as a function of time.
This confirms that the unSMASH generalisation of two-
state MASH retains the improved accuracy compared to
FSSH observed in the analagous spin-boson model of
Ref. 13. It thus follows that unSMASH is capable of
treating a series of well separated nonadiabatic transi-
tions. While the differences between FSSH-nacv and un-
SMASH in this system are relatively minor we note that
as shown in Ref. 46 these differences can become much
more pronounced in systems with larger reorganisation
energies, and correspondingly longer timescales.

C. Three State Benzene Cation and Pyrazine
Models

In order to test the applicability of unSMASH for pho-
tochemical problems we consider two classic examples
of ultrafast molecular relaxation after photoexcitation:
pyrazine and the benzene cation. In both cases there are
existing three-state vibronic-coupling models that cap-
ture the key features of the relaxation dynamics. These
models provide an excellent test system as despite their
complexity it is possible to obtain exact benchmark quan-
tum mechanical results. For both models the Hamilto-

nian can be written in the form

Ĥ =

Nn−1∑
k=0

(
1

2
ωkp̂

2
k +

1

2
ωkq̂

2
k

)
+

2∑
j=0

Ej |j⟩⟨j|

+

Nn−1∑
k=0

2∑
j=0

(
κj,k q̂k + Γj,k q̂

2
k

)
|j⟩⟨j|

+

Nn−1∑
k=0

2∑
j,j′=0

λ
(k)
j,j′ q̂k |j⟩⟨j

′|

(42)

where, |0⟩ , |1⟩ , |2⟩ are the three diabatic states, q̂k and p̂k
are the normal-mode coordinates and momenta respec-
tively, Nn is the number of normal modes included in the
model, and the values of the model parameters are given
in Appendix F. The initial Wigner distribution operators
are given for both systems by

Ŵ0(p, q) = |ji⟩⟨ji| (2πℏ)Nn exp

(
−

Nn−1∑
k=0

q2k + p2k

)
(43)

corresponding to vertical excitation of the ground state
density onto the diabatic state |ji⟩ according to the
Franck–Condon principle.
In order to treat the diabatic initial conditions and ob-

servables we used the density matrix approach of Ref. 71
for the FSSH calculations. Again, to provide a represen-
tative example of the results that can be expected from
FSSH we consider two different versions of the FSSH
algorithm. Firstly, to give what we believe to be the
most accurate and well justified version of FSSH, we in-
clude results for FSSH-nacv, where momentum rescaling
and frustrated hops are dealt with in the same manner
as unSMASH, by considering the component of the mo-
mentum along the nonadiabatic coupling vector. Sec-
ondly, we consider a kind of velocity rescaling (FSSH-
vel-∞). Since both models we are considering have a
significantly reduced dimension compared to the real sys-
tem (24 down to 9 for pyrazine and 30 down to 5 for the
benzene cation), to give a more accurate representation
of the error introduced by using velocity rescaling in the
full model we choose here to consider the limit of the
velocity rescaling in the large-system limit, in analogy
to the three-state electron-transfer model considered in
the previous section. This means that FSSH-vel-∞ cor-
responds to all hops being allowed.
We begin by considering the ultrafast internal conver-

sion of Pyrazine after excitation to B2u (|ji = 2⟩). The
model we study here is the three-state nine-mode model
of Sala et al. from Ref. 72. For completeness we give the
parameters in Appendix F 1. The exact results for this
model are provided by MCTDH calculations and were
taken from Fig. 3 of Ref. 73. Figure 4 shows the diabatic
populations as a function of time. We again see that the
velocity rescaling version of FSSH can lead to significant
errors in the populations at long time. This is because
using velocity rescaling removes frustrated hops and so
the system can unphysically return to the higher lying
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FIG. 4. Diabatic populations as a function of time in the the
three-state nine-mode model of pyrazine from Sala et al.72

Exact results are MCTDH calculations taken from Ref. 73.
The time step for both FSSH and unSMASH calculations was
0.1 fs.

diabatic state, B2u. The MASH derivation shows that
a proper treatment of frustrated hops is required in or-
der to correctly describe the nonadiabatic force term in
the QCLE. It is therefore unsurprising that unSMASH
and FSSH-nacv, which uses the same momentum rescal-
ing scheme as unSMASH, are significantly more accu-
rate that FSSH-vel-∞. Both unSMASH and FSSH-nacv
give very similar dynamics for this system. We see that
both accurately describe the long-time populations for
this system, as well as the qualitative features of the di-
abatic populations such as the period and magnitude of
oscillations. The only notable difference between the tra-
jectory simulations and the exact calculations is that the
initial population transfer is slightly too slow. It is in-
teresting to note that in the 24-mode two-state model
of pyrazine75 considered in the original MASH paper13

there was a much more significant difference between
FSSH and MASH, with MASH being the more accurate
of the two.

In the case of the Benzene cation we study the three-
state five-mode model of Köppel,74 considering relax-
ation after initial excitation to |j = 2⟩ which corresponds

to the C̃ (A2u) state.74 For completeness we give the
model parameters in Appendix F 2. Exact results were
calculated using DVR, and full details are given in Ap-
pendix G. Figure 5 compares the diabatic populations
for all three diabatic states calculated using unSMASH
and FSSH against the exact result. We see that this
model exhibits somewhat different dynamics to that of
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1.0
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FIG. 5. Diabatic populations as a function of time in
the three-state five-mode model of the benzene cation from
Köppel.74 Exact results calculated using DVR as described in
Appendix G. The time step for both FSSH and unSMASH
calculations was 0.1 fs.

pyrazine. After an initial ultra-fast transfer of population
from |j = 2⟩ to |j = 1⟩ there is a slower population trans-
fer to |j = 0⟩. Again we see that while FSSH-vel-∞ is ac-
curate at very short time, the lack of frustrated hops leads
to completely incorrect behaviour at long time. In con-
trast both unSMASH and FSSH-nacv capture the overall
dynamics including the long time populations quite well.
The most notable differences between the exact result
and those of FSSH-nacv and unSMASH are the popu-
lations of diabats j = 0 and j = 1 after about 50 fs.
The error clearly stems from a population transfer that
is slightly too slow between these states with the pop-
ulation of j = 1 consistently slightly too high and that
of j = 0 slightly too low. While similar, the results of
unSMASH and FSSH-nacv do show some notable differ-
ences. Firstly considering the population in diabat j = 2
we see that unSMASH captures the oscillations between
200 and 300 fs more accuately than FSSH-nacv, as well as
more accurately reproducing the long time limit. For the
j = 0 and j = 1 states we see that while the timescales
are similar between the two methods, FSSH-nacv pre-
dicts a slightly greater overall transfer of population from
j = 1 to j = 0, resulting in a larger error at long time.
It thus appears that while they are broadly similar, un-
SMASH is slightly more accurate than FSSH-nacv for
this system. Importantly, however, both are significantly
more accurate than FSSH-vel-∞ emphasising the impor-
tance of the correct treatment of frustrated hops. This is
perhaps unsurprising given we have chosen the features
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of FSSH-nacv to be as similar as possible to the MASH
prescription (which is itself imposed by its connection to
the QCLE). This highlights one of the important benefits
of MASH: confirming best practice for FSSH simulations.

We note that the benzene cation was also stud-
ied in Ref. 76 using various approaches including spin
mapping.15 There it was found that spin mapping is bet-
ter than FSSH at short time, and hence also better than
unSMASH. However, it has been observed that going be-
yond a linear-vibronic model by adding even a small fre-
quency difference between the diabatic states can signif-
icantly degrade the results of the spin-mapping method
compared to MASH.13 It is nevertheless interesting to
consider whether simple improvements to FSSH and un-
SMASH may be possible, for example by using a more
accurate treatment of coherences or perhaps by explicit
inclusion of nuclear quantum effects.

V. CONCLUSION

We have introduced a multi-state generalisation of
the mapping approach to surface hopping (MASH). Our
approach, which we call uncoupled spheres multi-state
MASH (unSMASH), is size consistent with respect to
adding additional uncoupled electronic states or nuclear
degrees of freedom, and rigorously recovers the original
two-state theory. It therefore inherits the connection of
the original theory to the QCLE and is a rigorous short-
time approximation under the assumption that only two
states are coupled at a given time. We have demonstrated
that it is as accurate or more accurate than FSSH for a
series of model problems representative of typical photo-
chemical systems.

Nevertheless there remain a number of interesting av-
enues for further research. One such area is the applica-
tion of decoherence corrections. While it has been shown
that MASH does not need decoherence corrections as of-
ten as FSSH, and they have not been found to be neces-
sary at all in any of the photochemical models we have
studied, it may still be desirable to make use of them in
certain situations. One of the advantages of MASH is
that its connection to the QCLE allows for the deriva-
tion of rigorous decoherence corrections. Given that un-
SMASH inherits these properties from the original the-
ory, such decoherence corrections can also be rigorously
applied to the present theory. At present these decoher-
ence corrections are somewhat formal in nature, and a
rigorous algorithm for determining when they should be
applied is an interesting area of future research.

While our present generalisation of MASH satisfies a
number of necessary properties, there is one desirable
property that it does not exhibit. That is that, it does
not recover the exact electronic dynamics for a time-
dependent Hamiltonian in a pure electronic system ex-
cept in the two-state limit. This is important in systems
where the nuclei are essentially unaffected by changes to
the electronic state — the fast nuclear limit. This means

that unSMASH is not expected to work well for systems,
such as typical models of the Fenna–Matthews–Olson
complex,48,77–79 where the electronic states are all very
close in energy and the potentials only slightly shifted
with respect to one another. Of course it is always possi-
ble to obtain the exact electronic dynamics in this limit
by modifying the electronic observables, and this is what
is done in SHIAM.48 However, one would ideally like the
method to retain the connection between the electronic
observables and the force on the nuclei as in the original
two-level MASH. Without this one does not expect in
general to obtain such accurate results in systems where
the nuclei are more strongly coupled to the electronic
coordinates, as the electronic observables can become in-
consistent with the nuclear motion.

A long-standing issue in the field is how best to ac-
curately and practically incorporate nuclear quantum ef-
fects such as zero-point energy and tunneling in molec-
ular simulations. As with FSSH and other methods
based on classical trajectories, these effects are par-
tially incorporated into MASH via the initial Wigner
distribution. However, classical molecular dynamics
doesn’t obey quantum detailed balance,80 which leads
to the well-known phenomenon of zero-point energy
leakage.81 For electronically adiabatic systems in the
linear-response regime, this problem has been overcome
by methods such as ring-polymer molecular dynamics
(RPMD), that are based on imaginary-time path inte-
grals, and for which the dynamics preserves the quan-
tum Boltzmann distribution.82–84 This has led to a num-
ber of electronically nonadiabatic extensions of RPMD
being proposed, however, at present none is entirely
satisfactory.85–91 There has however been recent devel-
opment in imaginary-time path-integral methods capable
of describing electronically nonadiabatic rates,92–96 and
it might be hoped that such methods could be extended
to develop a fully dynamical theory.

While there may exist many interesting avenues for fur-
ther theoretical development, we stress that unSMASH
is already ready to be applied to real chemical problems.
As an independent trajectory approach, it is well suited
to on-the-fly ab-initio simulations and is no more expen-
sive than FSSH. Because of the similarity of the algo-
rithms, many of the tricks developed for a robust imple-
mentation of FSSH, such as using wavefunction overlaps
rather than nonadiabatic coupling vectors,6,31,97,98 can
be immediately picked up by MASH. It is therefore in
an immediate position to be applied to study ab initio
photochemical relaxation. In fact, we have already used
the original two-state MASH to perform ab-initio simu-
lations on a series of benchmark photochemical systems
in conjunction with on-the-fly electronic structure the-
ory at the levels of CASSCF and LR-TDDFT,47 and in
a concurrent publication we have applied unSMASH to
predict the relaxation of cyclobutanone after excitation
to S2 at the CASSCF level of theory.99

Here, we have demonstrated that unSMASH is at least
as accurate as FSSH for describing typical ultrafast pho-



11

tochemical relaxation, and has a number of added ad-
vantages. It is more accurate for rate problems,46,47 and
hence is capable of describing systems which exhibit ul-
trafast relaxation followed by a slower nonadiabatic pro-
cess such as an electron transfer. Additionally, as MASH
can is a short-time approximation to the QCLE there
are a number of formal advantages. Firstly, there is no
ambiguity in how momentum should be rescaled or what
should be done at frustrated hops. Secondly, the connec-
tion to the QCLE gives a rigorous prescription for how
to initialise or measure a diabatic population. These for-
mal connections between MASH and the QCLE thus also
help to confirm best practice for FSSH simulations, and
we have reiterated that the accuracy of FSSH can be
highly dependent on these details. Perhaps most excit-
ing of all is that we do not believe this to be the final
multi-state MASH method, it seems that there are still
many further improvements around the corner.

SUPPLEMENTARY MATERIAL

Exact quantum-mechanical benchmark data for the di-
abatic and adiabatic populations of the benzene cation.
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Appendix A: Diabatic initialisation and
measurement

If the initial density involves a diabatic population

Ŵ0(p, q) =Wn(p, q) |j⟩⟨j| , (A1)

where Wn(p, q)/(2πℏ)f is the distribution of nuclear de-
grees of freedom, then we can evaluate the trace in the
definition of WP

0 to give

WP
0 (p, q,S) =Wn(p, q)

(
ρP(S)| ⟨j|n(S)⟩ |2

+
∑

a̸=n(S)

2Re
(
⟨j|n(S)⟩ ⟨a|j⟩

)
S(n(S),a)
x

−
∑

a̸=n(S)

2 Im
(
⟨j|n(S)⟩ ⟨a|j⟩

)
S(n(S),a)
y

)
=Wn(p, q)g

P
j (q,S)

(A2)
and the definition of WC

0 to give

WC
0 (p, q,S) =Wn(p, q)

(
2| ⟨j|n(S)⟩ |2

+
∑

a̸=n(S)

3Re
(
⟨j|n(S)⟩ ⟨a|j⟩

)
S(n(S),a)
x

−
∑

a̸=n(S)

3 Im
(
⟨j|n(S)⟩ ⟨a|j⟩

)
S(n(S),a)
y

)
=Wn(p, q)g

C
j (q,S).

(A3)
Inserting these results into Eq. (30) we can then obtain a
simple expression for evaluating diabatic populations at
time t = 0 for a system initially in a diabatic population

⟨P dia
j (t)⟩ ≈

trcl

[∑
a

〈
j
∣∣aq(t)〉〈aq(t)∣∣ω̂t(p, q,S)

∣∣aq(t)〉〈aq(t)∣∣j〉
]

+ trcl

∑
a̸=b

〈
j
∣∣aq(t)〉〈aq(t)∣∣ω̂t(p, q,S)

∣∣bq(t)〉〈bq(t)∣∣j〉


= trcl

[∑
a

∣∣〈j∣∣aq(t)〉∣∣2Wn(p, q)g
P
j (q,S)Pa(S(t))

]

+ trcl

∑
a̸=b

〈
j
∣∣aq(t)〉〈bq(t)∣∣j〉Wn(p, q)g

C
j (q,S)σab(S(t))


=

〈
N
∑
a

∣∣〈j∣∣aq(t)〉∣∣2 gPj (q,S)Pa(S(t))

〉

+

〈
N
∑
a̸=b

〈
j
∣∣aq(t)〉〈bq(t)∣∣j〉 gCj (q,S)σab(S(t))

〉
,

(A4)
where in the final line we have introduced the expectation
value taken over the distribution

ρ(p, q,S) =
1

N(2πℏ)f
Wn(p, q), (A5)
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which corresponds to an equal probability of being in
any initial active state with the nuclei sampled from the
distribution Wn(p, q)/(2πℏ)f . It is of course trivial to
conceive of more efficient sampling schemes, for example
by weighting each state by |⟨j|n(S)⟩|2, however we will
leave further discussion of this to future publications.

Appendix B: Converting from normalised two-state
Bloch spheres to wavefunction coefficients

We give here the key equations for converting from
the set of N − 1 normalised Bloch spheres {S(n,b); b =
1, . . . , N and b ̸= n}, defined by Eq. (D7), back to the
wavefunction coefficients. We begin by noting that the
normalised Bloch spheres contain 2(N − 1) independent
variables, and hence do not store information about the
normalisation of the wavefunction or the overall phase.
We are therefore free to define the wavefunction to be
normalised, and the overall phase such that cn is real
and positive. Given this a simple rearrangement of the

definition of S
(n,b)
z allows one to show that

|cb|2

|cn|2
=

1− S(n,b)
z

1 + S
(n,b)
z

(B1)

and hence that

cn =

√√√√ 1∑
b ̸=n

1−S
(n,b)
z

1+S
(n,b)
z

+ 1
(B2)

and

|cb| = cn

√
1− S(n,b)

z

1 + S
(n,b)
z

. (B3)

Now all that remains is to determine the phases, cb =
|cb|eiϕb . This can be done by noting that

S(n,b)
x =

cn|cb|
|cn|2 + |cb|2

2 cos(ϕb) (B4a)

S(n,b)
y =

cn|cb|
|cn|2 + |cb|2

2 sin(ϕb) (B4b)

such that

ϕb = arg

(
S
(n,b)
x + iS

(n,b)
y

2

|cn|2 + |cb|2

cn|cb|

)
. (B5)

Appendix C: Negative peaks in SHIAM results for
two state Tully model

Here, for completeness we illustrate that the negative
peaks observed in the SHIAM predictions of the Model
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FIG. 6. State-dependent position distributions at t = 150 fs
for the modified Tully model I of Ref. 100. The initial con-
ditions are chosen to be equivalent “Low Energy” results de-
picted in Fig. 5 of Ref. 13 and Fig. 6 of Ref. 48. Bottom rate
panel shows illustration of model potentials and initial con-
ditions. (Note as mentioned in the main text SHIAM refers
to the method of Runeson and Manolpoulos that they called
“multi-state MASH” with cap initial conditions, renamed here
to avoid confusion.)

X position distribution are not a feature of the multi-
state model considered, but are already present in sys-
tems with only two states. This is illustrated in Fig. 6
which shows the probability distribution at t = 150 fs
for the modified Tully model I of Ref. 100, with initial
conditions corresponding to the “Low Energy” results of
Fig. 5 of Ref. 13 and Fig. 6 of Ref. 48. We see that while
MASH and FSSH both faithfully reproduce the exact re-
sults, SHIAM shows spurious extra peaks (positive and
negative) in the region associated with the other state.

Appendix D: FSSH Diabatic initial conditions and
observables

In order to provide the fairest comparison between
MASH and FSSH we make use of the density-matrix ap-
proach to FSSH71 for the calculation of diabatic prop-
erties. In the following we describe the approach and
point out its similarities to and differences from the un-
SMASH method. Firstly, as with the unSMASH ap-
proach the density-matrix approximation to the time-
evolved Wigner distribution operator can be written in
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the form

Ŵt(pt, qt)

(2πℏ)f
≈ trcl[δ(pt − p(t))δ(qt − q(t))ω̂FSSH

t (p, q, c)].

(D1)
One of the major differences here is that the classical
trace is now defined as

trcl[. . . ] =
1

(2πℏ)f

∫
dq

∫
dp

∫
dc . . . (D2)

where the integral over the space of wavefunction coeffi-
cients is given by48∫

dc · · · = N !

(2π)N

N∏
a=1

∫
dcRe

a

∫
dcIma δ(r − 1) . . . (D3)

with r =
√∑

a |ca|2 being the norm of the wavefunc-
tion. Here the local density operator is given by a sim-
ilar expression to that for unSMASH, with the diagonal
elements given by〈

aq(t)
∣∣ω̂FSSH

t (p, q, c)
∣∣aq(t)〉 =WFSSH

0 (p, q, c)δn(t),a
(D4)

and the off-diagonal elements by〈
aq(t)

∣∣ω̂FSSH
t (p, q, c)

∣∣bq(t)〉 =WFSSH
0 (p, q, c)σab(t),

(D5)
where the off-diagonal measurement is calculated as

σab(t) =
ca(t)c

∗
b(t)

|ca(t)|2 + |cb(t)|2
(
δn(t),a + δn(t),b

)
. (D6)

It is interesting to note that this is can be written in the
same form as Eq. (26) by defining the (normalised) FSSH
effective Bloch spheres as

S(a,b)
x =

c∗acb + cac
∗
b

|ca(t)|2 + |cb(t)|2
(D7a)

S(a,b)
y =

−ic∗acb + icac
∗
b

|ca(t)|2 + |cb(t)|2
(D7b)

S(a,b)
z =

|ca|2 − |cb|2

|ca(t)|2 + |cb(t)|2
. (D7c)

The key difference however is that the FSSH initial den-
sity,WFSSH

0 (p, q, c), cannot be written in terms of a Weyl
kernel. Instead, we first define a (p, q) dependent (nor-
malised) basis that diagonalises the initial density,

Ŵ0(p, q) =
∑
α

Wαα
0 (p, q) |α(p, q)⟩⟨α(p, q)| (D8)

then the FSSH initial density can be written as

WFSSH
0 (p, q, c) =

∑
α

Wαα
0 (p, q)δc(c− cα(p, q)), (D9)

where the elements of cα(p, q) are given by

cαa (p, q) = ⟨a|α(p, q)⟩ (D10)

and as a small technical detail the multidimensional delta
function δc(c−cα(p, q)) is defined such that it behaves as
one would intuitively expect over the integration domain∫

dc f(c)δc(c− cα(p, q)) = f(cα(p, q)). (D11)

Appendix E: HEOM technical details

For the purpose of the HEOM calculations it is compu-
tationally advantageous to take the reaction coordinate
out of the system degrees of freedom and treat it as part
of the bath, by performing a normal mode transforma-
tion. The Hamiltonian can then be written in the form

Ĥ = Ĥe + Ĥn + V̂en (E1)

where the electronic part of the Hamiltonian is given by

Ĥe = εσ̂(0,2)
z − λ |1⟩⟨1|+∆(σ̂(0,1)

x + σ̂(1,2)
x ) (E2)

and the nuclear part by

Ĥn =

Nb∑
k=0

ˆ̃pk
2

+
1

2
ω̃k

ˆ̃q2k. (E3)

The influence of the nuclear bath on the electronic dy-
namics is then completely specified by the electron nu-
clear coupling

V̂en = σ̂(0,2)
z

Nb∑
k=0

c̃k ˆ̃qk (E4)

and the spectral density

Jen(ω) =
π

2

Nb∑
k=0

c̃2k
ω̃k
δ(ω − ω̃k) =

κ2γω

(ω2 − Ω2)2 + γ2ω2
.

(E5)
This spectral density, that results from taking the nor-
mal mode transformation,62–64 is known as the Brownian
oscillator spectral density and is straightforward to treat
using HEOM.58,59

Appendix F: Model Parameters

1. Pyrazine

For completeness here we give the parameters of the
three state Pyrazine model of Ref. 72. The vibrational
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energies in each mode are

ω0 = 0.073495 eV mode ν6a (ag)

ω1 = 0.126150 eV mode ν1 (ag)

ω2 = 0.153991 eV mode ν9a (ag)

ω3 = 0.199006 eV mode ν8a (ag)

ω4 = 0.115999 eV mode ν10a (b1g)

ω5 = 0.090953 eV mode ν4 (b2g)

ω6 = 0.116741 eV mode ν5 (b2g)

ω7 = 0.167660 eV mode ν3 (b3g)

ω8 = 0.192537 eV mode ν8b (b3g)

The diabatic potentials at q = 0 are given by

E0 = 3.931201 eV B3u (n→ π∗)

E1 = 4.450000 eV Au (n→ π∗)

E2 = 4.791332 eV B2u (π → π∗)

and the linear intra-state couplings by

κ0,0 = −0.081046 eV

κ1,0 = −0.167811 eV

κ2,0 = 0.127832 eV

κ0,1 = −0.038299 eV

κ1,1 = −0.083091 eV

κ2,1 = −0.183131 eV

κ0,2 = 0.117396 eV

κ1,2 = −0.070680 eV

κ2,2 = 0.045362 eV

κ0,3 = −0.086844 eV

κ1,3 = −0.465185 eV

κ2,3 = 0.026224 eV

with all other κn,j = 0. The quadratic intra-state cou-
plings are given by

Γ0,4 = −0.012429 eV

Γ1,4 = −0.047533 eV

Γ2,4 = −0.012429 eV

Γ0,5 = −0.029919 eV

Γ1,5 = −0.030508 eV

Γ2,5 = −0.030508 eV

Γ0,6 = −0.014038 eV

Γ1,6 = −0.026064 eV

Γ2,6 = −0.026064 eV

Γ0,7 = −0.006172 eV

Γ1,7 = −0.006172 eV

Γ2,7 = 0.000631 eV

Γ0,8 = −0.011511 eV

Γ1,8 = −0.011511 eV

Γ2,8 = 0.007448 eV

with all other Γn,j = 0. Finally, the linear inter-state
coupling constants are given by

λ
(4)
0,2 = λ

(4)
2,0 = 0.195323 eV

λ
(5)
1,2 = λ

(5)
2,1 = 0.060269 eV

λ
(6)
1,2 = λ

(6)
2,1 = 0.053232 eV

λ
(7)
0,1 = λ

(7)
1,0 = 0.064514 eV

λ
(8)
0,1 = λ

(8)
1,0 = 0.219400 eV

with all other λ
(k)
j,j′ = 0.

2. Benzene Cation

Here for completeness we give the values of the param-
eters in the model Hamiltonian (Eq. (42)) for the Ben-
zene cation model of Köppel.74 Note that there are some
sign differences between the parameters given here and
those reported in Ref. 74, as these changes were found to
be necessary to reproduce the reported quantum results
of the original paper.101 The vibrational energies of each
mode are given by

ω0 = 0.123 eV mode ν2 (a1g)

ω1 = 0.198 eV mode ν16 (e2g)

ω2 = 0.075 eV mode ν18 (e2g)

ω3 = 0.088 eV mode ν8 (b2g)

ω4 = 0.120 eV mode ν19 (e2u)

The diabatic potentials at q = 0 are given by

E0 = 0.00 eV X̃ (2E1g)

E1 = 2.09 eV B̃ (2E2g)

E2 = 2.69 eV C̃ (2A2u)

and the linear intra-state couplings by

κ0,0 = −0.042 eV

κ0,1 = −0.246 eV

κ0,2 = −0.125 eV

κ1,0 = −0.042 eV

κ1,1 = 0.242 eV

κ1,2 = 0.1 eV

κ2,0 = −0.301 eV

Note that the couplings κ0,1 and κ0,2 have opposite sign
to those reported in Ref. 74, and all other κj,k = 0. For
this model all quadratic intra-state couplings are zero.
Finally, the linear inter-state coupling constants are given
by

λ
(3)
0,1 = λ

(3)
1,0 = 0.164 eV

λ
(4)
1,2 = λ

(4)
2,1 = 0.154 eV

with all other λ
(k)
j,j′ = 0.
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Appendix G: Exact quantum-mechanical
benchmarks for benzene cation

The vibronic-coupling model of the benzene cation was
simulated by wavepacket dynamics on a five-dimensional
grid using the discrete-variable representation (DVR).102

In many aspects we follow the calculation details from
Köppel,74 who found convergence up to 200 fs using 18,
26, 28, 14, 12 basis functions for modes ν2, ν16, ν18,
ν8, ν19, respectively. Note that our Hermite DVR is
equivalent to Köppel’s finite-basis representation using
harmonic-oscillator eigenstates. As we wished to propa-
gate up to 600 fs, a larger basis of 22, 30, 32, 18, 16 was

used. We used a short iterative Lanczos propagator56

with a Krylov subspace of order 7 and a timestep of
0.25 fs. All operations on the wavefunction were imple-
mented on an NVIDIA Tesla GPU (graphical process-
ing unit) using CuPy.103 The propagation was carried
out in the diabatic representation and adiabatic popula-
tions were obtained using the eigenvectors of the diabatic
potential energy matrix at each DVR point. Whereas
Köppel reports his calculations taking 50 hours on a CPU
(central processing unit) in the 1990s, thanks to improve-
ments in modern computing, we are able to obtain results
in about 15 minutes.
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dynamics of furan, J. Chem. Phys. 133, 234303 (2010).

[36] R. Kapral and G. Ciccotti, Mixed quantum-classical dy-
namics, J. Chem. Phys. 110, 8919 (1999).

[37] Q. Shi and E. Geva, A derivation of the mixed quantum-
classical Liouville equation from the influence functional
formalism, J. Chem. Phys. 121, 3393 (2004).

[38] S. Bonella, G. Ciccotti, and R. Kapral, Linearization ap-
proximations and liouville quantum–classical dynamics,
Chem. Phys. Lett. 484, 399 (2010).

[39] A. Kelly, R. van Zon, J. Schofield, and R. Kapral, Map-
ping quantum-classical Liouville equation: Projectors
and trajectories, J. Chem. Phys. 136, 084101 (2012).

[40] J. E. Subotnik, W. Ouyang, and B. R. Landry, Can we
derive Tully’s surface-hopping algorithm from the semi-
classical quantum Liouville equation? Almost, but only
with decoherence, J. Chem. Phys. 139, 214107 (2013).

[41] R. Kapral, Surface hopping from the perspective of
quantum–classical liouville dynamics, Chem. Phys. 481,
77 (2016).

[42] S. Hammes-Schiffer and J. C. Tully, Proton transfer
in solution: Molecular dynamics with quantum tran-
sitions, J. Chem. Phys. 101, 4657 (1994).

[43] A. E. Sifain, L. Wang, and O. V. Prezhdo, Communi-
cation: Proper treatment of classically forbidden elec-
tronic transitions significantly improves detailed bal-
ance in surface hopping, J. Chem. Phys. 144, 211102
(2016).

[44] D. K. Limbu and F. A. Shakib, Real-time dynamics and
detailed balance in ring polymer surface hopping: The
impact of frustrated hops, J. Phys. Chem. Lett. 14, 8658
(2023).

[45] S. Mai, P. Marquetand, and L. González, Nonadiabatic
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