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We show how to efficiently simulate pure
quantum states in one dimensional sys-
tems that have both finite energy density
and vanishingly small energy fluctuations.
We do so by studying the performance of
a tensor network algorithm that produces
matrix product states whose energy vari-
ance decreases as the bond dimension in-
creases. Our results imply that variances
as small as ∝ 1/ log N can be achieved with
polynomial bond dimension. With this,
we prove that there exist states with a
very narrow support in the bulk of the
spectrum that still have moderate entan-
glement entropy, in contrast with typical
eigenstates that display a volume law. Our
main technical tool is the Berry-Esseen
theorem for spin systems, a strengthening
of the central limit theorem for the en-
ergy distribution of product states. We
also give a simpler proof of that theorem,
together with slight improvements in the
error scaling, which should be of indepen-
dent interest.

1 Introduction
It is widely established that entanglement is one
of the most important concepts in the study of
quantum many-body systems. The main rea-
son why is that the character of entanglement
in a system can typically be connected to fun-
damental physical properties. For instance, an
area law in the low-energy states is associated
with absence of criticality, localized correlations,
and tensor network approximations [1, 2]. On
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the other hand, a larger amount of entanglement
in the ground state can be associated to the ap-
pearance of quantum phase transitions [3].
The entanglement properties in the bulk of

the spectrum, beyond the low energy sector,
are also of crucial importance. For instance,
the energy eigenstates of finite energy density
(with zero energy variance) most often have
large amounts of entanglement, compatible with
their local marginals resembling Gibbs states as
per the Eigenstate Thermalization Hypothesis
(ETH) [4, 5]. In contrast, product states are also
in the bulk of the spectrum, but their lack of
entanglement comes hand in hand with a larger
energy variance.
Eigenstates and product states are the two ex-

treme situations of either no energy variance or
no entanglement. However, is this a fundamen-
tal trade-off? Or, alternatively, are there states
that have both low entanglement and small en-
ergy variance? Here, we study this intermedi-
ate regime by answering the following question:
what is the entanglement generated when nar-
rowing down the variance of an initial quantum
state? We do this by rigorously analyzing the
performance of a matrix product state algorithm
inspired by that in [6] that decreases the energy
variance of any initial product state, while only
increasing the bond dimension in a controlled
manner. In [6], a heuristic analysis of the al-
gorithm was given, with a similar expression for
the performance which suggested that small vari-
ances were possible in arbitrary Hamiltonians.
They also numerically showed that for specific
ones obeying the ETH, arbitrarily small vari-
ances for the final state can be achieved. This
analysis, however, did not consider the most gen-
eral cases. In fact, we show that some simple
counterexamples are not able to reach arbitrar-
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ily small variances, and that these are related to
cases in which the distance of the wavefunction
from a Gaussian is maximal. Our rigorous results
explicitly show how in general the larger the devi-
ation, the more limited one is in achieving smaller
variances.

As a main result, we show that vanish-
ingly small energy variances δ2, down to δ2 ∝
1/ log(N), can be achieved with polynomial bond
dimension, or log N entanglement entropy, in
many models of interest. We demonstrate the
accuracy of our results by discussing particular
cases in which the bounds are tight (Sec. 3), cor-
responding to examples where the support of the
initial product state limits how much the variance
can be decreased. These models also include the
counterexamples to the heuristic results in [6].
Our method for studying the energy distribu-

tion at the output of the algorithm is based on
the Berry-Esseen theorem [7, 8] for spin systems.
This result quantifies how much the energy dis-
tribution of product states resembles a Gaussian.
We give a short proof of it based on the cluster ex-
pansion result from [9], improving previous ones
by a polylogarithmic factor [10]. This renders the
bound optimal, and should be of independent in-
terest. In our proofs, we use that approximate
Gaussianity to estimate the energy average and
variance of the state after a filtering operator has
been applied to it. This filter is designed to nar-
row down the energy fluctuations, while being
expressible as a tensor network with a bond di-
mension that can be easily upper bounded.
An additional motivation for this scheme is

that it is expected that, under the ETH, any
state with a low enough energy variance will
also locally resemble a Gibbs state [11, 6]. This
idea is the basis of heuristic quantum algorithms
for measuring local thermal expectation values
[12, 13], in a way that is potentially amenable
to near term quantum simulators [14]. With
our bounds on the bond dimension of the MPS
scheme, we rigorously analyze the classical sim-
ulability of those algorithms. In that sense,
we narrow down the situations in which such a
scheme will be computing quantities beyond the
reach of classical computers. In doing so, we also
offer efficiency guarantees for related tensor net-
work algorithms [15, 12, 16].
The article is arranged as follows. We intro-

duce the setting in Sec. 2, and analyze the en-

ergy distribution of product states in Sec. 3. The
energy filter is introduced in Sec. 4, and in Sec. 5
we upper bound its bond dimension. We special-
ize to ETH Hamiltonians in Sec. 6 and conclude.
The more technical proofs are placed in the ap-
pendices.

2 Preliminaries
We focus on systems of N particles described by
a local Hamiltonian

H =
N∑

i=1
hi =

∑
j

Ej |Ej⟩⟨Ej | , (1)

where each of the Hamiltonian terms is such that
∥hi∥ ≤ 1, and overlaps with a small O(1) num-
ber of other qubits. If the Hamiltonian is in 1D
(which we assume in Sec. 5), this refers to ad-
jacent sites on the chain. The spectrum {Ej} is
thus confined to the range [−N, N ]. The initial
states that we consider are product among all
particles

|p⟩ =
⊗

i

|pi⟩ =
∑
Ej

bj |Ej⟩ , (2)

so that bj are the coefficients of the wavefunc-
tion in the energy eigenbasis. Their average and
variance are

E = ⟨p| H |p⟩ =
∑
Ej

|bj |2Ej , (3)

σ2 = ⟨p| (H − E)2 |p⟩ =
∑
Ej

|bj |2(Ej − E)2. (4)

A mild but important assumption throughout
this work is the following.

Assumption 1. The ratio σ√
N

≡ s is Ω(1) for
all N .

The symbol Ω(1) means that the quantity is at
least as large as a constant factor, independent of
N . Also, it can be easily shown that, for product

states, σ = O
(√

N
)
. Thus, we are only assum-

ing that the variance scales as fast as possibly
allowed, which is a generic property of product
states. With this, we rule out trivial situations
in which e.g. |p⟩ is already an eigenstate of the
Hamiltonian or fine-tuned situations in which the
energy variance of a large region in the system is
made artificially small. Our goal will be to re-
duce the energy variance of these product states
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by applying a filtering operator, while controlling
the amount of entanglement generated in the fil-
tering process.

3 Gaussian energy distribution
Due to the lack of correlations among all the sites,
the energy distribution of a product state shares
features with the distribution of N independent
random variables. Along these lines, the cen-
tral limit theorem [17] and the Chernoff-Höffding
bound [18, 19] have previously been shown.
Here, we focus on a closely related but stronger

result: the Berry-Esseen theorem [7, 8]. Origi-
nally, this showed that the cumulative distribu-
tion function of N random variables is close to
that of a Gaussian with the same average and
variance, up to an error O(N−1/2). To introduce
it in our context, let us define the following.

Definition 1. Consider the cumulative function

J(x) :=
∑

Ej≤x

|bj |2, (5)

and the corresponding Gaussian cumulative func-
tion

G(x) :=
x∫

−∞

dt√
2πσ2

e− (t−E)2

2σ2 . (6)

The Berry-Esseen error ζN is

sup
x

|J(x) − G(x)| ≡ ζN . (7)

The generalization of this definition to arbi-
trary states, and in particular mixed ones, is
straightforward. The scaling of the error ζN with
N quantifies how much does the energy distribu-
tion deviate from the normal distribution. Our
first technical result is the following.

Lemma 1. Let |p⟩ be a product state obeying As-
sumption 1. Then,

ζN = O(N−1/2). (8)

The proof is shown in Appendix A. It follows
straightforwardly from the original Esseen’s in-
equality, together with the cluster expansion re-
sults from [9]. Notice that this Lemma holds for
all Hamiltonians that are few-body local, even
beyond 1D.
Lemma 1 can be seen as a qualitative strength-

ening of [17], where it was shown that in 1D

limN→∞ ζN = 0. It also gives a poly-logarithmic
improvement on the best previous bound [10, 20]

which showed that ζN = O
(

log2D N√
N

)
in a D

dimensional lattice. That result, however, also
holds for the more general class of states with
exponential decay of correlations, for which we
expect the logarithmic factor is necessary [21].

The scaling of Eq. (8) is tight up to con-
stant factors. For a specific example matching
the bound, consider N independent random coin
tosses with equal probability, so that the proba-
bility of k tails is (see Fig. 1)

pk = 1
2N

(
N

k

)
. (9)

Let N be odd. Then, for 1
2N ≥ x ≥ 1

2(N − 1),

|J(x) − G(x)| =

∣∣∣∣∣∣12 −
x∫

−∞

dt√
2πσ2

e−
(t− 1

2 N)2

2σ2

∣∣∣∣∣∣
(10)

=

∣∣∣∣∣∣∣∣
1
2 N−x∫

0

dt√
2πσ2

e−
(t− 1

2 N)2

2σ2

∣∣∣∣∣∣∣∣
≥ 1√

π

√
2
(

1
2N − x

)
σ

−

(
1
2N − x

)3

√
2σ3

 .

Choosing e.g. x = 1
2(N − 1

2) means the lower

bound is Ω(σ−1) = Ω(N−1/2).
Importantly, there are product states on spin

systems with exactly Eq. (9) as the energy dis-
tribution. A trivial example is the state

⊗N
i |+⟩i

with a non-interacting Hamiltonian H =
∑

i σZ,i.
Additionally, it also appears in certain Hamilto-
nians with strong interactions, such as the model
considered in [22], in which the product state has
support on a O(N) number of eigenstates called
quantum scars [23, 24]. These models are coun-
terexamples to the generic case assumed in [6].
In Sec. 6, we restrict to ETH Hamiltonians, and
explain how in those generic cases these coun-
terexamples are not present.

3



k

pk

N/2

x

Figure 1: Representation of the binomial distribution pk

in Eq. (9) for an odd value of N . For a non-interacting
Hamiltonian with this distribution, the average energy
is at N/2, where there is no eigenstate. The smallest
standard deviation one can reach by filtering this distri-
bution is limited to the difference between eigenergies at
k = N−1

2 and k = N+1
2 . We also illustrate a possible

choice of x in the derivation of Eq. (10).

δ

σ=O(
√
N )

|p ′ δ
〉

|p〉

E
−O(N) +O(N)

|bj|2

Figure 2: Illustration of the energy distribution of the
initial product state, with standard deviation σ, and of
the filtered distribution, with a smaller standard devia-
tion δ and potentially a slightly shifted average (dashed
line).

4 Energy filter
We now define an operator which, when applied
to any quantum state (in this case, our initial
product state), will decrease its energy variance.
To do this, we first consider the cosine filter [25,
6]

PM (E) = cosM
(

H − E

N

)
. (11)

For an illustration of the effect of the filter on the
energy distribution of the product state, see Fig.
2.

Since the eigenvalues of H−E
N are within [−1, 1],

the cosine function acts as an approximate pro-
jector around the energies close to E when M is
very large. An advantage of this operator is that
using the binomial expansion we can write

cosM
(

H − E

N

)
= 1

2M

M
2∑

m=− M
2

cmei2m(H−E)/N .

(12)
where cm =

( M
M
2 −m

)
. There is some freedom as to

how to define the denominator inside the cosine
filter [16], which does not change the final result
significantly, so for simplicity we choose N as in
Eq. (11).

Eq. (12) shows that when the full operator
PM (E) is applied to a trial state, the result can
be written as a superposition of time evolution
operators. Additionally, the amount of complex
exponentials can be significantly reduced for a
small cost in precision.

Lemma 2. Let the approximate cosine function
gy(x) be

gy(x) := 1
2M

y
√

M∑
m=−y

√
M

(
M

M
2 − m

)
ei2mx. (13)

This is such that, ∀x ∈ [−1, 1],

| cosM (x) − gy(x)| ≤ e− y2
2 . (14)

This is obtained from the Chernoff bound on
the binomial coefficients, which is exponentially
decaying in y2. For a significant reduction in the
number of terms, we need y to be o(

√
M).

Lemma 2 allows us to define our filtered state
as

|pM,y⟩ =
gy

(
H−E

N

)
|p⟩∥∥∥gy

(
H−E

N

)
|p⟩
∥∥∥ , (15)

which leads to the main technical result of this
section.

Lemma 3. Let M = O
(

N
ζ2

N

)
and M = Ω(N),

and y = Ω
(√

log (M3/N2)
)
. The energy average

µ and variance δ2 of |pM,y⟩ are bounded as

|µ − E| = O
(

N√
M

)
, (16)

4



δ2 = O
(

N2

M

)
. (17)

This lemma only applies for large enough val-
ues of M . On the other hand, for M = O(N),
the best bounds one can achieve are

|µ − E| = O
(√

N
)

, (18)

δ2 = O (N) , (19)

which means that the filter does not change the
variance in a substantial way - at most up to a
constant factor.
For large M , the lemma shows that the fil-

ter gy

(
H−E

N

)
decreases the energy variance of

the state without changing the average energy
too much. The proof is shown in App. B. It is
based on the Berry-Esseen error from Definition
1, which we use to approximate the expression
of the variance δ2 as a Gaussian integral, with a
considerable amount of error terms that need to
be estimated. The overall argument is a way of
segmenting energy sums in pieces, so that via the
approximation of Lemma 1 they can be turned
into pieces of a tractable Gaussian integral. A
similar argument previously appeared in a differ-
ent context in [26]. We note that this holds for
Hamiltonians that are local, independent of the
dimension. The upper bound on M in terms of
ζ−1

N is due to the fact that the deviation from
Gaussian limits how much we can resolve the en-
ergy distribution after the filter is applied: if the
deviation is large, the filter may act in a more
uncontrolled way, and the bound may not hold.
In many practical scenarios we expect the

wavefunction |p⟩ to be symmetric about the en-
ergy average, in which case µ and E will be iden-
tical. On the other hand, the scaling of the bound
on δ is tight up to constant factors: if the wave-
function coefficients bj are taken to be an exact
Gaussian, one can explicitly calculate δ ≃ N√

2M

(see Eq. (15) in [6]).
The result is purposely stated in terms of the

general error from Def. 1. Lemma 1, however,
allows us to establish that choosing M ∝ N2,
the bound on the variance is

δ2 = O(1). (20)

This means that for any initial product state
with standard deviation of O(

√
N), the cosine

filter can be applied to reduce the standard devi-
ation down to O(1), and shifting the average by

at most that amount. Note that a similar vari-
ance bound (Eq. (17)) was estimated in [6]. In
this section, we have provided a rigorous proof for
it, and showed that it is only valid for particular
range of values of M in the cosine filter, which de-
pend on ζN , quantity appearing from the Berry-
Esseen theorem. Intuitively, this is because, in
order to estimate the variance δ, we need a high
resolution of the energy populations |bj |2, which
is only possible if ζN is small enough. Larger val-
ues for M are responsible for filtering a narrower
range of energies by implementing an approxi-
mate eigenstate projector around energy E. As
a result, the norm of the final state becomes ex-
ceedingly smaller with increasing M . However,
to retain the Gaussian approximation from the
Berry-Esseen theorem (Lemma (1)), we require
the norm of the filtered state to be above a cer-
tain constant (= O(1)), which forces an upper
bound on M . The examples from Sec. 3 show
that this is the smallest variance one can reach
in general (see Fig. 1). However, if the factor
ζN would decrease more quickly than O(N−1/2),
the range of values which M can take becomes
larger, and lower variances can be achieved, as
we discuss in Sec. 6.

5 Low variance state using MPS
In this section we prove our main result on the
approximability of the low variance filtered states
with matrix product states. To do this, we
study the performance of the cosine filter algo-
rithm for preparing arbitrarily low energy vari-
ance states in the finite energy density regime of
a 1D local Hamiltonian. We reiterate that pro-
ducing these states is interesting for the following
reasons: i) understanding the fundamental trade-
offs between entanglement and energy variance in
the bulk of the spectrum, ii) producing the sim-
plest possible states that can approximate ther-
mal properties locally, and iii) preparing initial
states for filtering quantum algorithms, designed
for constructing low-variance states inaccessible
using tensor network techniques.
The main idea is that it is possible to construct

a matrix product operator gD
y that approximates

gy

(
H−E

N

)
in one spatial dimension. When ap-

plied to our initial product state |p⟩, this implies
that one can efficiently find an MPS approxima-
tion to |pM,y⟩ with a close enough average and
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variance in energy, while also having a small bond
dimension. This is contained in our main result
Theorem 1.

The starting point is the following lemma from
[27], which shows there is a Matrix Product Op-
erator (MPO) [28] approximation to the matrix
exponential of H .

Lemma 4. [27] Let H be a 1D local Hamilto-
nian. There is an algorithm that outputs an MPO
approximation Tt of e−itH such that∥∥∥Tt − e−itH

∥∥∥ ≤ ϵ, (21)

with bond dimension upper bounded by

D ≤ eO(t)+O
(√

t log(N/ϵ)
)
. (22)

The idea here is that gy can be written as a
sum of complex exponentials as per Eq. (12).
Thus, we can approximate each term in the fil-
ter with Lemma 4, and add them to obtain our
approximate filter

gD
y = 1

2M

m=+y
√

M∑
m=−y

√
M

(
M

M
2 − m

)
T2m/N . (23)

When applied to the initial product state, this
yields the final MPS with bounded variance and
bond dimension. The precise result is as follows.

Theorem 1. Let H be one-dimensional, and let
|p⟩ satisfy Assumptions 1. The MPS |p′

δ⟩ =
gD

y |p⟩
||gD

y |p⟩|| , under the conditions of Lemma 3, has
the properties

|⟨p′
δ|H|p′

δ⟩ − E| = O
(

N√
M

)
(24)

⟨p′
δ|H2|p′

δ⟩ −
(
⟨p′

δ|H|p′
δ⟩
)2 ≤ 2δ2 = O

(
N2

M

)
.

(25)

Moreover, the bond dimension of gD
y (and thus of

|p′
δ⟩) is bounded by

D ≤ N log N

δ
e

O
(√

log(N/δ)
δ

)
+O
(

log
3
4 (N/δ)√

δ

)
. (26)

Proof. First we have that, by Lemma 4 and the
triangle inequality,∥∥∥∥gy

(
H − E

N

)
− gD

y

∥∥∥∥ ≤ 2−M
∑

|m|≤y
√

M

(
M

M
2 − m

)
ϵ

≤ ϵ,

(27)

where we consider the approximation error ϵ
coming from Eq. (21). Thus, for the states

|| |pM,y⟩ −
∣∣p′

δ

〉
|| = ||

gy

(
H−E

N

)
|p⟩∥∥∥gy

(
H−E

N

)
|p⟩
∥∥∥ −

gD
y |p⟩∥∥∥gD
y |p⟩

∥∥∥ ||

(28)

≤ 2

∥∥∥gy

(
H−E

N

)
− gD

y

∥∥∥∥∥∥gy

(
H−E

N

)
|p⟩
∥∥∥ (29)

≤ 2 ϵ∥∥∥gy

(
H−E

N

)
|p⟩
∥∥∥ . (30)

The factor
∥∥∥gy

(
H−E

N

)
|p⟩
∥∥∥ is lower bounded in

Eq. (110) as,

∥∥∥∥gy

(
H − E

N

)
|p⟩
∥∥∥∥ = Ω

(
N1/2

M1/4

)
. (31)

Now, notice that for |pM,y⟩ and |p′
δ⟩ to have the

same average and variance up to the errors of Eq.
(24) and (25) it is enough that,

|| |pM,y⟩ −
∣∣p′

δ

〉
|| ≤ δ2

2N2 . (32)

Given Eq. (32), the error we require from Lemma
4 is ϵ = O

(
δ2

N3/2M1/4

)
. With this, notice that the

leading error for the average is given by Eq. (16).
To estimate the total bond dimension of gD

y ,
notice that we have 2y

√
M terms, and that, con-

sidering Lemma 3, the longest t to consider is
y
√

M/N = O(yδ−1). Using Lemma 4 and simpli-
fying the powers in the logarithm, we can upper
bound

D ≤ 2yN

δ
e

O(yδ−1)+O
(√

yδ−1 log( N
δ )
)

(33)

Finally, choosing y2 = 6 log N
δ as allowed by

Lemma 3, we obtain

D ≤ N log N

δ
e

O
(√

log(N/δ)
δ

)
+O
(

log
3
4 (N/δ)√

δ

)
. (34)

Additionally, the run-time of the algorithm
that constructs |p′

δ⟩ is simply the bond dimen-
sion multiplied by a factor of N , to account for
the cost of manipulating the tensors of the MPO
[27]. A similar estimate of the bond dimension
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was given in [6], but their argument omitted some
key steps in the analysis, such as the effect of us-
ing the Chernoff bound, and the explicit distance
of the wavefunction to a Gaussian, which appears
through Lemma 3.

The most important particular case of this re-
sult is if we aim for a variance δ = O(1), in which
case we have the following.

Corollary 1. There exists an MPS |p′⟩ of quasi-
linear bond dimension D ≤ NeO(log

3
4 (N)) such

that

|⟨p′|H|p′⟩ − E| = O(1) (35)
⟨p′|H2|p′⟩ − (⟨p′|H|p′⟩)2 = O(1). (36)

This is achieved by choosing M ∝ N2 in the
filter, given Theorem 1 together with Lemma 3.
This is the smallest variance that can be achieved
in general, as illustrated by the examples with the
binomial energy distribution in Eq. 9.
If instead of a product state our initial state

has exponential decay of correlations, the cor-
responding standard deviation one can prove to
reach in general is δ = O(log2D N) as per the
result in [20]. Additionally, if the Berry-Esseen
error ζN is much smaller than the upper bound
of Lemma 1 we can also reach smaller variances,
down to ζ2

N × N , at an additional cost in the
bond dimension. In particular, we expect that
in practice it is most often possible to reach
δ2 ∝ 1/ log N while still keeping the bond di-
mension from Eq. (26) polynomial in N .

Theorem 1 is restricted to one dimension. For
higher dimensions, the existence of a similar
PEPO is guaranteed by the results of [29], which
in our setting yields a bond dimension

D =
(

N

δ

)O(
√

log N

δ
)
. (37)

This, however, is only polynomial for larger vari-
ances δ2 = Ω(log N) and in no case guarantees a
provably efficient approximation algorithm, con-
sidering the difficulty of contracting PEPS [30].

The upper bounds on the bond dimension also
guarantee bounds on the entanglement entropy of
the state |p′

δ⟩. Defining S(ρ′
A) = − tr[ρ′

A log ρ′
A]

with ρ′
A the marginal on region A, we have that

S(ρ′
A) ≤ |∂A| log D, with |∂A| the number of

bonds between region A and its complement. In

fact, this upper bound applies to all Rényi entan-
glement entropies Sα(ρ′

A) = 1
1−α log tr[ρ′α

A ] with
α > 0.

Also notice that, by the Alicki-Fannes inequal-
ity together with Eq. (32), the upper bound on
the entanglement entropy also holds for the state
|pM,y⟩, in which we have applied the exact fil-

ter gy

(
H−E

N

)
. Overall, we can conclude that in

1D, both |p′
δ⟩ and |pM,y⟩ (with its corresponding

marginal ρA) have an entanglement entropy on a
region A bounded by

S(ρ′
A),S(ρA) ≤ O (log(N/δ)) + (38)

+ O
(√

log(N/δ)
δ

)
+ O

(
log

3
4 (N/δ)√

δ

)
.

For instance, for δ = Ω(1) we obtain the bound
S ≤ O(log N), which is significantly smaller than
the largest possible volume law scaling S(ρA) ∝
N .

6 ETH Hamiltonians
So far, we have expressed many of our results,
and in particular the range of δ achievable in
Lemma 3, without lower bounding the value of
ζN . Given the examples of Sec. 3, the error
O(N−1/2) in Lemma 1 is the strongest general
upper bound on ζN . However, in most systems
of interest much more favourable scalings should
hold, as we now illustrate.

Let S2(Ej) = − log tr
{

ρ2
A,j

}
be the Rényi-2

entanglement entropy of eigenstate |Ej⟩ for an
arbitrary bipartition into subsystems A, B with
|A|, |B| ∝ N . It was shown in [31] that, given
that |p⟩ is a product state,

|bj |2 ≤ e−
S2(Ej )

2 . (39)

When the entanglement in the energy eigen-
states is a volume law, as is generically expected
[32, 33], S2(Ej) ∝ N and individual populations
|bj |2 are exponentially small. This means that
counterexamples such as Eq. (9), in which the in-
dividual populations are as large as ∝ N−1/2, are
ruled out. In these rather ubiquitous Hamiltoni-
ans, the product states thus have support in ex-
ponentially many eigenstates, and with exponen-
tially small populations. This means that J(x) in
Def. 1 may be exponentially close to the smooth
function G(x), and in particular, we expect that
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Figure 3: Illustration of the scaling of the logarithm
of Berry-Esseen error ζN with the size of the system
N for the Mixed Field Ising Hamiltonian as defined in
Eq. (40) with the parameters (J, g, h) = (1, −1.05, 0.5).
An approximately linear decrease in log ζN is observed
even for finite system sizes (8 to 14 sites).

the Berry-Esseen error is exponentially small in
system size ζN = e−Ω(N). This is consistent with
the numerical results in [6]. In Fig. 3 we plot
the scaling of log ζN with N for the mixed field
Ising model Hamiltonian defined as follows,

H =
N−1∑
i=1

Jσz
i σz

i+1 + gσx
i + hσz

i , (40)

where we chose the values of (J, g, h) =
(1, −1.05, 0.5) for the non-integrable regime
where ETH is expected to hold. For various
choices of product states, we observe approxi-
mately linearly decreasing values for log ζN with
increasing N even for finite system sizes, consis-
tent with an exponential decay of ζN as theoret-
ically expected from Eq. (39).
With such a favourable scaling, Lemma 3 al-

lows one to increase the filter parameter up to
M ∝ eΩ(N log N) in order to achieve vanishingly
small variances given Eq. (17). However in this
case, the bond dimension (Eq. (26)) restricts the
minimum possible variance. In particular, a vari-
ance of δ2 ∝ 1/ log N can be reached, which con-
verges to zero in the thermodynamic limit, while
still guaranteeing a polynomial bond dimension
in Eq. (26).
It is also in these ETH Hamiltonians that we

expect that states of low energy variance will
have small subsystems resembling those of the
Gibbs distribution. Considering D ∝ poly(N),

and a corresponding entanglement entropy ∝
log D, subsystems of O(log D) particles will dis-
play large amounts of entanglement entropy.
Thus, it is possible that the filtered state displays
approximately thermal marginals of up to that
size. Along these lines, and depending on the
observables considered, previous numerical anal-
yses suggest one might need up to δ2 ∝ 1/ log2 N
[6, 12] (see in particular page 6 of [6]). Addition-
ally, the analytical results from [11] suggesting
that for more general observables, variances van-
ishing as δ ∝ 1/poly(N) might be needed.

7 Conclusion
We have shown that for arbitrary systems evolv-
ing under local Hamiltonians, it is possible to ef-
ficiently construct states with variance δ = Ω(1)
via MPS representations, while shifting the av-
erage at most by a comparable amount. This is
the smallest possible variance one could achieve,
due to existing counterexamples. However, we
expect that significantly lower values of the vari-
ance can be reached in most cases of interest,
with the complexity of the algorithm increas-
ing accordingly. In particular, in many models,
δ = Ω(1/

√
log N) can still be achieved efficiently.

With our main results, we provide rigorous an-
alytical bounds on the classical simulability of the
algorithm proposed in [6, 12], which has recently
been implemented with tensor networks [16]. We
expect that this type of scheme will be impor-
tant in near-term quantum simulation experi-
ments of equilibrium and non-equilibrium prop-
erties of quantum many-body systems. Specifi-
cally, we show that to perform calculations be-
yond the reach of classical computers, these
will have to go beyond one dimension or reach
very small energy variances of at least δ =
o(1/

√
log N). These low energy-variance and

MPS representable states are easy to prepare
with quantum circuits. Thus they can serve as
starting points of a filtering quantum algorithm,
that will further reduce their variance and ad-
dress quantities that are difficult to get with ten-
sor network techniques. By starting with states
with relatively low variance, one can conserve
quantum computational resources. We hope that
this further motivates experimental efforts on
quantum simulation, such as [34].

The key to our method of analyzing the filtered
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state is the knowledge of the gaussianity of the
wavefunction granted by the Berry-Esseen theo-
rem. This allows us to, for instance, lower bound
the norm of a product state to which an oper-
ator has been applied to (in this case, the filter
gy). It would be interesting to see if our proof
techniques can be applied to other types of op-
erators, such as the Chebyshev filter proposed in
[6]. We expect that this type of argument will
have further applications in the study of classical
and quantum algorithms for many body systems
at finite energy density.
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theorem for quantum lattice systems and
the equivalence of statistical mechanical
ensembles. http://quantum-lab.org/
qip2015/talks/125-Brandao.pdf, 2015.
URL http://quantum-lab.org/qip2015/
talks/125-Brandao.pdf.

[21] A. N. Tikhomirov. On the convergence rate
in the central limit theorem for weakly de-
pendent random variables. Theory of Prob-
ability & Its Applications, 25(4):790–809,
1981. DOI: 10.1137/1125092. URL https:
//doi.org/10.1137/1125092.

[22] Michael Schecter and Thomas Iadecola.
Weak ergodicity breaking and quantum
many-body scars in spin-1 XY magnets.
Physical Review Letters, 123(14), October
2019. ISSN 1079-7114. DOI: 10.1103/phys-
revlett.123.147201. URL http://dx.doi.
org/10.1103/PhysRevLett.123.147201.

[23] C. J. Turner, A. A. Michailidis, D. A.
Abanin, M. Serbyn, and Z. Papić. Weak
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The bound on the error follows from Esseen’s inequality [35],

πζN ≤ C

T
+

T∫
0

|ϕ(t′) − e− (t′)2
2 |

t′ dt′, (42)

where C ≤ 18√
2π
. To estimate this, we just need the following Lemma bounding how close the charac-

teristic function is to a Gaussian for small t′.

Lemma 5. Let |p⟩ be a product state such that ⟨H⟩ ≡ ⟨p| H |p⟩ = 0 and
〈
H2〉 = σ2. Moreover, let

t′ ≤ t∗σ
2 with t∗ = O(1). Then,

∣∣∣ log ϕ(t′) −
(

−(t′)2

2

) ∣∣∣ ≤ 2 N

σ3

(
t′

t∗

)3
. (43)

This follows straightforwardly from Theorem 10 in [9], where t∗ is defined as an O(1) number that
depends on the connectivity of the Hamiltonian. As a consequence, we have that, for t′ ≤ t∗σ

2 ,

−2 N

σ3

(
t′

t∗

)3
≤ log ϕ(t′) +

(
(t′)2

2

)
≤ 2 N

σ3

(
t′

t∗

)3
, (44)

Subtracting the term (t′)2

2 from the whole equation, and then exponentiating, we get

e− (t′)2
2

(
1 − O

(
N

σ3

(
t′

t∗

)3))
≤ ϕ(t′) ≤ e− (t′)2

2

(
1 + O

(
N

σ3

(
t′

t∗

)3))
(45)

Subtracting e− (t′)2
2 from both sides,

|ϕ(t′) − e− t′2
2 | ≤ e

−(t′)2
2 O

(
N

σ3

(
t′

t∗

)3)
. (46)

Plugging this bound in Eq. (42) and integrating yields,

πζN ≤ C

T
+

T∫
0

e
−(t′)2

2 O
(

N

σ3
(t′)2

(t∗)3

)
dt′ (47)

Integrating and choosing T = σt∗

2 and t∗ = O(1),

πζN ≤ 2C

σt∗ + 3N

(σt∗)3 = O
( 1√

N

)
, (48)

using Assumption 1, the result follows.

B Proof of Lemma 3
To have a truncated number of terms in the final bond dimension calculation we use the approximate

cosine filter, gy

(
H−E

N

)
= 1

2M

y
√

M∑
m=−y

√
M

( M
M
2 −m

)
ei2m( H−E

N
), where E is the average energy around which

we filter. Applying this operator to the initial state |p⟩, the normalized filtered state |pM,y⟩ can be
written as

|pM,y⟩ =
gy

(
H−E

N

)
|p⟩∥∥∥gy

(
H−E

N

)
|p⟩
∥∥∥ . (49)
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Let the variance of the initial state |p⟩ be σ = O(
√

N). Given the Hamiltonian operator H, the new
variance is defined as

δ2 = ⟨pM,y| H2 |pM,y⟩ − ⟨pM,y| H |pM,y⟩2 , (50)
where µ = ⟨pM,y| H |pM,y⟩ is the average of the filtered state.
The average is not expected to change significantly from E on application of the filter operator since

both the filter and the initial state are taken to be centered around the energy E and the filter is

symmetric about the average. We first prove this by showing that |µ − E| = O
(

N√
M

)
, and then upper

bound the variance in a similar manner. Without loss of generality, we choose E = 0. We begin by
writing the initial state |p⟩ in the energy eigenbasis of Hamiltonian H,

|p⟩ =
∑
Ej

bj |Ej⟩ , (51)

where Ej ’s represent the eigenvalues. We now calculate the average µ by substituting |p⟩ from the
above equation

µ = ⟨pM,y| H |pM,y⟩ =
⟨p| g2

y

(
H
N

)
H |p⟩∥∥∥gy

(
H−E

N

)
|p⟩
∥∥∥2 =

∑
Ej

|bj |2g2
y

(
Ej

N

)
Ej∑

Ej

|bj |2g2
y

(
Ej

N

) . (52)

Recall that the approximate cosine filter was introduced (Lemma 2) to decrease the extensive number
of terms in the time evolution representation of the original cosine filter. The approximate cosine filter
is related to the original filter in terms of the following inequalities

cos2M
(

H

N

)
− 4e− y2

2 ≤ g2
y

(
H

N

)
≤ cos2M

(
H

N

)
+ 4e−y2

. (53)

In the upcoming sections, we will use the setting introduced above to bound the average and variance
of the final filtered state.

B.1 Average energy
The distance from the mean µ can be bounded as follows by substituting equation (53) into equa-
tion (52),

|µ| ≤

∣∣∣∣∣∣∣∣∣
∑
Ej

|bj |2 cos2M
(

Ej

N

)
Ej + 4e−y2 ∑

Ej

|bj |2|Ej |

∑
Ej

|bj |2 cos2M
(

Ej

N

)
− 4e− y2

2
∑
Ej

|bj |2

∣∣∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣∣∣
∑
Ej

|bj |2 cos2M
(

Ej

N

)
Ej + 4e−y2 ∑

Ej

|bj |2|Ej |

∑
Ej

|bj |2 cos2M
(

Ej

N

)
− 4e− y2

2

∣∣∣∣∣∣∣∣∣
:=
∣∣∣∣M1(+) + M1(−) + E1

M2

∣∣∣∣ ,
(54)

where the second inequality uses that the initial average energy is 0 and
∑
Ej

|bj |2 = 1, and M1(+),

M1(−), E1, and M2 are defined as follows

M1(+) =
∑

Ej>0
|bj |2 cos2M

(
Ej

N

)
Ej , (55)

M1(−) =
∑

Ej<0
|bj |2 cos2M

(
Ej

N

)
Ej , (56)

E1 = 4e−y2 ∑
Ej

|bj |2|Ej |, (57)

M2 =
∑
Ej

|bj |2 cos2M
(

Ej

N

)
− 4e− y2

2 . (58)
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First we focus on simplifying the numerator of Eq. (54). We use what we term the segmentation
method (motivated from a similar procedure used in [26]). As such, the initial steps of the proof
mirror those of Appendix E in [26], although here the object we are estimating yields a variety of
additional technical complications, due to the presence of the filter, and require more careful error
estimates. The start of the method is to divide the energy range Emax ∼ O(N) into R1 number of
segments of width Λ1 > 0 each, so that

M1(+) =
∑

Ej>0
|bj |2 cos2M

(
Ej

N

)
Ej ≤

R1−1∑
l=0

cos2M
(Λ1l

N

)
(Λ1(l + 1))

∑
Λ1l<Ej<Λ1(l+1)

|bj |2. (59)

Using Definition 1, the coefficients bj can be approximated using a Gaussian integral

∑
Λ1l<Ej<Λ1(l+1)

|bj |2 ≤
Λ1(l+1)∫
Λ1l

dt

σ
√

2π
e− t2

2σ2 + ζN . (60)

Since by definition M1(−) ≤ 0, the terms in the numerator can be bounded as

M1(+) ≤
R1−1∑
l=0

cos2M
(Λ1l

N

)
(Λ1(l + 1))

 Λ1(l+1)∫
Λ1l

dt

σ
√

2π
e− t2

2σ2 + ζN

, (61)

−M1(−) ≤
R1−1∑
l=0

cos2M
(Λ1l

N

)
(Λ1(l + 1))

 −Λ1l∫
−Λ1(l+1)

dt

σ
√

2π
e− t2

2σ2 + ζN

, (62)

Let t̃ = t√
2σ

, dt̃ = dt√
2σ
, and Λ̃1 = Λ1√

2σ
, then M1(+) can be bounded as

M1(+) ≤
√

2σ√
π

R1−1∑
l=0

Λ̃1(l+1)∫
Λ̃1l

dt̃ cos2M

(
√

2σ

(
t̃ − Λ̃1

N

))
(t̃ + Λ̃1)e−t̃2+

+
√

2σζN

R1−1∑
l=0

cos2M

(√
2σΛ̃1l

N

)
Λ̃1(l + 1)

(63)

⇒ M1(+) ≤
√

2σ√
π

Λ̃1R1∫
0

dt̃ cos2M

(
√

2σ

(
t̃ − Λ̃1

N

))
(t̃ + Λ̃1)e−t̃2+

+
√

2σζN

R1−1∑
l=0

cos2M

(√
2σΛ̃1l

N

)
(Λ̃1(l + 1)).

(64)

Similarly

−M1(−) ≤ −
√

2σ√
π

0∫
−Λ̃1R1

dt̃ cos2M

(
√

2σ

(
t̃ + Λ̃1

N

))
(t̃ − Λ̃1)e−t̃2+

+
√

2σζN

R1−1∑
l=0

cos2M

(√
2σΛ̃1l

N

)
(Λ̃1(l + 1)).

(65)
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We get the following upper bound on the |M1(+) + M1(−)|,

|M1(+) + M1(−)| ≤ 2
√

2σ√
π

Λ̃1R1∫
0

dt̃e−t̃2
[
cos2M

(
√

2σ

(
t̃ − Λ̃1

N

))
Λ̃1

]
+

+2
√

2σζN

R1−1∑
l=0

cos2M

(√
2σΛ̃1l

N

)
(Λ̃1(l + 1)).

(66)

Additionally, the error term E1 can be bounded similarly as

E1 ≤ 4e−y2
R1−1∑
l=0

Λ1(l + 1)
∑

Λ1l≤Ej≤Λ1(l+1)
|bj |2 (67)

≤ 4e−y2

√
2σ√
π

∫ Λ̃1R1

0
dt̃e−t̃2(t̃ + Λ̃1) +

√
2σζN

R1−1∑
l=0

Λ̃1(l + 1)

 (68)

≤ 2
√

2σe−y2
[

(1 +
√

πΛ̃1)√
π

+ ζN Λ̃1(R2
1 + 3R1)

]
(69)

≤ 2
√

2σe−y2
[

(1 +
√

πΛ̃1)√
π

+ 4ζN

√
NR1

]
. (70)

Applying a similar method to lower bound the first term in the denominator of Eq. (54),

∑
Ej

|bj |2 cos2M
(

Ej

N

)
≥ 2

R2−1∑
l=0

cos2M
(Λ2(l + 1)

N

) ∑
Λ2l<Ej<Λ2(l+1)

|bj |2 (71)

≥ 2
R2−1∑
l=0

cos2M
(Λ2(l + 1)

N

) Λ2(l+1)∫
Λ2l

dt

σ
√

2π
e− t2

2σ2 − ζN

 (72)

≥ 2√
π

R2−1∑
l=0

Λ̃2(l+1)∫
Λ̃2l

dt̃ cos2M

(
√

2σ

(
t̃ + Λ̃2

N

))
e−t̃2

− 2ζN

R2−1∑
l=0

cos2M

(√
2σΛ̃2(l + 1)

N

)
. (73)

We get the following lower bound on the denominator

M2 ≥ 2√
π

Λ̃2R2∫
0

dt̃ cos2M

(
√

2σ

(
t̃ + Λ̃2

N

))
e−t̃2 − 2ζN

R2−1∑
l=0

cos2M

(√
2σΛ̃2(l + 1)

N

)
− 4e− y2

2 . (74)

Combining the bounds on the numerator (Eq. (66) and Eq. (70)) and the denominator (Eq. (74))

|µ| ≤

√
2σ

[
1√
π

Λ̃1R1∫
0

dt̃e−t̃2
[
cos2M

(√
2σ
(

t̃−Λ̃1
N

))
Λ̃1
]

+ U
]

1√
π

Λ̃2R2∫
0

dt̃ cos2M
(√

2σ
(

t̃+Λ̃2
N

))
e−t̃2 − ζN

R2−1∑
l=0

cos2M

(√
2σΛ̃2(l+1)

N

)
− 2e− y2

2

, (75)

where

U = ζN

R1−1∑
l=0

cos2M

(√
2σΛ̃1l

N

)
(Λ̃1(l + 1)) + 2e−y2

[
(1 +

√
πΛ̃1)√

π
+ 4ζN

√
NR1

]
. (76)
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Note the following upper and lower bounds on cosa(x) for a > 0,

e−ax2 ≤ cosa(x) ≤ e− ax2
2 . (77)

We can use these to replace the cosine power function in the numerator and denominator to obtain

|µ| ≤

√
2σΛ̃1√

π

Λ̃1R1∫
0

dt̃e−2Mσ2( t̃−Λ̃1
N

)2
e−t̃2 +

√
2σζN

R1−1∑
l=0

e−2Mσ2 Λ̃2
1l2

N2 (Λ̃1(l + 1))+

+ 2
√

2σe−y2
[

(1 +
√

πΛ̃1)√
π

+ 4ζN

√
NR1

]

1√
π

Λ̃2R2∫
0

dt̃e−4Mσ2( t̃+Λ̃2
N

)2
e−t̃2 − ζN

R2−1∑
l=0

e−4Mσ2( Λ̃2(l+1)
N

)2 − 4e− y2
2

. (78)

Now using Assumption 1 by substituting σ = s
√

N ,

|µ| ≤

√
2Ns

[
Λ̃1√

π

Λ̃1R1∫
0

dt̃e− 2s2M
N

(t̃−Λ̃1)2
e−t̃2 + ζN

R1−1∑
l=0

e− 2s2M
N

Λ̃2
1l2(Λ̃1(l + 1))+

+ 2e−y2
[

(1 +
√

πΛ̃1)√
π

+ 4ζN

√
NR1

] ]

1√
π

Λ̃2R2∫
0

dt̃e− 4s2M
N

(t̃+Λ̃2)2
e−t̃2 − ζN

R2−1∑
l=0

e− 4s2M
N

(Λ̃2(l+1))2 − 4e− y2
2

:= M′
1

M′
2
. (79)

The first term of M′
1 can be bounded as

√
2NsΛ̃1√

π

Λ̃1R1∫
0

dt̃e− 2s2M
N

(t̃−Λ̃1)2
e−t̃2

≤
√

NsΛ̃1e
−

Λ̃2
1

(1+ N
2s2M

)

√
2
√

1 + 2s2M
N

[
erf

Λ̃1R1

√
1 + 2s2M

N
− 2s2M Λ̃1

N

1√
1 + 2s2M

N


+ erf

2s2M Λ̃1
N

1√
1 + 2s2M

N

]

≤
√

2NsΛ̃1e
−

Λ̃2
1

1+ N
2s2M√

1 + 2s2M
N

.

(80)

In the second inequality, we have used that the error function is bounded by 1. To bound the discrete
sum error terms, we use the Euler-Maclaurin formula to change summations to integrals. It is given
as follows

b∑
i=a

f(i) −
∫ b

a
f(x)dx = f(a) + f(b)

2 +
⌊ p

2 ⌋∑
k=1

B2k

(2k)!
(
f (2k−1)(b) − f (2k−1)(a)

)
+ Rp, (81)

where Bn denotes the nth Bernoulli number, and the remainder term Rp is bounded as

|Rp| ≤ 2ζ(p)
(2π)p

∫ b

a
|f (p)(x)|dx. (82)
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The choice of p is up to us. Taking p = 2, the error term of M′
1 can be bounded as

R1−1∑
l=0

e− 2s2M
N

Λ̃2
1l2(Λ̃1(l + 1)) ≤

R1∫
0

dle− 2s2M
N

Λ̃2
1l2(Λ̃1(l + 1)) + Λ̃1 + Λ̃1R1e− 2s2M

N
Λ̃2

1(R1−1)2

2 +

+ B2
2 Λ̃1

[
e− 2s2M

N
Λ̃2

1(R1−1)2
(

1 − 4s2M

N
Λ̃2

1R1(R1 − 1)
)

− 1
]

+ R2.

(83)

The integral on the RHS can be bounded as follows

R1∫
0

dle− 2s2M
N

Λ̃2
1l2(Λ̃1(l + 1)) ≤ N

4Λ̃1Ms2
(1 − e− 2s2M

N
Λ̃2

1R2
1) +

√
π

2
√

2s

√
N

M
erf

2Λ̃1R1s

√
M

N

 , (84)

≤ N

4Λ̃1Ms2
+

√
π

2
√

2s

√
N

M
. (85)

The the sum in Eq. (83) can be bounded as

R1−1∑
l=0

e− 2s2M
N

Λ̃2
1l2(Λ̃1(l + 1)) ≤ N

4Λ̃1Ms2
+

√
π

2
√

2s

√
N

M
+ Λ̃1 + Λ̃1R1e− 2s2M

N
Λ̃2

1(R1−1)2

2 +

+ Λ̃1e− 2s2M
N

Λ̃2
1(R1−1)2

12 + R2,

(86)

where we substitute B2 = 1
6 for the second Bernoulli number and R2 is the remainder term from the

approximation, bounded as follows

R2 ≤ Λ̃1ζ(2)
2π2

5 +

√
8πs2Λ̃2

1M

N

 . (87)

This means that

R1−1∑
l=0

e− 2s2M
N

Λ̃2
1l2(Λ̃1(l + 1)) ≤ N

4Λ̃1Ms2
+

√
π

2
√

2s

√
N

M
+

Λ̃1 + Λ̃1(R1 + 1
6)e− 2s2M

N
Λ̃2

1(R1−1)2

2 +

+Λ̃1ζ(2)
2π2

5 +

√
8πs2Λ̃2

1M

N

 .

(88)

The value of the constant C1 is arbitrary. To achieve the best possible upper bound on the variance,
we find that the best choice is C1 := 2s2M

N Λ̃2
1. Then we can bound M′

1 by adding Eq. (80) and
Eq. (88) as

M′
1 ≤

√
2NsΛ̃1e

−
Λ̃2

1
(1+ N

2s2M
)√

1 + 2s2M
N

+
√

2NsζN

[
Λ̃1
2C1

(
1 +

√
πC1

)
+

Λ̃1 + Λ̃1(R1 + 1
6)e−C1(R1−1)2

2 +

+Λ̃1ζ(2)
2π2

(
5 + 2

√
πC1

) ]

+2
√

2Nse−y2
ζN

√
NR1 + 2s

√
Ne−y2 (1 +

√
πΛ̃1)√

π
.

(89)
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Using Λ̃1 = Λ1
s
√

2N
, we can write the bound as follow

M′
1 ≤

√
N

2s2M

Λ1e
− 1

2s2
Λ2

1
N

1
1+ N

2s2M√
1 + N

2s2M

+ ζN

[
Λ1
2C1

(
1 +

√
πC1

)
+

Λ1 + Λ1(R1 + 1
6)e−C1(R1−1)2

2 +

+Λ1ζ(2)
2π2

(
5 + 2

√
πC1

) ]
+

+2
√

2Nse−y2
ζN

√
NR1 + 2s

√
Ne−y2 (1 +

√
πΛ̃1)√

π
.

(90)

Note that e
− 1

2s2
Λ2

1
N

1
1+ N

2s2M ≤ 1 and (1 + N
2s2M

)−1/2 ≤ 1 for any value of the free parameters and this

is particularly tight approximation for N
2s2M

< 1. Thus, choosing Λ1 such that C1 = O(1), we get the
following overall upper bounds on the numerator of the average

M′
1 ≤ 1

s

√
N

2M
Λ1 + 2

√
2se−y2

NζN R1 + 2s
√

Ne−y2 (1 +
√

πΛ̃1)√
π

+ O(ζN Λ1). (91)

For the choice of y, we require the following condition, such that the 2nd term is smaller than the
leading term

e−y2 ≤ 1
4s2

√
Λ2

1
2MNζ2

N R2
1
. (92)

First substituting R = N
Λ1

and then Λ1 =
√

C1
N√
M
, we get the bound

y = Ω

√log M3ζ2
N

N

 . (93)

We now use Lemma (1) to find the worst case bound on y which will be applicable for all values of
ζN ,

y = Ω

√log M3

N2

 . (94)

The parameter y dictates how many terms in Eq. (13) are to be included in the later calculation of
the bond dimension. Using that C1 = O(1), we get the scalings Λ1 ∝ N√

M
and R1 ∝

√
M . Considering

these, we choose y = Ω
(√

log M3ζ2
N

N

)
, to get the following upper bound on the numerator

M′
1 ≤ 1

s

√
N

2M
Λ1 + O(ζN Λ1). (95)

We now simplify the denominator of Eq. (79). Define the variable

C2 := 4s2M

N
Λ̃2

2 = 2MΛ2
2

N2 , (96)
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Using this value of C2 and the Euler-Maclaurin formula from the equation (81), the integral in the
first term of denominator M′

2 can be lower bounded as

1√
π

Λ̃2R2∫
0

dt̃e− 4s2M
N

(t̃+Λ̃2)2
e−t̃2 ≥ 1

2
e

− 4s2M
N

Λ̃2
2

1+ 4s2M
N√

1 + 4s2M
N

erf

Λ̃2R2

√
1 + 4s2M

N
+ Λ̃2√

N
4s2M

√
1 + N

4s2M


− erf

 Λ̃2√
N

4s2M

√
1 + N

4s2M


(97)

Since we have the freedom of choosing Λ̃2, we take C2 = 3
4 (or Λ̃2 = 3N

16s2M
). Then the integral is

bounded as

1√
π

Λ̃2R2∫
0

dt̃e− 4s2M
N

(t̃+Λ̃2)2
e−t̃2 ≥ 1

2
Λ̃2e

−
3Λ̃2

2
4Λ̃2

2+3√
Λ̃2

2 + 3
4

erf

R2

√
Λ̃2

2 + 3
4 + 3

4
√

Λ̃2
2 + 3

4

− erf

 3

4
√

Λ̃2
2 + 3

4


(98)

⇒ 1√
π

Λ̃2R2∫
0

dt̃e− 4s2M
N

(t̃+Λ̃2)2
e−t̃2 ≥ 1

2
Λ̃2e

−
3Λ̃2

2
4Λ̃2

2+3√
Λ̃2

2 + 3
4

erf
(

R2

√
3
4

)
− erf

 3

4
√

Λ̃2
2 + 3

4

 . (99)

Considering the power series approximation of erf(x) for x = Ω(1) we get the following lower bound

erf(x) ≥ 1 − 1√
π

e−x2

x
. (100)

Substituting this bound in the first term of Eq. (99),

1√
π

Λ̃2R2∫
0

dt̃e− 4s2M
N

(t̃+Λ̃2)2
e−t̃2 ≥ 1

2
Λ̃2e

−
3Λ̃2

2
4Λ̃2

2+3√
Λ̃2

2 + 3
4

1 − 2√
3π

e− 3
4 R2

2

R2
− erf

 3

4
√

Λ̃2
2 + 3

4

 . (101)

The second term of M′
2 in Eq. (80) can be bounded as

ζN

R2−1∑
l=0

e− 4s2M
N

(Λ̃2(l+1))2 ≤ ζN

R2−1∫
0

dle− 4s2M
N

(Λ̃2(l+1))2 + ζN
e− 4s2M

N
Λ̃2

2 + e− 4s2M
N

Λ̃2
2R2

2

2 +

+ζN
2s2M

3N
Λ̃2

2

(
e− 4s2M

N
Λ̃2

2 − R2e− 4s2M
N

Λ̃2
2R2

2

)
+

+4
√

πζN s

√
M

N
Λ̃2

erf

√4s2M

N
Λ̃2R2

− erf

√4s2M

N
Λ̃2

+

+8s2M

N
ζN Λ̃2

2

[
e− 4s2M

N
Λ̃2

2 − R2e− 4s2M
N

Λ̃2
2R2

2

]
.

(102)

ζN

R2−1∑
l=0

e− 4s2M
N

(Λ̃2(l+1))2 ≤ ζN

√
π

√
N

16s2M

1
Λ̃2

erf

√4s2M

N
Λ̃2R2

− erf

√4s2M

N
Λ̃2

+

+ ζN e− 4s2M
N

Λ̃2
2 + ζN

2s2M

3N
Λ̃2

2e− 4s2M
N

Λ̃2
2

+
√

πζN

√
16s2M

N
Λ̃2 erf

√4s2M

N
Λ̃2R2

+ 8s2M

N
ζN Λ̃2

2e− 4s2M
N

Λ̃2
2 .

(103)
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In terms of C2, the error term is

ζN

R2−1∑
l=0

e− 4s2M
N

(Λ̃2(l+1))2 ≤ ζN

√
π

1
2
√

C2

[
erf
(√

C2R2
)

− erf(
√

C2)
]

+ ζN e−C2 + ζN
C2
6 e−C2+

+2
√

πζN

√
C2 erf(

√
C2R2) + 2C2ζN e−C2 .

(104)

Substituting with the choice C2 = 3
4 ,

ζN

R2−1∑
l=0

e− 4s2M
N

(Λ̃2(l+1))2 ≤ 3.7ζN erf(0.86R2) + 1.3ζN . (105)

Combining everything, the lower bound on M′
2 can be written as

M′
2 ≥ 1

2
Λ̃2e

−
3Λ̃2

2
4Λ̃2

2+3√
Λ̃2

2 + 3
4

1 − 2√
3π

e− 3
4 R2

2

R2
− erf

 3

4
√

Λ̃2
2 + 3

4

− 3.7ζN erf(0.86R2) − 1.3ζN − 4e− y2
2 .

(106)

Replacing
Λ̃2

2
Λ̃2

2+ 3
4

=
N

4s2M
N

4s2M
+1 ,

M′
2 ≥ 1

2

√√√√ N
4s2M

N
4s2M

+ 1
e

− 3
4

N
4s2M
N

4s2M
+1

1 − 2√
3π

e− 3
4 R2

2

R2
− erf

 3

4
√

Λ̃2
2 + 3

4

− 5ζN − 4e− y2
2 . (107)

Again assuming that N
4s2M

≤ 1, and using
(
1 + N

4s2M

)− 1
2 ≥

(
1 − N

8s2M

)
≥ 1

2 , and
N

4s2M
N

4s2M
+1 ≤ N

4s2M
in

the exponent

M′
2 ≥ 1

4

√
N

4s2M
e− 3

4
N

4s2M

[
1 − 2√

3π

e− 3
4 R2

2

R2
− erf

(√
3
4

)]
− 5ζN − 4e− y2

2 . (108)

Now, since e− 3
4

N
4s2M ≥

(
1 − 3

4
N

4s2M

)
, and erf(0.86R2) ≤ 1,

M′
2 ≥ 1

2

√
N

4s2M

(
1 − 3

4
N

4s2M

)[
0.11 − 0.33e− 3

4 R2
2

R2

]
− 5ζN − 4e− y2

2 . (109)

The final bound on M′
2 is the following

M′
2 ≥ 0.05

√
N

4s2M
− O

((
N

M

) 3
2
)

− O(ζN ) − O(e− y2
2 ) − O

e−
R2

2
2

R2

√
N

M

 . (110)

Considering the bound on y from Eq. (94), the overall average for the case when M = O
(

N
ζ2

N

)
and

M = Ω(N), is

|µ| ≤

√
N

2s2M
Λ1 + O(ζN Λ1)

0.05
√

N
4s2M

− O
((

N
M

) 3
2
)

− O(ζN ) − O

 e−
R2

2
2

R2

√
N
M

 , (111)

|µ| ≤ 20
√

2Λ1

1 + O

√M

N
ζN

+ O
(

N

M

)
+ O

e−
R2

2
2

R2


 , (112)

|µ| ≤ 30Λ1

[
1 + O

(
N

M

)]
⇒ |µ| = O

(
N√
M

)
. (113)
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B.2 Upper bound on variance
We now find an upper bound on the variance δ2 with a similar method. First, consider

δ2 = ⟨pM,y| H2 |pM,y⟩ − ⟨pM,y| H |pM,y⟩2 ≤ ⟨pM,y| H2 |pM,y⟩ (114)

≤

∑
Ej≤0

|bj |2g2
y

(
Ej

N

)
(Ej)2 +

∑
Ej>0

|bj |2g2
y

(
Ej

N

)
(Ej)2

∑
Ej≤0

|bj |2g2
y

(
Ej

N

)
+

∑
Ej>0

|bj |2g2
y

(
Ej

N

) :=
V1(−) + V1(+)
V2(−) + V2(+)

. (115)

We begin by bounding the positive energy contributions, V1(+) and V2(+). The corresponding
negative energy contributions follow directly, because the functions inside the sum are even. Using
the inequalities from Eq. (53), we can rewrite the expression for V1(+) and V2(+) in terms of cosine
power operators

V1(+) ≤
∑

Ej>0
|bj |2 cos2M

(
Ej

N

)
(Ej)2 + 4e−y2 ∑

Ej>0
|bj |2(Ej)2 (116)

≤
∑

Ej>0
|bj |2 cos2M

(
Ej

N

)
(Ej)2 + 4e−y2

σ2 =: I1, (117)

where for the second term we use that
∑

Ej>0 |bj |2(Ej)2 ≤ σ2. Similarly, the denominator can be lower
bounded as

V2(+) ≤
∑

Ej>0
|bj |2 cos2M

(
Ej

N

)
− 4e− y2

2
∑

Ej>0
|bj |2 (118)

≤
∑

Ej>0
|bj |2 cos2M

(
Ej

N

)
− 4e− y2

2 =: I2 (119)

where the second inequality is obtained by upper bounding the cumulative distribution of |bj |2 by 1.
First we focus on simplifying I1. We again apply the segmentation method, in a similar manner as for
the average in Eq. (59). Dividing the total energy range [−N, N ] into R1 segments of width Λ1 > 0
each, the first term of I1 is then bounded as∑

Ej>0
|bj |2 cos2M

(
Ej

N

)
(Ej)2 ≤

R1−1∑
l=0

cos2M
(Λ1l

N

)
(Λ1(l + 1))2 ∑

Λ1l<Ej<Λ1(l+1)
|bj |2, (120)

≤
R1−1∑
l=0

cos2M
(Λ1l

N

)
(Λ1(l + 1))2

 Λ1(l+1)∫
Λ1l

dt

σ
√

2π
e− t2

2σ2 + ζN

. (121)

Let t̃ = t√
2σ

, dt̃ = dt√
2σ
, and Λ̃1 = Λ1√

2σ
, then LHS is bounded as

∑
Ej>0

|bj |2 cos2M
(

Ej

N

)
(Ej)2 ≤ 1√

π

R1−1∑
l=0

Λ̃1(l+1)∫
Λ̃1l

dt̃ cos2M

(
√

2σ

(
t̃ − Λ̃1

N

))
(
√

2σ(t̃ + Λ̃1))2e−t̃2

+2σ2ζN

R1−1∑
l=0

cos2M

(√
2σΛ̃1l

N

)
(Λ̃1(l + 1))2.

(122)

We get the following upper bound on I1,

I1 ≤ 1√
π

Λ̃1R1∫
0

dt̃ cos2M

(
√

2σ

(
t̃ − Λ̃1

N

))
(
√

2σ(t̃ + Λ̃1))2e−t̃2

+ 2σ2ζN

R1−1∑
l=0

cos2M

(√
2σΛ̃1l

N

)
(Λ̃1(l + 1))2 + 4e−y2

σ2.

(123)
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Using inequalities from Eq. (77) to replace cosines by exponentials

I1 ≤ 1√
π

Λ̃1R1∫
0

dt̃e−2Mσ2( t̃−Λ̃1
N

)2(
√

2σ(t̃ + Λ̃1))2e−t̃2 + 2σ2ζN

R1−1∑
l=0

e−4Mσ2 Λ̃2
1l2

N2 (Λ̃1(l + 1))2 + 4e−y2
σ2.

(124)
Now consider σ = s

√
N so that

I1 ≤ 2s2N√
π

Λ̃1R1∫
0

dt̃e− 2s2M
N

(t̃−Λ̃1)2(t̃ + Λ̃1)2e−t̃2 + 2s2NζN

R1−1∑
l=0

e− 4s2M
N

Λ̃2
1l2(Λ̃1(l + 1))2 + 4s2Ne−y2

.

(125)
Using the Euler-Maclaurin formula from equation (81), the integral in the first term is bounded as

2s2N√
π

Λ̃1R1∫
0

dt̃e− 2s2M
N

(t̃−Λ̃1)2(t̃ + Λ̃1)2e−t̃2 ≤ 2s2N√
π

e− 2s2M
N

Λ̃2
1

4(1 + 2s2M
N )

5
2

[
4Λ̃1

√
1 + 2s2M

N

(
1 + 3s2M

N

)
+

−2e−Λ̃2
1R2

1(1+ 2s2M
N

)eΛ̃2
1R1

4s2M
N Λ̃1

√
1 + 2s2M

N

(
R1

(
1 + 2s2M

N

)
+ 2

(
1 + 3s2M

N

))
+

+e

1
1+ 2s2M

N

( 2s2M
N

Λ̃1)2√
π

(1 + 2s2M

N

)
+ 2Λ̃2

1

(
1 + 4s2M

N

)2
[ erf

 2s2M
N Λ̃1√

1 + 2s2M
N

+

+ erf

 Λ̃1R1(1 + 2s2M
N ) − 2s2M

N Λ̃1√
1 + 2s2M

N

]],

(126)

2s2N√
π

Λ̃1R1∫
0

dt̃e− 2s2M
N

(t̃−Λ̃1)2(t̃ + Λ̃1)2e−t̃2 ≤ 2s2N√
π

e− 2s2M
N

Λ̃2
1

4(1 + 2s2M
N )

5
2

4Λ̃1

√
1 + 2s2M

N

(
1 + 3s2M

N

)

− 2e−Λ̃2
1R2

1(1+ 2s2M
N

)eΛ̃2
1R1

4s2M
N Λ̃1R1

(
1 + 2s2M

N

) 3
2

+2e

1
1+ 2s2M

N

( 2s2M
N

Λ̃1)2√
π

((
1 + 2s2M

N

)

+2Λ̃2
1

(
1 + 4s2M

N

)2
 .

(127)

Substituting C1 = 2s2M
N Λ̃2

1

2s2N√
π

Λ̃1R1∫
0

dt̃e− 2s2M
N

(t̃−Λ̃1)2(t̃ + Λ̃1)2e−t̃2 ≤ 3s2N√
π

Λ̃3
1e−C1

Λ̃2
1 + C1

+ s2N
Λ̃3

1e
−

Λ̃2
1C1

Λ̃2
1+C1

(Λ̃2
1 + C1)

3
2

+ 8s2N
Λ̃3

1e
−

Λ̃2
1C1

Λ̃2
1+C1√

Λ̃2
1 + C1

.

(128)
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The error term of Eq. (125) is bounded as

2s2NζN

R1−1∑
l=0

e− 4s2M
N

Λ̃2
1l2(Λ̃1(l + 1))2 ≤ s2(8

√
C1 +

√
2π(1 + 4C1))

8C1
√

C1
NζN Λ̃2

1

+ s2NζN Λ̃2
1

(
e−2C1(R1−1)2

R2
1 + 1

)
+ s2NζN

6 (2e− 4s2M
N

Λ̃2
1(R1−1)2Λ̃2

1R1)

+ 2s2NζN Λ̃2
1
ζ(2)
π2

[
5 +

√
π

8C1
(5 + 4C1)

]
.

(129)

Combining Eq. (128) and Eq. (129), we get the following bound on I1,

I1 ≤ 3s2N√
π

Λ̃3
1e−C1

Λ̃2
1 + C1

+ s2N
Λ̃3

1e
−

Λ̃2
1C1

Λ̃2
1+C1

(Λ̃2
1 + C1)

3
2

+ 8s2N
Λ̃3

1e
−

Λ̃2
1C1

Λ̃2
1+C1√

Λ̃2
1 + C1

+

+ s2(8
√

C1 +
√

2π(1 + 4C1))
8C1

√
C1

NζN Λ̃2
1 + s2NζN Λ̃2

1

(
e−2C1(R1−1)2

R2
1 + 1

)
+

+ s2NζN

6 (2e− 4s2M
N

Λ̃2
1(R1−1)2Λ̃2

1R1) + 2s2NζN Λ̃2
1
ζ(2)
π2

[
5 +

√
π

8C1
(5 + 4C1)

]
+ 4s2Ne−y2

.

(130)

To simplify the above form note that

e
−

Λ̃2
1C1

Λ̃2
1+C1 ≤ 1 and

Λ̃1√
Λ̃2

1 + C1
=
√

1
1 + 2s2M

N

≤ 1, (131)

for any scaling of M . Additionally, for N
2s2M

< 1 there is the tighter bound

Λ̃1√
Λ̃2

1 + C1
=
√

1
1 + 2s2M

N

≤

√
N

2s2M
. (132)

So, for N
2s2M

< 1 the numerator is bounded as

I1 ≤ 3s2N√
π

Λ̃3
1

Λ̃2
1 + C1

+ s2N
Λ̃3

1

(Λ̃2
1 + C1)

3
2

+ 8s2N
Λ̃3

1√
Λ̃2

1 + C1
+

+ s2(8
√

C1 +
√

2π(1 + 4C1))
8C1

√
C1

NζN Λ̃2
1 + s2NζN Λ̃2

1

(
e−2C1(R1−1)2

R2
1 + 1

)
+

+ s2NζN

6 (2e− 4s2M
N

Λ̃2
1(R1−1)2Λ̃2

1R1) + 2s2NζN Λ̃2
1
ζ(2)
π2

[
5 +

√
π

8C1
(5 + 4C1)

]
+ 4s2Ne−y2

.

(133)

Now applying the following inequalities to the first three terms

Λ̃3
1

Λ̃2
1 + C1

≤ N

2s2M
Λ̃1, (134)

Λ̃3
1

(Λ̃2
1 + C1)

3
2

≤
(

N

2s2M

) 3
2

, (135)

Λ̃3
1√

Λ̃2
1 + C1

≤ Λ̃2
1

√
N

2s2M
. (136)
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Consider the following,
(i) C1 = O(1) which means that Λ̃1 = O(1) for M = Ω(N),
(ii) y = Ω

(√
log M3

N2

)
from Eq. (94),

(iii) Λ̃1R1 ∝
√

N , then

I1 ≤ 3
2
√

π
Λ̃1

N2

M
+ 1

2
√

2s

N
5
2

M
3
2

+ 4
√

2sΛ̃2
1

N
3
2

M
1
2

+ O(NζN Λ̃2
1) + O(N2ζN e−2C1(R1−1)2). (137)

Substituting Λ̃1 =
√

C1
√

N
2s2M

,

I1 ≤
(

3
√

C1

2s
√

2π
+ 1

2
√

2s
+ 2

√
2C1
s

)
N

5
2

M
3
2

+ O
(

N2

M
ζN

)
+ O(N2ζN e−2C1(R1−1)2). (138)

We have obtained an upper bound on I1 which upper bounds V1(+) and V1(−) (numerator of
Eq. (115)). For the denominator, note that M′

2 in Eq. (110) from the average calculation is also a
lower bound on the denominator terms V2(+) and V2(−) of the variance. Combining all the expressions,

we can obtain the upper bound on the variance for M = O
(

N
ζ2

N

)
and M = Ω(N) as follows,

δ2 ≤

(
3
√

C1

2s
√

2π
+ 1

2
√

2s
+ 2

√
2C1
s

)
N

5
2

M
3
2

1 + O

√M

N
ζN

+ O
(

M
3
2

N
1
2

ζN e−2C1(R1−1)2
)

+O
(

M
3
2

N
3
2

ζN R1e− 2s2M
N

R1

)]

0.1
√

N
4s2M

1 − O
(

N
M

)
− O

(
ζN

√
M
N

)
− O

 e−
R2

2
2

R2

 , (139)

⇒ δ2 ≤ η
N2

M

[
1 + O

(
N

M

)]
, (140)

where we define the constant

η := 15
√

C1√
2π

+ 5√
2

+ 20
√

2C1. (141)
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