
Batch-based Model Registration for Fast 3D Sherd Reconstruction

Jiepeng Wang1 Congyi Zhang1 Peng Wang1 Xin Li3 Peter J. Cobb1

Christian Theobalt2 Wenping Wang3*

1The University of Hong Kong 2Max Planck Institute for Informatics
3Texas A&M University

Abstract

3D reconstruction techniques have widely been used for
digital documentation of archaeological fragments. How-
ever, efficient digital capture of fragments remains as a chal-
lenge. In this work, we aim to develop a portable, high-
throughput, and accurate reconstruction system for efficient
digitization of fragments excavated in archaeological sites.
To realize high-throughput digitization of large numbers of
objects, an effective strategy is to perform scanning and
reconstruction in batches. However, effective batch-based
scanning and reconstruction face two key challenges: 1)
how to correlate partial scans of the same object from mul-
tiple batch scans, and 2) how to register and reconstruct
complete models from partial scans that exhibit only small
overlaps. To tackle these two challenges, we develop a new
batch-based matching algorithm that pairs the front and
back sides of the fragments, and a new Bilateral Boundary
ICP algorithm that can register partial scans sharing very
narrow overlapping regions. Extensive validation in labs
and testing in excavation sites demonstrate that these de-
signs enable efficient batch-based scanning for fragments.
We show that such a batch-based scanning and reconstruc-
tion pipeline can have immediate applications on digitizing
sherds in archaeological excavations. Our project page:
https://jiepengwang.github.io/FIRES/.

1. Introduction
Digital documentation of archaeological artifacts is

widely used in archaeological heritage preservation and vir-
tual restoration [25, 4, 18, 34]. Sherds, also referred to as
fragments, are the most commonly uncovered artifacts dur-
ing archaeological excavations and they carry rich informa-
tion about past human societies, so their 3D shapes need to
be accurately reconstructed and digitally archived for anal-
ysis and preservation. At an excavation site, typically hun-
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Figure 1: Illustration of batch processing of sherds. (a)
Fast image acquisition device; (b) Reference images of the
front sides and back sides of a batch of fragments; and (c)
Reconstructed 3D sherds.

dreds of fragments are uncovered in a day, far beyond the
scanning and reconstruction capacity of existing imaging
systems [27, 1, 23, 19]. Hence, there is high demand for
methods and systems capable of scanning and reconstruct-
ing hundreds of fragments per day.

The most promising approach to high throughput scan-
ning of sherds is via batch processing. A straightforward
flow of batching processing works as follows. First, all the
fragments to be processed are divided into groups of 5 - 20
fragments per group, with the specific number depending
on the sizes of the fragments. For each group, the following
three steps of operation are performed.

Step 1 - Front side reconstruction. The group of frag-
ments are manually placed flat on a turning-table and im-
aged by several fixed cameras in a couple of minutes. For
easy of reference, we call the upward sides of the fragments
at this moment their front sides. See Fig. 1 (a). Then the ac-
quired images are used by an off-the-shelf MVS software to
automatically reconstruct the 3D models of the front sides.

Step 2 - Back side reconstruction. In order to scan the
complete models, the fragments are manually flipped over
and placed again on the turntable. Then the back sides of
the fragments are scanned (Fig. 1 (b)) and reconstructed in
a similar fashion.

Step 3 - Full model registration. Now we have obtained
the reconstructed partial 3D models of the front sides and
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back sides of the group of fragments obtained in Step 1 and
Step 2. Then, for each fragment, the two 3D models for its
corresponding front side and back side which are also called
the front scan and back scan, are automatically identified
and registered together to produce the complete 3D model
of the fragment (as shown in Fig. 1(c)).

Challenges. While steps 1 and 2 in the above are techni-
cally straightforward in principle, step 3 of full model regis-
tration poses new technical challenges that need to be tack-
led with novel techniques to achieve. The main challenges
are two-fold. First, given the front scan of each fragment, it
is nontrivial to efficiently and reliably find its corresponding
back scan from the back side batch. This is a known out-
standing problem [15] with no effective solution. Second,
once a pair of the front scan and back scan of the same frag-
ment are identified, in order to apply the ICP registration
method to register them together to obtain the full 3D model
of the fragment, it is critical to develop robust techniques to
provide reliable initial relative pose estimation for the ICP
to start. Furthermore, we note that the front and back scans
commonly have very small overlapping regions, i.e. the thin
side strip regions of the fragment (See the figure below),
which usually contain
many repetitive fractured
patterns and lack sufficient
unique geometric features.
Therefore, in the presence
of such small overlap between the front and back scans, it
presents significant challenges to existing ICP-like meth-
ods [39, 11, 38] and feature-based registration methods
[29, 24, 41]. It is hard to ensure that points (or a feature)
from one side used in registration have proper correspond-
ing points (or a feature) on the other side. Again, there are
no existing registration methods that can reliably solves
these problems to achieve successful registration to produce
accurate full 3D models of the fragments in an automatic,
fast, and robust manner.

To address these issues, we provide a novel contour-
based solution to solve batch matching and a boundary-
aware ICP method to tackle fine registration to obtain com-
plete models. We first discuss the problem of matching the
front and back scans. We observe that the 3D contour of a
fragment can be approximated by its 2D projection on the
fitting plane (e.g., using PCA), and the contour of this 2D
projected region can be used as a reliable shape representa-
tion of the the fragments. Clearly, the 2D contours of the
front scan and back scan of the same fragment should be
highly similar. Hence, we devise a novel, intrinsic shape
descriptor to encode each 2D contour, and then perform fast
comparison of the shape descriptors of all the 2D contours
to identify the pairing between the corresponding front and
back scans. Our experiments show that this method is effi-
cient and robust in finding all the matching pairs.

After the pair of front and back scans are identified, we
need to estimate a good initial alignment of the two scan
in order to proceed with ICP registration. In this regards,
we point out that, when a pair of scans are successfully
matched, the above method based on 2D-contours also pro-
duces a good alignment of the 2D contours of the two scans,
which induces a good initial alignment 3D scans themselves
for the subsequent ICP iterations. The details of this step
with explained in detail later.

Finally, after each fragment’s front and back scans are
paired and initially aligned, we will register them to get
a complete 3D sherd model. To address of the issue of
small overlap and the lack of salient textures and features
in the small overlapping region of the two scans, we pro-
pose a boundary-based ICP method to ensure robust ICP
iterations. Specifically, we extract the 3D boundary points
of one scan and iteratively search and minimize their dis-
tances to their corresponding points on the other side. Here
the 3D boundary points refer to the points on the bound-
ary of the point cloud surface of the front scan or the back
scan. we use these 3D boundary points rather than all the
points in the overlapping region for closest point searching
because it is more likely for such boundary points to find
their corresponding points on the other scan.

Enabled by our novel batch-based model registration
method, the partial front and back 3D scans be efficiently
and automatically registered to produce complete 3D mod-
els of sherds in high throughput. To validate our method, we
built a turntable-based image acquisition device to capture
the images of multiple fragments in a batch mode, as the in-
put of our batch-based registration method. We demonstrate
that this batch-based approach can scan and reconstruct over
700 fragments in 10 working hours , with high reconstruc-
tion accuracy, which is significantly faster than existing im-
age acquisition systems and meets the throughput demand
of archaeological field works.

To summarize, we made the following contributions:

• Batch-based matching: To support high-throughput
batch-mode scanning and reconstruction of sherds, we
propose a novel matching algorithm for matching the
front partial 3D scans and the front partial 3D scans of
a group of sherds. This solves an outstanding problem
arising in batch-based sherd reconstruction.

• An improved registration method: We develop an
improved ICP method, called a Bilateral Boundary
ICP (BBICP), that overcomes the issue of small over-
laps to robustly and accurately register the correspond-
ing front and back 3D scans of each fragment to pro-
duce its complete 3D model.

• Validation and dataset: We conducted extensive val-
idation to demonstrate that our algorithmic contribu-
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tions enables efficient and robust scanning and recon-
struction of sherd that is more than 10 times faster than
existing 3D acquisition systems for sherds. We also a
dataset containing 123 fragments of different geome-
tries, sizes, and textures to to facilitate future research
on batch-based model registration for 3D reconstruc-
tion of archaeological fragments.

The code and dataset will be made publicly available.

2. Related Work

2.1. Batch processing of sherds

Current data acquisition techniques can be generally cat-
egorized into 1) photogrammetry [27, 30], 2) structured
light scanning [1, 19], and 3) laser scanning [23] based sys-
tems. Because of their cost, portability, and ease of us-
age, photogrammetry devices are more widely adopted in
archaeology [13]. In order to get a complete reconstruction,
each object needs to be captured through multiple views.
For example, the piece is often held to stand with the help of
putty or an eraser. This setting, however, introduces tremen-
dous manual labor and time during data acquisition. In the
data processing stage, the merge of different sides of the
objects also needs a laborious trimming to remove extra-
neous material. Users face the problems of frequent inter-
actions and computer-processing time during the capturing
and post-processing period to get complete models. There-
fore, most existing approaches focus on processing a single
object and cannot scale beyond a few dozen objects per day.

There are also hardware systems that combine multiple
types of devices to provide hybrid solutions to record differ-
ent aspects of a target object. However, to our best knowl-
edge, all existing systems [21, 33, 17, 20] in this category
focus on reconstructing only visible region of objects on
the turntable rather than getting complete 3D models. Also,
most of them do not consider efficiency to be a key require-
ment, and hence, involve tremendous labor during acquisi-
tion or post processing.

To realize a larger scale data acquisition, a practical
approach is to process multiple fragments simultaneously.
[19] used a specially designed frame to hold multiple frag-
ments for faster scanning. But this system fails to get com-
plete models because part of the fragments are occluded
by the frame. [15] propose a 3D scanning system that can
digitize fresco fragments by scanning then merging the the
two sides of multiple pieces. However, the view planning
process is time-consuming, making the acquisition less ef-
ficient. Another unsolved problem of this system, as the au-
thors stated, is how to automatically find matches between
the two partial 3D scans of the front side and back side of
each fragment for registering them to get a complete recon-
struction.

So far, global matching of two sides of pottery fragments
in a batch-based data acquisition scheme remains an out-
standing and challenging issue. We tackle this challenge
by developing a novel contour-based matching strategy that
enables scanning fragments laid flat on a turntable in batch
mode.

2.2. Registration for 3D reconstruction

A 3D model registration method is needed for merging
the front and back partial 3D scans to produce the complete
3D model of each fragment. A challenging issue here is
that the these two partial scans only share a small overlap
region, i.e. along the fractured strip surface. This poses a
significant challenge to existing methods for reliable geo-
metric registration.

Geometric registration [35] can be generally catego-
rized into two types: global registration that finds a rough
transformation between two surfaces, and local refinement
that computes a precise transformation. Global registra-
tion methods are usually based on matches of local fea-
ture descriptors [41, 29], tuples of points [2, 24], or the
branch-and-bound framework[38], while local refinement
algorithms are often based on the iterative closest point
(ICP) algorithm and its variants [11, 39, 26]. Branch-and-
bound based methods are often very expensive and pro-
hibitive in handling very dense point sets. Feature-based
methods rely on salient texture or geometry features to find
correct correspondence and transformations, which, unfor-
tunately, are often unavailable on fragmented pieces. Thus,
it’s hard to apply current global registration methods to get
a good initialization for subsequent ICP refinement. Tuples
of points based methods and local refinement algorithms are
sensitive to how much the two surfaces overlap with each
other. However, between the front and back sides of each
fragment, such an overlap is generally quite small.

ICP is also used in [8] to align the front side to the back
side of fresco fragments by assuming all the pieces are flat.
This strategy is not suitable for sherds because sherd sur-
faces have curved shapes that are more complex than fres-
coes. Hence, it is hard to directly apply the existing ICP
methods to robustly register the two partial scans of a sherd
in our setting.

In this work, we present a contour-based strategy that
can provide a good initialization for registration, and a
boundary-aware ICP method for robust fine registration of
the front and back partial 3D scans to form a complete 3D
sherd mode in the presence of small overlap.

Recently, learning-based methods for point cloud reg-
istration [10, 36, 12, 40] have made remarkable progress.
However, these learning-based methods often require a sub-
stantial amount of training data, which is the bottleneck
of existing methods for fragment data acquisition. Our
proposed batch-based model registration method generates
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Figure 2: Overview. (a) Given the images of two sides, we first perform multi-view reconstruction with selected image
regions of two sides with high efficiency. (b) With the reconstructed models, we then separate the models into individual
fragments in each side and extract their maximum 2D contour (Section 3.1). (c) Based on these 2D contours, we propose a
matching strategy to find correct matches of different fragments between their two sides. For each matching pair, local
refinement is performed to get a complete and tight model (Section 3.2)

large quantities of real partial fragment data and their recon-
structed models. Such data on fragments are currently lack-
ing, and this hinders the development of effective fragment
registration algorithms. Our work will provide such data
and facilitate future research in applying learning-based
techniques to fragment registration.

3. Method
Our objective is to accurately and efficiently digitize a

group of fragments into complete 3D models. To do this, we
first capture multiple images that cover the front and back
sides of the fragments in batches, through a custom-built
device (See Fig. 1(a)). Using these images, we can recon-
struct a batch of front scans and a batch of back scans by
UNet [28] to segment forground image regions and open-
MVS [9] for dense reconstruction (Fig. 2(a). Then, to reg-
ister and reconstruct these models, we perform a two-step
process: (1) match the front and back scans from the two
batches (Sec. 3.1); (2) register the two sides into a complete
3D model (Sec. 3.2). Both of these two steps present signif-
icant challenges and require substantial modifications and
improvements to existing 3D matching and reconstruction
technologies.

3.1. Batch Matching to Pair Front and Back Sides

In order to register the partial scans of fragments in
batches and reconstruct complete models, we first need to
solve a pairing problem that matches each fragment’s front
side with its respective back side from the two batches of
partial scans. We refer this to as a front-back matching
problem. This problem is commonly encountered in group-
based scanning systems, but reliable solutions to this prob-
lem remain an open research challenge [15].

A naive and immediate solution to this matching prob-
lem is to ensure that all fragments remain in (almost) the
same positions when being flipped over, and then match the
partial scans based on their locations. However, field tests
revealed that this strategy is prone to errors. It is often chal-
lenging for the operator to guarantee that the positions of
the fragments are not altered during flipping: sometimes,
the shift is unintentional, while at other times, repositioning
the pieces helps orient them to maximize visibility from the
cameras. Therefore, position changes are hard to avoid, es-
pecially when dealing with multiple pieces in each group.
This inconsistency can lead to mismatches and ultimately
result in failed reconstruction.

We propose a batch matching scheme that (1) enables au-
tomatic and reliable pairing of corresponding partial scans,
and (2) provides an initial alignment of the front and back
sides. This is crucial for the subsequent registration task.
Our approach is based on the observation that most curved
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fragments can be well approximated by their 2D projections
onto fitting planes. Hence, we project the fragments onto
their respective fitting planes, encode the resulting 2D con-
tours with a shape descriptor, and then compare these de-
scriptors to identify matching pairs.

We first use PCA [37] to project each partial scan onto its
fitting plane (which passes through the point cloud centroid,
with normal oriented along the smallest eigenvector). We
then extract the 2D contour C of the projected point cloud
using Alpha Shape [5], and sample nc (nc = 200) points
uniformly clockwise along the contour, C = {vi}nc−1

i=0 .
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With turtle graph-
ics [31], C can be repre-
sented using the sequence
of the turning angles
{θ}nc−1

i=0 (see the figure
above). The sequence
θnc−1
i=0 , along with the

common edge length
|C|/nc, fully encodes the
shape and size of the contour C.

To generate a shape descriptor for C, we define a
sequence of accumulative sums of the turning angles,
{θ̄i}nc−1

i=0 , where θ̄i =
∑i

j=0 θj , and form a vector Θ =(
θ̄i
)T ∈ Rnc . This vector Θ serves as our shape descriptor

of contour C. Here using the accumulative sums of turn-
ing angles makes the descriptor more robust to noise and
small shape perturbation than using turning angles them-
selves. The choice of starting vertex v0 affects the descrip-
tor. Hence, there are nc equivalent descriptors, each deter-
mined by the chosen starting vertex v0. We denote these
descriptors by Θ(C, v0) to emphasize this dependence.

Batch matching. Given two batches of 3D partial scans
P = {Pi}n−1

i=0 and Q = {Qj}n−1
j=0 , respectively, from the

front sides and back sides of a group of n fragments, we
first compute each partial scan’s 2D projection and shape
descriptors ΘPi and ΘQi . We can match the two sets, {Pi}
and {Qj}, by matching descriptors. The distance between
descriptors is defined using the L2 norm:

E(ΘPi
,ΘQj

) = min
0≤k≤nc−1

∥Θ(Pi, v0)−Θ(Qj , uk)∥2 ,
(1)

where v0 and uk are the first and (k+1)th sampled contour
points from the projected Pi and Qj , respectively. With this
batch matching scheme we can successfully pair one side
of each partial scan Pi with its corresponding other side Qj

(see Fig. 2(b)). And the found corner point pair (v0, uk)
indicates a good initial contour correspondence between Pi

and Qj , which is important for the subsequent ICP-based
registration.

Figure 3: Contour matching. (a) 2D contours for the front
side (blue) and back side (red); (b) Matching of the two 2D
contours; (c) The plots of the shape descriptors of the two
matched contours; and (d) The initial alignment of the two
corresponding 3D partial scans as suggested by the 2D
contour matching.

3.2. Registering the Front and Back Sides

After each fragment’s front and back sides are paired,
we can then register them to produce a complete 3D sherd
model. However, this registration a very challenging prob-
lem because the two sides of a fragment typically have very
little overlap and the fracture regions often lack geometric
features. With the shape descriptor matching (in the previ-
ous step), a correspondence between the vertices of partial
scans’ contours has been established. Using this vertex cor-
respondence, we align the centroids of the two 3D contours
and then apply the algorithm of [3] to find an optimal rigid
transformation to align the partial 3D scans CPi

and CQj
.

This initial alignment serves as a good starting point for for
the subsequent iterative registration process.

3D boundary extraction. Each reconstructed front or
back side of a sherd is a point cloud surface of open-disk
topology, and therefore, has a boundary that contacts, or is
near, the holding board of the turntable at the bottom. To ex-
tract the boundary points of a partial 3D scan, we followed
the strategy in [22], but adopted the following procedure
to improve efficiency. Given a reconstructed point cloud
patch P , we identify boundary points by checking consis-
tency from different views. First, a point p in P is projected
to a pixel in input images where this point is visible. With
the aid of masks generated for MVS reconstruction, we can
determine whether a point in 3D is a candidate boundary
point in one view. Specifically, we check the distance from
p’s 2D projected point to the contour of the image mask. If
this distance is smaller than a threshold in all the images in
which the point is visible, we take this point as a candidate
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boundary point. In this way, we obtain a candidate set of
boundary points, and remove non-boundary points to im-
prove efficiency. The candidate set may still contain some
outliers (i.e., some non-boundary points that are very close
to the boundary contour). We then apply the widely adopted
boundary extraction method [22] to this candidate set to ex-
tract the final set of boundary points.

Bilateral Boundary ICP (BBICP). Next we use the ex-
tracted boundary points for model registration, i.e. com-
puting a rigid transformation consisting of a rotation R ∈
SO(3) and a translation T ∈ R3. Given two point clouds
(front- and back-side partial models) P and Q as well as
their boundary points BP and BQ, the registration is per-
formed by minimizing the sum of two terms: (1) one being
the sum of the L2 distances from the points in BP to their
corresponding closest points in Q , and (2) the other being
the sum of the L2 distances from the points in BQ to their
corresponding closest points in P .

We formulate this problem as an ICP optimization prob-
lem based on the correspondences of the boundary points
and the point sets. Specifically, for each point bkPi

∈ BPi
,

we find its closest point in Qj , and denote the found corre-
spondences as K1 = {(bPi

, qj)}. Similarly, for each point
blQj

∈ BQj , we find its closest point in P , and denote the
correspondences as K2 = {(pi, bQj )}. We iteratively find
the correspondences K1 and K2 and use the optimization
method in [39] to compute the final transformation by iter-
atively minimizing

ϵk(K1,K2) =
∑m−1

i=0 ||RkbPi + T k − qi||2
+
∑n−1

j=0 ||Rkpj + T k − bQj ||2.
(2)

Fig. 4 illustrates an example of this bilateral bound-
ary registration. The two sides of a fragment are regis-
tered with the help of their boundary points (in red and
blue, respectively). During this process, only the boundary
points of two sides are used to build correspondence with
the other side. Compared with the existing ICP methods us-
ing all points to build correspondences for optimization, our
method can ensure a large overlap and the convergence of
ICP optimization.

4. Experiments
We conducted a comprehensive quantitative evaluation

of our designs and pipeline, which includes two aspects:
reconstruction accuracy (Sec. 4.3) and batch scanning ef-
ficiency (Sec. 4.4). Since there is no public 3D fragment
dataset available for systematic evaluation of batch captur-
ing and reconstruction, we created a new dataset (Sec. 4.2)
and will release it to the public for comparisons. Further-
more, enabled by our model registration method, we built
a prototype system and deployed it in archaeological exca-
vations. The field experiments (Sec. 4.5) demonstrate the
practicality and effectiveness of our method.

Figure 4: Illustration of BBICP. 3D registration between
the front side (whose boundary points are in blue) and
front side (whose boundary points are in red) in BBICP.

4.1. Data Acquisition for Batch Scan Processing

To validate our matching and registration algorithms,
we build a batch-based image acquisition system, which
is a customized hardware system (see Fig. 1) that con-
sists of a turntable, three cameras mounted on an aluminum
frame, and a controller module to synchronize the motion
of turntable with the cameras shutters. To capture a group
of fragments in a batch mode, we place them flat on the
turntable, and first take a set of pictures to capture their ex-
posed sides, to be called the front sides. Then the fragments
are flipped manually on the turntable to photograph their
back sides. We call all these pictures a batch. And a total of
48 images are captured for each batch.

Given a batch of captured images, we first segment the
sherd regions in these images and generate their masks us-
ing UNet [28]. From these segmented regions, the partial
3D models (front or back side) of all the fragments on the
table are then reconstructed using openMVS [9] efficiently.
These result in multiple disjoint point clouds, each corre-
sponding to one fragment (see some examples in Fig. 2 (a)),
which will be used as the input of our model registration
method. Please refer to the supplementary for more details.

4.2. Evaluation Dataset

We have built a dataset of ceramic fragments to evalu-
ate/compare sherd acquisition and 3D reconstruction meth-
ods. The dataset consists of 123 fragments of varying
shapes, sizes (2cm to 15cm in diameter), and thicknesses
(0.3cm to 1cm), some of which are shown in the supple-
mentary. These fragments were obtained by breaking sev-
eral pottery items, whose original geometry before breaking
was also scanned. We used a high-end EinScan Pro 2X [14]
scanner in the fixed scan mode, with a reported accuracy of
0.04mm, to perform 3D scans. To capture all the surfaces
of the fragments, we placed them on the scanner’s turntable
and captured 12 scans of each fragment’s front side in a cir-
cular pattern. Then, we vertically clipped the fragments to
scan their back sides. The partial scans were merged to ob-
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tain a complete 3D model using the scanner’s software. We
will publicly release this dataset, including images and 3D
models, to facilitate comparative studies in fragment reg-
istration and reconstruction methods, as well as related re-
search, such as 3D sherd reassembly and restoration.

4.3. Reconstruction Accuracy

To evaluate reconstruction accuracy, we adopted four
widely used metrics: Accuracy (Accu), Completeness
(Comp), Mean Absolute Error (MAE), and Error Standard
Deviation (SD). We adopted their common definitions from
the widely used Middlebury Benchmark [32]. Definition
details can be found in Section 5 of the supplementary file.
Given the reconstructed point cloud R of a sherd, we align
it with its corresponding scanned ground truth model G in
our dataset, using FGR [41] (for global alignment first) and
ICP [6] (for local refinement) . The reconstruction accuracy
is then measured by the difference between R and G.

Table 1: Accuracy evaluation of our fragment
reconstruction pipeline. The 123 fragments in our dataset
are evaluated in 15 batchs. ID: batch ID; Num: the number
of fragments in a batch; Acc.(mm): average Accuracy of
reconstructed fragments in a batch (smaller is better);
Comp.(%): average Completeness of reconstructed
fragments in a batch (higher is better); MAE(mm): average
Mean Absolute Error of reconstructed fragments in a
batch; SD(mm): average Standard Deviation of
reconstructed fragments in a batch.

ID Num Accu.↓
(mm)

Comp.↑
(%)

MAE↓
(mm)

SD↓
(mm)

1 9 0.14 98.5 0.08 0.06
2 9 0.14 98.39 0.08 0.06
3 7 0.15 93.74 0.09 0.06
4 9 0.15 97.27 0.08 0.07
5 8 0.11 98.47 0.07 0.06
6 8 0.12 97.64 0.07 0.05
7 8 0.13 96.80 0.07 0.07
8 9 0.19 95.65 0.10 0.07
9 9 0.19 94.42 0.10 0.08
10 7 0.13 98.53 0.08 0.06
11 7 0.16 90.88 0.09 0.07
12 4 0.20 90.75 0.10 0.10
13 4 0.16 95.92 0.09 0.11
14 7 0.15 98.12 0.09 0.09
15 18 0.15 94.95 0.08 0.06

Mean 8.2 0.15 96.00 0.09 0.07

Table 1 reports the reconstruction accuracy of all
the sherds in our dataset, captured in 15 batches. Our
method achieved an average reconstruction accuracy Ta =

0.15mm, completeness pc = 96.00%, and mean absolute
error MAE = 0.09mm. Note that according to the sur-
vey provided by the Middlebury Benchmark, SOTA MVS
algorithms reach pixel level accuracy, namely, 90% recon-
structed points have accuracy within about one pixel [16].
As the average accuracy reported in Table 1, our reconstruc-
tion similarly reaches a pixel-level accuracy1. Note that
these reconstruction errors include those from both MVS
and registration steps. This indicates that our registration
algorithm does not introduce additional significant errors.

BBICP vs other Registration Methods. A key compo-
nent of our proposed pipeline is the BBICP registration al-
gorithm, which enables effective registration between par-
tial scans with small overlap. We compared BBICP with
the three widely used registration methods: 1) FGR [41],
2) Super 4PCS [24], and 3) Trimmed ICP [11]. By replac-
ing BBICP with each of these registration methods in our
reconstruction step, we can compare the reconstruction re-
sults. As shown in Table 2, the performance of our registra-
tion method is significantly better than baseline methods.

Table 2: Quantitative comparisons of registration.
Acc.(mm): average Accuracy of all 123 fragments;
Comp.(%): average Completeness of all fragments.

Method Accu.↓ (mm) Comp.↑ (%)

FGR [41] 5.11 11.37
Super 4PCS [24] 4.84 10.03
Trimmed ICP[11] 4.71 18.69

Ours 0.15 96.00

In these experiments, the front-back batch matching pro-
cess yields relatively good initial alignments between the
partial scans of the front and back sides. However, the small
overlapping regions and lack of distinct features in the frac-
ture regions make it difficult for the baseline methods (FGR,
Super 4PCS, and ICP) to build reliable correspondences
and achieve accurate registration. In contrast, our method,
BBICP, exhibits greater robustness in handling such cases.
By constructing boundary-based correspondences, BBICP
enables us to identify more overlap regions and achieve
more precise registration. Fig. 5 shows an example frag-
ment on which different registration methods were run and
compared.

Note that in Table 2, the other methods used all points
for registration. To align with the approach of our proposed
method, we also conducted an experiment that uses only
boundary points for registration. We conducted a quantita-
tive evaluation on a batch containing 9 pieces. The errors

1the average size of the fragments in our experiment is around 60mm
wide, which occupies about 400 pixels in the capture images. This means a
pixel in the images can represent about 0.15mm (i.e., 0.15mm/pixel =
60mm/400pixels).
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Figure 5: Comparison of different registration algorithms. (a) Input point cloud of the front and back partial 3D scans; (b)
The initial alignment of the two sides. While our method is successful in this case, all the baseline methods fail to register
the two scans, as there is obvious sliding error along the rim of the fragment.

Figure 6: Registering front and back scans of a fragment:
each boundary point in one scan should find its
correspondence among all the points in the other scan.

for the FGR, Super-4PCS, and Trimmed ICP methods were
6.15mm, 3.87mm, and 4.41mm respectively, whereas the
error for our proposed method was only 0.13mm. We can
see that those methods do not perform well when only us-
ing boundary points. Fig. 6 illustrates a typical scenario
in which the feature-based method, such as FGR, fails to
match corresponding partial scans using boundary points.
Specifically, FGR first calculates FPFH for sampled points
from their local neighboring regions, in order to construct
local geometric features. Then, it establishes correspon-
dences based on the similarity of these features. Boundary
points are derived from the red (front scan) and blue (back
scan) contours. When considering the local neighboring re-
gions of boundary points and their corresponding counter-
parts (e.g., points p1, q1 correspond to p′1, q′1), since each
scan only covers one side of the fragment, boundary point
p1’s local neighboring region contains only half geometric
scan and is very different from p′1’s neighborhood. Conse-
quently, their computed local features are very different, re-
sulting in incorrect correspondence computation. Similarly,
Super4PCS struggles to establish accurate correspondences
for boundary points due to low overlap and the lack of suf-
ficiently distinct local geometries. Meanwhile, Trimmed
ICP’s performance is sensitive to the trimmed value.

Archaeological Needs. Within the archaeology com-
munity, the implications of automatic 3D scanning of frag-
ments has not been well explored. The field is still develop-
ing requirements/standards on how accurately pieces should
be scanned. Given that almost all prior work for document-
ing and measuring sherds has been undertaken manually,

the introduction of digital methods represents a significant
advancement, substantially exceeding the current state-of-
the-art in terms of accuracy. The 3D models we have cre-
ated are more than adequate for extracting 2D drawings for
archaeological publications. Looking forward, our goal is
to be as accurate as possible for the purposes of long-term
archiving. We also plan to experiment with new analyti-
cal methods that are made possible by this new large-scale
dataset, such as reassembling whole vessels back together.
These future endeavors will help determine whether our
current level of accuracy is sufficient for more detailed ar-
chaeological analyses or if further accuracy improvements
are necessary.

4.4. Efficiency

We compared the efficiency of our whole pipeline (in-
cluding data acquisition and model reconstruction and reg-
istration) with several recent systems in literature. Table 3
lists different methods’ estimated throughput within one
hour. Our method is significantly faster than the other meth-
ods. Here, we also report the efficiency of preparation of GT
models using EinScan (namely, E-GT in Table 3). Note that
in our pipeline, most time is spent on the dense reconstruc-
tion step while our registration method is highly efficient.
Because only a small subset (about 0.3%) of source points
distributed at boundaries require nearest-neighbor queries
in each ICP iteration. It avoids building dense correspon-
dences for all the points and significantly improve the reg-
istration efficiency. Please refer to Section 4 of the supple-
mentary for a detailed explanation of how all these hourly
throughput numbers were estimated.

Table 3: Comparison of data acquisition and reconstruction
efficiency by different methods: the number of fragments
that can be scanned within one work hour. E-GT denotes
the throughput of preparation of GT data using EinScan.

[8] [7] [15] [23] [27] [19] E-GT Ours

10 20 3 6 5 13 3 85
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Figure 7: Prototype deployment. (a) The excavation site; (b) The excavated fragments; (c) Our device deployed on the site;
(d) Reconstructed 3D fragments.

4.5. Field Validation and Application to Archaeo-
logical Excavation

We validated our algorithm by deploying our integrated
pipeline and prototype system at an excavation site in the
summer of 2022 for two and half months. During this pe-
riod, over 20,000 ceramic fragments were excavated, all
digitized using our system. Fig. 7 shows the excavation site
(a), some excavated fragments (b), our device deployed in a
local residence (c) which was adapted for use as a field lab,
and some reconstructed models (d). Our system achieved a
throughput of about 730 fragments per day.

We quantitatively evaluated the reconstructed models
from the site to test the field acquisition accuracy. Archae-
ologists randomly selected 26 fragments and scanned their
corresponding ground-truth 3D models using EinScan [14].
The average reconstruction accuracy of these 26 fragments
is about 0.16mm, which is similar to our lab experiments
(0.15mm accuracy, Table 1). This validates our system’s ro-
bustness in capturing accuracy when deployed in the field.

Enabled by our model registration method, we provide a
first practical solution to fast, accurate, and reliable digi-
tization of a large number of sherds. The successful large-
scale experiment at the excavation site confirmed the fea-
sibility and practicability of our batch scanning and recon-
struction pipeline. We will make our code, data, and sys-
tem configuration parameters publicly available and believe
they can significantly alleviate the burden of archaeologists
and boost the downstream applications, such as relic re-
assembly.

4.6. Limitations

Our batch matching method may fail when some frag-
ments in a batch have very similar 2D contours or when
some fragments are symmetrical (e.g., circular fragments),
leading to ambiguities in the matching process. In such
cases, during a practical batch scanning process, heuristics
such as spatial locations of the fragments in the batch can
be used to help resolve the matching ambiguity.

5. Conclusions
We proposed a novel batch-based model registration

method, including a batch matching algorithm that matches
partial 3D scans of the front and back sides of fragments
and a new ICP-type method that registers the front and back
sides sharing very narrow overlapping regions. Enabled by
our method, we built a customized image acquisition device
and established an automatic reconstruction pipeline that re-
alize fast and precise reconstruction of fragments. This sys-
tem provides the first promising solution to meet the practi-
cal demand of archaeological fieldwork. And our system
had been deployed and used at an excavation site in the
summer of 2022. The field tests confirmed the feasibility
and robustness of our method.
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