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Scaling regimes in rapidly rotating thermal
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The geostrophic turbulence in rapidly rotating thermal convection exhibits characteristics
shared by many highly turbulent geophysical and astrophysical flows. In this regime, the
convective length and velocity scales and heat flux are all diffusion-free, i.e. independent
of the viscosity and thermal diffusivity. Our direct numerical simulations (DNS) of
rotating Rayleigh–Bénard convection in domains with no-slip top and bottom and periodic
lateral boundary conditions for a fluid with the Prandtl number Pr = 1 and extreme
buoyancy and rotation parameters (the Rayleigh number up to Ra = 3 × 1013 and the
Ekman number down to Ek = 5 × 10−9) indeed demonstrate all these diffusion-free
scaling relations, in particular, that the dimensionless convective heat transport scales
with the supercriticality parameter R̃a ≡ Ra Ek4/3 as Nu − 1 ∝ R̃a3/2, where Nu is the
Nusselt number. We further derive and verify in the DNS that with the decreasing R̃a, the
geostrophic turbulence regime undergoes a transition into another geostrophic regime, the
convective heat transport in this regime is characterized by a very steep R̃a-dependence,
Nu − 1 ∝ R̃a3.
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1. Introduction

Turbulent rotating convection (Ecke & Shishkina 2023) is a fundamental mechanism that
drives the heat and momentum transport in planets (Busse & Carrigan 1976; Ahlers,
Grossmann & Lohse 2009; Wicht & Sanchez 2019), as well as being the energy source for
planetary and stellar magnetic fields (Jones 2011; Aurnou et al. 2015; Guervilly, Cardin &
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Schaeffer 2019). The parameters of the astrophysical and geophysical flows are too extreme
to be realized nowadays in lab experiments and direct numerical simulations (DNS). For
example, in the Earth’s core, the Ekman number Ek ≡ ν/(2ΩL2), which is the inverse
of the dimensionless rotating rate, can be as low as 10−15, and the Reynolds number
Re ≡ uL/ν, which is the dimensionless flow velocity, can be as high as 109 (Aurnou et al.
2015; Plumley & Julien 2019). Here, ν is the kinematic viscosity, Ω is the rotating angular
velocity, u is the characteristic velocity, and L is the domain length scale. To estimate
the heat and momentum transport in a particular geophysical or astrophysical system, one
needs first, the scaling relations that hold in the corresponding flow regime, and second,
measurements or simulations for a certain range of control parameters, which are not
as extreme as in the considered geophysical or astrophysical system, but which anyway
belong to the same scaling regime as the considered system. As soon as both objectives are
achieved, the results from the labs and supercomputers can be upscaled to the geophysical
and astrophysical conditions.

Rotating Rayleigh–Bénard convection (RRBC) (Kunnen 2021; Ecke & Shishkina 2023)
is the most studied set-up of rotating thermal convection. Here, a container of height L
and temperature difference Δ between its bottom and top is rotated with angular velocity
Ω about its centrally located vertical axis. The main control parameters of the system are
Ek, the Rayleigh number Ra ≡ αTgL3Δ/(κν), which is the dimensionless temperature
difference across the domain, and the Prandtl number Pr ≡ ν/κ , a material property.
Here, αT is the thermal expansion coefficient, g is the gravitational acceleration, and κ

is the thermal diffusivity. The main dimensionless response characteristics are Re and
the Nusselt number Nu, which is the total vertical heat flux normalized by the purely
conductive counterpart.

The scaling relations for the heat (Nu) and momentum (Re) transfer are usually sought
as functions of Ek, Ra and Pr, expressed in forms ∼ Raα Ekβ Prγ . For RRBC, under the
assumption that the heat flux is independent of ν and κ , a diffusion-free heat transfer
scaling law Nu ∼ Ra3/2 Ek2 Pr−1/2 can be derived (Stevenson 1979; Gillet & Jones 2006;
Julien et al. 2012a,b; Gastine, Wicht & Aubert 2016; Plumley et al. 2017; Plumley & Julien
2019; Aurnou, Horn & Julien 2020; Bouillaut et al. 2021). This relation is associated
with the geostrophic turbulence regime, where not only the heat flux but also the whole
system is independent of ν and κ (Schmitz & Tilgner 2009; Julien et al. 2012a; Plumley
et al. 2017; Guervilly et al. 2019; Bouillaut et al. 2021; Wang et al. 2021), following
the Kolmogorov energy cascade picture (Ahlers et al. 2009). Worldwide efforts over the
past decade have been devoted to achieving and verifying this diffusion-free Nu scaling
by designing increasingly taller rotating convection cells (Cheng et al. 2018; Ecke &
Shishkina 2023). This regime was also studied in a recent experiment where convection is
driven radiatively, with reduced models, and in DNS with free-slip boundary conditions
(BCs) (Julien et al. 2012a; Stellmach et al. 2014; Plumley et al. 2017; Bouillaut et al.
2021). There, to make the resolution and rotation rate manageable, the typical Ek value is
of the order of 10−7 at least, and Ra is of the order of 1012 at most. However, it is yet to be
seen whether this scaling can be achieved in experiments and DNS with the traditional lab
settings (no-slip BCs, the only option for most of the experiments).

In the limit of rapid rotation (Ek → 0), strong thermal forcing (Ra → ∞) and infinite
Pr, from the asymptotically reduced equations for Ra Ek8/5 = O(1), an upper bound

Nu ≤ 20.56(Ra/Rac)
3 ∝ R̃a3 was derived in Grooms & Whitehead (2015), where Rac is

the critical Ra for the onset of RRBC, and R̃a ≡ Ra Ek4/3. Here, Nu increases much faster
than in the regime of geostrophic turbulence. One comes to a similar scaling relation, for
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Figure 1. Convective heat transport Nu − 1 as a function Ra, for different Ek values and Pr = 1. All studied
cases correspond to the rotation-dominated regime of RRBC (the Rossby number is Ro � 1). One can see that
when Ra is sufficiently large and Ek sufficiently small, Nu − 1 scales as ∝Ra3 for relatively smaller values of
Ra, and as ∝Ra3/2 for larger Ra.

any Pr, under the assumption that the total vertical heat flux is independent of the fluid
layer depth L (but not of κ and ν as in the geostrophic turbulence regime). This assumption
immediately gives the scaling relations Nu ∝ Ra1/3 for the case of weak or no rotation
(Malkus 1954; Priestley 1959), and Nu ∝ R̃a3 for the case of rotation dominance, see e.g.
Boubnov & Golitsyn (1990) and King, Stellmach & Aurnou (2012). Although such scaling
of Nu with the control parameters was observed in some experiments and simulations
for no-slip BCs at the plates and periodic lateral BCs (King et al. 2012; Stellmach et al.
2014; Cheng et al. 2015; Cheng & Aurnou 2016; Julien et al. 2016; Aguirre Guzmán et al.
2021; Lu et al. 2021), the behaviour of Re and convective length scales in that regime
remains unclear. Also unclear is how this regime is connected to the regime of geostrophic
turbulence.

In this work, we present results of the DNS of RRBC for Pr = 1 and extreme parameter
range for Ra from 1.5 × 1010 to 3 × 1013, and Ek from 1.5 × 10−7 down to 5 × 10−9 (see
figure 1 for the parameter space). For the first time, we derive both geostrophic regimes
within a new unifying theoretical framework, achieve both regimes in our DNS, and show
the scaling relations for Nu and Re, the convective length scale, kinetic energy and thermal
dissipation rates in both regimes. The proposed scaling argument can be used as a simple
framework for deriving not only the heat transfer, but also the flow speed as well as
convective length scale scaling relations in different flow regimes in rotating convection.
The transition between the two regimes is seen in the scalings of all quantities; however,
the scaling with Ra and Ek of the convective bulk length scale 	 remains the same in both
regimes. Note that this transition between the two rotation-dominated regimes is of course
very different from the transition between the rotation dominance and the gravitational
buoyancy dominance in RRBC (Stevens, Clercx & Lohse 2013; Kunnen 2021; Ecke &
Shishkina 2023). For a discussion of the latter transition, we refer to (Ecke & Shishkina
2023, § 3.3).
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2. Numerical details

The Boussinesq approximation is used to describe RRBC of a fluid between two horizontal
plates, which is rotated with a constant angular velocity Ω around the vertical axis z,
under gravitational acceleration g = −gez, where ez is the vertical unit vector. The chosen
reference scales are the height of the domain L, the temperature difference between
the plates Δ, and the characteristic free-fall velocity Uff = √

gαTLΔ. Non-dimensional
temperature θ , velocity u, pressure p and time t are obtained using these scales. The
dimensionless governing equations for the incompressible fluid are ∇ · u = 0,

∂u
∂t

+ u · ∇u = −∇p +
√

Pr
Ra

∇2u + θez − 1
Ek

√
Pr
Ra

ez × u, (2.1)

∂θ

∂t
+ u · ∇θ = 1√

Ra Pr
∇2θ. (2.2)

No-slip boundaries and constant temperature conditions at the bottom and top plates
were applied. We consider periodic BCs in horizontal directions, to avoid the wall
modes in rapidly RRBC (Ecke, Zhong & Knobloch 1992; Herrmann & Busse 1993;
Favier & Knobloch 2020; Shishkina 2020; de Wit et al. 2020, 2023; Zhang et al. 2020;
Zhang, Ecke & Shishkina 2021; Ecke, Zhang & Shishkina 2022). To solve the governing
equations, an energy-conserving second-order finite-difference code AFiD was utilized
(Verzicco & Orlandi 1996; van der Poel et al. 2015; Zhu et al. 2018). The original code
was updated to include a Coriolis force term in the momentum equations to account
for system rotation. The code was parallelized using a two-dimensional pencil domain
decomposition strategy, allowing it to effectively handle large-scale computations (van
der Poel et al. 2015). In every studied case, the computational domain size is large
enough to capture the typical flow structures: specifically, the horizontal extension of the
domain is at least 20 times larger than the onset convective length scale 2.4 Ek1/3. The
computational grids are fine enough to the resolve Kolmogorov microscales in the bulk
and in the boundary layers (Shishkina et al. 2010). Thus the maximal value of the ratio
of the mesh size to the mean Kolmogorov microscale is always smaller than 2.2, even
for the highest Ra = 3.0 × 1013. There are always at least 10 grid points in each thermal
and viscous (Ekman) boundary layer. For example, at Ra = 3.0 × 1013, Ek = 5.0 × 10−9

with aspect ratio 0.125, Nz × Nx × Ny = 2048 × 1024 × 1024 grid points are used in the
vertical (Nz) and two horizontal (Nx, Ny) directions. Additionally, simulations lasting at
least 400 free-fall time units were performed to ensure that statistically steady flow states
are achieved. The convergence of the Nusselt numbers is checked for the entire domain. In
this study, the maximum relative errors of the Nusselt numbers calculated by five different
methods listed in Appendix A were less than 1 % (see table 3).

3. Results

In what follows, we assume that in any rotation-dominated regime, the dimensionless
convective heat transport is proportional to a power function of the supercriticality
parameter R̃a ≡ Ra Ek4/3 (see e.g. Julien et al. 2012a; Stellmach et al. 2014),

Nu − 1 ∝ R̃aξ
, (3.1)

with different exponents ξ in different regimes. First, we discuss relations that hold
in both studied rotation-dominated regimes and recall the rigorous relations for the
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time- and volume-averaged kinetic energy dissipation rate εu = 〈ν(∂iuj(x, t))2〉 and
thermal dissipation rate εθ = 〈κ(∂iθ(x, t))2〉 that hold in RRBC (Ahlers et al. 2009):

εu = (ν3/L4)(Nu − 1) Ra Pr−2, (3.2)

εθ = κ(Δ2/L2) Nu. (3.3)

We introduce u, θ and 	, which are the representative convective scales for, respectively,
the velocity, temperature and length. The total heat flux can be decomposed into a
conductive contribution κΔ/L and a convective contribution q that scales as q ∼ uθ . The
dimensionless convective heat flux then scales as

Nu − 1 ∼ q
κΔ/L

∼ uθ

κΔ/L
. (3.4)

Analogously, the total thermal dissipation rate εθ can be decomposed into a conductive
contribution κΔ2/L2 and a convective contribution ε̃θ , which scales as ε̃θ ∼ uθ2/	. This,
in combination with (3.3), gives

Nu − 1 ∼ ε̃θ

κΔ2/L2 ∼ θ2

Δ2
L
	

uL
ν

ν

κ
. (3.5)

Combining (3.4) and (3.5), we obtain 	/L ∼ θ/Δ, which together with (3.5) leads to

Nu − 1 ∼ θ2

Δ2
L
	

Re Pr ∼ 	

L
Re Pr. (3.6)

The same scaling relation (3.6) has also been applied to quasi-static magnetoconvection
(Bader & Zhu 2023). In a turbulent flow, εu scales as εu ∼ u3/	, which can also be
obtained from the Coriolis, inertia and Archimedean force balance (Landau & Lifshitz
1987; Gastine et al. 2016; Madonia et al. 2023). This, in combination with (3.2) and (3.6),
leads to

Re ∼ (	/L) Pr−1/2 Ra1/2, (3.7)

Nu − 1 ∼ (	/L)2 Pr1/2 Ra1/2. (3.8)

The dimensional convective bulk length scale 	 is diffusion-free in the geostrophic
turbulence regime, meaning that it is independent of ν and κ . If 	/L is thought of as
a product of power functions of Ra, Ek and Pr, then the requirement for 	/L to be
diffusion-free, i.e. 	/L ∝ ν0κ0, means that 	/L must scale as

	/L ∼ Raa Ek2a Pr−a (3.9)

for some value of a. From (3.8) and (3.9), it follows that

Nu − 1 ∝ R̃a2a+1/2 Ek(4a−2)/3. (3.10)

From (3.1) and (3.10), we derive a = 1/2 and ξ = 3/2, therefore the following relations
must be fulfilled:

	/L ∼ Ra1/2 Ek Pr−1/2, (3.11)

Nu − 1 ∼ Ra3/2 Ek2 Pr−1/2, (3.12)

Re ∼ Ra Ek Pr−1, (3.13)

(L4/ν3)εu ∼ Ra5/2 Ek2 Pr−5/2. (3.14)
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Note that a = 1/2 means that 	/L scales as the Rossby number Ro ≡ √
Ra/Pr Ek.

Equations (3.11)–(3.14) show that in the geostrophic turbulence regime, the dimensional
convective bulk length scale 	 and velocity scale νRe/L, the convective heat flux
κΔ/L(Nu − 1) and the dissipation rates are all diffusion-free; they all scale as ∝ ν0κ0.
Some of the scaling relations (3.11)–(3.13) for the geostrophic turbulence were proposed
in Aurnou et al. (2020); see also Sprague et al. (2006), Julien et al. (2012b), Plumley &
Julien (2019), Guervilly et al. (2019) and Ecke & Shishkina (2023). Previously, the scaling
relations for Nu, Re and 	 without diffusion effects were proposed independently through
various theories and analyses. Our scaling argument unifies the picture and suggests that all
three scaling relations (3.11)–(3.13) should hold simultaneously to characterize the system
as a geostrophic turbulence regime.

One can argue that 	 can be non-dimensionalized (without involving ν or κ) not only
with L but in another way, using e.g. αTΔg/Ω2 as the reference length. In that case
the diffusion-free length scale would imply 	/(αTΔg/Ω2) ∼ Rab Ek2b Pr−b for some b,
which is equivalent to 	/L ∼ Ra1+b Ek2b+2 Pr−1−b. Combining this with (3.8) and (3.1),
we derive that b = −1/2 and ξ = 3/2, and that the scaling relations for the geostrophic
turbulence, that is, (3.11)–(3.14), should hold anyway.

To verify the scaling relations (3.11)–(3.14), we have conducted DNS of RRBC in
domains with periodic lateral BCs, in order to avoid the effect of the wall modes (Rossby
1969; Favier & Knobloch 2020) or boundary zonal flows (Zhang et al. 2020; Wedi
et al. 2022). The studied cases in the DNS parameter range are unprecedented: Ra up
to 3 × 1013, and Ek down to 5 × 10−9. First, we verify that 	/L scales according to (3.11).
It is indeed fulfilled, since (	/L) Ra Ek scales as

(	/L) Ra Ek ∝ Ra3/2 Ek2 = R̃a3/2
. (3.15)

This is supported by the DNS data presented in figure 2(a). Here, following Guervilly,
Hughes & Jones (2014), Guervilly et al. (2019) and Maffei et al. (2021), we conduct the
two-dimensional (2-D) Fourier transforms of the instantaneous vertical velocity uz at the
mid-height, in order to evaluate 	/L as 	/L = ∑

kh
[ûz(kh) û∗

z (kh)]/
∑

kh
kh[ûz(kh) û∗

z (kh)],
where ûz(kh) and û∗

z (kh) are, respectively, the 2-D Fourier transforms of uz and its complex
conjugate, and kh ≡ (k2

x + k2
y)

1/2 is the horizontal wavenumber. The use of other quantities
to evaluate the convective length scale leads to similar results. Here, we also conduct
the 2-D Fourier transforms of the temperature fluctuations θ ′ = θ − 〈θ〉 to calculate the
convective length scale 	θ/L. As demonstrated in figure 3, the convective length scale
follows the scaling of Ra1/2 Ek in two regimes: one is the low Ra Ek4/3 ≤ 30 regime, and
the other is the high Ra Ek4/3 ≥ 80 regime.

As assumed in (3.1), Nu − 1 indeed behaves as a function of R̃a, since all data from
figure 1 follow a master curve when plotted versus R̃a; see figure 2(b). For large values of
R̃a, Nu − 1 scales according to (3.12), as expected. At R̃a ≈ 30, one observes a transition
to some other regime for lower R̃a, with a steeper growth of Nu.

To verify the theoretical predictions on the Re-scaling in the geostrophic turbulence
regime, we notice that Re Ek1/3 should scale as ∝ R̃a if relation (3.13) holds. Indeed, the
data in figure 2(c) support this scaling relation for large R̃a. Here, following Guervilly
et al. (2014, 2019), Gastine et al. (2016) and Maffei et al. (2021), in order to minimize the
impact from the large-scale vortices and properly characterize the amplitude of convective
bulk motions and evaluate Re, we use the vertical velocity uz as the typical velocity scale:

Re =
√

〈u2
z 〉 L/ν. Note that our DNS as well as previous DNS for periodic lateral BCs
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Figure 2. Dimensionless (a) convective length scale 	/L (multiplied by Ra Ek), (b) heat transport Nu − 1,
and (c) Re (multiplied by Ek1/3), as functions of R̃a, for all DNS data from figure 1. The DNS demonstrate
	/L ∼ Ro. (a) The inset shows 	/L, normalized by Ro. (b) The data for different Ek fall on one graph. For
larger R̃a, Nu − 1 scales as expected for the geostrophic turbulence regime, i.e. Nu − 1 ∝ R̃a3/2 (solid line),
while for smaller R̃a, one observes a transition to a regime with Nu − 1 ∝ R̃a3 (dashed line). In the inset, the
same data are presented in a compensated way, where the normalization is chosen according to the best fit of
the data for Ek = 5 × 10−9 and large values of Ra, Nu − 1 ∝ Ra1.45±0.05. (c) For larger R̃a, Re scales almost
as expected for the geostrophic turbulence regime: Re ∝ Ra Ek (solid line), while for smaller R̃a, it scales
as Re ∝ Ra5/2 Ek3 (dashed line). In the inset, Re, normalized by its scaling in the geostrophic diffusion-free
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fluctuations, and (b) its compensation with Ra1/2 Ek as a function of Ra Ek4/3. Symbols have the same
meanings as in figure 1.

show formation of large-scale vortices in the geostrophic turbulence regime, which is
also associated with an additional increase of Re for larger R̃a (Julien et al. 2012a,b; de
Wit et al. 2022). Thus all shown scalings of 	/L, Nu − 1 and Re for large R̃a follow the
predictions (3.11)–(3.13) for the geostrophic turbulence regime.

In order to quantify the quality of the agreement between the derived diffusion-free
scaling relations and the DNS data, we fit the exponents of the heat transport scaling
Nu − 1 ∝ Raα Ek2, the velocity scaling Re ∝ Raβ Ek, and the convective length scale
scaling 	/L ∝ Raγ Ek, based on different Ra ranges of data points for Ek = 5 × 10−9.
The results are listed in table 1. As demonstrated in table 1, with 95 % confidence, the heat
transport scaling exponent α ranges from 1.42 to 1.48, the momentum transport scaling
exponent β ranges from 1.16 to 1.18, and the convective length scale scaling exponent γ

ranges from 0.46 to 0.70, with variant fitting data points. The values of the exponents α

and β do not change much with the changing number of the fitting data points, while the
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Theory — α = 1.5 β = 1.0 γ = 0.5

Points Ra range α range β range γ range

4 8.0 × 1012–1.5 × 1013 1.42 ± 0.05 1.17 ± 0.14 0.70 ± 0.5
5 8.0 × 1012–2.0 × 1013 1.47 ± 0.09 1.18 ± 0.07 0.62 ± 0.26
6 8.0 × 1012–2.3 × 1013 1.48 ± 0.06 1.18 ± 0.06 0.50 ± 0.25
7 8.0 × 1012–3.0 × 1013 1.45 ± 0.05 1.16 ± 0.04 0.46 ± 0.18

Table 1. The theoretical and least squares fit exponents of Nu − 1 ∝ Raα Ek2, Re ∝ Raβ Ek and 	/L ∝ Raγ Ek
of the geostrophic turbulence regime. The least squares fit is conducted at the smallest Ek = 5 × 10−9, with
different data points, with 95 % confidence. The first data point is chosen at Ra = 8.0 × 1012, where the
geostrophic turbulence regime begins to set in.

value of the exponent γ is quite sensitive to the fitting Ra range, and it seems to converge
to the predicted theoretical value when fitting with more data points.

But what is the regime of a steeper growth of Nu − 1 and Re that we observe for smaller
R̃a (R̃a � 30) in figure 2? How can we understand its scaling relations theoretically?

For any given Ek, with decreasing R̃a, the flow should gradually laminarize, and
the εu-scaling should undergo transition to the scaling εu ∼ νu2/	2. This relation, in
combination with (3.2) and (3.6), leads to

Re ∼ (	/L)3 Pr−1 Ra, (3.16)

Nu − 1 ∼ (	/L)4 Ra. (3.17)

The DNS data show that in this regime of lower R̃a, the convective bulk length scale 	/L is
also proportional to Ra1/2 Ek; see figure 2(a). From this, (3.17) and (3.1), we obtain ξ = 3,
meaning a steeper growth of Re and Nu with increasing R̃a:

	/L ∝ Ra1/2 Ek, (3.18)

Nu − 1 ∝ Ra3 Ek4, (3.19)

Re ∝ Ra5/2 Ek3, (3.20)

(L4/ν3)εu ∝ Ra4 Ek4. (3.21)

The steep Nu-scaling (3.19) was derived in Boubnov & Golitsyn (1990), where the
marginal thermal boundary layer instability in rotating convection was considered. The
steep heat transfer scaling Nu − 1 ∼ Ra3 Ek4 can be considered as an asymptotic scaling
relation in RRBC. Recently, Grooms & Whitehead (2015) derived from the asymptotically
reduced equations for Ra Ek8/5 = O(1) in the limit of rapid rotation Ek → 0 and strong
thermal forcing Ra → ∞, that there exists an upper bound on the heat transport in RRBC:
Nu ≤ 20.56 Ra3 Ek4 for an infinite Prandtl number Pr → ∞. A similar scaling relation
was derived by King et al. (2012) via the marginal thermal boundary layer instability
criterion, which can be viewed as an asymptotic state where the destabilising effect
of buoyancy and stabilising effect of rotation are balanced at the edge of a thermal
boundary layer. As demonstrated here, in the steep heat transfer regime, the kinetic energy
dissipation rate εu is viscous-dependent when the flow is not fully turbulent.

Hence it is noteworthy that the present scaling argument provides a unified
framework to derive both the geostrophic turbulence and steep heat transport scaling
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(a) (b)
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0.02 –0.04 0.04

Figure 4. The thermal fluctuations (θ − 〈θ〉A)/Δ illustrate (a) the Taylor columns at Ra = 2.5 × 1012, and
(b) geostrophic turbulence at Ra = 1013, in these two regimes for Ek = 5 × 10−9. Here, 〈·〉A denotes the average
in time and over any horizontal cross-section A. For clarity, the domains are stretched horizontally by a factor
8 (see also the supplementary movies available at https://doi.org/10.1017/jfm.2024.249).

regimes of rapidly RRBC. Thus we propose that with decreasing R̃a, the regime of
geostrophic turbulence, (3.11)–(3.14), should undergo transition to another scaling regime,
(3.18)–(3.21), and in both regimes, (3.18) should hold. And indeed, our DNS data fully
support this. For smaller R̃a, Nu − 1 follows the relation (3.19), while for larger R̃a, it
scales according to (3.12); see figure 2(b). The theory says that Re Ek1/3 should scale as

∝ R̃a in the geostrophic turbulence regime (3.13), and as ∝ R̃a5/2 in the other regime
(3.20), and indeed, the data in figure 2(c) support these scaling relations. Moreover,
as elucidated in Appendix B, all the derived scaling relations for εu and ε̃θ also hold
in both regimes. The typical flow structures in these two scaling regimes are shown in
figure 4; they are Taylor columns and geostrophic turbulence, respectively. Obviously, the
flows are dominated by the vertically aligned structures: columns and plumes. In contrast
to non-rotating Rayleigh–Bénard convection, where a large-scale circulation spans the
bottom and top walls in the flow field, the flow displays convective motions that have
much smaller length scales compared to the domain size.

To quantify the quality of the agreement between the derived steep heat transport
scaling relations and the DNS data, we also fit the exponents of the heat transport scaling
Nu − 1 ∝ Raα Ek4, the velocity scaling Re ∝ Raβ Ek3, and the convective length scale
scaling 	/L ∝ Raγ Ek, based on different Ra ranges of data points for Ek = 5 × 10−9.
The results are listed in table 2. With 95 % confidence, the heat transport scaling exponent
α ranges from 3.00 to 3.33, the momentum transport scaling exponent β ranges from 2.17
to 2.29, and the convective length scale scaling exponent γ ranges from 0.35 to 0.45, with
variant fitting data points. As compared to the geostrophic turbulence regime, the value of
the exponent α here is more sensitive to the fitting Ra range, but it gradually decreases to
the predicted value when fitting with more data points. The values of the exponents β and
γ do not differ much for different numbers of the fitting data points; they stay close to the
predicted values.

It should be noted that near the onset of steady convection, the linear instability
analysis gives the onset convective length scale 	/L ∼ 4.8154 Ek1/3 = Lc for Pr ≥
0.68 (Chandrasekhar 1953). As demonstrated in figure 5, the convective length scales
calculated for the vertical velocity and temperature fluctuations at smaller values of
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Theory — α = 3.0 β = 2.5 γ = 0.5

Points Ra range α range β range γ range

4 1.5 × 1012–2.1 × 1012 3.33 ± 0.24 2.29 ± 0.19 0.35 ± 0.26
5 1.5 × 1012–2.3 × 1012 3.27 ± 0.17 2.28 ± 0.09 0.40 ± 0.18
6 1.5 × 1012–2.5 × 1012 3.21 ± 0.16 2.26 ± 0.07 0.45 ± 0.14
7 1.5 × 1012–3.0 × 1012 3.00 ± 0.28 2.17 ± 0.13 0.45 ± 0.09

Table 2. The theoretical and least squares fit exponents of Nu − 1 ∝ Raα Ek4, Re ∝ Raβ Ek3 and 	/L ∝
Raγ Ek of the steep heat transport regime. The least squares fit is conducted at the smallest Ek = 5 × 10−9,
with different data points, with 95 % confidence. The last data point is chosen at Ra = 3.0 × 1012, where the
steep heat transport regime undergoes transition to the other regime.
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Figure 5. Dimensionless (a) convective length scale 	/L and (b) convective length scale 	θ /L compensated
with the onset length scale of Ek1/3 as a function of Ra Ek4/3.

the supercriticality parameter do show a trend towards the onset length scale ∼Ek1/3.
However, the compensated value converges to about 7 at the lowest studied value of the
supercriticality parameter, which is slightly larger than the predicted value 4.8 for the onset
wavelength. However, as demonstrated in Appendix C, the convective length scale 	/L
used in figure 2(a) is very close to the onset length scale for the range of Ra Ek4/3/8.7 ≤ 2.
In addition, as demonstrated in table 2, the scaling of the convective length scale gradually
deviates from Ra1/2 and changes into Ra0.35 for the lower Ra range. This result is quite
close to Ra0.38 as reported by Madonia et al. (2021) (close to onset regime), who calculated
the length scale based on the autocorrelation function of the vertical velocity. To this
end, the convective length scale study conducted here clearly demonstrates that different
definitions of the length scale can significantly affect the scaling results.

4. Conclusions

To sum up, based on our DNS of RRBC for extreme Ra and Ek, we have verified for the
first time the existence and all the heat and momentum transport as well as the convective
length scale (3.11)–(3.14) for the geostrophic turbulence regime. Furthermore, we have
shown that this regime is connected to another rotation-dominated regime, (3.18)–(3.21),
which can be achieved from geostrophic turbulence regime by decreasing the thermal
driving (Ra), while keeping constant rotation (Ek). The principle difference between the
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two regimes is the different scaling of the kinetic energy dissipation rate: it is turbulent
in one case and laminar in the other. Based on this conceptual framework, we proposed a
scaling theory that unifies the two geostrophic regimes in RRBC. This theory can also be
applied to derive scaling regimes in e.g. magnetoconvection while considering the Ohmic
dissipation caused by the magnetic field.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.249.
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Appendix A. Numerical parameters and grid resolutions

Three-dimensional DNS are performed for a broad parameter range with the Rayleigh
number in 1.5 × 1010 ≤ Ra ≤ 3 × 1013, Ekman number within 5 × 10−9 ≤ Ek ≤ 1.5 ×
10−7, and Prandtl number Pr = 1. The DNS are conducted in domains with no-slip top
and bottom as well as periodic lateral BCs, in order to avoid the effect of the wall modes
(Rossby 1969; Favier & Knobloch 2020) or boundary zonal flows (Zhang et al. 2020; Wedi
et al. 2022). The full characterization of the DNS parameters is presented in table 3.

No. Ra Re Nu Error Nz × Nx × Ny

Ek = 1.5 × 10−7, Γ = 0.5
1 1.5 × 1010 305.84 2.60 0.69 % 512 × 1024 × 1024
2 1.7 × 1010 412.91 3.64 0.92 % 512 × 1024 × 1024
3 2.0 × 1010 694.28 5.76 0.43 % 576 × 1152 × 1152
4 2.3 × 1010 972.31 8.85 0.61 % 576 × 1152 × 1152
5 2.6 × 1010 1263.31 12.14 0.65 % 576 × 1152 × 1152
6 3.0 × 1010 1574.80 15.58 0.62 % 576 × 1152 × 1152
7 4.0 × 1010 2185.96 21.51 0.74 % 576 × 1152 × 1152
8 5.0 × 1010 2613.29 25.35 0.68 % 576 × 1152 × 1152
9 7.0 × 1010 3523.38 34.38 0.68 % 576 × 1152 × 1152

Ek = 5.0 × 10−8, Γ = 0.25
10 7.0 × 1010 557.91 2.85 0.77 % 640 × 480 × 480
11 8.0 × 1010 766.67 4.05 0.20 % 640 × 480 × 480
12 9.0 × 1010 1023.97 5.72 0.49 % 640 × 480 × 480
13 1.0 × 1011 1312.23 7.75 0.75 % 640 × 480 × 480
14 1.1 × 1011 1581.56 9.67 0.59 % 768 × 576 × 576
15 1.2 × 1011 1837.88 11.57 0.48 % 768 × 576 × 576

Table 3. For caption see next page.
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No. Ra Re Nu Error Nz × Nx × Ny

16 1.3 × 1011 2154.65 13.81 0.88 % 769 × 576 × 576
17 1.5 × 1011 2611.26 17.03 0.48 % 768 × 576 × 576
18 2.0 × 1011 3467.87 22.43 0.49 % 768 × 768 × 768
19 3.0 × 1011 5024.47 32.66 0.69 % 768 × 768 × 768

Ek = 1.5 × 10−8, Γ = 0.25
20 3.3 × 1011 674.93 2.29 0.09 % 768 × 768 × 768
21 4.0 × 1011 1052.84 3.55 0.53 % 768 × 768 × 768
22 4.3 × 1011 1234.60 4.25 0.80 % 768 × 768 × 768
23 5.0 × 1011 1758.75 6.38 0.61 % 768 × 768 × 768
24 5.5 × 1011 2141.51 8.14 0.37 % 768 × 768 × 768
25 6.0 × 1011 2584.87 10.09 0.86 % 768 × 768 × 768
26 7.0 × 1011 3338.80 13.49 0.33 % 768 × 768 × 768
27 8.0 × 1011 4019.77 16.52 0.97 % 864 × 864 × 864
28 1.0 × 1012 5044.37 20.75 0.70 % 960 × 960 × 960
29 1.5 × 1012 7417.18 31.03 0.50 % 960 × 960 × 960
30 2.0 × 1012 10 059.86 44.16 0.30 % 960 × 960 × 960
31 3.0 × 1012 15 946.86 76.32 0.40 % 960 × 960 × 960
32 5.0 × 1012 27 142.35 147.80 0.36 % 1280 × 1280 × 1280

Ek = 5.0 × 10−9, Γ = 0.125
33 1.5 × 1012 1007.03 2.37 0.43 % 960 × 480 × 480
34 1.7 × 1012 1339.29 3.10 0.43 % 960 × 480 × 480
35 2.0 × 1012 1969.28 4.64 0.43 % 960 × 480 × 480
36 2.1 × 1012 2153.16 5.17 0.61 % 960 × 480 × 480
37 2.3 × 1012 2674.97 6.54 0.45 % 960 × 480 × 480
38 2.5 × 1012 3179.17 8.02 0.68 % 960 × 480 × 480
39 3.0 × 1012 4444.58 11.73 0.61 % 960 × 480 × 480
40 4.0 × 1012 6538.48 17.88 0.90 % 960 × 480 × 480
41 5.0 × 1012 8123.64 22.30 0.58 % 960 × 480 × 480
42 6.0 × 1012 9730.18 27.13 0.15 % 960 × 480 × 480
43 8.0 × 1012 13 097.65 38.07 0.66 % 960 × 480 × 480
44 1.0 × 1013 16 720.54 51.44 0.50 % 1024 × 512 × 512
45 1.3 × 1013 22 567.14 74.42 0.79 % 1024 × 512 × 512
46 1.5 × 1013 27 404.78 91.45 0.68 % 1536 × 768 × 768
47 2.0 × 1013 38 549.57 144.19 0.23 % 2048 × 1024 × 1024
48 2.3 × 1013 44 739.22 175.82 0.50 % 2048 × 1024 × 1024
49 3.0 × 1013 59 640.19 245.06 0.42 % 2048 × 1024 × 1024

Table 3. Summary of the quantities in the present DNS of RRBC. All simulations are performed at Pr = 1.
Here, Ra is the Rayleigh number, Re is the Reynolds number, Ek is the Ekman number, and Γ = D/L
is the aspect ratio, where D is the horizontal period and L is the domain height. The averaged Nusselt
number Nu is calculated from the Nu values evaluated in five different ways: at the bottom and top plates,
by volume-averaging, from the kinetic energy, and from thermal dissipation rates. The ‘Error’ denotes the
maximum relative error between each two of these values. The last column represents the grid mesh sizes used
in the vertical (Nz) and two horizontal (Nx, Ny) directions.

Appendix B. Dissipation rates scaling regimes

As the dissipation rates and their scaling relations in the main text are fundamental blocks
to our theoretical derivations, we show both the kinetic energy and thermal dissipation
rates as functions of Ra Ek4/3 in figure 6. Specifically, the kinetic energy dissipation rate
should scale as (3.14) in the geostrophic turbulence regime, and (3.21) in the steep heat
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Figure 6. The dependence on R̃a of the time- and volume-averaged (a,b) kinetic dissipation rate εu, and
(c,d) convective thermal dissipation rate ε̃θ ≡ εθ − κΔ2/L2. (a) For larger R̃a, εu scales as expected for the
geostrophic turbulence regime: εu ∝ Ra5/2 Ek2 (solid line), while for smaller R̃a, it scales as εu ∝ Ra4 Ek4

(dashed line). (b) Here, εu is normalized by Ra5/2 Ek2. (c) For larger R̃a, ε̃θ scales as expected for the
geostrophic turbulence regime, ε̃θ ∝ Ra3/2 Ek2 (solid line), while for smaller R̃a, it scales as ε̃θ ∝ Ra3 Ek4

(dashed line). (d) Here, ε̃θ is normalized by Ra3/2Ek2. Symbols have the same meanings as in figure 1.

transport regime, respectively. As demonstrated in figures 6(a,b), these two derived scaling
relations for εu are verified in both regimes. On the other hand, for the convective thermal
dissipation rate, it is supposed to follow the same equations as for Nu − 1, i.e. (3.12) in the
geostrophic turbulence regime, and (3.19) in the steep heat transport regime, respectively.
To this end, as shown in figures 6(c,d), these two scaling relations for ε̃θ are also verified
in both regimes.

Appendix C. Approach to the onset length scale

In order to further demonstrate how the current results approach the actual onset
wavelength, following the procedure of Nieves, Rubio & Julien (2014) and Madonia et al.
(2021), we calculate the spatial autocorrelation function of the vertical velocity at the
middle height (z = 0.5) as follows

Corr(�x) = 〈u′
z(x, t) u′

z(x + �x, t)〉
〈u′2

z (x, t)〉 . (C1)

Here, u′
z is the fluctuation part of the vertical velocity uz, and �x is the separate spatial

distance in the horizontal directions (x or y). When we calculate the autocorrelation
function in the x (y) direction, 〈·〉 denotes the average in the y (x) direction (i.e. in
another horizontal direction). Actually, the autocorrelation functions in the two horizontal
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Figure 7. (a) Spatial (x direction) autocorrelation function of vertical velocity for the lowest Ra for different
Ek. (b) Spatial (x direction) autocorrelation function of vertical velocity for different Ra at Ek = 5 × 10−9.

directions show very similar results. As demonstrated in figure 7(a), for the lowest Ra
for each Ek, the autocorrelation functions show distinguished extrema for separate spatial
distances, especially for �x/Lc ≤ 2. Specifically, according to Nieves et al. (2014), the first
maximum in the autocorrelation signals occurs at the critical length scale (�x/Lc ≈ 1),
which is also observed in the current dataset. Consistent with Nieves et al. (2014), the
autocorrelation function calculated by temperature fluctuation displays very similar results
as for the vertical velocity (not shown here). On the other hand, at constant Ek, as depicted
in figure 7(b) with increasing Ra, the autocorrelation function gradually smoothes out and
the peaks are not distinguishable. This impedes attempts to use this method to quantify
the convective length scale for high Ra Ek4/3 at plumes and geostrophic turbulence
regimes. Nevertheless, based on the autocorrelation function, the locations at the first
maximum/minimum or the zero values have been used to quantify the typical convective
length scale. In the study of Madonia et al. (2021), the length scales calculated by different
quantities with different locations displayed very different scaling relations. For the plumes
and geostrophic turbulence regimes (Ra/Rac > 5), the length scale defined by the spatial
autocorrelations of the vertical velocity (the first zero location) shows a scaling of Ra0.38,
while the length scale calculated by the integral of the autocorrelation function seems
to have a different scaling behaviour. For the lower supercriticality (Ra/Rac ≤ 5) at the
columnar regime, both length scales seem to be constant.

In figure 8, we show the convective length scale evaluated by the first
minimum/maximum value locations (marked as an orange square/purple circle in
figure 7a) in the autocorrelation functions of the vertical velocity. But we show only
the results for Ra Ek4/3/8.7 ≤ 2 where these peaks are distinguished. For 	min/L in
figure 8(a), the compensated value is approximately 3 and remains constant in the range
Ra Ek4/3/8.7 ≤ 2. This implies that the length scale 	min/L follows the onset length scale
very well in this range. If we choose the first maximum value location to evaluate the
length scale, then the compensated value of 	max/L in figure 8(b) increases slightly from 5
to 6.5 for the range Ra Ek4/3/8.7 ≤ 2. This value is very close to the compensated value 7
of length scale 	/L calculated by the spectra method (see figure 5a), where the ensemble
integral operation is used. This demonstrates clearly that different definitions of the length
scale can significantly affect the scaling results. Hence the convective length scale 	/L
used in figure 2(a) is very close to the onset length scale for the range Ra Ek4/3/8.7 ≤ 2.
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Figure 8. Dimensionless convective length scale (a) 	min/L and (b) 	max/L compensated with Ek1/3 as a
function of Ra Ek4/3/8.7 for Ra Ek4/3/8.7 ≤ 2. Here, 	min/L is evaluated by the average of the first minimum
value locations (marked as an orange square in figure 7a) in the x and y autocorrelation functions of vertical
velocity; 	max/L is evaluated by the average of the first maximum value locations (marked as a purple circle in
figure 7a) in the x and y autocorrelation functions of vertical velocity.
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