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Recent experiments demonstrated the emergence of regular mesoscopic patterns when liquid droplets
form in an elastic gel after cooling. These patterns appeared via a continuous transition and were smaller in
stiffer systems. We capture these observations with a phenomenological equilibrium model describing the
density field of the elastic component to account for phase separation. We show that local elasticity theories
are insufficient, even if they allow large shear deformations. Instead, we can account for key observations
using a nonlocal elasticity theory to capture the gel’s structure. Analytical approximations unveil that the
pattern period is determined by the geometric mean between the elastocapillary length and a nonlocality
scale. Our theory highlights the importance of nonlocal elasticity in soft matter systems, reveals the
mechanism of this mesoscopic pattern, and will improve the engineering of such systems.
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I. INTRODUCTION

Phase separation in elastic media is a ubiquitous phe-
nomenon, which is relevant in synthetic systems to control
micropatterning [1–3] and in biological cells, where drop-
lets are embedded in the elastic cytoskeleton or chromatin
[4–6]. While biological systems are typically dynamic and
involve active processes, the simpler synthetic systems can
exhibit stable regular structures. These patterns harbor
potential for metamaterials and structural color, particularly
since they are easier to produce and manipulate than
alternatives like self-assembly by block copolymers [7]
or chemical cross-linking [8]. In these applications, it is
crucial to control the length scale, the quality, and the
stability of the pattern.
Recent experiments found stable regular mesoscopic

patterns and demonstrated remarkable control over these
structures [1]. However, the mechanism underlying their
formation is unclear, complicating further optimization.
The experiment proceeds in two steps [Fig. 1(a)] [1]. First,
a polydimethylsiloxane gel is soaked in oil at high
temperatures for tens of hours until the system is equili-
brated. When the temperature is lowered in the second
step, the sample develops bicontinuous structures, remi-
niscent of spinodal decomposition. However, in contrast
to spinodal decomposition, the length scale of the

structure does not coarsen but stays arrested at roughly
1–10 μm, depending on the gel’s stiffness. Interestingly,
this transition is reversible and the pattern disappears upon
reheating, suggesting a continuous phase transition.
Moreover, the resulting pattern is independent of the
cooling rate, in contrast to earlier experiments on similar
materials [3,9]. Consequently, the experiments might be
explainable by an equilibrium theory that captures elastic
deformations in the polydimethylsiloxane gel due to oil
droplets formed by phase separation.
The experimental observations are reminiscent of micro-

phase separation, e.g., observed in block copolymers
[11,12] and interpenetrating polymer networks [13,14].
However, phase transitions in such models are typically
first order, e.g., in the seminal Ohta-Kawasaki model [15].
Moreover, in these theories, the size of the involved
molecules is similar to the size of the patterns they form,
whereas the patterns in the experiment are much larger than
the oil molecules and the typical mesh size of the elastic gel
[1]. Alternatively, spinodal decomposition of a phase
separating system augmented with elasticity might describe
the experiments [1]. However, typical local elasticity theory
can only account for slowed coarsening [16,17], and we
will show that it does not yield stable equilibrium patterns.
Consequently, these conventional models cannot explain
the qualitative features of the experiments.
In this paper, we propose an equilibrium theory that

explains the experimental observations [1]. Using a phe-
nomenological approach, we describe the system by a
continuous density field of the elastic component to
describe phase separation and elastic deformations with
a single free energy. We show that local elastic theories,
based on the deformation gradient tensor, cannot account
for equilibrium patterns. Consequently, we consider a
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higher order of the phenomenological approximation,
yielding a nonlocal elasticity theory that takes into account
the structure of the gel [18–22]. We find a continuous phase
transition to a mesoscopic patterned phase, consistent with
experimental observations. We predict that the equilibrium
period is governed by the geometric mean between the
elastocapillary length and the nonlocality scale, which
captures the stiffness dependence of the experimentally
observed pattern length scale.

II. RESULTS

We aim to explain the experimental results [1] using a
phenomenological equilibrium theory for an isothermal
system. We thus define a free energy comprising entropic
and enthalpic contributions that can induce phase sepa-
ration as well as contributions from elastic deformation.
While the former contributions can be captured by the
volume fraction density ϕðxÞ defined in lab coordinates x,
deformations are described by the deformation gradient
tensor FðXÞ ¼ dx=dX, which quantifies how material
points at position x have been moved from the reference
positions X where the gel is undeformed. Note that
volume conservation implies detðFÞ ¼ ϕ0=ϕ, where ϕ0

denotes the fraction in the relaxed homogeneous initial
state [16].

A. Local elasticity models cannot explain periodic
equilibrium patterns

We start by investigating a broad class of elastic models,
where the elastic energy density is only a function of the
deformation gradient tensor F. The free energy F of the
entire system can then be expressed as

Flocal½F;ϕ� ¼
kBT
ν

Z
½felðFÞ þ f0ðϕÞ þ κj∇ϕj2�dx; ð1Þ

where kB is Boltzmann’s constant, T is the constant
absolute temperature of the system, and ν is a relevant
molecular volume, e.g., of the solvent molecules. In the
integral, the first term captures the elastic energy, f0
accounts for molecular interactions and translational
entropy associated with ordinary phase separation, while
the last term proportional to the positive parameter κ
penalizes volume fraction gradients, thus causing surface
tension [23,24]. Equilibrium states then correspond to
functions ϕðxÞ and FðXÞ that minimize Flocal and obey
the compatibility constraint and volume conservation.
Can local elasticity models permit periodic equilibrium

states? To test this, we assume that such a state, described by
periodic functions ϕ�ðxÞ and F�ðxÞ, exists. We then show
that scaling this state by a factor λ > 1 in all spatial directions,
ϕ�ðλ−1xÞ, lowers the free energy Flocal given by Eq. (1),
implying that it could not have been an equilibrium state.
While we present the mathematical details in the
Supplemental Material [10], the gist of the argument can

be seen by considering the free-energy density f̄ ¼ Flocal=V
of a unit cell of volumeV of the periodic pattern. Scaling does
not affect the contribution of the second integrand inEq. (1) to
f̄, precisely because it averages a local function over one
period. Similarly, the first integrand stays invariant since the
scaling factor λ affects the lab coordinates x and the reference
coordinates X equally, so the values of the deformation
gradient tensor F ¼ dx=dX are invariant and the scaled
tensor field reads F�ðλ−1xÞ. In contrast, the last term
contributes less for the scaled pattern since scaling reduces
the gradient term to λ−1∇ϕ�, consistent with a lower penalty
for shallower interfaces. Taken together, we thus showed that
the free energyof anyperiodic state can be reducedby scaling,
implying such states cannot be at equilibrium and instead
would eventually evolve toward longer length scales. In
essence, this is because only the interfacial parameters κ
carries dimensions of length whereas length scales associated
with the structural details of the elastic material do not appear
in local elastic theories.

B. Mesh structure suggests nonlocal
elasticity theory

Realistic elastic meshes exhibit length scales like the
mesh size (∼10 nm [22,25,26]) and correlation lengths
of spatial heterogeneities (∼100 nm [27–29]), which
are comparable to the pattern length scale (several
100 nm to several micrometers [1]). We thus hypothesize
that a characteristic length of the mesh is key for
explaining the observed patterns. Such a characteristic
length can be systematically included in our phenom-
enological theory by expanding the elastic energy in
terms of the displacement field; see Sec. III of the
Supplemental Material [10]. This approach generically
leads to nonlocal elasticity theory, where a nonlocality
scale ξ quantifies at what length scale nonlocal effects
become relevant [18–22].
The origin of nonlocal elasticity theory can be illustrated

in the simple case where the elastic mesh is described
as a collection of elastic elements; see Fig. 1(b). These
elements can represent either molecules forming the mesh
or structures on the larger correlation length scale of
heterogeneities. In any case, the elastic elements connect
material points separated by a finite distance, implying the
stress at a particular material point results from summing
over the interactions with all connected material points.
Consequently, stresses are never strictly local, and the
associated elastic energy cannot be expressed as a local
function of the strain. Instead, in a continuous field theory,
the nonlocal stress is expressed as a convolution [18,21].
The familiar local elasticity theory then emerges as a
limiting case when considering phenomena on scales large
to the nonlocality scale ξ.
To develop a simple description of phase separation with

nonlocal elasticity, we focus on one-dimensional systems,
where the deformation of the elastic mesh is captured by the

QIANG, LUO, and ZWICKER PHYS. REV. X 14, 021009 (2024)

021009-2



scalar strain ϵ, which is directly connected to the only
component Fxx of the deformation gradient tensor,
ϵ ¼ Fxx − 1. Volume conservation then implies

ϵðXÞ ¼ ϕ0

ϕðXÞ − 1; ð2Þ

where the fraction ϕðxÞ in the lab frame follows from the
coordinate transform dx=dX ¼ ϵðXÞ þ 1. This connection
between strain ϵ and volume fraction ϕ permits a theory in
terms of only one scalar field in this one-dimensional case.
Using a simple linear elastic model for the local stress,
σ ¼ Eϵ with elastic modulus E, we obtain the nonlocal
stress,

σnonlocalðXÞ ¼ E
Z

ϵðX0ÞgξðX0 − XÞdX0; ð3Þ

where we choose a Gaussian convolution kernel [21,30],

gξðXÞ ¼
ffiffiffiffiffiffiffi
2

πξ2

s
exp

�
−
2X2

ξ2

�
; ð4Þ

with a characteristic length ξ, which quantifies the non-
locality scale of the mesh [18,21,30]. This nonlocal model
can also be derived more rigorously, either generically (see
Supplemental Material [10]) or from a more explicit model
[18,31]. Note that the convolution is performed in the
reference frame since the topology of the network, gov-
erning which material points interact with each other, is
determined in this unperturbed state. The elastic energy
density is then given by the product of strain and nonlocal
stress, so the free energy of the entire system reads

Fnonlocal½ϕ� ¼
1

2

Z
ϵðXÞσnonlocalðXÞdX

þ kBT
ν

Z
½f0ðϕÞ þ κð∇ϕÞ2�dx; ð5Þ

where the first term captures the nonlocal elastic energy
expressed in the reference coordinatesX, whereas the second
term describes the free energy associated with phase sepa-
ration, expressed in lab coordinates x.We capture the essence
of phase separation using a Flory-Huggins model for the
local free-energy density [32–34],

f0ðϕÞ ¼ ϕ logϕþ ð1 − ϕÞ logð1 − ϕÞ þ χϕð1 − ϕÞ; ð6Þ

where 1 − ϕ is the solvent fraction. Here, the first two
terms capture entropic contributions, while the last term
describes the interaction between the elastic and solvent
component, quantified by the Flory parameter χ. Taken
together, Eqs. (2)–(6) define the free energy Fnonlocal as a
functional of the fraction ϕ of the elastic component.

C. Nonlocal elasticity enables periodic
equilibrium patterns

We start by analyzing equilibrium states of the model
by determining profiles ϕðxÞ that minimize Fnonlocal using
a numerical scheme described in the Supplemental
Material [10]. Here, we use the nonlocality scale ξ as
the length unit and kBT as the fundamental unit of energy.
Consequently, we consider interfacial parameters κ < ξ2

since the interfacial width, which is typically of molecular
size, should be smaller than ξ. Our choice of the stiffness
E is directly motivated by experimentally measured
moduli, which are on the order of 100 kPa. Using these
parameters, we find typical macroscopic phase separation,
but also periodic patterns for some parameter sets; see
Fig. 1(c) herein and Fig. S1 in Supplemental Material
[10]. In soft systems (small stiffness E), dilute regions,
corresponding to solvent droplets, alternate with dense
regions, where the elastic mesh is hardly strained (ϵ ≪ 1).
In contrast, harmonic profile can emerge for stiff systems
(large E). Taken together, the nonlocal elastic theory
supports periodic patterns that qualitatively resemble
the patterns observed in experiments [1].

(a)

(b) (c)

FIG. 1. Nonlocal elasticity yields regular equilibrium patterns.
(a) Schematic picture of the experiment [1]: A relaxed elastic gel
is swollen in a solvent at high temperature; after cooling, a regular
pattern emerges. (b) Schematic of a network of elastic elements
(curly lines) connecting material points (red dots). Arrows
indicate the displacement of material points from the reference
state (transparent, positions X) to the deformed state (opaque,
positions x). The energy of the highlighted elastic element
depends on the distance between the two connected points,
revealing its nonlocal nature. Coarse graining this system yields
the nonlocal convolution kernel (blue density), whose size ξ is
roughly given by the length of the elastic elements. Note that the
elastic elements need not correspond to molecules, but could
capture the interaction of dense mesh regions since realistic
meshes are heterogeneous. (c) Equilibrium profiles ϕðxÞ for
various stiffnesses E and interaction parameters χ for ϕ0 ¼ 1,
ϕ̄ ¼ 0.5, and κ ¼ 0.05ξ2. Profiles were obtained by numerically
minimizing Fnonlocal; see Supplemental Material [10].
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To understand when periodic patterns form, we next
investigate the simple case where components can freely
exchange with a surrounding reservoir kept at fixed
chemical potential μ; see Supplemental Material [10].
This situation allows solvent molecules to rush in and
out of the system, adjusting the average fraction ϕ̄ of the
elastic component. Figure 2 shows two phase diagrams of
this grand-canonical ensemble at different stiffnesses E. In
the soft system [Fig. 2(a)], the phase diagram mostly
resembles that of ordinary phase separation: For weak
interactions (χ < 2), we find only a homogeneous phase
and μ simply controls ϕ̄. In contrast, above the critical point
at χ ≈ 2 (black disk), we observe a first-order phase
transition (brown line) between a dilute phase (μ≲ 0)
and a dense phase (μ ≳ 0). However, at even stronger
interactions (χ ≳ 3.3), an additional patterned phase
(denoted by P) emerges, where the periodic patterns exhibit
the lowest free energy. The lines of the first-order phase
transitions between the patterned phase and the dilute or
dense homogeneous phase (blue and brown dashed curves)
meet the line of the phase transition between the two
homogeneous states at the triple point (gray star), where
these three states coexist.
The grand-canonical phase diagram of soft systems

[Fig. 2(a)] qualitatively resembles simple pressure-
temperature phase diagrams, e.g., of water. Assuming that
the chemical potential μ plays the role of pressure and that
the interaction χ is negatively correlated with temperature,

the dilute and dense homogeneous phases respectively
correspond to the gas and liquid phases. They become
indistinguishable at the critical point at low interaction
strength (corresponding to high temperatures). In contrast,
the patterned phase, with its periodic internal structure,
resembles the solid phase.
The general form of the grand-canonical phase diagram

persists for stiff systems [Fig. 2(b)], although the parameter
region of the patterned phase is much larger. However, the
first-order transition between the dilute and dense homo-
geneous phases disappears together with the normal critical
point of phase separation. Instead, we now find a continu-
ous phase transition (dotted red line) between the homo-
geneous and the patterned phases, which we will discuss in
more detail below. Taken together, these phase diagrams
suggest that stable patterned phases emerge for sufficiently
large stiffness E and interaction χ for intermediated ϕ̄.
The grand-canonical ensemble that we have discussed so

far is suitable when the timescale of an experiment is long
compared to the timescale of particle exchange with the
reservoir. In the experiments [1], the initial swelling takes
place over tens of hours with a measurable increase in size
and mass, indicating that solvent soaks the sample until it is
equilibrated with the surrounding bath. In contrast, the
temperature quench, during which the patterned phase is
observed, takes place on a timescale of minutes without the
solvent bath. This suggests that this process is better
described by a closed system.

D. Patterned and homogeneous phases
coexist in closed systems

In the closed system, corresponding to a canonical
ensemble, the average fraction ϕ̄ of elastic components,
and thus also the average fraction of solvent, is fixed. In this
situation, we find that multiple different phases can coexist
in the same system; see Fig. 3. This is again reminiscent of
phase separation, where the common-tangent construction
reveals the fractions in coexisting homogeneous states.
Indeed, we find exactly this behavior in soft systems [left-
hand panel of Fig. 3(a)], where a dilute and dense phase
coexist for fractions between the two vertical dotted lines,
while the free energy of the patterned phase (blue line) is
always larger and thus unfavorable. The picture changes for
larger stiffness [right-hand panel of Fig. 3(a)], where the
patterned phase has lower energy and we can construct two
separate common tangents, which respectively connect the
dilute and dense homogeneous phase with the patterned
phase. Analogously to phase separation, we thus expect
situations in which a patterned phase coexists with a
homogeneous phase (when ϕ̄ is in the region marked with
H þ P or PþH). Figure 3(b) corroborates this picture and
shows various coexisting phases as a function of the
stiffness E and the interaction strength χ. Taken together,
the main additional feature of the canonical phase diagrams
is the coexistence of multiple phases, which was only

(b)(a)

FIG. 2. Grand-canonical phase diagrams reveal patterned phase.
(a) Phase diagram as a function of the chemical potential μ and the
interaction strength χ for E ¼ 0.01kBT=ν. Homogeneous phases
(region H) coexist on the brown line between the critical point of
phase separation (black disk) and the triple point (gray star), while
the patterned phase (region P) coexists with the homogeneous
phase on the blue and brown dashed line. (b) Phase diagram as a
function of μ and χ for E ¼ 0.2kBT=ν. The binodal line separating
the homogeneous and patterned phase exhibits either a first-order
transition (blue and brown dashed line) or a continuous transition
(red dotted line with associated critical points marked by red disks;
see details in the Supplemental Material [10]). (a),(b) Model
parameters are ϕ0 ¼ 1 and κ ¼ 0.05ξ2.

QIANG, LUO, and ZWICKER PHYS. REV. X 14, 021009 (2024)

021009-4



possible exactly at the phase transition in the grand-
canonical phase diagram.

E. Higher stiffness and interaction
strength stabilize patterned phase

The canonical phase diagrams shown in Fig. 3(b) are
complex, but they generally preserve three crucial aspects
of the grand-canonical phase diagram shown in Fig. 2:
Higher stiffness (i) slightly favors the homogeneous phases,
(ii) greatly expands the parameter region of the patterned
phase, and (iii) induces a continuous phase transition. The
first point is illustrated by the binodal line of the homo-
geneous phase (thick brown lines and red dotted lines),
which moves up with increasing stiffness E, implying that
larger interaction strengths χ are necessary to stabilize
inhomogeneous systems. Inside the binodal line the system
exhibits various behaviors, which can be categorized by χ.
At a critical value χ�, the patterned phase (blue star)
coexists with the dilute and dense homogeneous phase

(brown stars), and the associated tie line corresponds to
the triple point in Fig. 2. For weaker interactions (χ < χ�),
we mostly observe coexistence of a dilute and dense
homogeneous phase (region H þH), which corresponds
to normal phase separation. For stronger interactions
(χ > χ�), the system exhibits the patterned phase, either
exclusively (colored region) or in coexistence with a
homogeneous phase (regions H þ P and PþH). Larger
stiffness E lowers the critical value χ�, thus expanding
the parameter region where the patterned phase exists.
Eventually, for sufficiently large E, χ� approaches the
critical point of the binodal (gray point), a tiny region
with patterned phase appears, and part of the binodal line
becomes a continuous phase transition (red dotted line),
reproducing the behavior predicted by the grand-canonical
phase diagram of stiff systems [Fig. 2(b)].
The influence of stiffness E and interaction strength χ

becomes even more apparent in the three-dimensional
phase diagram shown in Fig. 3(c): With increasing E,
the χ associated with the critical point of phase separation

(a)

(c)

(b)

FIG. 3. Closed systems exhibit phase coexistence. (a) Schematic free energy of homogeneous and patterned phases with common-
tangent construction (thin gray lines) for two stiffnesses E. Figure S2 in Supplemental Material shows corresponding numerical results
[10]. (b) Phase diagram as a function of the average fraction ϕ̄ of the elastic component and interaction strength χ for various E. Only the
homogeneous phase (region H) is stable outside the binodal (brown line; black disk marks critical point) with a continuous phase
transition at the red dotted part. Only the patterned phase (region P) is stable inside the blue lines with color codes indicating length scale
and amplitude in the left- and right-hand column, respectively. Two indicated phases (H þ P, PþH, H þH) coexist in other regions.
The triple point corresponds to the tie line (thin gray line), where fractions ϕ̄ of coexisting homogeneous and patterned phases are
marked by brown and blue stars, respectively. (c) Phase diagram as a function of ϕ̄, χ, and E. The binodal of the homogeneous phase
(brown surface) and the patterned phase (blue surface) overlap in the continuous phase transition (red surface). The critical points in
(b) now correspond to critical lines, which all merge in the tricritical point (large black disk). A rotating version of the diagram is
available as a movie in Supplemental Material [10]. (a)–(c) Model parameters are ϕ0 ¼ 1 and κ ¼ 0.05ξ2.
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(black line) increases slightly, whereas the states of three-
phase coexistence (blue line and brown lines) shift to lower
χ. All lines meet at the tricritical point (black sphere) for
E ≈ 0.037kBT=ν, ϕ̄ ≈ 0.54, and χ ≈ 2.14. Increasing E
further, a part of the binodal line exhibits a continuous
phase transition, which expands with larger E. The phase
diagram thus summarizes three main aspects of our model.
First, the binodal line of phase separation, which is only
weakly affected by E, determines whether the system can
exhibit nonhomogeneous states. Second, if the system can
be inhomogeneous, the stiffness E determines at what value
of χ patterned phases emerge. Third, for sufficiently large
E, these patterned phases form immediately due to the
continuous phase transition.

F. Continuous phase transition explains
experimental measurements

The continuous phase transition that we identified at
sufficiently large stiffness E implies that the system can
change continuously from a homogeneous phase to a
patterned phase when the interaction strength χ is increased
(corresponding to cooling). Indeed, the amplitude of the
predicted pattern vanishes near the transition [right-hand
panel of Fig. 3(b)], while the length scale stays finite [left-
hand panel of Fig. 3(b)]. This behavior is not expected for
typical phase separating systems with first-order transi-
tions, where the order parameter changes discontinuously
during the phase transition [see gray line in Fig. 4(a) for an
example].
The continuous phase transition was already hypoth-

esized for the experiments [1], based on a lack of hysteresis
and a continuous change of the contrast measured by
light intensity. To connect to experiments, we mimic the
contrast using the square of the amplitude of the optimal

volume fraction profile. Figure 4(a) and the right-hand panel
of Fig. 3(b) show that the contrast changes continuously from
zero when the interaction strength χ is increased for suffi-
ciently stiff systems. Moreover, Fig. 4(b) shows that the
associated pattern length scale changes only slightly, con-
sistent with the experiments. Note that deviations in the
form of the curves could stem from thermal fluctuations,
finite resolution in the experiment, and also deviations in
model details.

G. Stiffness and interfacial
cost control pattern length scale

Wenext use the numerical minimization of the free energy
Fnonlocal to analyze how the length scale L of the patterned
phase depends on parameters. Figure 5 shows that L
decreases with larger stiffness E and increases with the
interfacial cost parametrized by κ. The data in Fig. 5(a)
suggest the scalingL=ξ ∝ E−1=2 over a significant parameter
range, which matches the experimental observations [1].
Moreover, Fig. 5(b) suggests L=ξ ∝ ξ−1=2κ1=4, which has
not been measured experimentally. Taken together, the two
scaling laws suggest that the equilibrium length scale
emerges from a competition between elastic and interfacial
energy.
The two scaling laws emerge qualitatively from a simple

estimate of the elastic and interfacial energies: Since shorter
patterns have more interfaces, the interfacial energy per
unit length is proportional to γL−1, with surface tension
γ ∝ κ1=2 [23]. In contrast, the elastic energy of a single period
originates from stretching a part of material from initial
length ξ to final length L, resulting in an elastic energy
density proportional to ELξ−1. Minimizing the sum of
these two energy densities with respect to L results in
L=ξ ∝ ξ−1=2E−1=2κ1=4, which explains the observed scalings
qualitatively.

(a) (b)

FIG. 4. Continuous phase transition recovers experimental
measurements. Squared amplitude (a) and length scale (b) of
periodic patterns as a function of interaction strength χ for various
parameters indicated in (b), ϕ0 ¼ 1, and κ ¼ 0.05ξ2. The ampli-
tude indicates a continuous (colored data) and first-order (gray
data) transition.

(a) (b)

FIG. 5. Pattern length scale exhibits scaling laws. Length scale
L as a function of stiffness E (a) and interfacial parameter κ (b) for
various parameters. Putative scaling laws are indicated and the
prediction by Eq. (9) is shown for ϕ0 ¼ 1, ϕ̄ ¼ 0.5, χ ¼ 4, and
γ ≈ kBTκ1=2=ν (green line).
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H. Approximate model predicts length scale

To understand the origin of the length scale L in more
detail, we consider the limit of strong phase separation,
where the interfacial width is small compared to L; see
Fig. 1(c). We thus approximate the volume fraction profile
ϕðxÞ of the elastic component by a periodic step function
with fixed fractions ϕ− and ϕþ; see dotted lines in Fig. 6(a).
Material conservation implies that the relative size of these
regions is dictated by the average fraction ϕ̄ in the swollen
state, so we can only vary the period L̃ of the profile. The
stable period L then corresponds to the L̃ that minimizes
Fnonlocal given by Eq. (5), implying F0

nonlocalðLÞ ¼ 0. Since
changing L̃ does not affect the local free energy f0,
we investigate only the average free energy of the
interface, f̄intðL̃Þ ≈ 2γL̃−1, and the average elastic free

energy, f̄elðL̃Þ ¼ 1
2
L̃−1 R L̃0

0 σnonlocalðXÞϵðXÞdX, where L̃0 ¼
ðϕ̄=ϕ0ÞL̃ is the period in the reference frame. Figure 6(b)
shows the derivatives of these contributions with respect to
L̃, indicating that they sum to zero for L̃ ¼ L. We show in
the Supplemental Material [10] that

∂f̄el
∂L̃

≈
E
ξ

8>>><
>>>:

0 L̃ < Lmin

1ffiffiffiffi
2π

p
�
1 − ϕ̄

ϕþ

�
2

Lmin < L̃ < Lmax

1ffiffiffiffi
8π

p
�
ϕ0

ϕ−
− ϕ0

ϕþ

�
2 ξ2

L̃2 L̃ > Lmax;

ð7Þ

indicating three regimes bounded by

Lmin ¼
ffiffiffi
π

2

r
ϕ0

ϕ̄
ξ and Lmax ¼

ffiffiffi
1

2

r
ϕ0

ϕ−

ϕþ − ϕ−

ϕþ − ϕ̄
ξ: ð8Þ

Figure 6(b) shows that this approximation of ∂L̃f̄el captures
the main features of the full numerical data. Figure 6(b)
suggests that stable patterns are mainly possible in the gray
region (Lmin<L̃<Lmax), which we interpret further below.
In this region, we use Eq. (7) to solve ∂L̃f̄el þ ∂L̃f̄int ¼ 0

for L̃, resulting in

L ≈ ð8πÞ1=4 ϕþ
ϕþ − ϕ̄

�
ξγ

E

�
1=2

; ð9Þ

consistent with numerical results; see transparent green
lines in Fig. 5. This expression shows that the stable period
L is governed by the geometric mean of the elastocapillary
length γ=E and the nonlocality scale ξ. Moreover, L
increases with a larger average fraction ϕ̄ of the elastic
component, i.e., less swelling. In contrast, the fraction ϕþ
has only a weak influence since it is close to 1 in the case of
strong phase separation, implying that the interaction
strength χ affects L only weakly.

I. Patterned phase is governed by reference state

Finally, we use the approximate model to understand
when the patterned phase emerges. Here, it proves useful
to interpret Eq. (8) in the reference frame, where the
convolution of the nonlocal elastic energy takes place. De-
fining the length L0 ¼ ðϕ̄=ϕ0ÞL in the reference frame and
the associated fraction α0 ¼ ðϕ−=ϕ0Þðϕþ − ϕ̄Þ=ðϕþ − ϕ−Þ
occupied by the solvent droplet [Fig. 6(a)], we find

L > Lmin ⇔ L0 >

ffiffiffi
π

2

r
ξ; ð10aÞ

L < Lmax ⇔ α0L0 <

ffiffiffi
1

2

r
ξ; ð10bÞ

where the numerical prefactors arevery close to one. The first
condition (L0 ≳ ξ) suggests that two solvent droplets need to
be separated by more than ξ in the reference frame since L0

roughly estimates their separation; see Fig. 6(a). If droplets
were closer, they would feel each other’s deformations,
which is apparently unfavorable. In the extreme case

(a)

(b)

FIG. 6. Approximate model explains scaling laws. (a) Example
for a volume fraction profile (pink lines) and the corresponding
piecewise approximation (dotted gray lines) in the reference (top)
and lab frame (bottom). (b) Derivatives of the average energy
density (in units of kBTξ=ν) as a function of the pattern period L̃.
Shown are data from full numerics (symbols), numerics for the
piecewise profile (solid lines), and asymptotic functions (dashed
lines) for the elastic (gray, disks) and negative interfacial energy
(violet, squares). The stable length L corresponds to the crossing
point of the elastic (black) and the interfacial terms (violet).
Model parameters are E ¼ 0.02kBT=ν, κ ¼ 0.05ξ2, ϕ0 ¼ 1,
ϕ̄ ¼ 0.5, and χ ¼ 4.
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(L0 ≪ ξ), the average elastic energy is almost constant,
essentially because short-ranged variations are averaged by
the comparatively large nonlocal kernel. In contrast, the
second condition implies that the droplet size in the reference
frame (α0L0) must be smaller than the nonlocality scale ξ.
Assuming ξ corresponds to the mesh correlation length, this
suggests that the droplet can at most deform the correlated
part of the mesh, which we will discuss below. If droplets
were larger (α0L0 ≫ ξ), nonlocal features would only be
relevant at interfaces, so the systemwould behave as if it had
only local elasticity and coarsen indefinitely.
This analysis highlights that the existence of the periodic

pattern depends on the reference frame, while its length
scaleL also depends on the different stretch of the dilute and
dense region; see Fig. 6(a). This observation suggests an
intuitive explanation for the influence of the interaction χ:
Assuming thatϕ− andϕþ correspond to equilibrium volume
fractions and ϕ̄ ¼ 1

2
for simplicity, we find α0 ∝ ϕ−, which

decreases with larger χ. Consequently, the lower boundLmin
is unaffected, while Lmax increases, consistent with our
observation that the patterned phase forms easier at higher χ
and the scaling law given by Eq. (9) holds for broader
parameter range with higher interaction strength (Fig. 5).

J. Spatial heterogeneity could cause nonlocality

Since the periodic equilibrium patterns crucially depend
on the nonlocality scale ξ, we hypothesize that such a
length scale is relevant in the experiments [1]. However, it
is unlikely that the mesh size (typically below 100 nm)
directly controls ξ since the observed droplets are larger
(several hundred nanometers). Instead, we propose that ξ is
governed by spatial heterogeneities. The correlation length
of these heterogeneities, roughly measuring the size of soft
regions, can be much larger than the mesh size [27–29].
Figure 7 illustrates the difference between the two
interpretations.

Realistic meshes exhibit multiple length scales, which
could all affect the behavior. To elucidate this, we briefly
consider the impact of a convolution kernel that consists of
two parts, gðXÞ ¼ ð1 − ζÞgξ1ðXÞ þ ζgξ2ðXÞ, where ξ1 rep-
resents the mesh size, ξ2 denotes the scale of spatial
heterogeneities, and the nondimensional weight ζ < 1
determines the relative contributions. If the mesh size ξ1 is
much smaller than the pattern length scale, the correspond-
ing convolution reduces to local elasticity, so the elastic
energy following from Eq. (3) can be approximated as

Fel ≈
ð1 − ζÞE

2

Z
ϵðXÞ2dX

þ ζE
2

ZZ
ϵðXÞϵðX0Þgξ2ðX − X0ÞdXdX0: ð11Þ

The part corresponding to ξ1 effectively changes only the
local free-energy density. In the simple case of one-dimen-
sional systems, the first integrand can then be expressed in
terms of the volume fraction ϕ, and absorbed in a rescaled
free-energy density f0ðϕÞ. In contrast, the nonlocality scale
ξ2 provided by the second term will control the periodic
equilibrium patterns. The effective stiffness corresponding
to this term is ζE, whereas the experimentallymeasured bulk
modulus of a uniform deformation will include both terms
and thus remain E. Taken together, this increases the
effective elastocapillary length to γ=ðζEÞ, implying larger
pattern length scales L; see Eq. (9).

III. DISCUSSION

We propose a phenomenological theory that explains the
experimentally observed patterns [1] based on nonlocal
elasticity, which captures aspects of the mesh’s structure.
Within our equilibrium theory, regular periodic patterns
appear for sufficiently strong phase separation (large
enough χ) and stiffness E, while surface tension γ opposes
the trend. Essentially, solvent droplets inflate a region of the
elastic mesh of the size of the nonlocality scale ξ. The
pattern period L then results from a balance of elastic and
interfacial energies, so that L scales as the geometric mean
between ξ and the elastocapillary length γ=E. In contrast,
the interaction strength χ, leading to phase separation in the
first place, affects L only weakly, but it determines whether
the patterned phase is stable, similar to ordinary phase
separation. However, the transition between the homo-
geneous and heterogeneous phase, which is normally first
order, can now be continuous. Consequently, the patterned
phase can appear with arbitrarily small amplitude in a
reversible process.
Our model captures the main features of the experiment

[1], including the continuous phase transition leading to
reversible dynamics. This suggests that the experiment is in
quasiequilibrium, which would also explain why the
pattern is independent of the cooling rate. Moreover, our
theory explains why the pattern length scale L is only

(a) (b)

FIG. 7. Heterogeneity could explain nonlocality scale ξ.
(a) Schematic of a relatively regular mesh, whose nonlocality
scale ξ is linked to the mesh size. (b) Schematic of a hetero-
geneous mesh, where ξ is given by the correlation length of
spatial heterogeneities.
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weakly affected by the final temperature and decreases with
stiffness E. Importantly, our model predicts that a structural
length ξ of the mesh is essential for the emergence of the
observed L. Our numerics indicate that L can be an order of
magnitude larger than ξ, suggesting that ξ could relate to
observed correlation lengths of the order of a few hundred
nanometers [27]. Since ξ is small compared to the distance
between droplets [see Eq. (10)], the nonlocal effects of
elasticity do not affect droplet positioning. Furthermore,
we found that a coexisting homogeneous phase does
not affect the free energy of the patterned phase strongly
(see Supplemental Material [10]), suggesting that the two
phases can be interspersed, which would contribute to
irregularity of the droplet placement in real systems. In
contrast, the observed variation in droplet size [1] likely
originates from local heterogeneity in material properties,
like ξ, E, and γ.
To capture the mesh’s structure, we employ nonlocal

elasticity [18–22] based on a convolution of the strain field.
Such nonlocal elasticity emerges naturally for phenomeno-
logical theories and from coarse-graining microscopic theo-
ries. The description only converges to local elasticity theory
when the length scales of phenomena are large compared to
the nonlocality scale. While such length scale separation is
often feasible in macroscopic elastic problems, nonlocal
elasticity is required to explain microscopic phenomena,
e.g., in fracture mechanics [35]. Indeed, the convolution
kernel given by Eq. (4) can be interpreted as a Green’s
function of a diffusion process in the reference frame,
suggesting that the nonlocal elasticity is similar to the damage
field introduced in fracture mechanics [36]. Taken together,
nonlocal elasticity theories are crucial to describe elastic
phenomena in microscopic systems, e.g., biological cells.
Our work complements related theories of phase sepa-

ration in elastic media, which either modeled pores
explicitly [26,37–40] or resorted to particle-based methods
[41,42]. Nonlocality is generally responsible for the emer-
gence of structure in multiple physical systems, such as the
Ohta-Kawasaki model [43], phase separation with electro-
static interaction [44], and also nonlocal elasticity [45,46],
e.g., to study polymeric materials [47,48]. However, in the
first two models, the convolution acts directly on the
described field ϕ, whereas we convolved the strain field
ϵ, which is inversely related to ϕ; see Eq. (2). Moreover, the
Coulomb form of the convolution kernel prohibits macro-
phase separation in these two models. Another difference is
that we use a convolution in the reference frame, capturing
the quenched microscopic topology of the elastic mesh.
These differences are a consequence of the fact that we
build our phenomenological model systematically for the
case of elastic meshes.
We developed our model for the simple case of one

spatial dimension, which surprisingly already accounts for
the key experimental observations. However, to capture
more details, including various morphologies, we will need
to generalize the model to higher dimensions, which will

require a tensorial convolution kernel [19]. Additionally,
nonlocal elasticity can be viewed as a phenomenological
model containing the correlation length of spatial hetero-
geneities of the polymer network [49]. In realistic meshes,
heterogeneities would imply disorder in the convolution
kernel, but our theory suggests that only the long-range
behavior is crucial for forming patterns. More generally,
disorder might affect the phase transition and the morphol-
ogies of patterns, potentially explaining the lack of long-
range order. Incorporating quenched disorder would
require a proper averaging based on statistical mechanics,
e.g., by applying a random convolution kernel or combin-
ing simulation techniques [49,50]. Moreover, to describe
details of the experiments, we might require more realistic
models of phase separation (including different molecular
sizes and higher-order interactions terms) and elasticity
(involving finite extensibility, viscoelasticity [51], as well
as plastic deformation, like fracture [52,53] and cavitation,
which can lead to regular droplet patterns [54]). Finally,
experimental systems exhibit heterogeneities in key model
parameters including ξ, E, and γ, which will contribute to
uncertainty and might even induce large-scale rearrange-
ments [9,55]. Such extended theories will allow us to
compare the full pair correlation and scattering functions
to experiments, shedding light on how we can manipulate
this pattern forming system to control microstructures.
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