
Distributed Hydrological Modeling With Physics‐Encoded
Deep Learning: A General Framework and Its Application
in the Amazon
Chao Wang1 , Shijie Jiang2,3,4 , Yi Zheng1,5,6 , Feng Han1,5 , Rohini Kumar4 ,
Oldrich Rakovec4 , and Siqi Li1

1School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China,
2Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany, 3ELLIS Unit Jena,
Jena, Germany, 4Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research – UFZ,
Leipzig, Germany, 5Shenzhen Municipal Engineering Lab of Environmental IoT Technologies, Southern University of
Science and Technology, Shenzhen, China, 6State Environmental Protection Key Laboratory of Integrated Surface Water‐
Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, China

Abstract While deep learning (DL) models exhibit superior simulation accuracy over traditional distributed
hydrological models (DHMs), their main limitations lie in opacity and the absence of underlying physical
mechanisms. The pursuit of synergies between DL and DHMs is an engaging research domain, yet a definitive
roadmap remains elusive. In this study, a novel framework that seamlessly integrates a process‐based
hydrological model encoded as a neural network (NN), an additional NN for mapping spatially distributed and
physically meaningful parameters from watershed attributes, and NN‐based replacement models representing
inadequately understood processes is developed. Multi‐source observations are used as training data, and the
framework is fully differentiable, enabling fast parameter tuning by backpropagation. A hybrid DL model of the
Amazon Basin (∼6 × 106 km2) was established based on the framework, and HydroPy, a global‐scale DHM,
was encoded as its physical backbone. Trained simultaneously with streamflow observations and Gravity
Recovery and Climate Experiment satellite data, the hybrid model yielded median Nash‐Sutcliffe efficiencies of
0.83 and 0.77 for dynamic and distributed simulations of streamflow and total water storage, respectively, 41%
and 35% higher than those of the original HydroPy model. Replacing the original Penman‒Monteith
formulation in HydroPy with a replacement NN produces more plausible potential evapotranspiration (PET)
estimates, and unravels the spatial pattern of PET in this giant basin. The NN used for parameterization was
interpreted to identify the factors controlling the spatial variability in key parameters. Overall, this study lays out
a feasible technical roadmap for distributed hydrological modeling in the big data era.

1. Introduction
The process‐based distributed modeling approach has played an important role in promoting hydrology as a
cornerstone discipline of Earth science (Fatichi et al., 2016). The detailed characterization of complex and het-
erogeneous internal conditions within a catchment renders distributed models more suitable than lumped models
for facilitating fundamental and theoretical discoveries regarding hydrologic processes and supporting effective
water resource management (Simmons et al., 2020). Despite the past success of this approach (Paniconi &
Putti, 2015), the main challenge that process‐based distributed models still encounter is the selection of suitable
process equations and parameterization schemes (Clark et al., 2016; Semenova & Beven, 2015). In contrast,
machine learning (ML) approaches construct direct input‐to‐output mappings using efficient training algorithms
such as backpropagation (BP), bypassing the explicit representation of hydrological processes and the cumber-
some parameterization procedure. In recent years, deep learning (DL), a state‐of‐the‐art ML approach, has
demonstrated remarkable success in hydrological modeling (Jiang, Zheng, et al., 2022; Sadler et al., 2022;
Wunsch et al., 2022). Existing DL applications have mainly focused on streamflow prediction at the catchment
outlet, disregarding hydrological fluxes and states within the catchment, despite some recent studies utilizing
spatially distributed inputs (C. Chen et al., 2022; Xu et al., 2022). DL‐based hydrological models have been
criticized for their poor interpretability (Shen, 2018; Xu & Liang, 2021), and the absence of spatial details ex-
acerbates this issue. Post hoc interpretation methods (Jiang, Bevacqua, & Zscheischler, 2022; Samek et al., 2019)
may enhance model interpretability, but they do not address the issue of absence of spatial details. Recently, the
potential of applying DL in distributed hydrological modeling to enhance the understanding of hydrological
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processes has been discussed (Beven, 2020; Nearing et al., 2021; Shen et al., 2021). Convolutional Long Short‐
Term Memory (ConvLSTM) is a popular DL architecture for modeling streamflow with spatially distributed
input data (C. Chen et al., 2022; Zhu et al., 2023). For example, Xu et al. (2022) used a physically based, spatially
distributed snow model to simulate snowmelt and used the results to drive a ConvLSTM streamflow model.
While this one‐way loosely coupled approach improved modeling accuracy, it only simulates streamflow at the
watershed outlet, keeping the flow routing process within the watershed a black box. Novel approaches to merge
distributed hydrological modeling and DL need further exploration (Nearing et al., 2021; Shen et al., 2023).

Furthermore, DL does not guarantee physical consistency, which can lead to spurious and inaccurate predictions,
especially outside the training range (Konapala et al., 2020; Nearing et al., 2021). Physics‐informed ML para-
digms provide an avenue for DL‐based hydrological modeling to address above issues (Herath et al., 2021;
Karniadakis et al., 2021; Xie et al., 2021). For example, Xie et al. (2021) adopted a monotonic relationship
between rainfall and runoff as an additional regularization term in the loss function for network training to ensure
physical consistency. Bhasme et al. (2022) used water storages simulated by a physics‐based model as the inputs
for a DL streamflow model, improving the DL model's physical consistency. Physical knowledge can also be
directly encoded into a DL model (M. Chen et al., 2023; Höge et al., 2022; Kraft et al., 2022; Reichstein
et al., 2019). For example, Jiang et al. (2020) wrapped the physical processes depicted by a conceptual hydro-
logical model (i.e., EXP‐HYDRO) into a recurrent neural network (RNN). This symbiotic integration between
DL and physical knowledge led to enhanced runoff simulation accuracy and intelligence for inferring unobserved
processes (e.g., snow accumulation). Similarly, Feng et al. (2022) implemented another conceptual hydrological
model called Hydrologiska Byråns Vattenbalansavdelning in a DL architecture and demonstrated improved
performance for runoff simulation and reasonable inference of variables for which training was not directly
performed, such as evapotranspiration (ET) and baseflow. However, the above hybrid models are still lumped in
space without considering internal heterogeneity and river routing. One major difficulty is encoding the river
routing process into a NN. Graph neural networks (GNNs) have been substituted for routing schemes (Sun
et al., 2022), but the trained GNN does not guarantee the water balance in a river network. Bindas et al. (2024)
used a physics‐based NN to model river routing, but the process of runoff generation in sub‐basins was separately
modeled using long short‐term memory (LSTM) models. A unified DL architecture for large‐scale distributed
hydrological modeling is still lacking.

Developing a distributed hybrid model with explicit representation of internal heterogeneity and river routing not
only ensures the physical consistency of DL but also allows us to take full advantage of spatial observation data
sets to better constrain model simulations. In many cases, hydrological observations are available at multiple
locations within a watershed. Novel data sets may also be available for model training. For example, the Gravity
Recovery and Climate Experiment (GRACE) satellite data provide an unprecedented opportunity to quantify
spatiotemporal variations in Earth's surface mass, mainly reflecting changes in total water storage (TWS)
(Landerer & Swenson, 2012; Tapley et al., 2004). GRACE data provide global‐scale information related to the
total water storage anomaly (TWSA) over more than 10 years (2003–2016), with a spatiotemporal resolution of a
few hundred kilometers and a monthly temporal resolution; thus, these data can be used to constrain and improve
hydrological modeling (Güntner, 2008; Soltani et al., 2021). Incorporating GRACE data can help distributed
hydrological models (DHMs) better represent underlying hydrological processes (e.g., runoff, ET, and TWS)
(Dembélé et al., 2020; Rakovec et al., 2016). However, integrating multi‐source hydrological observations,
including novel GRACE data, has rarely been attempted for DL‐based hydrological models.

To address the above challenges, a distributed hybrid modeling framework based on physics‐encoded deep NNs is
developed in this study. The framework seamlessly integrates process‐based runoff and river routing models, a
module for spatially distributed parameterization, and NN‐based replacement models for unknown or vaguely
known processes into a unified DL architecture. The framework is fully differentiable, conforming to the
emerging concept of differentiable modeling (Shen et al., 2023), and accommodates multi‐source hydrological
observations as training data. We selected the Amazon Basin, the largest river basin on Earth and a highly
complex hydrological system, as the testbed for the new framework. We encoded a process‐based DHM, named
HydroPy (Stacke & Hagemann, 2021a), into the NN architecture as the physical backbone of the hybrid DL
model. The study is aimed to demonstrate the feasibility and strengths of distributed hybrid modeling in
spatiotemporal learning of hydrological processes at the continental scale. Overall, this study lays out a feasible
technical roadmap for distributed hydrological modeling in the big data era.
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2. The New Modeling Framework
The distributed hybrid modeling framework (Figure 1) developed in this study fuses three types of NNs with
different functions: the physical NN, the parameterization NN, and the replacement NN. The physical NN en-
codes physical equations including those for surface runoff generation ( f1), subsurface runoff generation ( f2),
river flow routing ( f3), and water storages ( f4). This NN therefore ensures the physical consistency and inter-
pretability of the DL model. For the subprocesses underrepresented by the process‐based model, the replacement
NN can be used to model flux and/or state variables associated with the subprocesses in a data‐driven way.
Dynamic forcings (x) and region‐dependent static attributes (A) can be used as the inputs of the replacement NN.
Additionally, the parameterization NN maps static attributes (A) to the distributed physical parameters (θ) of the
process‐based model (i.e., the physical NN). All NNs are seamlessly unified in a single DL architecture, allowing
for global backpropagation and joint optimization across both physical and data‐driven components (Jiang
et al., 2020; Tsai et al., 2021). The parameters of the entire NN can be calibrated against multi‐source obser-
vations. Designed to strictly adhere to the law of mass conservation, the framework can generate physically
meaningful variables for intermediate processes in addition to the model outputs.

3. Data and Methods
3.1. Implementation of the Framework in the Amazon Basin

As the largest river basin (∼6× 106 km2) on Earth, the Amazon Basin (Figure 2) is a complex hydrological system
characterized by large variations in topography (1–6,251 m above sea level), precipitation (500–6,000 mm per
year), and land cover (Figure 2b). A distributed model that can capture these spatial heterogeneities is essential for

Figure 1. Schematic representation of the distributed hybrid modeling framework. The blue, magenta, and red boxes denote
the physical neural network (NN), parameterization NN, and replacement NN, respectively. f3 in the blue box stands for the
river routing module. The black arrows indicate data flows, and the blue arrow indicates a recurrent NN architecture.
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gaining an accurate understanding of water and energy fluxes in the basin (de Paiva et al., 2013). The region is at
risk from climate and anthropogenic changes, and alterations in Amazon hydrology could have major global
impacts (Chagas et al., 2022). Over the past few decades, the basin has experienced several intense climatic
events, such as extreme droughts and floods (Marengo & Espinoza, 2016). Characterizing and understanding the
dynamics of the Amazon water cycle is therefore crucial for water resource management. While many studies
have addressed the water balance in this giant basin, uncertainty remains significant, particularly for ET (Fassoni‐
Andrade et al., 2021). By applying the new distributed hybrid modeling framework in the Amazon Basin, we aim
to improve the understanding of the water balance and gain new insights into the complex interactions among
climate, vegetation, and hydrology in this critical region. Hybrid hydrological modeling was performed with a
grid with cells of 0.5° × 0.5° (Figure 2b) for the period of 2001–2016. This large basin, with its diverse landscapes
and climates, uniquely enables us to test the model's spatial generalizability.

We encoded a DHM, HydroPy (Figure 3a), into the physical NN in the framework depicted in Figure 1. HydroPy
originated from the Max Planck Institute for Meteorology's Hydrology Model (Hagemann & Dümenil, 1997;
Stacke & Hagemann, 2012) and has been enhanced with new processes (Stacke & Hagemann, 2021a). The model
is for large‐scale (regional to global scale) simulation by design, typically operating at daily time steps and a
spatial resolution of 0.5° × 0.5°. The model simulates five main types of hydrological processes: snow processes,
skin and canopy processes, soil and surface processes, groundwater processes, and river routing processes. The
first four processes are modeled in individual grid cells, and the river routing process involves interactions be-
tween adjacent grid cells. Each grid cell in HydroPy has multiple conceptualized water storage “buckets”
(Figure 3a): snow, skin, canopy, root zone soil, surface water, shallow groundwater, and river. The vertical water
balance accounts for water transport through the snow, skin, canopy, and soil buckets, partitioning precipitation
into ET and runoff. The mathematical equations describing these processes can be found in Stacke and Hage-
mann (2021a). The river routing process is realized based on the equations of the Hydrological Discharge Model
(Hagemann & Dümenil, 1997), where the streamflow is routed through river buckets according to a predefined
river routing network. The predefined river routing network uses a D8 flow direction scheme, which assigns one
of the eight directions to each grid cell. Specifically, the river bucket in each grid cell receives the streamflow
from upstream cells and releases outflow. The streamflow to the downstream grid cell is calculated by aggregating
the runoff (including groundwater runoff and overland flow) generated in the local grid cell and the river bucket
outflow. The routing scheme and corresponding equations are provided in Texts S1 and S2 in Supporting In-
formation S1. This routing method assumes linear reservoir schemes and spatially varying but temporally con-
stant flow velocities. The lag time (i.e., retention time) parameters are utilized in the river routing equations to
characterize flow velocities. In general, HydroPy adequately simulates daily streamflow on a large scale.

Figure 2. The Amazon Basin. (a) Topography, river network, flux tower sites and hydrological stations. The red line delineates the drainage area above the Obidos
station. (b) Land cover and modeling grid (0.5° × 0.5° cells).

Water Resources Research 10.1029/2023WR036170

WANG ET AL. 4 of 22

 19447973, 2024, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
036170 by M

PI 322 C
hem

ical E
cology, W

iley O
nline L

ibrary on [15/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



However, it may exaggerate peak flow for the Amazon and Congo rivers and underpredict it for Arctic rivers
(Stacke & Hagemann, 2021a).

We encoded HydroPy into a physical RNN architecture, which is a modified version of ordinary RNN, following
the approach of Jiang et al. (2020). Within a physical RNN unit, the connections among neurons (inputs, states,
and outputs) are defined by the numerical solutions of hydrological process equations instead of activation
functions, and the weights and biases are consequently physically meaningful parameters (i.e., the parameters of
the wrapped equations). Text S1 and Figure S1 in Supporting Information S1 provide more details of the encoding
approach. However, the original approach can only be used to encode a spatially lumped model. To enable
distributed modeling, we further represent the river routing process in the RNN architecture, which is a significant
improvement over the original approach. As Figure 4a illustrates, the river routing equations of the Hydrological
Discharge Model (Hagemann & Dümenil, 1997) are encoded into the step function of the physical RNN, which
outputs the matrix of streamflow to the downstream grid cell (Qout). The encoded routing equations can be found
in Text S2 in Supporting Information S1. To program the routing scheme in a DL framework (e.g., TensorFlow)
and ensure effective backpropagation and efficient computation, a flow transfer algorithm was also proposed,
which turns the data matrix of the outflow at the current time step (Qt

out) into the data matrix of the inflow at the
next time step (Qt+1

in ). Figure 4b provides a visual explanation of the algorithm's workflow. Texts S1 and S2 in
Supporting Information S1 provide more details of the routing‐enabled encoding approach.

Figure 3. The hybrid deep learning model for distributed hydrological modeling in the Amazon Basin. (a) HydroPy encoded as the physical neural network (NN), (b) the
parameterization NN, which provides grid‐specific parameters for the encoded HydroPy, and (c) the replacement NN substituted for the plausible potential
evapotranspiration sub‐model in the original HydroPy.
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The physically meaningful parameters (θ) of the physical NN (Figure 3a) are mapped from static attributes via the
parameterization NN (Figure 3b). In this Amazon case, there are nine parameters in total (Table 1) with grid‐
specific values. Similar to previous studies (Feng et al., 2022; Jiang et al., 2020), we selected 21 attributes
(see Table S1 in Supporting Information S1) as the inputs of the parameterization NN. The parameterization NN
is a fully connected neural network (FCNN) consisting of five layers. The numbers of neurons in the five layers
are 21, 256, 64, 16, and 9, respectively. The network configuration was determined after preliminary trials.

In the original HydroPy model, plausible potential evapotranspiration (PET) is estimated using the Penman‒
Monteith reference ET approach (Allen et al., 1998). This classic approach tends to underestimate PET in the

Figure 4. The hydrology‐encoded recurrent neural network (RNN). (a) The unfolded RNN unit. The step function represents the explicit discrete form of hydrological
system equations including the river routing equations. At each time step, the step function is evaluated over the entire modeling domain. The flow transfer algorithm
turns the data matrix of the outflow at the current time step (Qt

out) into the data matrix of the inflow at the next time step (Q
t+1
in ). (b) A visual explanation of the flow

transfer algorithm using a 4 × 4 grid domain as an illustrative case. The flow direction matrix is disaggregated into eight binary matrices, whose elements represent flow
presence (1) or absence (0) in a specific direction. Each binary matrix is element‐wise multiplied with the data matrix Qt

out. Elements within the resultant matrices are
shifted to their corresponding downstream positions, aligning with the flow directions. The eight matrices, following displacement, are summed to generate the final data
matrixQt+1

in . In the Amazon case, the modeling domain has a 60× 72 grid size, and the entire Amazon is run in each batch to ensure the integrity of the river routing process.
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tropics (Trambauer et al., 2014; Weiland et al., 2015) and has been specifically identified as a major source of
error in the HydroPy model (Stacke & Hagemann, 2021a). Reliable PET representation schemes in the tropics are
still lacking (Trambauer et al., 2014). In the Amazon Basin, ET is primarily energy limited, and therefore, the
calculation of PET significantly influences the calculation of other hydrological fluxes and states. In this study,
we constructed a replacement NN to replace the Penman‒Monteith approach and output PET estimates to the
physical NN. In the replacement NN, the Penman‒Monteith equation was encoded to output the reference ET
(PETo), and a deep NN was used to derive an error term (PETerr) added to PETo (Figure 3c). This error correction
strategy is a common way to improve the accuracy of PET estimation (Gebremedhin et al., 2022). Potential data
biases in the meteorological input variables may also contribute to the error term in PET calculations (Weedon
et al., 2014; Zuluaga et al., 2021), and such biases at a specific grid cell can be corrected based on meteorological
conditions and land surface attributes of neighboring cells (L. Han et al., 2021; Xia et al., 2023). In this study, a 3D
convolutional (Conv3D) NN was adopted in the error correction to account for the influence of meteorological
and land surface conditions from neighboring cells on a specific grid cell. Preliminary experiments showed that
the Conv3D NN outperforms a FCNN in modeling the error term (see Table S2 in Supporting Information S1).
Both the six meteorological variables (see Table S3 in Supporting Information S1) required by the Penman‐
Monteith equation and the 21 static attributes for the parameterization NN are used as the inputs of the
Conv3D NN. This specific network structure was determined after preliminary trials, as explained in Text S3 and
Table S2 in Supporting Information S1. Similar to the parameterization NN, the Conv3D NN includes an input
layer connected to the input variables, three hidden layers with 32, 16, and 8 convolutional filters, and an output
layer with one convolutional filter. Following common recommendations for kernel size selection, a 3 × 3 × 3
convolution kernel was chosen for all convolutional layers, providing a good balance between modeling per-
formance and computational efficiency (Tran et al., 2015). In the case of Amazon, the replacement NN is
designed to model the error term (Figure 3). However, within the general framework (Figure 1), replacement NNs
can be directly established for process variables. Note that this study uses PET as an example of an underrep-
resented process, and different processes in other modeling cases can be addressed similarly.

3.2. Data for Modeling

The daily precipitation and temperature time series used to drive model simulations were from the WATCH‐
Forcing‐Data‐ERA‐Interim (WFDEI) data set with a spatial resolution of 0.5° × 0.5° (Weedon et al., 2014).
Among the 21 static attributes (see Table S1 in Supporting Information S1), the soil, topography, and vegetation
attributes were derived from Stacke and Hagemann (2021b), and the climate attributes were derived from the
WFDEI data set. Furthermore, the time series of the six meteorological input variables for the Penman‒Monteith
equation were obtained from the WFDEI data set (see Table S3 in Supporting Information S1). Because HydroPy
requires a D8 flow direction scheme, and the original river routing network derived from Hagemann and
Dümenil (1997) has the same scheme, we used it as a starting point. However, we found that the drainage areas of
the 24 hydrological stations reported by the Global Runoff Data Centre (GRDC) differed by 10%–20% from those
calculated using the original network. While the Major River Network data set by GRDC provides latitude and
longitude information for global rivers, it does not use the D8 scheme and cannot be directly used in HydroPy.

Table 1
The Nine Grid‐Specific Physical Parameters Included in the Physical Neural Network

Parameter Default Range Unit Description Reference for the range

dmin 0.024 0.001–0.1 mm/d Slow drainage velocity Troy et al. (2008)

dmax 2.40 0.1–10 mm/d Fast drainage velocity

fdmin 0.05 0–0.20 / Fraction of soil moisture content when slow drainage occurs

fdmax 0.90 0.2–1 / Fraction of soil moisture content when fast drainage occurs

fcrit 0.75 0.55–0.95 / Fraction of critical root zone soil moisture Stacke and Hagemann (2021b)

fevap 0.05 0–0.25 / Fraction of minimum soil moisture for soil evaporation

lagsw 10–50 1–200 d Lag time of overland flow Hagemann and Dümenil (1997)

laggw 300–800 30–1,500 d Lag time of groundwater runoff

lagriver 0.05–0.5 0–5 d Lag time of river outflow
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Therefore, we modified the original network using the GRDC data set as a reference to ensure consistency in data.
Manual modification was performed at a resolution of 0.5°× 0.5°, adhering to HydroPy's general specification for
the downstream grid cell, which dictates that the downstream grid cell of each grid cell is lateral and uniquely
fixed. The modified river routing network is shown in Figure S2 in Supporting Information S1. As the figure
shows, the differences are quite noticeable, highlighting the necessity of the modifications.

We used both streamflow and TWSA data to calibrate and evaluate the hybrid model. We obtained daily
streamflow observations from the Global Runoff Data Centre (GRDC; https://www.bafg.de/GRDC/), which
provides daily streamflow records for over 200 stations in the Amazon Basin. We selected 24 key stations
(Figure 2a and Table S4 in Supporting Information S1) based on several criteria, such as the corresponding
catchment size (larger than 1.0 × 105 km2), temporal completeness (less than 10% missing data), and station
locations (covering major tributaries). For TWSA, we used the monthly Mascon products from the GRACE
satellite mission (Tapley et al., 2004), which have been widely used in hydrology. We considered the average
values of three products prepared by different institutes, such as the Center for Space Research at the Uni-
versity of Texas (CSR) (Save et al., 2016), NASA's Jet Propulsion Laboratory (JPL) (Wiese et al., 2016), and
NASA's Goddard Space Flight Center (GSFC) (Loomis et al., 2019), to account for data uncertainty. Con-
strained by the inherent frequency band limitation problem of GRACE (Save et al., 2016), the fundamental
spatial resolution of the GRACE TWSA data is approximately 300 km. Following Schumacher et al. (2016),
we spatially aggregated these products with an original resolution of 0.25° × 0.25° or 0.5° × 0.5° to a 3° × 3°
resolution to ensure data reliability. To match the aggregated GRACE TWSA data, we processed the model
output of TWS, which is the sum of all water storage buckets, with the following steps. First, the modeled
monthly TWSA was derived as the modeled TWS minus the average TWS from 2004 to 2009 (i.e., the
GRACE TWSA baseline period). Second, the modeled TWSA was rescaled to the same 3° × 3° grid cell as
the GRACE TWSA data.

Direct observations of ET in the Amazon Basin are very limited, making it difficult to evaluate the model's
performance in ET prediction over the entire modeling domain (Baker et al., 2021; Fassoni‐Andrade et al., 2021).
Remote sensing‐derived ET data provide complete spatial coverage over the study area. However, dense vege-
tation canopies and frequent cloud cover in the Amazon significantly impair the accuracy of remote sensing‐based
ET estimates (Fassoni‐Andrade et al., 2021; Swann & Koven, 2017). Previous studies in the Amazon Basin
calculated catchment‐wise ET based on the water balance approach as a benchmark, which is considered to
provide the closest approximation to a direct ET “measurement” at large spatial scales (Baker et al., 2021; Maeda
et al., 2017; Swann & Koven, 2017). In this study, the catchment‐wise water balance, ET = P − Q − ∆S, was
evaluated, where P is the annual precipitation derived from the WFDEI data set; Q is the annual runoff derived
from GRDC; and ∆S is the catchment‐wise change in TWS in 1 year derived from GRACE TWSA data. In
addition, we collected site‐scale ET observations from two eddy flux towers (see Figure 2) established in the
Large‐Scale Biosphere–Atmosphere Experiment in Amazonia (LBA) research program (Restrepo‐Coupe
et al., 2021), which were used as independent references.

3.3. Numerical Experiments

In this study, five NN‐based modeling schemes, namely, HydroPyNN, HydroPyNN(Q,S), Hybrid(Q), Hybrid(Q,
S), and Hybrid(Q,S)+, were explored. In HydroPyNN and HydroPyNN(Q,S), the original HydroPy was
implemented as the stand‐alone physical NN in Figure 3a. Using the default parameter values provided by Stacke
and Hagemann (2021b) (Table 1). HydroPyNN and the original HydroPy were compared to determine whether
HydroPy was successfully embedded in the RNN architecture. HydroPyNN(Q,S) is trained using both streamflow
(Q) and GRACE TWSA (S) data. Hybrid(Q), Hybrid(Q,S), and Hybrid(Q,S)+ are all hybrid DL models. In
Hybrid(Q) and Hybrid(Q,S), the parameterization NN is activated, and the models are trained using streamflow
data alone and both streamflow and GRACE TWSA data, respectively. In HydroPyNN, HydroPyNN(Q,S),
Hybrid(Q), and Hybrid(Q,S), PET was estimated using the Penman‐Monteith equation. Hybrid(Q,S)+ further
activates the replacement NN for PET estimation and was trained using both streamflow and GRACE TWSA
data.

The entire modeling time period was from 2001 to 2016, with the first two years for spin‐up. We considered three
data splitting strategies, temporal, spatial, and spatiotemporal splitting, to train and validate hybrid DL models.
Only temporal splitting was applied to HydroPyNN(Q,S) as it has no parameterization NN. In temporal splitting,
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the periods of 2003–2012 and 2013–2016 were selected as the training and validation periods, respectively. All 24
stations and/or 56 grid cells (3° × 3°) were included in both periods. In spatial splitting, the 24 hydrological
stations were randomly divided into four sets, and the entire period of 2003–2016 was considered in both the
training and validation stages. Spatial splitting was applied for Hybrid(Q,S) and Hybrid(Q,S)+, and four‐fold
cross‐validation was performed. Preliminary tests showed that the prediction accuracy of hybrid models is not
sensitive to the fold number. In each fold, the streamflow data for three groups of stations plus the TWSA data for
all 56 grid cells were used for training, and the streamflow data for the fourth group of stations was used for
validation. The spatial splitting of streamflow data was performed to investigate the transfer learning capacity
(i.e., predictive ability in ungauged basins) of the hybrid models. In the third strategy, spatiotemporal splitting, the
data was divided into four parts: training stations in 2003–2012 (training period), training stations in 2013–2016
(validation period), validation stations in 2003–2012, and validation stations in 2013–2016. Hybrid(Q,S)+ was
trained using the first part of the data, and its temporal, spatial, and spatiotemporal learning capabilities were
evaluated based on the second, third, and fourth parts, respectively. Four‐fold cross‐validation was also per-
formed, similar to the spatial splitting case.

The Nash‐Sutcliffe efficiency (NSE) (Nash & Sutcliffe, 1970) was considered when formulating the loss function
for network training. As the most commonly used evaluation metric in hydrological modeling, the NSE ranges
from (–∞, 1], with a large value indicating good performance. The loss function used in the study is generally
expressed as shown in Equation 1:

loss = w1 ·
1
N
∑

N
n=1NSE

n
Q + w2 ·

1
M
∑

M
m=1NSE

m
TWSA (1)

where N and M represent the numbers of streamflow stations and grid cells included in the training stage,
respectively, and w1 and w2 represent the weights of streamflow and TWSA in the loss function, respectively. For
HydroPyNN(Q,S) in temporal splitting, N is equal to 24 and M is equal to 56. For Hybrid(Q), Hybrid(Q,S) and
Hybrid(Q,S)+, N is equal to 24 in the temporal splitting scheme and 18 in the spatial splitting scheme. For Hybrid
(Q,S) and Hybrid(Q,S)+, M is equal to 56 in both temporal and spatial splitting schemes. For Hybrid(Q,S)+ in
spatiotemporal splitting, N is equal to 18 and M is equal to 56. For Hybrid(Q), w1 and w2 were set to 1 and 0,
respectively. For HydroPyNN(Q,S), Hybrid(Q,S) and Hybrid(Q,S)+, both w1 and w2 were set to 0.5, assuming
that streamflow and TWSA are equally important. We also investigated the influence of unequally weighting
schemes on the performance of Hybrid(Q,S)+, varying w1 from 0 to 1 (w2 from 1 to 0, simultaneously) with an
interval of 0.1. The results are presented in Figure S3 in Supporting Information S1, which confirms that the equal
weighting scheme is an appropriate choice for modeling streamflow, TWSA and the intermediate variable ET.

We implemented all the NN‐based models based on the DL platform TensorFlow (Abadi et al., 2016). The Adam
optimization algorithm (Kingma&Ba, 2014) with a learning rate of 0.0005 was used to train the models. The NN‐
based models were deployed and trained using two 32‐core Xeon Gold 6338 CPUs. Each training iteration takes
approximately 2 min and requires 200 GB of memory. Within the training period, the maximum number of it-
erations (i.e., the epoch number) was set to 300 to balance the computational accuracy and efficiency. The
hyperparameters for network training were determined through preliminary trials. More details of the hyper-
parameters are provided in Table S5 in Supporting Information S1. For HydroPyNN(Q,S), Hybrid(Q), Hybrid(Q,
S), and Hybrid(Q,S)+, the training process involved 10 random repeat runs with different initial weights and
biases for the NNs to account for modeling uncertainty. Unless otherwise mentioned, the results presented in this
paper are the mean values of the repeated runs.

3.4. Interpretation of the Neural Network

In this study, the expected gradient (EG, Erion et al., 2021) method was used to interpret the behavior of the
parameterization NN in the hybrid model. The EG method uses the gradient of the model output with respect to
the input features to trace the specific contributions of inputs (Erion et al., 2021). This method is based on the
game theory approach, and an importance score is assigned to each feature of a given input. The score of an input
feature indicates its local contribution to the prediction: a large positive value indicates that the feature (i.e., the
static attribute in the case) substantially increases the network output (i.e., the physical parameter at the individual
grid scale), and a large negative value indicates the opposite. Given a NN Θ, the EG value for feature i is
defined as:
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ϕi(Θ,x) = Ex′∼D,α∼U(0,1)

⎡

⎢
⎢
⎣(xi − x′i ) ×

∂f (x′ + α(x − x′))
∂x′i

⎤

⎥
⎥
⎦

(2)

where x is the target input; x′ is the baseline input; D is the underlying dis-
tribution of the baseline input for the background data set (e.g., the training
data set), x′ ∈ D; U(0,1) is the uniform distribution between 0 and 1, α ∈ U;
and ∂f ( x′ + α( x − x′))/∂x′i is the local gradient of the NN Θ at a point
interpolated between the baseline input and target input. In this study, the
procedure used to calculate the EG value (ϕi) was based on the SHapley
Additive exPlanations package (Lundberg & Lee, 2017), which can provide
various post hoc analyses for different neural networks. The mean absolute ϕi

value of a specific attribute to a physical parameter reflects its global
contribution over all grid cells. The contributions of different attributes are
additive, and the sum of all attribute contributions and the average predicted
value equals the final predicted value.

4. Results
4.1. Temporal Learning for Streamflow and TWSA

It was first confirmed that HydroPyNN (the RNN version) precisely emulates
the original HydroPy (see Table S6 in Supporting Information S1). Figure 5
compares the performance of five NNmodels using NSE. Similar comparison
results, based on root mean square error and the Kling‐Gupta efficiency
(KGE, Gupta et al., 2009), are displayed in Figure S4 in Supporting Infor-
mation S1. In general, network training with observational data significantly
improves the model prediction accuracy compared to the non‐training case
(i.e., HydroPyNN), except for Hybrid(Q) for modeling TWSA. It is worth
emphasizing that training of HydroPyNN is much more computationally
efficient than calibration of the original form of HydroPy. HydroPyNN is
fully differentiable such that the training process based on backpropagation
can be finished in several hours (on two 32‐core Xeon Gold 6338 CPUs in our
case). But calibration of HydroPy using heuristic algorithms inevitably en-
counters the curse of dimensionality, and the computational cost would be

drastically higher than training HydroPyNN. HydroPyNN(Q,S) has similar performance as Hybrid(Q,S). How-
ever, without the NN mapping geographical attributes to physical parameters, HydroPyNN(Q,S) lacks a physi-
cally grounded basis for its parameter values, significantly constraining its ability to accurately predict in unseen
geographical locations. It is noted from Figure 5a that adding the GRACE TWSA in training actually degrades the
performance of the model in streamflow prediction (Hybrid(Q,S) versus Hybrid(Q)), as has been reported in
previous studies (Dembélé et al., 2020; Rakovec et al., 2016). The important implication is that improvements in a
single objective does not necessarily suggest that the overall model is improved, as the improvement may be at the
cost of degradations for other objectives. For TWSA (Figure 5b), Hybrid(Q) performs unacceptably, even worse
than the uncalibrated HydroPyNN. The poor performance is due to model equifinality (Beven, 2006; Clark
et al., 2017), as the streamflow observations at the 24 stations are insufficient to constrain the water storage
simulation by HydroPyNN. The problem was resolved in Hybrid(Q,S) after the inclusion of GRACE TWSA data.
Furthermore, Hybrid(Q,S)+ achieves the best predictive performance for both streamflow and TWSA, indicating
the benefit of using the replacement NN for modeling PET.

Our new framework has significant advantages over the original form of HydroPy. Parameter calibration in
HydroPy for such a complex case (the modeling domain of 5.96 × 106 km2 is delineated into 1,951 grid cells, and
multiple calibration objectives are considered) is practically infeasible using traditional gradient‐based or heu-
ristic search methods, which is the possible reason why the global HydroPy model was not calibrated (Hagemann
& Dümenil, 1997; Stacke & Hagemann, 2021a). However, with the model transformed into a differentiable NN,
the BP algorithm can efficiently infer the network parameters. The framework can also easily fuse multi‐source

Figure 5. Performance in predicting dynamic streamflow and total water
storage anomaly with different neural network (NN)‐based models during
the validation period. (a) Nash‐Sutcliffe efficiency (NSE) values for the 24
selected streamflow stations and (b) NSE values for the 56 grid cells (3° × 3°
in size). The box plots show the median (the values are showed), 25th
percentile, 75th percentile, and 1.5 times interquartile range of NSE values.
The dots denote the outliers outside the 1.5 times interquartile range. The
yellow boxes represent models without the parameterization NN, and the
blue boxes represent hybrid models with the parameterization NN.
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observations for the spatiotemporal learning of hydrological processes, which helps to plausibly constrain model
behavior and to achieve potentially balanced simulation performance among multiple target variables. Further-
more, the end‐to‐end learning system allows co‐training of the physical NN and the replacement NN to represent
unknown or uncertain process(es), such that processes without direct observations (e.g., PET in this study) can be
effectively constrained by other indirect observations (e.g., streamflow and TWSA in this study).

4.2. Spatial and Spatiotemporal Learning for Streamflow Simulation

The spatial cross‐validation with spatial splitting reveals that both Hybrid(Q,S) and Hybrid(Q,S)+ perform
obviously better than the untrained HydroPyNN model in the spatial transfer learning of streamflow (Figure 6a).
Hybrid(Q,S)+ performs the best, with only three stations displaying an NSE below 0.70. The median NSE of
Hybrid(Q,S)+ is 0.80, much higher than the values of HydroPyNN (0.63) and Hybrid(Q,S) (0.66), and the dif-
ference in model performance is statistically significant (p < 0.01 in paired t‐test). The time series of simulated
(by Hybrid(Q,S)+) and observed streamflow at the 24 hydrological stations are illustrated in Figure S5 in
Supporting Information S1. Even in the challenging realm of spatiotemporal learning by spatiotemporal splitting,
the median NSE of Hybrid(Q,S)+ reaches 0.76 (see Figure S6 in Supporting Information S1). The excellent
transfer learning capability of Hybrid(Q,S)+ reflects the value of integrating the parameterization and replace-
ment NNs with the physical NN (Figure 3).

Figure 6b illustrates the detailed simulation results for Obidos, the most downstream station in the Amazon Basin;
notably, the drainage area of this station covers approximately 77% of the basin (Figure 1). Consistent with the
findings of Stacke and Hagemann (2021a), the untrained HydroPyNN predicts earlier and higher flow peaks than
the observed values, which may be associated with the modeled low ET in March to May. The two trained models

Figure 6. Performance of the neural network models in spatial transfer learning. (a) The Nash‐Sutcliffe efficiency values
based on four‐fold cross‐validation at the 24 stations as validation stations. (b) Observed and simulated hydrographs at the
most downstream station (Obidos).
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overcome the timing issue to different extents. The overestimation of the peak flow is less notable for Hybrid(Q,
S)+ than for Hybrid(Q,S). Hybrid(Q,S)+ almost perfectly reproduces the observed hydrograph, with an NSE of
0.92. In the tropical Amazon Basin, the humid climate leads to high variability in performance among PET
calculation methods, and therefore, the choice of method can have a large impact on streamflow simulation
(Sperna Weiland et al., 2012; Trambauer et al., 2014). The overestimation by Hybrid(Q,S) in the Amazon Basin
may be due to the underestimation of overall PET estimated by the Penman‒Monteith equation (Trambauer
et al., 2014; Weiland et al., 2015). In Section 5.1, the PET issue is further discussed.

4.3. Water Budget Analysis

Data‐driven hydrological models do not necessarily guarantee a water balance. In our hybrid modeling
framework, incorporating a physical NN as the backbone ensures adherence to the water balance principle,
potentially resulting in superior generalization performance compared to conventional DL methods (Hoedt
et al., 2021). Here, we derived the simulated annual streamflow (Q), water storage change (∆S), and ET for the
drainage area of the most downstream station (Obidos) based on the models trained with the temporal splitting
strategy. ∆S and ET were averaged over the entire drainage area. The simulated values were compared with the
respective values derived based on observations, where the observed Q and ∆S were derived from GRDC and
GRACE, respectively, and the observation‐based ET was derived from the water balance calculation. Figure 7
illustrates the difference between the modeled and observation‐based water budgets. When only streamflow is
used for training (i.e., in Hybrid(Q)), a positive ∆S bias of 26 mm and a positive Q bias of 10 mm lead to a
negative ET bias of − 36 mm. Adding the TWSA data for model training reduces the ∆S bias to zero, but the Q
and ET biases are 37 mm and − 37 mm, respectively, suggesting that the good performance of Hybrid(Q,S) in
simulating streamflow and TWSA (Figure 5) comes at the cost of a notable underestimation in ET. In contrast,
Hybrid(Q,S)+ adequately reproduces the water budget in all three dimensions, indicating that replacing the
original formulation of PET with that based on the replacement NN enhances the physical plausibility of the
modeling results.

We further compared the ET modeled by Hybrid(Q,S) and Hybrid(Q,S)+ against the ET based on water balance
calculations at the sub‐basin scale (Figure 8a). Table S7 in Supporting Information S1 provides more infor-
mation on the nine sub‐basins for comparison. Water balance‐based ET shows a generally increasing pattern
from southwest to northeast across the basin (Figure 8b), consistent with previous findings (Baker et al., 2021).
Hybrid(Q,S) does not render the above pattern (Figure 8c), while Hybrid(Q,S)+ does (Figure 8d). Hybrid(Q,S)
yields a notable underestimation of ET in sub‐basins 1, 3, and 5, and Hybrid (Q,S)+ ameliorates this deficiency
(Figure 8e). In particular, Hybrid(Q,S)+ predicts low ET in sub‐basin 4, which may be associated with lower
solar radiation and partly associated with local characteristics (e.g., higher elevations and sparse vegetation)
(Maeda et al., 2017). Accurately predicting low ET is crucial for simulating runoff in this region. As Figure 9

Figure 7. Comparison of the water budget terms in the Obidos catchment during the study period (2003–2016). The biases
reflect the difference between the modeled and reference water budgets. A positive (or negative) bias indicates an
overestimation (or underestimation) by the model.
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shows, the other three NN models all led to a pronounced underestimation of the runoff in this region. The above
results further confirm the importance of replacing the Penman‒Monteith equation with the NN in the hybrid
model.

We compared the measurements from two flux towers, K34 and K67 (see Figure 2), with the modeled ET at the
respective grid cells (Figure 10). These measurements exhibit a statistically significant (p < 0.01) correlation and
are within the same range. Some discrepancies can be partially explained by the following two aspects. The
representation scales of ET derived from eddy flux towers and the modeled ET are vastly different. Measurements
by eddy flux tower represent a range of only 1–2 km (Paca et al., 2022; Restrepo‐Coupe et al., 2021), whereas the
grid resolution of the hybrid models exceeds 50 km. In addition, tropical forest flux towers suffer from energy
balance closure problems, and an underestimation of total energy fluxes by 20%–30% was reported (Baker

Figure 8. Annual evapotranspiration (ET) in nine sub‐basins of the Amazon Basin from 2003 to 2016. (a) The locations of the
sub‐basins and their respective outlets; (b) the sub‐basin ET based on the water balance calculation; (c) the sub‐basin ET
modeled with Hybrid(Q,S); (d) the sub‐basin ET modeled with Hybrid(Q,S)+; and (e) comparisons between the water
balance‐based ET (Y axis) and the modeled ET (X axis), with the green and blue markers representing Hybrid(Q,S) and
Hybrid(Q,S)+, respectively.
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Figure 9. The percentage bias (Pbias) in the streamflow predictions of the neural network‐based models at 24 stations from
2003 to 2016.

Figure 10. Comparison of daily ET between flux tower data and grid‐scale modeling results. (a) Measured ET from the K34
flux tower versus modeled ET from Hybrid(Q,S) and Hybrid(Q,S)+. (b) Measured ET from the K67 flux tower versus
modeled ET from Hybrid(Q,S) and Hybrid(Q,S)+. The indicators, Corr, MAE, and root mean square error (RMSE),
represent the correlation coefficient, mean absolute error, and RMSE, respectively.
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et al., 2021; Fisher et al., 2009). Despite these discrepancies, the results illustrated by Figure 10 strongly suggest
that the modeled ET from hybrid models makes physical sense.

5. Discussion
5.1. PET in the Amazon Basin

Estimating PET in tropical regions presents a significant challenge, as a variety of approaches often yield
inconsistent results (Sperna Weiland et al., 2012; Trambauer et al., 2014). For the Amazon Basin, we compared
the PET derived with Hybrid(Q,S)+ with that from three classic estimation approaches: the Penman‒Monteith
equation (Allen et al., 1998), the temperature‐based Hargreaves‐Samani approach (Hargreaves & Samani, 1985)
and the radiation‐based Priestley–Taylor approach (Priestley & Taylor, 1972). The four approaches are consistent
in terms of temporal pattern (Figure 11a), with high PET values during periods of high temperature and high
radiation (see Figure S7 in Supporting Information S1). In terms of magnitude, the PET derived with Hybrid(Q,
S)+ falls between the estimates of the Penman‒Monteith and Priestley–Taylor approaches, consistent with the
findings of Trambauer et al. (2014); that is, the Penman‒Monteith approach is likely to underestimate PET in the
tropics. The PET obtained with Hybrid(Q,S)+ closely aligns with that based on the Penman‒Monteith estimation
on the 90th to 270th days of the year, but it becomes obviously higher than the PET obtained with the Penman‒
Monteith method and closer to the PET obtained with the Priestley–Taylor method on the remaining days. Given
that the PET derived from Hybrid(Q,S)+ is consistent with previous findings (Trambauer et al., 2014) and that
this model performs best in various aspects of the evaluation (e.g., runoff, water storage, and ET), we argue that
the PET derived with Hybrid(Q,S)+ may be the most plausible estimate for the Amazon Basin.

The spatial patterns of the four PET estimation approaches (Figure 11b) consistently exhibit low PET values in
the southwestern Andes (Figure 2a) but differ in other regions. Both the Penman‒Monteith and Hybrid(Q,S)+
methods render a low PET trend in the northwestern region, which is absent in the Priestley–Taylor and Har-
greaves‒Samani results. This inconsistency in spatial pattern may be due to the differences in input variables. The
inputs of the Hargreaves‒Samani and Priestley–Taylor approaches are limited to temperature and solar radiation,
but the Penman‒Monteith method and Hybrid(Q,S)+ consider additional factors, such as humidity and wind
speed. In particular, humidity and wind speed were reported to have an important effect on PET calculations in the
tropics (Jhajharia et al., 2012). The high PET values in the south revealed by Hybrid(Q,S)+ may be associated
with the high local wind speed (Figure S8 in Supporting Information S1). Conversely, the low PET values in the
western region revealed by Hybrid(Q,S)+may be explained by the high humidity and low solar radiation (Figure
S8 in Supporting Information S1).

Overall, the distributed hybrid modeling not only produces more plausible PET estimates but also reveals fine‐
scale details regarding the spatial pattern of PET, providing opportunities for identifying knowledge gaps in PET
estimation. It eliminates the need for arbitrarily selecting a PET estimation approach from a variety of choices
(Trambauer et al., 2014; Weiland et al., 2015). Note that our framework (Figure 1) is general and not limited to
PETmodeling; it can be used to address other processes that are not clearly understood or lack direct observations.

5.2. Insights From Model Parameterization

The model parameterization through NN training not only leads to computational efficiency but also provides
hydrological insights (Feng et al., 2022; Tsai et al., 2021). In the Amazon Basin, vegetation transpiration largely
influences the spatial pattern of basin ET, and therefore, interpreting the parameterization results for transpiration
modeling may enhance our understanding of the ET process. Here, the critical root zone moisture fraction ( fcrit) in
HydroPy is selected as an example. HydroPy distinguishes two states of vegetation transpiration: the water‐
limited regime, in which transpiration is mainly controlled by soil moisture availability, and the energy‐
limited regime, in which transpiration is mostly governed by the energy supply. fcrit defines the threshold for
the state transition of vegetation transpiration. When the soil moisture fraction ( fsoil) is higher than fcrit, vegetation
transpiration reaches a maximum; otherwise, vegetation transpiration is constrained by water stress. Therefore,
this critical parameter controls soil‐vegetation‐atmosphere interaction behaviors (Denissen et al., 2020; Novák &
Havrila, 2006). The specific functional relationship among transpiration, fsoil and fcrit is described in Text S4 in
Supporting Information S1. Figure 12a illustrates the fcrit values derived from Hybrid(Q,S)+. Apparently, fcrit is
low in the central Amazon plains and high in the Andes at the southwestern boundary of the basin and at the corner
of the Guiana Plateau (Figure 2a) in the upper‐middle basin, with a clear and spatially continuous pattern.
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To further investigate the possible causes of the distribution illustrated in Figure 12a, we used the EG method to
analyze the contributions of static attributes to fcrit in the parameterization NN. Figure 12b summarizes the mean
absolute ϕi for each individual attribute across all 1,951 grid cells, and their global importance to the parame-
terization of fcrit is assessed. A high value indicates a high contribution. As revealed by Figure 12b, the four most
important attributes are the difference between the maximum and minimum monthly leaf area indices (LAIdiff),
the average daily temperature (Tempavg), the average monthly vegetation fraction (Fvegavg) and the maximum
monthly vegetation fraction (Fvegmax), highlighting the dominant impacts of vegetation type and climate. The
spatial consistency between the distribution of vegetation types (Figure 12c) and the distribution of the total
contribution of LAIdiff, Fvegavg and Fvegmax to the parameterization of fcrit (Figure 12d) suggests that shrubland
and grassland tend to lead to high fcrit, with the opposite trend observed for forest. This may be due to the high

Figure 11. Spatiotemporal comparison of plausible potential evapotranspiration (PET) derived from classic empirical
formulas (Penman‒Monteith, Priestley–Taylor, and Hargreaves–Samani) and Hybrid(Q,S)+. (a) Daily basin‐scale
climatology for PET among the four approaches. (b) Spatial maps of annual PET at the 0.5° × 0.5° grid scale for the four
approaches. The results above are calculated for the period from 2003 to 2016.
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susceptibility of low vegetation (e.g., shrubland and grassland) with shallow root systems to water limitation
issues (Denissen et al., 2020). In contrast, the root zones of trees in forested areas are deep and have access to deep
water reservoirs to avoid such water limitations. Additionally, based on model interpretation, the possible
contribution of temperature to fcrit can be assessed (Figures 12e and 12f). In the southwestern Andes region, low
temperatures (<15°C) corresponded to higher positive ϕi values, and in other regions, this contribution was
weakly negative (or there was no contribution). The combination of low temperature and low vegetation likely
leads to the high fcrit in this region. Overall, the above discussion reinforces the point that the distributed hybrid

Figure 12. Parameterization of Hybrid(Q,S)+ and its backward interpretation. (a) Spatial distribution of the inferred values of
fcrit. (b) Mean absolute ϕi for the six most important static attributes. The six important attributes are the difference between
the maximum and minimum leaf area indices (LAIdiff), the average temperature (Tempavg), the average monthly vegetation
fraction (Fvegavg), the maximum monthly vegetation fraction (Fvegmax), the maximum water holding capacity (Wmax), and
the difference between the maximum and minimum vegetation fractions (Fvegdiff). (c) Spatial distribution of vegetation
types based on the University of Maryland Global Land Cover Classifications. (d) Spatial distribution of the sum of ϕi for the
three vegetation‐related attributes. (e) Spatial distribution of average daily temperature from 2003 to 2016; (f) Spatial
distribution of ϕi for average daily temperature. The spatial resolution of (a), (c), (d), (e), and (f) is 0.5° × 0.5°.
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modeling framework proposed in this study not only improves the efficiency and accuracy of large‐scale hy-
drological modeling but also ensures the physical plausibility and consistency of the modeling.

5.3. Limitations and Future Work

The hybrid models developed in this study have not considered the impact of human activities, such as building
dams and reservoirs. The Amazon has a growing number of hydropower dams (Latrubesse et al., 2017), and
therefore the lack of reservoir module may limit the simulation accuracy and generalizability of the hybrid
models. Nevertheless, our framework can be easily extended to include reservoir modules, either within the
physical NN or as a replacement NN (Figure 1). Process‐based reservoir modules (Dang et al., 2020) can be
encoded into the physical NN in the same way as HydroPy's equations. DL models simulating reservoir operation
in a black‐box way (He et al., 2022) can also be adopted as the replacement NN which can be further attached to
the physical backbone.

Uncertainty is a common issue in hydrological modeling. This study addressed random initial weights and
biases, which represent a major source of uncertainty for NN‐based models (Lakshminarayanan et al., 2017), by
using 10 random repeat runs. Figures S9 and S10 in Supporting Information S1 show that this uncertainty is
small in this study case. Figure S9 in Supporting Information S1 shows this uncertainty in terms of variations in
prediction accuracy, while Figure S10 in Supporting Information S1 shows it in terms of variations in inferred
parameter and PET values. However, DL‐based hydrological models are also susceptible to uncertainty
associated with model inputs and observational data for model calibration/training, similar to classic DHMs.
For example, both the GRACE‐based TWSA products and gauge‐observed streamflow have errors (Di Bal-
dassarre & Montanari, 2009; Loomis et al., 2019). In traditional hydrological modeling, these errors can be
addressed by statistical approaches such as Bayesian methods (F. Han & Zheng, 2018). How to integrate classic
uncertainty analysis approaches with deep NNs, particularly in a fully differentiable way, is an interesting topic
for future research.

6. Conclusions
In this study, a fully differentiable framework was developed to perform distributed hydrological modeling with
physics‐encoded DL. The framework seamlessly integrates process‐based runoff and river routing models
encoded as NNs, an NN to map spatially distributed and physically meaningful parameters from watershed at-
tributes, and NN‐based replacement models for unknown or vaguely known processes. The framework accom-
modates multi‐source hydrological observations as training data. The framework is applied to the Amazon Basin,
with HydroPy, a global‐scale DHM, encoded as the physical backbone of the hybrid DL model. The major study
findings are summarized below.

The novel framework enables automatic parameter tuning for DHMs in large‐scale (i.e., continental to global‐
scale) applications. In the Amazon case, tuning the parameters of HydroPy (the NN version, HydroPyNN) by
backpropagation led to a significant increase in the accuracy of streamflow prediction (the median NSE value
was enhanced from 0.59 to 0.76, see Figure 5a). The addition of GRACE data in the parameter tuning process
(i.e., Hybrid(Q,S)) improved the model performance in TWSA prediction but slightly degraded that in
streamflow prediction. Further activation of the replacement NN for PET calculation (i.e., Hybrid(Q,S)+)
resolved the tradeoff between the two modeling objectives, and the median NSE values for both streamflow and
TWSA reached their maxima in the temporal learning scheme (0.83 and 0.77, respectively, see Figure 5). Even
in the more challenging scheme of spatial learning, the median NSE of Hybrid(Q,S)+ was 0.80 for streamflow,
much higher than that of HydroPyNN (0.63). Replacing the original Penman‒Monteith formulation for PET
with the replacement NN not only produced more plausible PET estimates for the Amazon Basin but also aided
in identifying fine‐scale details in the spatial pattern of PET, thus providing opportunities for identifying
knowledge gaps in PET estimation. In addition, the model parameterization through NN training provided
important hydrological insights. Interpretation of the parameterization NN revealed that fcrit, a critical parameter
controlling soil‐vegetation‐atmosphere interaction behaviors, in HydroPy is dominantly impacted by vegetation
type and climate. The combination of low temperature and low vegetation is likely the cause of the high fcrit in
this region.

Overall, this study lays out a feasible technical roadmap for distributed hydrological modeling in the big data era.
The framework is general and extendable. Future research may investigate the potential and develop methods for
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wrapping hydrological system equations into other NN architectures such as Gated Recurrent Unit (Cho
et al., 2014) and LSTM. Other types of observational data could be considered. For example, satellite‐based soil
moisture data can be used to train hybrid models that simulate multi‐layer soil moisture dynamics. In addition,
investigating the effects of different spatial resolutions on the performance of hybrid models would be an
interesting avenue for future research.

Data Availability Statement
The WFDEI meteorological data set used in this study was obtained from the ISIMIP portal (https://www.isimip.
org/). The static attribute data set was obtained from Stacke and Hagemann (2021b, https://zenodo.org/record/
4541239). The major river networks and streamflow observations for the Amazon Basin were obtained from the
Global Runoff Data Centre (GRDC, 2022, https://www.bafg.de/GRDC/). The GRACE Mascon products were
obtained from three agencies: the Center for Space Research at the University of Texas (CSR, https://www2.csr.
utexas.edu/), NASA's Jet Propulsion Laboratory (JPL, https://grace.jpl.nasa.gov/), and NASA's Goddard Space
Flight Center (GSFC, https://earth.gsfc.nasa.gov/). The source code of HydroPy was obtained from Stacke and
Hagemann (2021a, https://zenodo.org/record/4730160). In addition, the code for the hybrid model in this study is
available at https://zenodo.org/record/8251987.
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