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First-passage functionals of Brownian motion in logarithmic potentials and

heterogeneous diffusion

Mattia Radice∗

Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany

We study the statistics of random functionals Z =
∫

T

0
[x(t)]γ−2dt, where x(t) is the trajectory

of a one-dimensional Brownian motion with diffusion constant D under the effect of a logarithmic
potential V (x) = V0 ln(x). The trajectory starts from a point x0 inside an interval entirely contained
in the positive real axis, and the motion is evolved up to the first-exit time T from the interval.
We compute explicitly the PDF of Z for γ = 0, and its Laplace transform for γ 6= 0, which can be
inverted for particular combinations of γ and V0. Then we consider the dynamics in (0,∞) up to
the first-passage time to the origin, and obtain the exact distribution for γ > 0 and V0 > −D. By
using a mapping between Brownian motion in logarithmic potentials and heterogeneous diffusion,
we extend this result to functionals measured over trajectories generated by ẋ(t) =

√
2D[x(t)]θη(t),

where θ < 1 and η(t) is a Gaussian white noise. We also emphasize how the different interpretations
that can be given to the Langevin equation affect the results. Our findings are illustrated by
numerical simulations, with good agreement between data and theory.

I. INTRODUCTION

Consider the stochastic trajectory of a one-dimensional
particle described by the Langevin equation

dx(t)

dt
= µ[x(t)] +

√
2D[x(t)]η(t), (1)

where µ(x) = −V ′(x) represents a deterministic force de-
rived from an external time-independent potential V (x),

FIG. 1. Example of first-passage functional Z =
∫

T

0
F [x(t)]dt

for Brownian motion in a potential V (x) = V0 ln(x) diffusing
in Ω = ( 1

2
, 5

2
). Here F (x) = 1/x and Z thus corresponds to

the area under the graph of 1/x(t), where x(t) is the stochastic
trajectory displayed in the inset. The trajectory starts from
x0 = 1 and the motion is evolved up to the first-exit time
from Ω. The diffusion constant is equal to one and V0 = 0.5.

∗ Corresponding author: mradice@pks.mpg.de

η(t) is a Gaussian white noise with zero mean and auto-
correlation 〈η(t)η(t′)〉 = δ(t− t′) and D(x) is the space-
dependent diffusion coefficient. Suppose that the motion
generated by (1) starts from a point x0 inside a given
interval Ω, and the first passage outside Ω occurs after
a random time T , which we call the first-passage time.
Define

Z =

∫ T

0

F [x(t)]dt, (2)

where F (x) is, in principle, an arbitrary function that
makes the integral convergent. Such a random variable
is known as first-passage functional. Quantities of this
kind have been extensively studied in the case of free
Brownian motion, i.e., for µ(x) = 0 and D(x) = D, for
the simple reason that many problems may be formu-
lated in terms of first-passage Brownian functionals [1].
Of course, generalizations of the problem have also been
proposed, in which, for example, dynamics other than
purely Brownian or the introduction of stochastic reset-
ting mechanisms are considered [2–14].

In this paper we wish to consider a subclass of first-
passage functionals, where the integral in (2) is evalu-
ated for F (x) = xγ−2, with γ ∈ R, over the trajectory
of a Brownian particle with constant diffusion coefficient
D in a logarithmic potential V (x) = V0 ln(x/κ), where
κ is a length scale that we can conveniently set to one.
This choice is motivated by the fact that many inter-
esting problems can be mapped to the study of func-
tionals of this kind. For example, for γ = 2 one has
F (x) = 1 and thus Z simply corresponds to the first-
passage time T , which is a stochastic quantity relevant
for a plethora of applications [15, 16]. For γ = 3, Z is
equivalent to the first-passage area A, i.e., the area swept
by the trajectory x(t) in the xt plane till the first-passage
time. This quantity has attracted a lot of interest and
was studied for instance in the case of Brownian motion
[3, 5, 17], Brownian motion with drift [3, 4, 6], Brown-
ian motion with stochastic resetting and jump-diffusion
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processes [2, 9, 18], Orstein-Uhlenbeck process with and
without resetting [8, 12, 14], Lévy processes [7], with ap-
plications in queueing theory and combinatorics [3], per-
colation [19], animal movements [20], snow melt [21] and
DNA breathing dynamics [22], to cite a few examples.
Other nontrivial and interesting cases are γ = 3

2 , which
is related to the oscillation period in the underdamped
one-dimensional Sinai model [23], and γ = 1

2 , which is
associated with the lifetime of a comet in the solar sys-
tem [1, 24]. Remarkably, in the case of free Brownian
motion diffusing in Ω = (0,∞), it is possible to obtain
the distribution of Z for any γ > 0 [17]. It is natural
to try to extend this result to more general situations,
for example by adding the presence of an external driv-
ing force. The specific case of a logarithmic potential is
interesting for several reasons: first, it has been exten-
sively studied in the literature [25–30] and recognized as
a model naturally appearing in different contexts, such
as stochastic thermodynamics [31–34], vortex dynamics
[35, 36], long-range interacting systems [37–39], ion con-
densation on a long polyelectrolyte [40], sleep-wake tran-
sitions [41], DNA denaturation [22] and diffusion of cold
atoms in optical lattices [42–47]; in particular, in the lat-
ter two cases the first-passage area [22] and the area un-
der an excursion [48, 49], namely a trajectory that begins
and ends at the origin without crossing it at intermedi-
ate times, are of particular interest. Second, there exists
a discrete counterpart, known as the Gillis random walk
[50, 51], which can be solved exactly and has been con-
sidered in some recent work [52–55]. This model is a
critical case for the study of recurrence in stochastic pro-
cesses [51, 56–58], with unique first-passage properties
that are also recovered in the continuous system. Third,
it has been shown that certain models of heterogeneous
diffusion can be mapped to the dynamics of Brownian
motion (with constant diffusion coefficient) in a logarith-
mic potential [59–61]. Hence, obtaining the distribution
of Z in the latter case allows us to derive also the solution
of the problem in the case of a spatially-varying diffusion
coefficient. We remark that heterogeneous diffusion has
attracted a lot of interest in the statistical physics com-
munity [59, 62–68] and not only, as situations where D is
nonconstant are ubiquitous: examples include contexts
related to biology [69–72], finance [73], solute transport
in heterogeneous media [74] and Richardson diffusion in
turbulence [75].

The outline of the paper is the following: in the next
section we use the method of [1] to write a backward evo-
lution equation for the Laplace-transformed probability
density function of Z, when evaluated along a trajectory
generated by Eq. (1). Then in section III we summarize
the main results for the particular case of a logarithmic
potential and a constant diffusion coefficient. As a corol-
lary, we also obtain the distribution of Z when x(t) is

generated by ẋ(t) =
√
2Dxθη(t), with θ < 1, which is a

model for heterogeneous diffusion. In sections IV, V and
VI we derive the results by providing detailed calcula-
tions. Finally, in section VII we draw our conclusions.

II. BACKWARD EQUATION FOR THE

PROBABILITY DENSITY FUNCTION

Let us call p(z, x0) the probability density function
(PDF) of Z, knowing that the trajectory started from
x0 ∈ Ω. The idea is to derive a backward evolution
equation for the Laplace transform of the PDF, which
corresponds to the expected value of e−wZ , where w is
the Laplace variable:

p̃(w, x0) =

∫ ∞

0

e−wzp(z, x0)dz = E
(
e−wZ

)
. (3)

Here the expected value is taken over all realizations that
start from x0 and leave Ω for the first time at T . To do
this, one can rewrite Eq. (2) as [1]

Z =

∫ dt

0

F [x(t′)]dt′ +

∫ T

dt

F [x(t′)]dt′ (4)

= F (x0)dt+

∫ T

dt

F [x(t′)]dt′ + o(dt), (5)

and note that the second integral at the right-hand side
(rhs) corresponds to the definition of Z, but for a tra-
jectory that starts from a random position x(dt) =
x0 + dx(0). Hence by using p̃(w, x0) = E

(
e−wZ

)
, we

have

p̃(w, x0) = 〈e−wF (x0)dtp̃(w, x0 + dx)〉 + o(dt), (6)

where the average at the rhs is taken over all possible
x(dt), viz., over all possible dx(0). According to Eq. (1),
for any t the displacement dx(t) = x(t+dt)−x(t) is given
by

dx(t) = µ[x(t)]dt +
√
2D(x∗)dW (t), (7)

where dW (t) is the increment of a Wiener process of vari-
ance dt and, more importantly, x∗ is a point between x(t)
and x(t + dt). The choice of the point depends on the
interpretation given to the Langevin equation (1), and
different choices lead to different solutions [76–80]. In
other words, if we set x∗ = αx(t + dt) + (1 − α)x(t),
with 0 ≤ α ≤ 1, the value of α determines the “rule” to
integrate (1), and the choice is often motivated by phys-
ical reasons. The interpretations considered most signif-
icant in the physics literature are those of Itô (α = 0),
Stratonovich (α = 1

2 ) and Hänggi-Klimontovich (α = 1)
[81–84]. In our case, it is useful to make the nonan-
ticipating choice α = 0 (Itô). Nevertheless, we are not
bound to consider exclusively the Itô interpretation, as
any other interpretation can be recovered by inserting an
additional drift term dependent on α. In other words,
(7) is equivalent to

dx(t) = µα[x(t)]dt +
√
2D[x(t)]dW (t), (8)

where

µα(x) = µ(x) + αD′(x). (9)
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Now, from Itô formula [77] we can write dp̃(w, x0) =
p̃(w, x0 + dx)− p̃(w, x0) as

dp̃(w, x0) =

[
D(x0)

∂2p̃(w, x0)

∂x20
+ µα(x0)

∂p̃(w, x0)

∂x0

]
dt

+
√
2D(x0)

∂p̃(w, x0)

∂x0
dW, (10)

thus by inserting this in Eq. (6), taking the average over
dW and discarding terms that are o(dt), we obtain

D(x0)
∂2p̃(w, x0)

∂x20
+µα(x0)

∂p̃(w, x0)

∂x0
−wF (x0)p̃(w, x0) = 0,

(11)
which is the backward evolution equation for p̃(w, x0), to
be accompanied by the appropriate boundary conditions
and the normalization condition p̃(0, x0) = 1. If D(x) is
always bigger than zero in Ω, we can define

N (x0) = exp

[∫ x0

a

µα(x)

2D(x)
dx

]
, (12)

where the lower bound of integration can be any point of
Ω, and then (11) can be written as

1

N (x0)

[
∂2

∂x20
− Veff(w, x0)

]
N (x0)p̃(w, x0) = 0, (13)

where

Veff(w, x0) =
wF (x0)

D(x0)
+

1

N (x0)

d2N (x0)

dx20
(14)

We can therefore set

p̃(w, x0) =
ψ(w, x0)

N (x0)
, (15)

to obtain a simpler equation for ψ(w, x0):

[
∂2

∂x20
− Veff(w, x0)

]
ψ(w, x0) = 0. (16)

Note that the normalization condition p̃(0, x0) = 1 im-
poses ψ(0, x0) = N (x0).

III. SUMMARY OF THE MAIN RESULTS

For V (x) = V0 lnx, with −∞ < V0 < ∞, and D(x) =
D, Eq. (16) simplifies to

∂2ψ(w, x0)

∂x20
−
[
wF (x0)

D
+
β2 − 1

4x20

]
ψ(w, x0) = 0, (17)

where we have introduced the parameter

β = 1 +
V0
D
. (18)

We start by considering the dynamics in an interval Ω =
(a, b), with 0 < a < b. Then we generalize to intervals
of the kind Ω = (0, a) and Ω = (b,∞). Finally, we will
consider the problem in Ω = (0,∞). In the last scenario,
we will also provide the solution when the dynamics is
generated by a Langevin equation of the kind

dx(t)

dt
=

√
2Dxθη(t), (19)

with θ < 1, and underline how it depends on different
interpretations. To simplify the following formulas, it is
convenient to define for γ 6= 0 the exponent

ν =
β

γ
=

1

γ
+

V0
γD

, (20)

and use the notation q̂ to indicate the scaled variable

q̂ =

√
wqγ

γ2D
, (21)

where w will be the Laplace variable.

A. Finite intervals left-bounded by a positive

number

Consider Ω = (a, b), with 0 < a < x0 < b. For γ 6= 0,
the Laplace transform p̃(w, x0) is given by

p̃(w, x0) =
(x0
a

)β/2 Hν(x̂0, b̂)

Hν(â, b̂)
+
(x0
b

)β/2 Hν(â, x̂0)

Hν(â, b̂)
,

(22)
where Hν(x̂, ŷ) is defined as

Hν(x̂, ŷ) = Iν(2x̂)Kν(2ŷ)− Iν(2ŷ)Kν(2x̂). (23)

Here Iν(z) and Kν(z) are the modified Bessel functions
of the first and second kind, respectively [85]. Similarly,
for γ = 0 we define

H(x, y) = sinh

[
ln

(
x

y

)√
w

D
+
β2

4

]
, (24)

and have

p̃(w, x0) =
(x0
a

)β/2 H(x0, b)

H(a, b)
+
(x0
b

)β/2 H(a, x0)

H(a, b)
, (25)

which can be inverted, yielding the PDF
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p(z, x0) =
2πe−

1
4β2Dz

ln2(b/a)

∞∑

n=1

(−1)n+1ne
−

n2π2Dz
ln2(b/a)

{(x0
a

)β/2
sin

[
ln(b/x0)

ln(b/a)
nπ

]
+
(x0
b

)β/2
sin

[
ln(x0/a)

ln(b/a)
nπ

]}
. (26)

Furthermore, if we consider the set of trajectories that
leave Ω = (a, b) from b, which has probability

Eb(a) =





1− (x0/a)
β

1− (b/a)β
if β 6= 0

ln(x0/a)

ln(b/a)
if β = 0,

(27)

then the distribution of Z measured only on those tra-
jectories has the normalized density

p̃(w, x0) =
1

Eb(a)
×





(x0
a

)β/2 Hν(â, x̂0)

Hν(â, b̂)
γ 6= 0

(x0
a

)β/2 H(a, x0)

H(a, b)
γ = 0,

(28)

Analogously, the probability Ea(b) of leaving from a
can be obtained from Eq. (27), and the corresponding
normalized density from Eq. (28), by exchanging a and
b.

B. Finite intervals left-bounded by the origin, or

infinite intervals left-bounded by a positive number

Now take Ω = (0, r) or Ω = (r,∞), with r > 0.
There is a correspondence between the solutions in the
two cases. More precisely:

1. When β > 0 and Ω = (0, r), the functional Z
is well-defined only for γ > 0. In this case, the
Laplace transform p̃(w, x0) is given by

p̃(w, x0) =
2x̂ν0
Γ(ν)

Kν(2x̂0)

[
1− Iν(2x̂0)Kν(2r̂)

Iν(2r̂)Kν(2x̂0)

]

+
(x0
r

)β/2 Iν(2x̂0)
Iν(2r̂)

. (29)

Nevertheless, if we examine only the set of tra-
jectories that leave from r, which has probability
ER = (x0/r)

β , then Z is well-defined for any γ, and
the corresponding normalized conditional PDF is

p̃(w, x0) =





(
r

x0

)β/2
Iν(2x̂0)

Iν(2r̂)
for γ > 0

(
r

x0

)β/2
Kν(2x̂0)

Kν(2r̂)
for γ < 0,

(30)

whereas for γ = 0 the conditional PDF is given
explicitly by

p(z, x0) =

√
ln2(r/x0)

4πDz3
e−

[Dβz−| ln(r/x0)|]
2

4Dz . (31)

Similarly, if we take now Ω = (r,∞) and exchange
β → −β and γ → −γ, the set of trajectories that
leave the interval in a finite time has probability
E = (x0/r)

β and the corresponding normalized con-
ditional PDF is given again by Eqs. (30) and (31).

2. When β ≤ 0 and Ω = (0, r), a trajectory leaves the
interval from r with probability one, thus Z is well-
defined for any γ. The Laplace transform p̃(w, x0)
is given by

p̃(w, x0) =






(x0
r

)β/2 Iν(2x̂0)
Iν(2r̂)

for γ > 0

(x0
r

)β/2 Kν(2x̂0)

Kν(2r̂)
for γ < 0,

(32)

and for γ = 0 the PDF is given explicitly by

p(z, x0) =

√
ln2(r/x0)

4πDz3
e−

[Dβz+| ln(r/x0)|]
2

4Dz . (33)

Similarly, if we take now Ω = (r,∞) and exchange
β → −β and γ → −γ, the set of trajectories that
leave the interval in a finite time has probability
one and the corresponding PDF is given again by
Eqs. (32) and (33).

C. Positive real axis

For the positive real axis Ω = (0,∞), the functional
Z is well-defined only when both β and γ are positive.
However, in this case the PDF can be computed explic-
itly. By defining

ZD =
xγ0
γ2D

, (34)

the PDF can be written as

p(z, x0) =
Zν
D

Γ(ν)
z−1−νe−ZD/z, (35)

where Γ(ν) is the Euler Gamma function. The result for
free Brownian motion [17] is recovered by setting V0 = 0,
i.e., by putting β = 1, which yields the exponent ν = 1/γ.

As a corollary, consider now Z evaluated on trajecto-
ries generated by the Langevin equation

dx(t)

dt
=

√
2Dxθη(t), (36)

with θ < 1, that we may interpret with any 0 ≤ α ≤ 1.
For γ > 2θ and 0 ≤ α ≤ 1

2 , the PDF of Z is

g(z, x0) =
Kνα

D

Γ(να)
z−1−ναe−KD/z, (37)
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where

KD =
xγ−2θ
0

(γ − 2θ)2D
, να =

1− 2αθ

γ − 2θ
. (38)

The same applies to 1
2 < α ≤ 1, if we add the condition

θ < 1
2α . By way of illustration, the first-passage time

density is recovered from Eq. (37) by setting γ = 2:

p(t, x0) =

[
x
2(1−θ)
0

(1 − θ)24Dt

]να
e
−

x
2(1−θ)
0

(1−θ)24Dt

Γ(να)t1+να
, (39)

with να = (1−2αθ)/(2−2θ), which agrees perfectly with
recent results [86].

In the following, we go into the details of the derivation
and present plots in which we compare our findings with
numerical simulations.

IV. FINITE INTERVALS LEFT-BOUNDED BY

A POSITIVE NUMBER

In this section we deal with intervals of the kind Ω =
(a, b). This case can be treated for any value of γ, but
we must distinguish γ 6= 0 and γ = 0.

Let us begin with γ 6= 0. Eq. (17) can be brought back
to the modified Bessel equation:

z2f ′′(z) + zf ′(z)− (z2 + ν2)f(z) = 0. (40)

To see this, we make the ansatz ψ(w, x0) = xρ0ϕ(λx
σ
0 ),

where λ depends on w and arrive at the following equa-
tion for ϕ(z):

0 =z2ϕ′′(z) +
2ρ− 1 + σ

σ
zϕ′(z)

−
[
wzγ/σ

Dσ2λγ/σ
− 4ρ(ρ− 1) + 1− β2

4σ2

]
ϕ(z), (41)

where z = λxσ0 . Then, by choosing

ρ =
1

2
, σ =

γ

2
, λ =

2

γ

√
w

D
, (42)

we obtain the modified Bessel equation (40), with ν =
β/γ, which admits the general solution

ϕ(2x̂0) = c1Iν(2x̂0) + c2Kν(2x̂0), (43)

where c1 and c2 are coefficients that depend on a, b and
w, and we recall

x̂0 =

√
wxγ0
γ2D

, (44)

see Eq. (21). The function ψ(w, x0) is thus of the form
ψ(w, x0) =

√
x0ϕ(2x̂0) and by recalling Eq. (15), we

must have p̃(w, x0) = x
(β−1)/2
0 ψ(w, x0). Therefore the

general solution is

p̃(w, x0) = x
β/2
0 [c1Iν(2x̂0) + c2Kν(2x̂0)] . (45)

To determine the correct boundary conditions, we just
note that when the starting point of the trajectory is
close to one of the boundaries, the first-passage time
tends to zero, and so does the integral in Eq. (2). Hence
p̃(w, x0) = E(e−wZ) must be equal to one for x0 equal to
a or b:

p̃(w, a) = p̃(w, b) = 1. (46)

Then c1 and c2 can be determined from the simple linear
system

M(a, b)c = 1, (47)

where

c =

[
c1
c2

]
1 =

[
1
1

]
, (48)

and

M(a, b) =

[
aβ/2Iν(2â) aβ/2Kν(2â)

bβ/2Iν(2b̂) bβ/2Kν(2b̂)

]
. (49)

The solution can be finally written as

p̃(w, x0) =
(x0
a

)β/2 Hν(x̂0, b̂)

Hν(â, b̂)
+
(x0
b

)β/2 Hν(â, x̂0)

Hν(â, b̂)
,

(50)
with

Hν(x̂, ŷ) = Iν(2x̂)Kν(2ŷ)− Iν(2ŷ)Kν(2x̂). (51)

One can verify that p̃(w, x0) satisfies the normalization
condition p̃(0, x0) = 1.

Now we consider the case γ = 0, which corresponds to

Z =

∫ T

0

dt

[x(t)]2
. (52)

Equation (16) reads

∂2ψ(w, x0)

∂x20
−
[
w

D
+
β2 − 1

4

]
ψ(w, x0)

x20
= 0, (53)

and now we seek solutions of the form ψ(w, x0) =
ϕ(λ ln x0). The corresponding equation for ϕ(z)

λ2ϕ′′(z)− λϕ′(z)−
[
w

D
+
β2 − 1

4

]
ϕ(z) = 0, (54)

is just a second order linear ordinary differential equation
with constant coefficients. The characteristic roots are

r± =
1

2λ

[
1± 2

√
w

D
+
β2

4

]
, (55)
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and the solution can be thus written as

ϕ(z) = ez/2λ [c1 cosh(kz/λ) + c2 sinh(kz/λ)] , (56)

where

k =

√
w

D
+
β2

4
. (57)

By using ψ(w, x0) = ϕ(λ ln x0), we see that the value of
λ is arbitrary, so we can set it to one. Finally, recalling

p̃(w, x0) = x
(β−1)/2
0 ψ(w, x0), we have

p̃(w, x0) = x
β/2
0 [c1 cosh(k lnx0) + c2 sinh(k lnx0)] ,

(58)
where c1 and c2 have to be determined once again in
such a way that the boundary conditions p̃(w, a) = 1
and p̃(w, b) = 1 are satisfied. Similarly to the previous
case, we have to solve an equation of the kind

M(a, b)c = 1, (59)

but this time with

M(a, b) =

[
aβ/2 cosh(k ln a) aβ/2 sinh(k ln a)
bβ/2 cosh(k ln b) bβ/2 sinh(k ln b)

]
. (60)

Once the coefficients have been determined, we find that
the solution can be written as

p̃(w, x0) =
(x0
a

)β/2 H(x0, b)

H(a, b)
+
(x0
b

)β/2 H(a, x0)

H(a, b)
, (61)

which has the same structure as Eq. (22), with Hν(x̂, ŷ)
replaced by

H(x, y) = cosh(k lnx) sinh(k ln y)− sinh(k lnx) cosh(k ln y)

= sinh [k ln(y/x)] . (62)

A. Conditioning on leaving the interval from a

given boundary

The structure of (50) and (61) allows us to easily solve
the problem with the additional condition that x(t) leaves
the interval from a chosen boundary. This request is
relevant, for instance, in extreme value theory [53, 87–92],
where the probability of leaving the interval from a given
boundary is related to the statistics of the maximum or
the minimum of the process.

Let us take s > 0 and q > 0, and assume min{s, q} <
x0 < max{s, q}. Define ps(z, q, x0) as the PDF of the
functional Z under the condition that x(T ) = s, which
corresponds to requiring the process to leave the interval
from s. Note that, according to this definition,

∫ ∞

0

ps(z, q, x0)dz = Es(q), (63)

where Es(q) is the splitting probability, namely, the prob-
ability of leaving the interval from s. The Laplace trans-
form

p̃s(w, q, x0) =

∫ ∞

0

e−wzps(z, q, x0)dz, (64)

must thus satisfy the following boundary conditions:

a) p̃s(w, q, s) = 1: just as the case considered previ-
ously, if the dynamics starts close to the boundary
s, the first-passage time and thus also Z tend to
zero, hence E(e−wZ) → 1;

b) p̃s(w, q, q) = 0: if the dynamics starts instead close
to the other boundary q, the probability of leaving
from s tends to zero, and so does the integral in Eq.
(63), from which it follows that also ps(z, q, x0) and
its Laplace transform must vanish.

From (50) and (61), we see that the solutions we found
previously are written as the sum of two terms. Taking
for example (50), it is easy to verify that

p̃(w, x0) =
(x0
a

)β/2 Hν(x̂0, b̂)

Hν(â, b̂)︸ ︷︷ ︸
p̃a(w,b,x0)

+
(x0
b

)β/2 Hν(â, x̂0)

Hν(â, b̂)︸ ︷︷ ︸
p̃b(w,a,x0)

,

(65)
and the same is true for Eq. (61). Therefore

p̃s(w, q, x0) =





(x0
s

)β/2 Hν(x̂0, q̂)

Hν(ŝ, q̂)
if γ 6= 0

(x0
s

)β/2 H(x0, q)

H(s, q)
if γ = 0.

(66)

The splitting probability Es(q) can be computed by using
the results of Appendix A. We find

Es(q) =





1− (x0/q)
β

1− (s/q)β
if β 6= 0

ln(x0/q)

ln(s/q)
if β = 0,

(67)

and consequently, the complementary probability of leav-
ing from the other boundary is Eq(s) = 1− Es(q).

Before continuing, let us illustrate the results of this
section more explicitly. When γ 6= 0, the Laplace trans-
form of Eq. (66) can be inverted for some particular
values of the exponent ν. For example, when ν = ± 1

2 ,
one can write the modified Bessel functions in terms of
elementary functions [85]

I 1
2
(z) =

√
2

πz
sinh(z) (68)

I− 1
2
(z) =

√
2

πz
cosh(z) (69)

K 1
2
(z) = K− 1

2
(z) =

√
π

2z
e−z, (70)
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FIG. 2. PDF of the functionals (a) Z =
∫

T

0
x(t)dt, (b) Z =

∫
T

0
[x(t)]−5dt and (c) Z =

∫
T

0
[x(t)]−2dt, for trajectories contained in

Ω = ( 1
2
, 5

2
). The motion starts from x0 = 1 and the diffusion coefficient is set to one. The solid black curves are the theoretical

predictions, which in (a)-(b) are obtained as p(z, x0) = pa(z, b, x0) + pb(z, a, x0), see Eq. (75), while in (c) are given by Eq.
(26). For (a)-(b) we have chosen β = 3

2
(blue circles) and β = − 3

2
(green triangles) to have ν = ± 1

2
. For (c) we have taken

β = 3

2
(blue circles), β = 0 (red squares) and β = − 3

2
(green triangles). The data have been obtained by measuring Z over 106

walks evolved with small time step ∆t = 10−5 up to the first-exit time from Ω.

which makes the inversion particularly easy. Indeed, the
function Hν(x, y) becomes

H 1
2
(x, y) = H− 1

2
(x, y) =

sinh(2x− 2y)√
xy

, (71)

thus

p̃s(w, q, x0) =





sinh(ℓq
√
w)

sinh(L
√
w)

if ν =
1

2
(x0
s

)β sinh(ℓq
√
w)

sinh(L
√
w)

if ν = −1

2
,

(72)

where we have defined

ℓq = 2
|xγ/20 − qγ/2|√

Dγ2
(73)

L = 2
|sγ/2 − qγ/2|√

Dγ2
. (74)

The poles of p̃s(w, q, x0) are wn = −(nπ/L)2, so the in-
version yields

ps(z, q, x0) =
2π

L2

∞∑

n=1

(−1)n+1ne−
n2π2z
L2 ×






sin

(
ℓq
L
nπ

)
if ν =

1

2
(x0
s

)β
sin

(
ℓq
L
nπ

)
if ν = −1

2
.

(75)

From p(z, x0) = ps(z, q, x0)+ pq(z, s, x0) it is then possible to obtain the full distribution. Recall that ν = ± 1
2 implies

β = ± γ
2 , hence the validity of this result is limited to those cases. When γ = 0 instead, p̃s(z, q, x0) can be inverted

for any value of β. The poles are now wn = −D[nπ/ ln(q/s)]2 −Dβ2/4, so we get

ps(z, q, x0) =
2πD

ln2(q/s)

(x0
s

)β/2
e−

1
4β

2Dz
∞∑

n=1

(−1)n+1ne
−

n2π2Dz
ln2(a/b) sin

[ | ln(q/x0)|
| ln(q/s)| nπ

]
, (76)

and from p(z, x0) = ps(z, q, x0) + pq(z, s, x0), with s = a and q = b, we obtain Eq. (26).

In Fig. 2 we show examples of p(z, x0) for γ = 3,
γ = −3 and γ = 0. Note that in the first two cases, the
condition ν = ± 1

2 requires us to choose β = ± 3
2 . The

datasets are obtained by measuring Z over trajectories

in Ω = (12 ,
5
2 ) starting from x0 = 1 and evolved up to the

first-exit time. The details on the numerical simulations
are given in Appendix C. We find that the comparison be-
tween the theoretical densities and the numerical results
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is good for any combination of the parameters. Inter-
estingly, while the cases with ν = 1

2 display a unimodal

distribution, for ν = − 1
2 the distribution can become

bimodal, as shown in panel (a).

V. FINITE INTERVALS LEFT-BOUNDED BY

THE ORIGIN AND INFINITE INTERVALS

LEFT-BOUNDED BY A POSITIVE NUMBER

We now want to generalize the treatment to intervals
of the type Ω = (0, b) or Ω = (a,∞). These cases may be
interpreted as the limit for a→ 0 or b→ ∞ of the results
of Sec. IV, and both introduce difficulties not present
before. For example, studying the problem in (0, b) allows
the trajectory to hit the origin, so there may be values
of γ for which the integral defining Z does not converge,
see Eq. (2). For (a,∞), since the motion occurs in an
infinite domain under the action of an external potential,
there may be realizations for which the first-passage time
T is not finite. For these reasons, it will be also necessary
to rediscuss the boundary conditions that the solutions
must satisfy.

A. Finite intervals of the kind Ω = (0, b)

When we consider diffusion in a logarithmic potential
V (x) = V0 ln(x), the first-passage problem to the origin
must be treated with special attention. Indeed, the na-
ture of this point depends on the relative magnitude of
the potential V0 with respect to the diffusion constant
D, which in our discussion is measured by the parame-
ter β. A detailed analysis following Feller’s classification
scheme can be found in Ref. [28], according to which the
origin is an exit boundary for β ≥ 2, a regular bound-
ary for 0 < β < 2 and an entrance boundary for β ≤ 0.
Exit and regular boundaries are both accessible; entrance
boundaries are inaccessible [93], meaning that they can
not be reached in finite time from the interior of the state
space (in our case, from any point inside Ω). We can see
this by evaluating the splitting probability Ea(b) in the
limit a→ 0, see Eq. (67):

lim
a→0

Ea(b) ≡ EL =





1−

(x0
b

)β
if β > 0

0 if β ≤ 0.
(77)

Hence when β ≤ 0 the probability of hitting the origin
vanishes, and a trajectory will leave Ω from b with prob-
ability one. From a physical point of view, this can be
motivated by noting that for β ≤ 0 there is a strong re-
pulsive potential, with V0 ≥ D, pushing the particle away
from the origin. As a consequence, the boundary condi-
tion p̃(w, 0) = 1 is no longer correct: even if the process
starts very close to the origin, it is immediately pushed
inside Ω and the motion goes on up to the first-passage
to b. Thus, contrarily to what we had previously, T does

not vanish in this case. The fact that the trajectory may
or may not leave the origin affects the value of γ we can
choose so that the integral in Eq. (2) will be convergent.
Therefore in the following we differentiate the treatment
depending on the sign of γ.

1. Functionals with γ > 0

When γ > 0, the limit a → 0 corresponds to the limit
â→ 0. From the results in Appendix A, we have

Hν(x̂, ŷ) ∼ −I|ν|(2ŷ)K|ν|(2x̂), x̂→ 0, (78)

thus if we evaluate p̃b(z, a, x0) as a→ 0, see Eq. (66), we
obtain

lim
a→0

p̃b(w, a, x0) ≡ p̃b(w, x0) =
(x0
b

)β/2 I|ν|(2x̂0)
I|ν|(2b̂)

, (79)

which is the contribution of trajectories hitting b, whereas
the contribution of trajectories hitting the origin behaves
for small a as

p̃a(w, b, x0) ∼ −
(x0
a

)β/2 Hν(x̂0, b̂)

I|ν|(2b̂)K|ν|(2â)
, (80)

whose limit depends on the sign of β. We can use [85]

K|ν|(2z) ∼
1

2
Γ(|ν|)z−|ν|, z → 0, (81)

to see that for β > 0, since we have |ν| = ν = β/γ, both
terms give a nonvanishing contribution in the limit, and
the solution (50) converges thus to the function

p̃(w, x0) =
2x̂ν0
Γ(ν)

Kν(2x̂0)

[
1− Iν(2x̂0)Kν(2b̂)

Iν(2b̂)Kν(2x̂0)

]

+
(x0
b

)β/2 Iν(2x̂0)
Iν(2b̂)

, (82)

which is normalized, since p̃(0, x0) = 1, and further-
more satisfies the boundary conditions p̃(w, 0) = 1 and
p̃(w, b) = 1. For β ≤ 0 instead, the rhs of (80) van-
ishes, which is consistent with the fact that the origin
is an entrance boundary. Thus in the limit a → 0 only
the contribution of p̃b(w, a, x0) survives and the solution
converges to

p̃(w, x0) =
(x0
b

)β/2 I−ν(2x̂0)

I−ν(2b̂)
. (83)

We remark that, even if this expression originates only
from p̃b(w, a, x0), it actually represent the full distribu-
tion, as can be seen from the fact that it satisfies the
normalization condition p̃(0, x0) = 1. At the boundaries,
we have p̃(w, b) = 1, as expected, whereas for x0 = 0 we
obtain

p̃(w, 0) =
b̂−ν

Γ(1 − ν)I−ν(2b̂)
, (84)
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which is always smaller than one for b > 0, as one can
verify by using the series expansion of the modified Bessel
function. Hence, consistently with the fact that the origin
is an entrance boundary when β ≤ 0, the functional Z is
strictly positive even when measured on trajectories that
start very close to x = 0.

2. Functionals with γ < 0

For γ < 0, the limit a → 0 is equivalent to the limit
â→ ∞, which yields (see Appendix A)

Hν(x̂, ŷ) ∼ Iν(2x̂)Kν(2ŷ), x̂→ ∞, (85)

then as a→ 0 (â→ ∞)

lim
a→0

p̃b(w, a, x0) ≡ p̃b(w, x0) =
(x0
b

)β/2 Kν(2x̂0)

Kν(2b̂)
, (86)

whereas

p̃a(w, b, x0) ∼
(x0
a

)β/2 Hν(x̂0, b̂)

Iν(2â)Kν(2b̂)
, (87)

which vanishes when â → ∞, due to the exponential
divergence of Iν(2â). Hence, differently from the case
γ > 0, the contribution of the walks that hit the origin
vanishes independently of the value of β, and the only
relevant term is

p̃b(w, x0) =
(x0
b

)β/2 Kν(2x̂0)

Kν(2b̂)
. (88)

We note that this function satisfies p̃b(w, b) = 1, but
vanishes for any ν in the limit x0 → 0, due to the behavior
of Kν(z) at infinity [85]

Kν(z) ∼
√

π

2z
e−z

[
1 +O

(
1

z

)]
, z → ∞. (89)

Moreover, by computing p̃b(0, x0) we obtain

p̃b(0, x0) =






(x0
b

)β
if β > 0

1 if β ≤ 0,
(90)

which corresponds to the splitting probability ER =
1 − EL of leaving Ω from b, see Eq. (77) for the ex-
pression of EL. We can interpret this result as follows:
when β ≤ 0, as we mentioned earlier, the origin is an
entrance boundary, hence it can not be reached from the
interior of Ω and all the trajectories starting from x0 > 0
leave the interval from b. Therefore, the functional Z can
be measured over each trajectory and Eq. (88) describes
the full distribution, that is, p̃(w, x0) = p̃b(w, x0). On
the other hand, when β > 0, a trajectory can leave the
interval from any of the two boundaries, but those that
leave Ω from the origin yield a diverging Z for γ < 0. In
other words, Z is not well-defined if we allow the particle
to hit the origin. As we can deduce from the fact that it
is normalized to ER, Eq. (88) in this case describes the
distribution of Z measured on the set of trajectories that
leave the interval from b, namely, it is the conditional dis-
tribution. We can then define p̃(w, x0) = p̃b(w, x0)/ER,
so that p̃(w, x0) always denotes the normalized PDF. In
summary, we have

p̃(w, x0) =





(
b

x0

)β/2
Kν(2x̂0)

Kν(2b̂)
if β > 0

(x0
b

)β/2 Kν(2x̂0)

Kν(2b̂)
if β ≤ 0.

(91)

The fact that p̃(w, x0) tends to zero as x0 approaches
the origin means that Z is diverging, so contributions
from paths passing near x = 0 can be expected to cause
a heavy-tailed decay of the distribution. Indeed, by ex-
panding in powers of w, we find

p̃(w, x0) ∼
{
1 + Cνw

|ν| + . . . for 0 < |ν| < 1

1− 〈Z〉w + Cνw
|ν| + . . . for 1 < |ν| < 2,

(92)

with logarithmic corrections appearing for ν = 0 and
ν = ±1. By using Tauberian arguments [94], we can
conclude that the PDF is characterized by a power-law
decay as p(z, x0) ∼ z−1−|ν|. This can be shown even more
explicitly if we consider ν = ± 1

2 , for which the inversion
can be carried out easily. Indeed, in both cases we have

p̃(w, x0) = e
−2

√ w
γ2D (x

γ/2
0 −bγ/2)

, (93)

and the inversion yields

p(z, x0) =
x
γ/2
0 − bγ/2√
πγ2Dz3

e
−

(x
γ/2
0 −bγ/2)2

γ2Dz , (94)

which indeed decays as p(z, x0) ∼ z−3/2.
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3. The case γ = 0

We now analyze the particular case γ = 0. For any β,
the limit a→ 0 of p̃b(w, a, x0) yields

lim
a→0

p̃b(w, a, x0) ≡ p̃b(w, x0) =
(x0
a

)k+β/2

, (95)

with

k =

√
w

D
+
β2

4
, (96)

whereas p̃a(w, b, x0) vanishes in the limit. So we are in
the same situation as the case γ < 0: for β > 0, there is
a positive probability EL = 1− ER that a trajectory hits
the origin, yielding a diverging Z, hence the distribution
must be measured only on the walks that leave Ω from b.
For β ≤ 0 instead, a trajectory leaves from b with proba-
bility one, hence p̃b(w, x0) corresponds to the full distri-
bution. In both cases, we can set p̃(w, x0) = p̃b(w, x0)/ER
and write

p̃(w, x0) = exp

[
−
(√

w

D
+
β2

4
− |β|

2

)
ln

(
b

x0

)]
, (97)

which satisfies p̃(0, x0) = 1 and p̃(w, b) = 1 and vanishes
for x0 → 0. The inverse transform of Eq. (97) is

p(z, x0) =
ln(b/x0)√
4πDz3

e−
[D|β|z−ln(b/x0)]

2

4Dz . (98)

We see that for z → 0 the PDF goes to zero as

p(z, x0) ∼
ln(b/x0)√
4πDz3

exp

[
− ln2(b/x0)

4Dz

]
, z → 0, (99)

while for z → ∞

p(z, x0) ∼
ln(b/x0)√
4πDz3

exp

(
−Dβ

2z

4

)
, z → ∞. (100)

Hence, for β 6= 0 there is an exponential cut-off ensuring
the convergence of all moments, while for β = 0 we ob-
serve a pure power-law decay p(z, x0) ∼ z−3/2 as z → ∞.

The PDF is displayed in Fig. 3 and compared to the re-
sults obtained from numerical simulations, showing good
agreement. The chosen values of β cover all the cases:
for β = 0.5 the theoretical result of (98) corresponds to
the full distribution, while for β = 0 and β = −0.5 it is
the PDF of Z measured on walks that leave the interval
from b, normalized dividing by ER. Note that p(z, x0)
only depends on the sign of β, hence the PDFs of the
data with β = 0.5 and β = −0.5 are described by the
same theoretical curve, as we observe in the figure.

B. Infinite intervals of the kind Ω = (a,∞)

The case of infinite intervals marks a difference with
the previous one in that the particle is not guaranteed

FIG. 3. PDF of the functional Z =
∫

T

0
[x(t)]−2dt for trajec-

tories in Ω = (0, 1). The starting point is x0 = 0.7 and the
diffusion coefficient is set to one. The solid black curves are
the theoretical predictions given by Eq. (98), the symbols rep-
resent the numerical distributions obtained from simulations.
We have considered β = −0.5 (magenta squares), β = 0 (blue
circles) and β = 0.5 (turquoise asterisks), with good agree-
ment in all cases. Note that data corresponding to the same
|β| overlap, confirming the symmetry in β of the PDF. In the
inset, a plot in logarithmic scale of the case β = 0, which
shows that the simulations also capture the heavy tail of the
distribution. The number of simulations is 108 for β = 0.5
and 107 in the other cases. The trajectories are evolved up to
the first-passage time with small time step ∆t = 10−5.

to leave Ω in a finite time. Indeed, if we consider Ea(b)
given by (67), and take the limit b→ ∞, we get

lim
b→∞

Ea(b) ≡ E =






1 if β ≥ 0
(x0
a

)β
if β < 0,

(101)

meaning that for negative values of β, there is a nonzero
probability 1−E to observe an infinite first-passage time.
Note that if we take also the limit a → 0, then E con-
verges to 0 for β < 0, i.e., the set of trajectories that
do not leave Ω = (0,∞) has probability one, as is known
[35]. To avoid having to deal with generalized functionals
of the form

Z =

∫ ∞

0

[x(t)]γ−2dt, (102)

in the following we restrict ourselves to the case where ac-
tually T <∞. Note that it would not be appropriate to
speak about first-passage functionals if the first-passage
time is not finite.
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1. Functionals with γ > 0

When γ has positive sign, the limit b→ ∞ corresponds

to the limit b̂→ ∞. Since

Hν(x̂, ŷ) ∼ −Iν(2ŷ)Kν(2x̂), ŷ → ∞, (103)

then as b → ∞ the function p̃a(w, b, x0), see Eq. (66),
converges to

lim
b→∞

p̃a(w, b, x0) ≡ p̃a(w, x0) =
(x0
a

)β/2 Kν(2x̂0)

Kν(2â)
,

(104)
which is the same result obtained for the problem in (0, b)
in the case γ < 0, see Eq. (88). The limiting function
satisfies p̃a(w, a) = 1 and vanishes for x0 → ∞, i.e.,
p̃a(w,∞) = 0. The latter condition may be explained
by the fact that if the motion starts very far from a
one observes a very large first-passage time, and thus
we should expect larger and larger values of Z, with
p̃(w, x0) = 〈e−wZ〉 consequently vanishing. Regarding
the normalization, we get p̃a(0, x0) = E , therefore we
conclude that Eq. (104) is the PDF describing the full
distribution of Z for β ≥ 0, while for β < 0 it describes
the distribution of Z measured only on the trajectories
that actually leave Ω = (a,∞) at some finite T . Hence
we define again the normalized distribution as

p̃(w, x0) =
p̃a(w, x0)

E . (105)

Note that this is equivalent to (91), hence the same con-
siderations follow.

2. Functionals with γ < 0

Here the limit b→ ∞ is equivalent to b̂→ 0. By using

Hν(x̂, ŷ) ∼ I|ν|(2x̂)K|ν|(2ŷ), ŷ → 0, (106)

we see that as b → ∞ (b̂ → 0), the Laplace transform
p̃a(w, b, x0) goes to

lim
b→∞

p̃a(w, b, x0) ≡ p̃a(w, x0) =
(x0
a

)β/2 I|ν|(2x̂0)
I|ν|(2â)

,

(107)
which satisfies p̃a(w, a) = 1, while p̃a(0, x0) = E , see the
expression for E in Eq. (101). Therefore, when E = 1,
i.e., for β ≥ 0, we have p̃(w, x0) = p̃a(w, x0), whereas in
the opposite case we set p̃(w, x0) = p̃a(w, x0)/E , that is

p̃(w, x0) =





(x0
a

)β/2 I−ν(2x̂0)

I−ν(2â)
β ≥ 0

(
a

x0

)β/2
Iν(2x̂0)

Iν(2â)
β < 0.

(108)

Remarkably, for x0 → ∞, this function converges to

lim
x0→∞

p̃(w, x0) =
â|ν|

Γ(1 + |ν|)I|ν|(2â)
, (109)

which implies the convergence of all the moments even
in the large-x0 limit.

3. The case γ = 0

The limit b→ ∞ of (66) yields

lim
b→∞

p̃a(w, b, x0) ≡ p̃a(w, x0) =

(
a

x0

)k−β/2

, (110)

which satisfies p̃a(w, a) = 1 and vanishes in the limit
x0 → ∞, for the same reason of the case γ > 0. We have
once again p̃a(0, x0) = E , hence the normalized distri-
bution is p̃(w, x0) = p̃a(w, x0)/E , which can be inverted,
yielding

p(z, x0) =
ln(x0/a)√
4πDz3

e−
[D|β|z−ln(x0/a)]

2

4Dz . (111)

This result is equivalent to what we obtained in the inter-
val (0, b), therefore the considerations made in that case
still hold.

VI. POSITIVE REAL AXIS

It is straightforward now to obtain the solution of the
problem in the positive real axis Ω = (0,∞). It should
be clear that Z is well-defined only for β > 0 and γ > 0.
Indeed, as we discussed previously, the condition β > 0
is necessary for the first-passage time to be finite, while
γ > 0 ensures that Z does not diverge when a trajectory
hits the origin. Hence we restrict to β > 0 and γ > 0,
viz., ν > 0.

The solution can be obtained by simply considering
the limit b→ ∞ of (29), which yields

p̃(w, x0) =
2x̂ν0
Γ(ν)

Kν(2x̂0). (112)

This is basically equivalent to the result obtained for free
Brownian motion, see [17], which can be recovered by
setting V0 = 0, viz., β = 1, yielding the exponent ν =
1/γ. By introducing a logarithmic potential, one thus
obtains a generalized exponent ν = β/γ. The Laplace
transform can be inverted exactly by using [95]

1

2
t−ν−1e−y/t =

1

2πi

∫

B

est
(
s

y

)ν/2

Kν(2
√
ys)ds, (113)

valid for R(y) > 0, yielding

p(z, x0) =
Zν
D

Γ(ν)
z−1−νe−ZD/z. (114)

We note that the PDF can be written in scaling form as
p(z, x0) = P (ζ)/ZD, where

P (ζ) =
1

Γ(ν)
ζ−1−νe−1/ζ, ζ =

z

ZD
=
γ2Dz

xγ0
. (115)
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FIG. 4. PDF of the scaled variable Z/ZD, with Z representing the functionals (a) Z =
∫

T

0
x(t)dt and (b) Z =

∫
T

0
[x(t)]−1dt for

trajectories in the positive real axis starting from x0 = 1 and evolved up to the first-passage time to the origin. The diffusion
coefficient is set to one. The solid black curves are the theoretical predictions given by Eq. (115), the symbols represent the
numerical distributions obtained from simulations. For both values of γ we considered different values of β: (a) in the case
γ = 3 we choose β = 1.5 (red squares), β = 4 (blue circles) and β = 7 (green triangles), (b) in the case γ = 1 we take β = 0.8
(red squares), β = 1.5 (blue circles) and β = 4 (green triangles). The number of simulations depends on β: for β = 0.8 and
β = 1.5 it is 3 · 105, for β = 4 and β = 7 it is 3 · 106. All the trajectories are evolved with small time step ∆t = 10−5.

For ζ → 0 the function P (ζ) vanishes displaying an es-
sential singularity, while for ζ → ∞ we get a power-law
decay P(ζ) ∼ ζ−1−ν . Therefore, the m-th moment of
the distribution is finite only for m < ν, in which case is
equal to

〈Zm〉 =
∫ ∞

0

zmp(z, x0)dz =
Γ(ν −m)

Γ(ν)
Zm
D . (116)

Note that ν > m means β > mγ, hence for fixed γ we
can tune β so that all moments up to the m-th are finite.
On the other hand, for fixed β the m-th moment is finite
only if γ < β/m, therefore we can for instance have a
finite 〈T 〉 but a diverging 〈A〉 (first-passage area).

In Fig. 4 we present the distribution of the scaled
variable Z/ZD given by Eq. (115), and compare it with
numerical data. We show the cases γ = 3 and γ = 1,
each with three different values of β, chosen so that for
both functionals a case with 0 < ν < 1 (infinite mean
and variance), one with 1 < ν < 2 (finite mean, infinite
variance) and one with ν > 2 (finite mean and variance)
is displayed. The agreement between data and theory is
evident in all cases.

A. Heterogeneous diffusion

We now extend the results of this section to the case
where Z is measured over stochastic trajectories gener-
ated by

dy(t)

dt
=

√
2D[y(t)]θη(t), (117)

with θ < 1. As discussed in Sec. II, different interpreta-
tions can be assigned to this Langevin equation, and we
will see how the results are affected by the interpretation.
One possible approach to this problem would be to write
down Eq. (16) for D(x) = Dx2θ and µα(x) = αD′(x),
and then solve the resulting equation, namely,
[
∂2

∂y20
− wF (y0)

Dy2θ0
− αθ(αθ − 1)

y20

]
ψ(w, y0) = 0, (118)

accompanied by the appropriate boundary conditions.
The solution may be then used to obtain the Laplace
transform of the PDF. However, as it has already been
pointed out [59–61], there exists a close relation between
Brownian motion in logarithmic potentials and hetero-
geneous diffusion which we may exploit to obtain the
solution in a much more straightforward way.

Let us call x(t) a trajectory generated by

dx(t)

dt
= − V0

x(t)
+
√
2Dη(t), (119)

with x(0) = x0 > 0 and evolving in Ω = (0,∞) till the
first-passage time to the origin T . Let θ < 1 and define
the following transformation on the trajectory:

y(t) = [(1− θ)x(t)]
1

1−θ . (120)

By applying Itô formula on y(t), we see that the trans-
formed trajectory evolves according to

dy

dt
= D (1− β + βθ) y2θ−1 +

√
2Dyθη(t), (121)

which is interpreted in Itô scheme. We recall β = 1 +
V0/D. This is the Langevin equation of a system with a
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FIG. 5. PDF of (a) Z =
∫

T

0
y(t)dt and (b) Z =

∫
T

0
[y(t)]−1/2dt for trajectories in the positive real axis generated by Eq. (117)

and evolved up to the first-passage time to the origin. The starting point is y0 = 1 and the space-dependent diffusion coefficient
is D(x) = x2/3. The solid black curves are the theoretical predictions given by Eq. (128), the symbols represent the numerical
distributions obtained from simulations. For both values of γ we considered three different interpretations, corresponding to
Itô (α = 0, green triangles), Stratonovich (α = 1

2
, blue circles) and Hänggi-Klimontovich (α = 1, red squares). The insets,

which are presented in log-log scale in (a) and semilog scale in (b), display the heavy-tails of the distributions. All datasets are
obtained by evaluating Z over 106 trajectories, with small time step ∆t = 10−4. The integration scheme used to integrate Eq.
(117) is the Itô scheme, and the desired interpretation is obtained by adding the appropriate drift µα(x) = αD′(x).

space-dependent diffusion coefficient D(x) = Dx2θ and a
drift term that may be written as

µ(x) =

(
1− β

2θ
+
β

2

)
D′(x). (122)

Thus, by setting the coefficient in front of D′(x) equal

to α, we obtain exactly the Itô form of ẏ =
√
2D(y)η(t)

in the α-interpretation. It is immediate to see that α =
1
2 , which corresponds to Stratonovich interpretation, is
recovered by setting β = 1, i.e., by identifying x(t) as
free Brownian motion, with a free choice of θ < 1. This
mapping between Brownian motion and heterogeneous
diffusion with Stratonovich interpretation is well-known,
see for instance Ref. [62]. All other interpretations can
be obtained by observing that the parameters α, β and
θ are related by

θ =
β − 1

β − 2α
. (123)

This also means that for fixed α we can tune θ by chang-
ing the value of β in the original model. One must recall,
however, that since θ < 1, one is limited to take β < 2α
when α > 1

2 and β > 2α when α < 1
2 .

It is clear that the first-passage time to the origin of the
original trajectory x(t), starting from x0, is the same as
the transformed trajectory y(t), with the initial condition
y0 = [(1− θ)x0]1/(1−θ). Hence by using Eq. (120) we can
write

∫ T

0

[y(t)]γ−2dt = C
∫ T

0

[x(t)]γ
′−2dt, (124)

with

γ′ =
γ − 2θ

1− θ
, C = (1− θ)

γ−2
1−θ . (125)

If the functional at the rhs has a proper distribution, with
PDF p(z, x0), then the lhs has a proper distribution too,
with PDF

g(z, y0) =
1

C p
(
z

C ,
y1−θ
0

1− θ

)
. (126)

We recall that this is true for x(t) if both β and γ′ are
positive. The first condition is always met when α < 1

2 ,

because θ < 1 implies β > 2α > 0; when α > 1
2 instead,

this must be added to the previous condition β < 2α,
obtaining 0 < β < 2α, which implies that we are limited
to θ < 1

2α . The condition γ′ > 0 is equivalent to

γ > 2θ, (127)

hence the lower bound for γ is the exponent appearing in
the expression of the diffusion coefficient. By using Eq.
(114), we obtain

g(z, y0) =
Kνα

D

Γ(να)
z−1−ναe−KD/z , (128)

where

KD =
yγ−2θ
0

(γ − 2θ)2D
(129)

να =
1− 2αθ

γ − 2θ
. (130)
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Hence, the interpretation given to the Langevin equation
strongly affects the distribution by changing the power-
law decay exponent of the PDF.

The results are displayed in Fig. 5 for the cases γ = 3
and γ = 3

2 , with a diffusion coefficient D(x) = Dx2/3.
For each γ, we choose three possible interpretations:
α = 0 (Itô), α = 1

2 (Stratonovich) and α = 1 (Hänggi-
Klimontovich), corresponding to the exponents

νI =
1

γ − 2θ
(131)

νS = (1− θ)νI (132)

νHK = (1− 2θ)νI . (133)

Note that for θ > 0 we have νI > νS > νHK , whereas the
opposite happens for θ < 0. For the chosen values of θ
and γ, we obtain in every case an heavy-tailed distribu-
tion: for the first-passage area we have νI = 3

7 , νS = 2
7 ,

and νHK = 1
7 , while for γ = 1.5 we get νI = 6

5 , νS = 4
5

and νHK = 2
5 . The agreement between theory and nu-

merical results is generally good. The data can replicate
all the features of the PDF, including the tails, see the
insets in both panels. We remark that the numerical re-
sults have been obtained by measuring Z over trajecto-
ries generated by Eq. (117), hence they are independent
of the method we discussed here.

VII. CONCLUSIONS AND DISCUSSION

In this paper we have studied the statistical proper-

ties of random variables of the kind Z =
∫ T

0 [x(t)]γ−2dt,
where x(t) is a one-dimensional trajectory of Brownian
motion with diffusion constant D evolving under the ef-
fect of a logarithmic potential V (x) = V0 ln(x) that can
be either attractive or repulsive. The trajectory starts
from x0 inside a given interval Ω and leaves it for the
first time at some random instant T . We initially con-
sidered the problem for Ω = (a, b) entirely contained in
the positive real axis, which can be treated for any γ and
any value of V0. We then generalized to intervals of the
kind Ω = (0, b) or Ω = (a,∞). Both these generalizations
introduce some limitations: in the former case, for γ < 0
the functional Z is defined in terms of a divergent inte-
gral when measured on trajectories hitting the origin. In
the latter case, the presence of a repulsive potential may
prevent the particle to leave Ω, which implies an infinite
first-passage time. Interestingly, we have underlined that
there is a correspondence between the solutions of the two
cases, if we always restrict the study of Z on trajectories
for which it is well-defined. Finally, we have computed
exactly the density of Z when it is constructed on trajec-
tories in Ω = (0,∞), with γ > 0 and V0 > −D. By using
a close relation between Brownian motion in logarithmic
potentials and heterogeneous diffusion, we have also ob-
tained the distribution of Z measured on trajectories x(t)

generated by ẋ =
√
2Dxθη(t), with θ < 1.

This work extends some previously known results re-
garding first-passage functionals of Brownian motion [17].
By introducing a potential, we were able to study how
it affects the statistical properties of Z for a fixed value
of γ. We emphasize that the logarithmic potential has
unique properties, which stem from the fact that it grows
as a slowly varying function for x → ∞, yielding a force
that is proportional to 1/x. As already noted in the
literature, this causes both the drift term and the diffu-
sion term in the Fokker-Planck equation to scale as 1/x2

[25, 29]. Therefore, the two effects (diffusion and drift)
are comparable as long as the dynamics takes place away
from the origin, and the system can be treated effec-
tively as a perturbation of Brownian motion. Not sur-
prisingly, the results we obtained in Sec. VI have the
same functional form as those obtained for free Brow-
nian motion [17]. Nevertheless, the system is far from
being trivial, as its behavior can be drastically modified
by adjusting the parameters that govern the intensity
of the drift and diffusion terms, namely the strength of
the potential and the diffusion coefficient. This has con-
sequences regarding for example the emergence of non-
normalizable steady states [25, 26, 29] or the recurrence
properties, of which this system is a critical case study,
as evident from the analysis of related discrete models
[51, 56–58]. For the problem considered in this paper,
for instance, we found that in the case Ω = (0,∞) the
PDF has a power-law decay as p(z, x0) ∼ z−1−ν , with
ν = (D + V0)/(Dγ), which means that the distribution
has infinite variance for V0 < D(2γ − 1) and also infinite
mean for V0 < D(γ − 1).

Another interesting feature of Brownian motion in a
logarithmic potential is that it is associated with hetero-
geneous diffusion, which is studied in many contexts. Our
results can be easily extended to the case where the dy-
namics is generated by ẋ =

√
2D(x)η, withD(x) = Dx2θ

and θ < 1, as we have done for Ω = (0,∞). In this con-
text, a key role is played by the interpretation given to
the Langevin equation, and we have seen how the value
of the interpretation parameter α contributes, along with
the exponent θ, to determine the statistics of Z for a
given value of γ.

Finally, let us remark that the densities of Z over tra-
jectories in Ω = (0,∞) for logarithmic potentials and het-
erogeneous diffusion, given in Eq. (114) and Eq. (128)
respectively, have the same structure, viz, in both cases
we obtain the PDF of an Inverse-Gamma random vari-
able [96]. This fact is strictly connected to the property of
selfsimilarity, which is shared by both models, as shown
in Refs. [60, 61]. There the author proves that for any
selfsimilar diffusion process the first-passage time to the
origin has Inverse-Gamma statistics. We have found that

the same statistics describes also Z =
∫ T

0 [x(t)]γ−2dt, if it
exists. Although this observation could be deduced from
scaling arguments, at least with regard to the asymptotic
behavior for large z [3, 17], it was not trivial to determine
how the entire distribution changes with γ.

As a future perspective, one can ask how the different
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functionals studied in this article are correlated. The cor-
relation can be measured, for example, by computing the
joint probability distribution between two observables Z1

and Z2 evaluated for two different γ. In particular, the
case where one of them corresponds to the first-passage

time may be particularly relevant, so that information
on the correlation between spatial and temporal variables
can be obtained directly. This type of joint distribution is
indeed useful for comprehensively quantifying the prop-
erties of stochastic search processes, as recently observed
and studied in [97].

Appendix A: Some properties of the function Hν(x, y)

1. Expansion in powers of w

Here we consider

Hν(x̂, ŷ) = Iν(2x̂)Kν(2ŷ)− Iν(2ŷ)Kν(2x̂), (A1)

where ν ≡ β/γ and the notation q̂ indicates

q̂ =

√
wqγ

γ2D
. (A2)

We wish to compute the power series expansion up to first order in w, i.e., up to q̂2, which can be used to compute
the splitting probabilities or the first moment. Here the modified Bessel function of the first kind Iν(z) is defined as

Iν(z) =
(z
2

)ν ∞∑

k=0

(z2/4)k

k!Γ(k + ν + 1)
, (A3)

while Kν(z) denotes the modified Bessel function of the second kind.
When ν is non-integer, we can use

Kν(z) =
π

2

I−ν(z)− Iν(z)

sin(πν)
, (A4)

to write

Hν(x̂, ŷ) =
π

2 sin(πν)
[Iν(2x̂)I−ν(2ŷ)− Iν(2ŷ)I−ν(2x̂)] . (A5)

Note that we have the symmetry Hν(x̂, ŷ) = H−ν(x̂, ŷ). Hence, recalling that ν = β/γ, the results do not change
under a change of sign in β, whereas a change of sign in γ yields

Hν



√
wxγ0
Dγ2

,

√
wyγ0
Dγ2


→ Hν



√
wx−γ

0

Dγ2
,

√
wy−γ

0

Dγ2


 . (A6)

By using the definition of Iν(z), we find

Hν(x̂, ŷ) ∼ f0(x, y; ν) +
w

Dγ2
f1(x, y; ν), (A7)

where f0(x, y; ν) and f1(x, y; ν) are

f0(x, y; ν) =
xγν − yγν

2ν(xy)γν/2
(A8)

f1(x, y; ν) =
xγνgν(x, y)− yγνgν(y, x)

2ν(xy)γν/2
, (A9)

with

gν(x, y) =
xγ

1 + ν
+

yγ

1− ν
. (A10)



16

Note the property g−ν(x, y) = gν(y, x), from which it follows fi(x, y;−ν) = −fi(x, y; ν).
When ν is instead an integer, we use the properties of the modified Bessel functions [85]

I−ν(z) = Iν(z) +
2

π
sin(πν)Kν(z) (A11)

K−ν(z) = Kν(z), (A12)

to verify that we have again the symmetry Hν(x̂, ŷ) = H−ν(x̂, ŷ). For ν = n, with n = 0, 1, 2, . . . , the modified Bessel
function of the second kind can be expanded as [85]

K0(2z) =− [ln(z) + γE ] I0(2z) + z2 +
1 + 1

2

(2!)2
z4 + . . . (A13)

Kn(2z) =
z−n

2
Gn(z) + (−1)n+1 ln(z)In(2z) + (−1)n

zn

2
Fn(z), (A14)

where in the first line γE is the Euler-Mascheroni constant, and in the second line

Gn(z) =
n−1∑

k=0

(n− k − 1)!

k!

(
−z2

)k
(A15)

Fn(z) =

∞∑

k=0

ψ(k + 1) + ψ(k + n+ 1)

k!(n+ k)!
z2k. (A16)

For negative integers, the corresponding expansion is still given by (A14), with n replaced by its absolute value.
Assuming from now on n ≥ 0, for Hn(x̂, ŷ) we can write

Hn(x̂, ŷ) ∼ f0(x, y;n) +
w

Dγ2
f1(x, y;n), (A17)

so in each case we just need to identify the functions f0(x, y;n) and f1(x, y;n). When n = 0, H0(x, y) can be expanded
as

H0(x, y) ∼
(
1 + x̂2 + ŷ2

) γ
2
ln

(
x

y

)
+ ŷ2 − x̂2 (A18)

∼ γ

2
ln

(
x

y

)
+

w

Dγ2

[
(xγ + yγ)

γ

2
ln

(
x

y

)
+ yγ − xγ

]
, (A19)

hence we have

f0(x, y; 0) =
γ

2
ln

(
x

y

)
(A20)

f1(x, y; 0) =
γ

2
(xγ + yγ) ln

(
x

y

)
+ yγ − xγ . (A21)

In the case n = 1, the expansion of H1(x̂, ŷ) is

H1(x, y) ∼
1

2

(
x

y

)γ/2(
1− x̂2

2

)
− 1

2

(
y

x

)γ/2(
1− ŷ2

2

)
+
γ

2
(xy)γ/2 ln

( y
x

)
(A22)

∼ xγ − yγ

2(xy)γ/2
+

w

Dγ2

[
x2γ − y2γ

4(xy)γ/2
+
γ

2
(xy)γ/2 ln

(y
x

)]
, (A23)

therefore now

f0(x, y; 1) =
xγ − yγ

2(xy)γ/2
(A24)

f1(x, y; 1) =
x2γ − y2γ

4(xy)γ/2
+
γ

2
(xy)γ/2 ln

( y
x

)
, (A25)
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and the same holds for n = −1. Finally, for ν = 2, 3, . . . , the expansion of Hn(x̂, ŷ) is

Hn(x̂, ŷ) ∼
1

2n

(
x

y

)nγ/2(
1 +

x̂2

n+ 1
− ŷ2

n− 1

)
− 1

2n

(y
x

)nγ/2(
1− x̂2

n− 1
+

ŷ2

n+ 1

)
(A26)

from which we find that f0(x, y;n) and f1(x, y;n) have the same expressions of the non-integer case

f0(x, y;n) =
xnγ − ynγ

2n(xy)nγ/2
(A27)

f1(x, y;n) =
xnγgn(x, y)− ynγgn(y, x)

2n(xy)nγ/2
, (A28)

with

gn(x, y) =
xγ

1 + n
+

yγ

1− n
, (A29)

and the symmetry fi(x, y;n) = −fi(x, y;−n) allows us to claim that the same holds for n = −2,−3, . . .

2. Behavior for small and large values of the argument

We now want to evaluate the behavior of Hν(x̂, ŷ) when x̂ → 0 and x̂ → ∞. Note from the definition (A1) that
Hν(x̂, ŷ) = −Hν(ŷ, x̂), hence the behavior of Hν(x̂, ŷ) as x̂ → 0 (x̂ → ∞) corresponds to the behavior of −Hν(x̂, ŷ)
as ŷ → 0 (ŷ → ∞).

As we have shown before in this Appendix, Hν(x̂, ŷ) has the symmetry Hν(x̂, ŷ) = H−ν(x̂, ŷ), hence the results do
not depend on the sign of ν and we can thus limit the study to the case ν ≥ 0. When z → 0, the modified Bessel
function of the first kind Iν(z) behaves as zν , whereas Kν(z) diverges as z−ν for ν > 0 or logarithmically for ν = 0.
Keeping in mind the symmetry in ν, we therefore have

Hν(x̂, ŷ) ∼ −I|ν|(2ŷ)K|ν|(2x̂), x̂→ 0. (A30)

When z → ∞, the leading-order behavior of both Bessel function is independent of ν. In particular, Iν(z) diverges
and Kν(z) vanishes, both exponentially. Therefore

Hν(x̂, ŷ) ∼ Iν(2x̂)Kν(2ŷ), x̂→ ∞. (A31)

Note that in the asymptotic expansions of Iν(z) andKν(z) for large z appear ν-dependent coefficients, which, however,
have the symmetry cν = c−ν , see [85].

Appendix B: Computation of the mean value

1. Case γ 6= 0

Starting from the results of Appendix A, we can consider

p̃(w, x0) =
(x0
a

)β/2 Hν(x̂0, b̂)

Hν(â, b̂)
+
(x0
b

)β/2 Hν(â, x̂0)

Hν(â, b̂)
, (B1)

to compute the mean value of Z, namely, the coefficient of the linear term in the series expansion in powers of w. We
note that, while Hν(x̂, ŷ) has the symmetry Hν(x̂, ŷ) = H−ν(x̂, ŷ), the expression of p̃(w, x0) contains the prefactors
(x0/a)

β/2 and (x0/b)
β/2 that depend on the sign of β and thus on the sign of ν. In general, 〈Z〉 can be written in

terms of the functions f0(x, y; ν) and f1(x, y; ν), see A for their definitions, as

〈Z〉 = 1

Dγ2

[
f1(a, b; ν)

f0(a, b; ν)
−
(x0
a

)γν/2 f1(x0, b; ν)
f0(a, b; ν)

−
(x0
b

)γν/2 f1(a, x0; ν)
f0(a, b; ν)

]
. (B2)

Let us first take |ν| 6= 0, 1. Then the term between square brackets in the previous equation reads

[. . . ] =
aγν(bγ − xγ0 ) + bγν(xγ0 − aγ) + xγν0 (aγ − bγ)

(1− ν)(aγν − bγν)
, (B3)
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which yields

〈Z〉 = ZD

1− ν

[
bγ(xγν0 − aγν) + aγ(bγν − xγν0 )

xγ0 (b
γν − aγν)

− 1

]
. (B4)

When ν = ±1, the corresponding expression is

[. . . ] =
a2γ − b2γ

2(aγ − bγ)
−
(x0
a

) γ
2 (±1−1) x2γ0 − b2γ

2(aγ − bγ)
−
(x0
b

) γ
2 (±1−1) a2γ − x2γ0

2(aγ − bγ)

+
γ

aγ − bγ

[
(ab)γ ln

(
b

a

)
−
(x0
a

) γ
2 (±1−1)

(x0b)
γ ln

(
b

x0

)
−
(x0
b

) γ
2 (±1−1)

(x0a)
γ ln

(x0
a

)]
, (B5)

where the ± sign corresponds to the sign of ν. For ν = 1, the term between square brackets in (B5) is the only
non-vanishing term, and thus we obtain

〈Z〉 = ZD

[
bγ(xγ0 − aγ) ln(b/x0)− aγ(bγ − xγ0 ) ln(x0/a)

xγ0 (b
γ − aγ)

]
. (B6)

On the contrary, for ν = −1 the term between square brackets vanishes, while the remaining term yields

〈Z〉 = ZD

2x2γ0
(xγ0 − aγ)(bγ − xγ0 ), (B7)

which corresponds to (B4) for ν = −1. Finally, the case ν = 0 is straightforward, and the corresponding mean value
is

〈Z〉 = ZD

[
bγ ln(x0/a) + aγ ln(b/x0)

xγ0 ln(b/a)
− 1

]
. (B8)

For the sake of completeness, we also consider

p̃s(w, q, x0) =
(x0
s

)β/2 Hν(x̂0, q̂)

Hν(ŝ, q̂)
, (B9)

and evaluate the coefficient of the linear term in the expansion in powers of w. In general, we can write

p̃s(w, q, x0) = Es(q)
{
1 +

w

Dγ2

[
f1(x0, q; ν)

f0(x0, q; ν)
− f1(s, q; ν)

f0(s, q; ν)

]
+ o(w)

}
, (B10)

where the splitting probability is given by

Es(q) =
(x0
s

)β/2 f0(x0, q; ν)
f0(s, q; ν)

. (B11)

Then the conditional first moment is just

〈Zs(q)〉 =
1

Dγ2

[
f1(s, q; ν)

f0(s, q; ν)
− f1(x0, q; ν)

f0(x0, q; ν)

]
, (B12)

and one can verify that the previous general expression for 〈Z〉 can be obtained from 〈Z〉 = Es(q)〈Zs(q)〉+Eq(s)〈Zq(s)〉.
By skipping details, for ν 6= 0,±1 we find

〈Zs(q)〉 =
1

Dγ2

{
sγ

1− ν

[
1− (s/q)γ(ν−1)

1− (s/q)γν
− 1− (x0/q)

γ(ν−1)

1− (x0/q)γν

(x0
s

)γ]
+

qγ

1 + ν

[
1− (s/q)γ(ν+1)

1− (s/q)γν
− 1− (x0/q)

γ(ν+1)

1− (x0/q)γν

]}
,

(B13)
the cases ν = ±1 are both covered by

〈Zs(q)〉 =
1

Dγ2

{
sγ − xγ0

2
+ γqγ

[
sγ ln(q/s)

sγ − qγ
− xγ0 ln(q/x0)

xγ0 − qγ

]}
, (B14)

and ν = 0 yields

〈Zs(q)〉 =
1

Dγ2

[
sγ − xγ0 +

2(qγ − sγ)

γ ln(s/q)
− 2(qγ − xγ0 )

γ ln(x0/q)

]
. (B15)
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2. Case γ = 0

For γ = 0, we start by considering

H(x, y) = sinh

[
ln
( y
x

)√w

D
+
β2

4

]
, (B16)

for which we may write

H(x, y) =





sinh

[ |β|
2

ln
(y
x

)]
+
w ln(y/x)

|β|D cosh

[ |β|
2

ln
( y
x

)]
+ o(w) for β 6= 0

√
w

D
ln
(y
x

)
+

1

6

(w
D

)3/2
ln3
(w
D

)
+ o(w3/2) for β = 0.

(B17)

Let us first evaluate the expansion of

p̃s(w, q, x0) =
(x0
s

)β/2 H(x0, q)

H(s, q)
, (B18)

which is

p̃s(w, q, x0) = Es(q) [1 + 〈Zs(q)〉w + o(w)] . (B19)

By using Eq. (B17), we see that for β 6= 0 we have

Es(q) =
(x0
s

)β/2 sinh
[
|β|
2 ln

(
x0

q

)]

sinh
[
|β|
2 ln

(
s
q

)] =
(x0
s

)β/2−|β|/2 1− (x0/q)
|β|

1− (s/q)|β|
=

1− (x0/q)
β

1− (s/q)β
, (B20)

and the conditional first moment is

〈Zs(q)〉 =
1

|β|D

{
ln

(
s

q

)
coth

[ |β|
2

ln

(
s

q

)]
− ln

(
x0
q

)
coth

[ |β|
2

ln

(
x0
q

)]}

=
1

|β|D

[
ln
(q
s

) 1 + (s/q)|β|

1− (s/q)|β|
− ln

(
q

x0

)
1 + (x0/q)

|β|

1− (x0/q)|β|

]

=
1

βD

[
ln
(q
s

) 1 + (s/q)β

1− (s/q)β
− ln

(
q

x0

)
1 + (x0/q)

β

1− (x0/q)β

]
. (B21)

For β = 0 instead, the splitting probability is

Es(q) =
ln(x0/q)

ln(s/q)
, (B22)

and the conditional first moment is given by

〈Zs(q)〉 =
1

6D

[
ln2
(
s

q

)
− ln2

(
x0
q

)]
=

1

6D
ln
(x0
s

)
ln

(
q2

sx0

)
. (B23)

Now, from 〈Z〉 = Es(q)〈Zs(q)〉 + Eq(s)〈Zq(s)〉 and setting s = a and q = b, we obtain

〈Z〉 =





1

2D
ln

(
b

x0

)
ln
(x0
a

)
for β = 0

1

βD

[
(bβ − xβ0 ) ln(x0/a)− (xβ0 − aβ) ln(b/x0)

bβ − aβ

]
for β 6= 0.

(B24)

Appendix C: Details on numerical simulations

Here we illustrate the numerical scheme used to inte-
grate the stochastic differential equation

dx(t) = a(x)dt+ b(x)dW (t). (C1)

To obtain the results illustrated in this paper, in the case
of diffusion in a logarithmic potential we used the weak
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order 2 Runge-Kutta method [98, 99]:

xn+1 = xn +
1

2
[a(Υ) + a(xn)]∆t

+
1

4

[
b(Υ+) + b(Υ−) + 2b(xn)

]
∆Wn

+
1

4

[
b(Υ+)− b(Υ−)

] [∆W 2
n −∆t√
∆t

]
, (C2)

where

Υ = xn + a(xn)∆t+ b(xn)∆Wn (C3)

Υ± = xn + a(xn)∆t± b(xn)
√
∆t, (C4)

and ∆Wn are all independent and identically distributed
random variables drawn from a common distribution
p(∆W ), such that E(∆W ) = 0 and E(∆W 2) = ∆t. For
example, a popular choice is

p(∆W ) =
1√
2π∆t

exp

(
−∆W 2

2∆t

)
. (C5)

We recall that a discrete-time approximation xn is said
to converge weakly to x(t) if for all polynomials q(z) [98]:

lim
∆t→0

E {q(xn)} = E {q [x(t)]} . (C6)

In practice, weak convergence implies the convergence of
all moments in the ∆t → 0 limit. The order of con-
vergence m is defined by the order of the error in the
moments with the step size:

|E {q(xn)} − E {q [x(t)]}| = O (∆tm) , (C7)

for sufficiently small ∆t [98]. In the case of heteroge-
neous diffusion instead, we considered the Itô integra-
tion scheme and used the Euler-Maruyama method. By
taking into account the possible interpretations of the
Langevin equation, the method is implemented as

xn+1 = xn + αD′(xn)∆t+
√
2D(xn)∆Wn. (C8)

Finally, to compute the functional defined by (2) in the
main text, we approximate

∫ T

0

F [x(t)]dt ≈
N∑

i=0

F (xi+1) + F (xi)

2
∆t, (C9)

where T is the first-passage time outside a given interval
Ω, and N is the random number of steps needed for the
approximated trajectory to exit from Ω.
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