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We introduce a model to study magnon scattering in skyrmion crystals, sandwiched between
ferromagnets which act as the source of magnons. Thanks to recent experimental advances, such
a set-up can be realised in quantum Hall heterojunctions, and it is interesting as skyrmions are
topological objects while the skyrmion crystals break internal and translational symmetries, thus
allowing to study the interplay of topological and symmetry breaking physics. Starting from a basis
of holomorphic theta functions, we construct an appropriate analytical ansatz for such a junction
with finite spatially modulating topological charge density in the central region and vanishing in
the leads. We then construct a suitably defined energy functional for the junction in terms of these
spinors and derive the resulting equations of motion, which take the form of a Bogoliubov-de Gennes-
like equation. Using a combination of analytical techniques, field theory, heuristic models and fully
microscopic recursive transfer-matrix numerics, we calculate the spectra and magnon transmission
properties of the skyrmion crystal. We find that magnon transmission can be understood via a
combination of low-energy Goldstone modes and effective emergent Landau levels at higher energies.
The presence of the former manifests in discrete low-energy peaks in the transmission spectrum and
we show how the these features reflect the nature of the Goldstone modes arising from symmetry
breaking. In turn, the effective Landau levels, which reflect the topology of the Skyrmion crystal,
lead to band-like transmission features, from the structure of which further details of the excitation
spectrum of the skyrmion crystal can be inferred. Such characteristic transmission features are
not present in competing phases of either the quantum Hall phase diagram or in metallic magnets,
and hence provide direct and unique signatures of skyrmion crystal phases and their properties.
We discuss experimental considerations regarding the realisation of our model, which most directly
apply to heterojunctions in monolayer graphene with the central region doped slightly away from
unit filling and the two ends exactly at unit filling, a ν = 1 : 1± δν : 1 junction. Such physics is also
relevant to junctions formed by metallic magnets which host skyrmion crystal phases, or partly in
junctions with artificially realized and periodically modulated gauge fields.

I. INTRODUCTION

Two central paradigms of condensed matter physics
are symmetry breaking and, more recently, topology
[1, 2]. The concepts involved, down to the language de-
scribing them, are quite distinct, and it is interesting to
ask what happens in ‘mixed situations’ where emergent
topology and symmetry breaking are both present. One
of these is provided by the physics of skyrmions, which
are topological objects which also carry a notion of sym-
metry breaking – most immediately regarding internal
spin degree of freedom. Natural questions thus arise re-
garding the demands of the respective paradigms. For
instance, Goldstone’s theorem demands the existence of
stable quasiparticles at low energies, while topological
phases tend to come with gapped spectra and low-lying
excitations living only at edges and interfaces. Moreover,
the natural excitations of topological systems can have
quantum numbers which are quite distinct from those of
the underlying electronic degrees of freedom.

A case in point is the SU(2)-invariant quantum Hall
effect at ν = 1, where a quantized transport plateau
coexists with skyrmionic elementary excitations arising
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from the ferromagnetic ground state. Quantum Hall
skyrmions are special in that they possess quantized elec-
trical charge [3]. Tuning slightly away from this filling
is believed to lead to the formation of a ground state
configuration of skyrmion crystals [4]. Skyrmion crys-
tals are like Wigner crystals of composite objects, each
of which comprises a group of textured spins and acts as
a topological defect [5]. Crucially, these crystals exhibit
spatial symmetry breaking on top of the internal symme-
try breaking. Skyrmion crystals have also been heavily
studied in metallic magnets, where they arise due to the
Dzyaloshinskii–Moriya interaction, and their detection in
such settings was first reported in landmark neutron scat-
tering [6] and electron microscopy experiments [7]. While
there has been some indirect evidence for the existence of
a quantum Hall skyrmion crystal, via NMR [8, 9], heat
capacity [10], Raman [11] and microwave spectroscopy
[12] experiments direct evidence, such as that in an elec-
tron microscopy experiment imaging the degree of crys-
talline order is still missing.

Experimental techniques to detect crystalline ordering
and to unveil the excitation spectra of ordered struc-
tures have a long history in solid state physics. From
Bragg scattering of x-rays to detect crystalline structure
of solids, to neutron scattering and ARPES experiments
to probe the excitation spectra, with the advent of a new
experimental technique, new theoretical explorations are
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called for.
Recent magnon transport experiments in junctions of

quantum Hall states present one such exciting technique
[13–17]. While traditional ARPES and neutron scat-
tering experiments are extremely challenging for thing
nanomaterials such as graphene, electron transport ex-
periments provide a promising route to probe quantum
Hall physics [18, 19], especially due to the ability to tune
carrier density with voltage in graphene. However, elec-
tron transport experiments are largely insensitive to the
underlying spin structure of the ground states.

Pioneered in [13], magnon transport techniques involve
a coherent source of magnons, usually a quantum Hall
ferromagnet, which are injected into an insulating bulk
sandwiched between the leads. These techniques allow
us to probe the spin structure of the bulk and have been
used to study various ground states expected at different
fillings of the zeroth Landau level in monolayer graphene.

Applying these experimental techniques to questions
involving the topology-symmetry dichotomy has to face
a number of technically and conceptually unavoidable is-
sues. Concretely, constructing an interface between a
skyrmion crystal and a non-topological magnetic state
cannot simply be achieved by pasting the two subsys-
tems together along a junction in the way one would,
e.g., join a superconductor with a normal metal to ob-
serve Andreev reflection. The reason is that the skyrmion
is a non-uniform and extended object. An interface will
thus minimally need a lateral extent set by the size of
the skrymion itself. Moreover, such a problem is theoret-
ically interesting because skyrmions and their crystals are
objects that lie in complex projective spaces (CPd−1 for
SU(d) systems), hence the interface problem becomes a
non-linear problem as opposed to the conventional bulk-
boundary correspondence in quantum Hall and topolog-
ical insulators [20, 21].

Here, we devise and study a scattering problem which
is motivated by, and amenable to, the above mentioned
experimental methods. The set-up consists of a quantum
Hall heterojunction (Fig. 1a) of a Skyrmion crystal sand-
wiched between two simple quantum Hall ferromagnets,
as might be obtained by setting the filling of the outer re-
gions to ν = 1 and doping (or, rather, gating) the central
region slightly away from such filling ν = 1 ± δν. Such
a setup has already been realized in one of the quantum
Hall junction experiments [22].

Our central result is that the energy dependence of
the magnon transmission amplitude reflects the topology-
symmetry dichotomy in exquisite detail, establishing
such magnon scattering experiments as an excellent plat-
form to probe this dichotomy. The topology of the
Skyrmion crystal bequeathes an emergent Landau-level
structure to the response; while its lowest Landau level
– which we christen Riemann-Goldstone Landau level –
contains the physics of the symmetry breaking itself. Re-
markably, from the magnon transmission, one can di-
rectly infer the nature of the Goldstone modes which is
characteristic of the Skyrmion crystal as well as the ef-

fective Landau level structure of the higher levels.
A significant fraction of the following account details

important technical advancements that we made to fully
solve this problem. We focus on advances which are
transferable and useful to other contexts and fields in
the main text, and discuss some more specific ones in the
appendix. First, we introduce our completely analytical
model of a ferrromagnet-skyrmion crystal-ferromagnet
interface formed from a basis of holomorphic theta func-
tions, as well as a suitably defined energy functional from
which we derive our equations of motion. Second, we
introduce a novel method to discretize the topological
charge density contributions to the energy functional.
Third, we explain our microscopic recursive transfer ma-
trix approach to calculate the full transmission and re-
flection matrix of the skyrmion crystal scattering prob-
lem, even in the presence of evanescent contributions.
Fourth, we introduce a recipe to construct sigma models
for the coupling between the Goldstone modes of such
junctions of regions with different order parameter man-
ifolds. All these advances can find applications in trans-
port problems between interfaces of such topologically
trivial and non-trivial structures and possibly also in
transport through regions of spatially varying magnetic
field.

For the less technically inclined readers, we supply
some simple heuristic models to account for the physi-
cal phenomena that we have uncovered. While these do
not capture the full complexity of the topology-symmetry
dichotomy, they do provide a clear rationale for why the
proposed set-up is so well-suited for studying this prob-
lem, and they yield a transparent and intuitive frame-
work for the interpretation of the full results of our anal-
ysis. These heuristic models already provide some pre-
dictions which can be tested in future skyrmion crystal
junction experiments.

The remainder of our account is structured as fol-
lows. Section II provides a short-hand self-contained and
largely non-technical summary of our results. Section III
contains some general considerations of the dichotomic
structure of the problem which leads to an intuitive pic-
ture for the formalism developed in later chapters, and for
the interpretation of the results thus obtained: a model
of a particle in a heterostructure comprising a modulated
magnetic field sandwiched between two zero-field regions
provides a simple route to capturing the topological fea-
tures which are independent of the local symmetry break-
ing. For the Goldstone sector, we consider a simplified
interface between a ferro- and an antiferromagnet on a
lattice, which allows us to study the simplest case of a
dispersion mismatch problem. We note that it has come
as quite a surprise to us that this dichotomy should be
so neatly resolvable by this pair of heuristic models.

Section IV is the most technical section of this pa-
per. In subsection A, we introduce our holomorphic theta
functions ansatz and our energy functional. In subsection
B, we introduce the method to discretize the topological
charge density contributions. In subsection C, we explain
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our transfer matrix procedure for the magnon scattering
problem. We end this section with subsection D, where
we introduce the recipe to construct the sigma models. In
section V, we present additional results for the quantum
Hall ferromagnet-skyrmion crystal-ferromagnet problem
which are not discussed in section II, and we highlight
similarities with the heuristic models presented in sec-
tion III. Finally, in section VI, we end by discussing the
experimental relevance of our model (subsection A) and
further implications of our work (subsection B).

II. OVERVIEW OF RESULTS

Our main result is a calculation of the magnon trans-
mission spectrum across the skyrmion crystal. We find
the following characteristic set of signatures in the trans-
mission spectrum which reflect the topology-symmetry
dichotomy:

i) The high-energy transmission spectra comprises
sharp peaks in discrete bands of energies, with uniform
gaps between the bands as in Fig. 1c. The sharp peaks
within each band arise as a consequence of Fabry-Perot
like resonances when the incoming magnon energy coin-
cides with bound states of the scattering problem. Re-
markably, these bound states have an emergent Landau-
level structure. These levels are emergent because they
reflect the spatially modulated topological charge den-
sity (which has a finite non-zero mean) of the Skyrmion
crystal (instead of the applied external constant magnetic
field): magnons experience the Berry flux of the spin tex-
ture in the central region as an effective magnetic field.

ii) The lowest emergent Landau level, which we call
the Riemann-Goldstone Landau level due to it arising
from holomorphic constraints [23] (see section IV A for
details), hosts the Goldstone modes associated with the
symmetry breaking. The transmission spectrum in this
low-energy window exhibits discrete sets of uniformly
spaced peaks in a small energy window as in Fig. 1d.

Indeed, the effects due to topology and symmetry
breaking are delicately intertwined. At high energies,
the width of and gaps between these discrete bands of
transmission corresponds to the same of the emergent
Landau levels which reflect the topology of the skyrmion
crystal (see Fig. 9 and section V). Hence magnon trans-
mission allows one to infer the nature of the high energy
modes of the Skyrmion crystal (i.e modes just above the
Goldstone spectrum) . On increasing energy the magnon
transmission also exhibits a characteristic angular depen-
dence, with certain preferred angles of transmission and
a non-monotonic dependence of transmission on channel
number. This dependence reflects the spatial symmetry
breaking, i.e. it is a consequence of the crystalline order
of the Skyrmions. Moreover, the modes in the Riemann-
Goldstone Landau level are associated with the SU(2)
group manifold acting on the CP1 local order parameter
manifold of the skyrmion crystal. Notably, the uniform
spacing within each set of low-energy peaks, indicates

the linear dispersion of these Goldstone modes at small
momenta. The number of such sets of peaks also di-
rectly allows us to infer the presence of three such modes.
Hence, not only do these results unambiguously indicate
the presence of a skyrmion crystal, they also unveil the
nature of its excitation spectrum, both at low and at high
energies. Figs 1 and 9 highlight these points clearly.

Section III A presents a simplified heuristic model
which accounts for the topological – but not the sym-
metry – aspects of these results. We prepend this discus-
sion, section III A, to the much more technical analysis
by which it was motivated (section IV and Appendix A),
where we found that the effective description of the scat-
tering problem bears some resemblance to the problem
of a particle scattering off of a region with spatially vary-
ing magnetic field: we are led to study a (single) particle
scattering off a region with spatially varying magnetic
field.

To single out the effect of the variation of the magnetic
field, we first consider the problem of a constant magnetic
field and map out the transmission and reflection coeffi-
cients in energy-momentum space as in Fig. 2(f-h). We
find that such a problem is characterized by a critical
energy scale E∗ below which there is no transmission,
and regions of either full transmission or full reflection
with a smooth crossover from one to the other. We also
note that there are bound states below E∗ which play
an important role on introducing spatial modulations of
the magnetic field. Also any non-zero transmission is ac-
companied by an angular deviation which we calculate as
a function of incoming energy and present in Fig. 5(a).
These features can be accounted for in a picture of semi-
classical cyclotron orbits.

The physics becomes even richer on introducing mod-
ulations along the transverse direction, as is present, in
a skyrmion crystal. On doing so, we find that there are
sharp transmission peaks in the semi-classically forbid-
den region, i.e below E∗. Moreover, we find that these
peaks have a special structure, they occur in certain en-
ergy windows, and these windows have uniform gaps be-
tween them as in Fig. 3(a). Such gaps correspond to
the Landau level gaps in the spectrum and the energy
windows occur due to the dispersion in the Landau lev-
els introduced by the spatial variation. We also find that
the heights of most of the transmission peaks are sup-
pressed. These phenomena are in turn accounted for in
terms of resonances from bound states, and interference
between more than one propagating mode, respectively.

This brings us to our analysis of the full ferromagnet-
skyrmion crystal-ferromagnet junction problem, the so-
lution to which requires several technical advancements.
We include four such advances in the main text (less im-
portant ones are relegated to appendices) in section IV,
which are also applicable to other problems in transport
calculations of such junctions between topologically triv-
ial and non-trivial structures. These advancements draw
from a wide variety of fields and reflect the richness of
this problem.
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FIG. 1. Results for the quantum Hall ferromagnet (QHFM)-skyrmion crystal junction. a) Schematic picture of the scattering
problem and the experimental setup - sharp interface drawn only for illustrative purposes. b) Cartoon description of the
spectrum of the skyrmion crystal comprising higher non-uniform Landau levels and the lowest Riemann-Goldstone Landau
level. c) High-energy band-like transmission features due to effective non-uniform Landau levels (generated due to spatially
modulated topological charge density profile (with finite non-zero mean) in (f) and not uniform applied external field). d)
Low-energy transmission features due to presence of Goldstone modes in the Riemann-Goldstone Landau level. Two sets of
linearly separated peaks indicating linear dispersion and two distinct velocities of the modes. Small split in peaks with larger
spacing (velocity), implies two modes are almost degenerate (see Fig. 9b for spectrum). e) Spin profile of the junction, from
Eq. (6), generated by the truncated holomorphic theta function ansatz in Eq. (7). The tail of every arrow is a lattice site,
its direction is the projection on the z-x plane, and the color is the y-component. f) Topological charge density profile for the
junction, obtained from Eq. (5) and Eq. (6). Parameters used for c)-f) are g = 0.8, J = 1, N = 140 and N ′ = 1.

First, in section IV A, we address the difficult non-
linear problem of constructing an interface between
such topologically trivial and non-trivial structures as
mentioned in the introduction. We use an analytical
ansatz constructed from truncated holomorphic theta
functions to model our ferromagnetic-skyrmion crystal-
ferromagnetic junction. Using the theta functions in eq 7
as basis functions, we can generate a textured skyrmion
crystal with two skyrmions per unit cell in the central re-
gion with similarly aligned ferromagnets on the two sides
as shown in Fig. 1(e). On calculating the topological
charge density from these truncated theta functions, us-
ing eq 5, as in Fig. 1(f), we see that we get periodic
modulations of the topological charge density in the cen-
tral region and a smooth decay to zero away from it. The
region across which we get a smooth decay defines the in-
terface. Similar holomorphic constructions can be used
for other topological structures and can also be extended
for fractional or entanglement skyrmion crystals [24].

Using these theta functions, we reverse engineer an

energy functional with short range interactions and with
the spin configuration in Fig. 1(e) as the minima in the
continuum limit. We calculate the equations of motion
for the excitations of this using techniques from linear
spin-wave theory in appendix. It is the form of the vari-
ation in the energy functional, given in Eq. 11, which
resembles the free particle problem discussed in the pre-
vious paragraphs.

Any microscopic numerical calculation of the transport
properties of such junctions requires real space discretiza-
tion of the continuum energy functional in Eq. 11. Dis-
cretizing the exchange term is a standard exercise in fi-
nite difference methods, however, discretizing the change
in topological charge density is highly non-trivial task. In
section IV B we introduce a novel geometrical method to
do this discretization in a completely analytical way. Our
approach relies on the short-range nature of our interac-
tion which allows us to express the topological charge
density in terms of the solid angle subtended by the four
geodesics connecting the four spin vectors of a real space
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plaquette on the Bloch sphere. Our final result in Eq. 20
expresses the discretized form of the 2nd term in eq 11 as
a tight binding model with upto second nearest neighbor
hopping.

To calculate the full magnon transmission matrix, we
use a recursive transfer matrix approach explained in sec-
tion IV C. First, we discretize the energy functional in
real space using standard finite difference methods for the
exchange term and the topological charge discretization
procedure given in IV B. The usual recursive column-wise
procedure involves multiplying the transfer matrix at ev-
ery column and forming a product matrix which relates
the left and right ends of the problem. However, such an
approach runs into problems in the presence of evanes-
cent contributions which cause a numerical instability in
obtaining the final product matrix. We resolve this in-
stability by adapting a method introduced by Pendry for
similar problems in optics[25]. This method allows us to
obtain the full transmission matrix for the magnon and
hence gives us access to channel resolved transmission
coefficients.

We end this section by focusing on the Goldstone mode
sector in section IV D. In this section we provide a recipe
to construct a non-linear sigma model for a long wave-
length description for the coupling between the Gold-
stone modes of the ferromagnet and the skyrmion crys-
tal. To do so, we describe the structure of most gen-
eral SU(2) invariant coupling terms at the interface, be-
tween these regions with different characteristics of their
ground state manifold (see Table I). We find that there
are two very general kinds of coupling between the Gold-
stone modes of the ferromagnet and the Skyrmion crystal
as in Eq. 36 and 40. Such a construction allows one to
develop an analytical approach for such scattering prob-
lems through coarse grained models. And, our construc-
tion lays the foundation for further constructions of such
long-wavelength models of coupling between qualitatively
different Goldstone modes.

Section V provides additional numerical results for the
full problem of the skyrmion crystal junction, as sum-
marised at the very beginning of this section, and using
the technical advancements made in sections IV A-C. We
also obtain the spectra of the high energy modes and
show how the transmission energy windows correspond
exactly to the energies of these emergent Landau levels.
Further we comment on how the heuristic model of a par-
ticle scattering in a region of spatially varying magnetic
field qualitatively captures the behaviour in this energy
regime. However, the transmission features at low ener-
gies cannot be understood from that heuristic framework,
since that framework has no Goldstone modes. We ob-
tain the dispersion of these Goldstone modes, as in Fig.
9(b) and show how the transmission varies on varying
their dispersion. On increasing dispersion, the discrete
low energy peaks in transmission shift in position and
their intensity increases as in Fig. 9a. The transmission
spectra in this regime has qualitative similarities with the
heuristic model for the antiferromagnet sandwich which

we introduce in section III D and hence one can borrow
our intuitive understanding from that analysis.

As a significant motivation of our work were the ex-
perimental advances described in the introduction, in
section VI A we present arguments for how our the-
oretical predictions can be experimentally tested in a
ν = 1 : 1 ± δν : 1 quantum Hall junction on mono-
layer graphene. There are elements of our model that
might not be completely realistic such as absence of
anisotropies, delta function interaction potential and a
smooth interface. In Section VI A, we comment on how
the presence of realistic anistropies might change some
low energy signatures by gapping out a subset of the
Goldstone modes but some signatures of the remaining
gapless modes shall remain. We comment on how to real-
ize short range interaction using metallic gates and finally
we comment on situations where the interface is sharper
than in our model. We finally close with an outlook in
Section VI B.

III. HEURISTIC MAGNON SCATTERING

In this section we provide details of two heuristic mod-
els as mentioned in the earlier sections. In the first three
subsections we introduce and study a particle scattering
off a region with (i) a constant and then (ii) a spatially
modulated magnetic field. The spatial profile of the mag-
netic field mimics that of the topological charge density
in the skyrmion crystal junction. This heuristic model
turns out to be useful since (as shown in the next section
and in Appendix A) it turns out to qualitatively describe
(primarily the) topological aspects of the skyrmion crys-
tal problem. In the last subsection we introduce a simple
model to discuss the coupling between qualitatively dif-
ferent kinds of Goldstone modes, namely a ferromagnet-
antiferromagnet-ferromagnet junction. Both these mod-
els allow us a simpler and intuitive understanding of com-
plementary parts of the difficult and technically involved
problem fleshed out in sections IV and V.

A. Particle scattering off a region of constant
magnetic field

To isolate the effect of spatial modulations in the mag-
netic field we first consider a constant magnetic field pro-
file in the central region which exponentially decays to
zero across the interface as shown in the inset of Fig.
2a. Such a system, in the Landau gauge (Ax = 0,
B(x) = ∂xAy(x)), has the Hamiltonian

H =
1

2m
[q2
x + (qy + eAy(x))2] (1)

We consider the following magnetic field profile Bc =
B0/2(tanh(x − L/2) − tanh(x + L/2)) as in Fig. 2(a),
where B0 is the value of the magnetic field in the central
region of length L. Throughout this discussion, we use a
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FIG. 2. Semi-classical analysis for heuristic model with constant magnetic field in the central region. All arguments and results
in this panel are for the Landau gauge (Ax = 0). (a-c) Qualitatively different effective potentials for different values of transverse
momentum, qy ≥ 0 for (a), −eAy(∞)/2 < qy < 0 for (b) and −eAy(∞) < qy < −eAy(∞)/2 for (c), the qy ≤ −eAy(∞) case
is a reflection of (a) . Insets of (a) and (b) show the constant magnetic field profile with smooth decay away from central
region and the corresponding vector potential in the Landau gauge respectively. d) Different qualitative regions of scattering
in energy-transverse momenta parameter space with the labels in each region indicating the x-support of the corresponding
semiclassical trajectories - we get two regions of full reflection, x ∈]−∞, x1] or x ∈ [x0,∞[, one region with bound trajectories
(x ∈ [x0, x1]) and one region with full transmission (x ∈] −∞,∞[) . (g-h) Numerically obtained transmission and reflection
coefficients respectively for the quantum problem with Hamiltonian in Eq. 1 showing great qualitative agreement with the
semiclasical picture in (d). We only consider the case of a particle incident from the left which is why the reflection coefficient
in (f) is not fully symmetric as in (d) which considers both left and right incident processes.

gauge in which Ay(−∞) = 0 and Ay(x) is a positive and
increasing function of x with a saturation value Ay(∞)
as shown in the inset of Fig. 2b.

Since we have translational invariance along y, we have
two degrees of freedom and two conserved quantitities,
the total energy E and the transverse momentum qy.
Hence, we have an integrable system.

Let us understand the semi-classical trajectories for
such a system. Since qy is conserved we get a collec-
tion of one dimensional models with an effective potential
Veff(x, qy) = (qy + eAy(x))2/(2m).

As a function of x, qualitatively, we have three different
types of effective potential depending on qy. i) If qy ≥ 0,
Veff is monotonically increasing with Vmin = q2

y/(2m)

and Vmax = (qy + aAy(∞))2/(2m) as in Fig. 2a. For
−eAy(∞) < qy < 0, by contrast, qy + eAy(∞) changes
sign at x∗ and we get two types of potential curves, ii)
for −eAy(∞)/2 < qy < 0, as in Fig. 2b and iii) for
−eAy(∞) < qy < −eAy(∞)/2, Veff is as in Fig. 2c. Fi-
nally for qy ≤ −eAy(∞), Veff is monotonically decreasing
and looks like the reflection of Fig. 2a.

For each region, the support in x of the corresponding
trajectory depends on the incoming particle energy E.
If E < Vmin, no scattering states exist, if Vmin < E <
Vmax, the classical trajectories are purely reflected, i.e

the radius of the cyclotron orbits is less than the length
of the central region.

Already at this simplistic level, we can see that if the
particle is transmitted, i.e the radius of the cyclotron
orbit is larger than the length of central region, then
particle will exit the central region with a velocity dif-
ferent from its incoming velocity and its direction will
be deflected. One can calculate the angle of deflection
easily: say the incoming velocity is q, the outgoing ve-
locity on the right end will be q + A∞. In the Lan-
dau gauge, Ax = 0, therefore, the outgoing velocity will
be q + Ay(∞)ŷ. Hence, the angle of deviation is given
by cos−1[q · (q + Ay(∞)ŷ)/(|q||q + Ay(∞)ŷ|)]. This ef-
fect resembles that of the magnon Hall effect, studied
in magnon scattering off of single skyrmions in metallic
magnets [26, 27].

The most interesting region is the low energy regime
0 < E < E∗, where E∗ = (eAy(∞)/2)2/(2m). In this
case, the semi-classical solutions (and also the corre-
sponding eigenstates for the quantum version) depend
on qy, but there is no extended state going from x = −∞
to x =∞: the transmission coefficient across the central
region exactly vanishes for E < E∗. However, in a win-
dow in the E−qy parameter space, there exist classically
bound trajectories (closed cyclotron orbits in the central
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FIG. 3. Qualitative arguments for heuristic model with spatially modulated magnetic field along y-axis. a) Continuous
spectrum for scattering and discrete spectrum for bound states. Modulation along transverse directions breaks qy conservation
and periodic modulation implies qy is conserved modulo 2π/a. Transmission below critical energy E∗ is possible if the energy of
one of the channels coincides with the bound state. b) Pictorial description of the possibility of tunneling into other propagating
channels due to crystalline order. Each channel has its effective potential profile and regions of allowed transmission as in Fig.
2(c-f). The presence of multiple propagating modes allows transmission for an incoming magnon due to off-diagonal scattering.
c) Number of propagating modes in the ω− qy plane in the unfolded zone scheme (for visual reasons). One can transfer this to
the first Brillouin zone by standard folding techniques. Each color is for the two curves 2q2yi and 2(qyi +A(∞))2, such that in

the region lying above both curves one gets an outgoing propagating mode for the ith channel, where qyi = q
(0)
y + 2π(i− 1)/a.

For this figure we use B0 = 2π/a2 and L = 20. d) Pictorial description of non-monotonicity of channel resolved transmission
from qualitative arguments presented in section III B and Fig. (b) in this panel (not real data, see Fig 5b).

region) for E < E∗. In the quantum problem, the bound
states of the classical picture correspond to Landau lev-
els, which will play an important role once the magnetic
field in the central region is modulated, as is the case in
the actual skyrmion crystal junction.
To confirm this above picture, we calculate the reflection
and transmission probabilities starting from our Hamil-
tonian in eq 1. We see that our numerical results in Fig.
2(e-f) agree very well with the semi-classical analysis in
presented above and summarized in Fig. 2d. There exists
a minimum energy E∗ below which there is no transmis-
sion, the threshold energy for transmission depends on
the transverse momentum and as expected for the quan-
tum problem there is a smooth evolution from full reflec-
tion to full transmission on increasing energy at fixed qy.
Also, there is an angular deviation in the region of full
transmission as in Fig. 5a.

B. Effect of periodic modulation along y-axis

Our analysis of semi-classical trajectories showed that
a constant magnetic field in the central region implies
that there is no transmission below a certain threshold
E∗, yielding distinct regions of full transmission and full
reflection in E−qy parameter space. Quantum mechani-
cally, regions where the x-support of classical trajectories
is infinite have a continuous spectrum whereas the bound
state region, which has only a finite support [x0, x1], has
a discrete Landau level spectrum. The bound states have
slightly bent dispersions because the local potential wells
around x∗ become very shallow as x∗ → ±∞, see Fig.
3a. In this and the following subsection we address the
effects of periodic modulation of B about its mean B0

in the central region. Again, we examine the heuristic
model given by Eq. (1), but now, first with a periodic

modulation of B along the transverse (y) direction.
A periodic modulation of period a in the y-direction

breaks qy conservation and hence generates matrix el-
ements between states with qy values differing by inte-
ger multiples of 2π/a. This mechanism generates a tun-
neling amplitude to an order Np in perturbation theory
given approximately by 2π/Np ≈ eAy(∞) = B0L/φ0, so
Np ≈ B0aL/(2πφ0), where B0 is the average magnetic
field in the central region and φ0 is the flux quantum.
If E lies in the gap of the bound state spectrum, since
Np ∼ L, the corresponding transmission amplitude will
be exponentially small in L. However, importantly there

will be some resonances for (q
(0)
y , E) values such that E

coincides with a bound state (i.e., a state of the Lan-

dau level) with energy at q
(n)
y = q

(0)
y + 2nπ/a, n ∈ Z.

Such resonances permit transmission at energies below
the threshold E∗.

Once qy conservation is broken, the scattering problem
becomes a multi-channel problem, where the number of
channels depends on the discretization procedure. The
presence of multiple channels makes the problem very
rich and we devise a transfer matrix procedure which
calculates the full transmission matrix, which allows us
to obtain the channel resolved transmission. Say, we con-
sider an N channel problem based on the discretization
of the a×a unit cell into a/N ×a/N grids. Out of the N
possible values of qy, some values will represent propa-
gating channels, Im(qx = 0), whereas, for relevant energy
scales and N values, most channels will be evanescent,
Im(qx 6= 0).

To extend our heuristic picture to this multi-channel
problem, one can examine the effective potentials, as in
the constant B case, for each of the qy channels. For

energies E∗ < E < Vmax(q
(0)
y ), in the constant magnetic

field case there is no transmission and hence full reflec-
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FIG. 4. Results for heuristic model with spatially varying magnetic field. a) Transmission spectra for a particle scattering off
a region with periodic modulation, see main text, of magnetic field along y-axis, where m is the parameter that controls the
amplitude of modulation, B = Bc(sin(4πy/a)/m+ 1), and Bc is the magnetic field used in the last subsection. Small m implies
large modulation and vice-versa. The case with m = 1 resembles the same amplitude of modulation along y-axis as in the
topological charge density profile in Fig. 1f. b) Transmission spectra for the case of a magnetic field modulated along x and
y-axes, where m1 has the same properties as m described, but for the x-axis in (a). The case with m = 1,m1 = 1 resembles
the same modulation along both axes as in the topological charge density profile in Fig. 1f. c) Effect of modulation along y
on Landau levels - adds bandwidth. Red lines are for the spectrum with negligible modulation and black lines are for large
modulations along y-axis. d) Effect of modulation along x on Landau levels - reduces gap. Red lines are for the spectrum with
negligible modulations along x and black lines are for the case with large modulations along x (both cases have the same large
modulation along y). The spectra in (c-d) are shown as an illustrative example, for a quantitative comparison of energy and
transmission spectra in the actual (not heuristic) model, see Fig. (9).

tion, |T | = 0, |R| = 1. However, for the modulated case,

there exist channels such that E∗ < Vmax(q
(n)
y ) < E,

hence there will be transmission through these channels.
Moreover, there will be a non-monotonic dependence of
the transmission amplitudes on the channel number, with
maximal transmission for n = nc, as depicted pictorially
in Fig. 3d. Further, the channel number of the maximally
transmitted channel will increase on increasing energy.

Following from this qualitative picture based on the
multi-channel scattering analysis, we proceed to imple-
ment the above problem numerically using our trans-
fer matrix approach described in section IV C. In the
Landau gauge the right end of the junction had a finite
non-zero vector potential Ay(∞). However, in the ac-
tual experiment there is no such vector potential in the
ferromagnetic end, hence to enable direct comparison we
also implement a gauge fixing procedure using a string of
Aharanov-Bohm fluxes, aided by our problem being dis-
cretized on a lattice, to ensure that the vector potential
vanishes on the right end (see appendix D for details).

We choose a magnetic field profile with sinusoidal
modulations along the y-axis with period a/2, B =
Bc(sin(4πy/a)/m + 1), where Bc is the magnetic field
used in the last subsection. m controls the amplitude
of transverse modulation, with large m implying small
modulations and vice-versa. From Fig. 4a we see that
for small or negligible variations along the y-axis, there
is no transmission for the plotted energy range, since for
these energies and for this value of B0, the incoming en-
ergy is lower than the critical energy required for trans-
mission. For B0 = 8π/a2, a = 10 and L = 4a, we get
E∗ = (16π/a)2/2 � 2, in units of e = m = J = 1 (see
section V A for reasoning for such values of parameters).
However, for large modulations, and more importantly

for modulations which mimic the topological charge mod-
ulations (in the y direction) of the SU(2) skyrmion crys-
tal (see Fig. 1(b)), we see a dramatic change in be-
haviour, characterized by the appearance of resonant
peaks of finite transmission. Moreover, these peaks ap-
pear in discrete regions of energy centered around ener-
gies corresponding to the different Landau levels of the
constant magnetic field problem. This confirms the qual-
itative picture we developed in the last section, in which
finite transmission below the threshold energy takes place
when the incoming particle energy coincides with the
bound state energy for certain channels. The transmis-
sion windows also allow one to infer the width of such
effective Landau level bound states.

Besides the resonant transmission features below the
critical energy, we also verify the non-monotonic chan-
nel dependence of transmission for energies above the
critical energy by plotting the channel-resolved transmis-
sion coefficients in Fig. 5(b). Similar non-monotonic
transmission and angular dependence will be observed in
skyrmion crystal junctions. In Fig. 5(b), we see that
in different energy windows different channels dominate
transmission, and there is a non-monotonic channel num-
ber dependence. Moreover, from our intuitive picture
of off diagonal scattering one can predict exactly which
channel dominates transmission in the different energy
windows. However, the details for which channel domi-
nates depend on the length of the skyrmion crystal region
and we leave that analysis for future more experimentally
specific work.

One surprising result that is not captured by our earlier
qualitative analysis is the varying height of the transmis-
sion peaks corresponding to the different Landau levels.
Some peaks in the energy range of the higher Landau
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FIG. 5. Channel dependence and angular deviation of trans-
mission for the heuristic model in sections III A-C. a) Angular
deviation of particle scattering off a constant magnetic field
region - similar to magnon scattering off a single skyrmion. b)
Channel dependence of transmission coefficient for spatially
modulated magnetic field (B0 = 8π/a2, L = 20, m = 1,

m1 = 1, q
(0)
y = 0). Certain channels dominate in certain

energy regions, and there is a non-monotonic dependence of
transmission coefficient on outgoing channel number n, where

q
(n)
y = q

(0)
y + 2(n − 1)π/a. For low energies, below E∗, only

one propagating channel is present q
(0)
y . One increasing en-

ergy the number of propagating channels increases as shown
in Fig. 3c, and the particle can scatter into these channels
(the transmission matrix has non-zero off diagonal elements).
This agrees with the qualitative picture of tunneling into other
propagating channels, as presented in section III and Fig. 3(b)

.

levels appear to be suppressed. Such a suppression in
peak height can be understood as a consequence of in-
terference between multiple propagating channels in the
central region. Appendix E presents a detailed technical
discussion of the effect of multi-mode interference on the
peak heights.

C. Effect of periodic modulation along x-axis

From the above two subsections, we see that a peri-
odic modulation of the magnetic field along y-axis in-
duces resonant peaks of finite transmission at energies
corresponding to low-lying Landau level energies of the
constant magnetic field problem. Hence, due to the gap
between Landau levels, we also see a gap between regions

of finite transmission as in Fig. 4(a). We now complete
the analogy of our heuristic model with the skyrmion
crystal by introducing its final ingredient, the modula-
tion of the magnetic field along the x-axis on top of the
modulations along y. We use a similar sinusoidal varia-
tion dependent on parameter m1 (large m1 corresponds
to small variation and vice-versa).

Variations of the magnetic field along the x-axis
broaden the Landau levels and hence the gap between the
regions of finite transmission decreases. This is shown in
Fig. 4(b) and (d), obtained from our numerics, where
we see that for a modulation amplitude that mimics the
topological charge density modulation along the x-axis of
the skyrmion crystal (i.e for m1 = 1), the gap is reduced.
Hence a modulation of the magnetic field along the x-
axis increases the energy range of finite transmission due
to Landau-level broadening.

D. Ferromagnet-antiferromagnet-ferromagnet
junction - effect of dispersion mismatch

Our heuristic model in the previous three subsections
did not involve the physics of Goldstone modes arising
from symmetry-breaking of the skyrmion crystal. To
highlight the issues involved in the transmission proper-
ties of a magnon through structures with not only differ-
ent dispersion relations but also a different number of col-
lective modes, we consider a very simple model of an anti-
ferromagnet sandwiched between two ferromagnets. The
dispersion relation of a ferromagnetic magnon is ∼ JF k2

whereas that of an antifferomagnetic magnon is ∼ JAF k.
Moreover, the antiferromagnet has two branches of Gold-
stone modes as opposed to the single one in the ferromag-
net.

We construct a very simple sandwich structure which
makes our calculations entirely analytically tractable.
We consider an antiferromagnet with half the lattice
spacing in the y direction of the ferromagnet, so that
only the A sublattice sites in the antiferromagnet are con-
nected to the ferromagnet (as shown in Fig. 6a). We then
solve the scattering problem for a magnon injected from
the ferromagnetic region on the left with the following
form of the complex wavefunction in the ferromagnetic
regions, x ≥ LI , which describes the spin deviation per-
pendicular to the equilibrium magnetization

δnF (x, y) =

{
Aeikxx+ikyy +Be−ikxx+ikyy;x ≤ −L
Geikxx+ikyy

(2)

whereas in the antiferromagnet, |x| ≤ LI , due to the
presence of two modes, the same can be written as

δnAF (x, y) = Ceik1xx+ikyy +De−ik1xx+ikyy+

Eeik2xx+ikyy + Fe−ik2xx+ikyy

(3)



10

FIG. 6. Results for the ferromagnet-antiferromagent-
ferromagnet quantum Hall junction heuristic model- param-
eters used JF = 1, JAF = 1, LI = 18ax, where ax is the
lattice spacing along x. a) Lattice structure of the heuris-
tic model with the y-spacing for the ferromagnet twice that
of the x-spacing. Such a simplification is made to simplify
the sublattice matching across the interface. b) Fabry-Perot
resonance peaks at normal incidence (qy = 0, θ = 0) in the
total transmission. c) Transmission as a function of angle of
incidence and energy of incident magnon. At fixed angle of
incidence, there is a critical energy for transmission following
which there is a set of equally spaced peaks in the low-energy
regime, reflecting the linear nature of the antiferromagnetic
Goldstone modes. The cutoff energy at θ = 0, is a finite size
effect, as we increase the length of the middle region, this
value will go closer to zero.

where x = −LI and x = LI are the positions of the inter-
faces, kx and ky are the incoming parallel and transverse
momenta of the magnon, k(1/2)x are the parallel momenta
of the two modes in the antiferromagnetic region and the
capital letters denote the amplitudes of the various left
and right-moving waves. The transverse momentum ky
is conserved and is hence a good quantum number for
the scattering process. We then match the wavefunc-
tion across the two interfaces as in standard scattering
problems to get the transmission and reflection ampli-
tudes. The total transmission coefficient for the outgo-

ing magnon in the right ferromagnetic lead is given by
|T | = |G|2/|A|2 and the total reflection coefficient for the
reflected magnon in the left ferromagnetic lead is given
by |R| = |B|2/|A|2.

This very simple model already exhibits various qual-
itative features which carry over to the case of the
skyrmion crystal we are interested in. First, in much
of the parameter space in Fig. 6c, transmission is sup-
pressed. Second, at a fixed angle of incidence of the
incoming magnon, there is a cutoff energy due to the
dispersion mismatch below which the entire wave is re-
flected for all angles. For low energies, this cutoff energy
can be rephrased as a cutoff angle above which one gets
no transmission.

Beyond the cutoff energy we get a series of peaks in
the transmission amplitude which broaden on increasing
energy. These peaks are essentially Fabry-Perot interfer-
ence peaks due to multiple reflections within the sand-
wiched structure. One can also verify that the width
of these peaks depends on the length of the sandwiched
structure, as expected for Fabry-Perot peaks. Also, at
a fixed transverse momentum, or incident angle, the low
energy peaks are equidistant. This reflects the charac-
teristic linear dispersion of the Goldstone modes in the
antiferromagnet. As we increase energy, the equidistant
nature disappears as the dispersion relation ceases to be
linear.

In closing, we note that despite its simplicity, this
model reproduces similar qualitative features (the in-
terference pattern and critical angle curve) as the ν =
1 : 0 : 1 quantum Hall junction, where the sandwiched
structure hosts a canted antiferromagnetic ground state,
which was studied analytically [28] and numerically [29]
using Hartree-Fock methods.

IV. SETUP AND SOLUTION OF THE
SCATTERING PROBLEM FOR THE SKYRMION

CRYSTAL JUNCTION

In this section, we present in turn the central technical
aspects of our solution of the full scattering problem of
magnons off the symmetry-breaking skyrmion crystal.

A. Basis for smoothly decaying topological charge -
truncated theta functions

A quantum Hall junction with an SU(2) skyrmion crys-
tal sandwiched between two ferromagnets appears as the
result of an externally imposed spatial variation of the
electrostatic potential seen by electrons in the 2D layer.
Neglecting all anisotropic couplings in spin space, the to-
tal energy of the quantum Hall ferromagnet is given by
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the following functional [3, 30]

E(n) = J

∫
[(∂xn)2 + (∂yn)2]d2r+∫

(Q(r)−Q0(r))V (r− r’)(Q(r’)−Q0(r’))d2rd2r’ (4)

where the unit vector n(r) denotes the local spin ori-
entation, V (r − r’) is the two-body (possibly screened)
Coulomb potential, Q(r) is the local topological charge
density (which is proportional to the local charge den-
sity), and J is a local exchange energy also due to
Coulomb interactions. In the case of un-screened
Coulomb interactions, J = e2/(32

√
2πεlB) in Gaussian

units, lB being the magnetic length and ε is the dielectric
constant. The presence of the imposed external poten-
tial is taken into account through the background charge
Q0(r), which we assume to be significant in an infinite
(along x axis) slab of finite width parallel to the y axis.
The topological charge density is given by:

Q(r) =
1

4π
n · (∂xn× ∂yn) . (5)

Minimizing the above energy functional in the presence
of the prescribed background charge Q0 is a difficult and
highly non-linear problem. Casting this in an analytical
form is yet more challenging. Furthermore, in a given
experimental setting, determining precisely the actual
Q0(r) is also not at all straightforward.

For these reasons, and because our goal is to investigate
magnon dynamics, we start by constructing a plausible
Ansatz for the spin configuration n(r) which interpolates
between a region of finite and spatially modulating topo-
logical charge for the skyrmion crystal in the middle to
a zero charge region to the two ferromagnetic ends.

Skyrmion crystals with periodic boundary conditions
were previously studied using a basis of theta func-
tions, which are used to construct holomorphic spinors
with values in the complex projective space CPd−1 [31].
Such theta functions were first introduced by Haldane
and Rezayi in the quantum Hall setting for constructing
Laughlin-Jastrow wavefunctions under periodic bound-
ary conditions [32].

In the present work, we focus on SU(2) spins described
by a two-component spinor field |ψ(r)〉. The relation
between this local spinor and the spin orientation vector
n(r) is given by

n(r) =
〈ψ(r)|σ|ψ(r)〉
〈ψ(r)|ψ(r)〉

(6)

where σx,σy and σz are the Pauli matrices. Because mul-
tiplying the local spinor by an arbitrary phase factor does
not change the physically observable spin orientation,
|ψ(r)〉 can be considered as an element of the complex
projective space CP 1, which is the same manifold as the
S2 sphere, which is the d = 2 case, although the present
construction easily generalizes to arbitrary integer values
of d.

In our model for the skyrmion crystal junction, we have
periodic boundary conditions in the y-direction and open
boundary conditions in the x-direction. To model the
finite-x support of the crystal we sharply truncate the
theta functions whose sum, instead of taken to infinity as
is done for periodic skyrmion crystals, is taken to some
integer N ′. For d skyrmions in a b × a unit cell, the
relevant truncated theta functions are given by

θ(N ′)
p (z) =

∑
|n|≤N ′

e−πbd
d
a (n+p/d)2+2π da (n+p/d)z (7)

where z = x + iy. The zeros of the theta function indi-
cate the position of skyrmion cores, and p runs from 0
to d − 1 in agreement with the Riemann-Roch theorem
[23]. Usual θ functions (corresponding to N ′ infinite) are
characterized by the following relations:

θp(z + ia) = θp(z) (8)

θp(z + b) = e(πb+2π) da zθp (9)

The different θp functions are related by the following
translation operators

θp+1(z) = e−
πb
da+ 2π

a zθp(z − b/d) (10)

At finite N ′, translational symmetry along y is preserved,
but not along the x axis. Using these truncated θ func-
tions we construct the holomorphic spinor defined by

|ψ(r)〉0 = (θ
(N ′)
0 (z), θ

(N ′)
1 (z))T . From Eq. (6), this de-

fines the reference spin configuration n0(r).
The minimal spin configuration and corresponding
topological charge density profile for the ferromagnet-
skyrmion crystal-ferromagnet junction generated by
these theta functions, and using Eq. (5), is shown in
Fig. 1e and f. We see that the topological charge density
is non-zero and spatially modulated along both x and y
axes, with period a/2 in the central region outside which
it decays smoothly to zero. A sharp cutoff in the theta
functions thus leads to a smooth decay of the topological
charge density. This allows us to define the notion of an
interface for the junction as the region across which the
topological charge density goes to zero. Furthermore, one
can tune the length of the skyrmion crystal formed the
by these truncated theta functions by varying the cutoff
N ′.

In order to investigate magnon dynamics, we need to
specify the energy functional, which is minimized by the
reference spin configuration n0(r). Because holomorphic
spinors always generate local minima for the local ex-
change term, it is sufficient to set the background charge
Q0(r) in Eq. (4) equal to the topological charge density
of the reference configuration n0(r). In our calculations,
we have replaced the non-local Coulomb interaction in
the second term of Eq. (4) by a local ‘Coulomb interac-
tion’ (delta function in real space) to simplify the calcula-
tions and make our problem partly analytically tractable.
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Therefore, the corresponding functional becomes

E(n) = J

∫
[(∂xn)2+(∂yn)2]d2r+g

∫
(Q(r)−Q0(r))2d2r

(11)
Moreover, such a delta function interaction term can
be realized in quantum Hall junction experiments in
graphene with metallic gates (see discussion in section
VI).

Without any interaction term, i.e g = 0, all holo-
morphic functions give the same exchange energy. This
renders the magnons non-dispersive and localized, which
motivated us to call the collection of the corresponding
set of states the Riemann-Goldstone Landau level. This
also shows that we need g > 0 to get a finite dispersion
of these Goldstone modes.

Equation 11 is the starting point from which we derive
equations of motion using spin-wave techniques. There
are various subtleties in this procedure such as intro-
ducing a set of local orthonormal frames, accounting for
the holomorphic constraint or ensuring gauge invariance.
These are addressed in detail in appendices A-C.

The resulting linearized Landau-Lifshitz equations of
motion for such a system can be expressed as a time-
dependent Schrodinger equation (see Eq. (A6) in ap-
pendix A), which forms the basis of our transfer ma-
trix analysis. The second order variation of the energy
functional, obtained from the spin-wave theory analysis,
resembles the form of a particle in a vector potential gen-
erated by a magnetic field Q0 discussed above (see Eq.
(A4) in appendix A). This justifies the use of the first
heuristic model in section III.

B. Real space discretization of topological charge
from geodesics

To calculate magnon transmission coefficients through
the skyrmion crystal we need to discretize the energy
functional in eq 11 on a finite grid, and hence in turn
we need to discretize the exchange and the topological
charge density terms. Discretizing the exchange term is
a standard exercise in finite difference methods (see ap-
pendix F), however, discretizing the variation in the topo-
logical charge density is a highly non-trivial task. Here
we present an geometrical approach based on solid an-
gles between geodesics. Such a discretization procedure
should carry over for similar settings in metallic mag-
nets hosting skyrmion crystals and could be transferred
to other topological spin textures.
We associate a topological charge to each plaquette with
the topological charge density being equal to to the solid
angle subtended by the four spin vectors associated with
the vertices of the plaquette. Before calculating the vari-
ation of such a solid angle, let us first consider the much
simpler problem of the variation of the solid angle sub-
tended by two spin vectors on the sphere with spherical
coordinates (θ, φ) and ds2 = (dθ)2 + sin2 θ (dφ)2. The
path between the end points of the two spin vectors n̂1

and n̂2 on the sphere describes a geodesic and the fluctu-
ations in these spin vectors due to the spin waves describe
a new geodesic, hence the problem reduces to finding the
variation in solid angle between these two geodesics, as
shown in Fig. 7(a). The standard equations of motion
for geodesics are

θ̈ =
1

2
sin(2θ) φ̇2

sin2 θ φ̇ = const.
(12)

Without loss of generality (due to rotational invariance)
we can choose n0 and n1 along the equator, so the cor-
responding geodesic becomes

θ(t) = π/2;φ(t) = φ(0) + (φ1 − φ0)t (13)

Considering the first order variations in eq 12 we get

δθ̈ = cos(2θ)φ̇2δθ + sin(2θ)φ̇ δφ̇

sin(2θ)φ̇ δθ + sin2 θ δφ̇ = const
(14)

Focusing on the vicinity of geodesic we get

δθ =
δθ0 sin(α(1− t)) + δθ1 sin(αt)

sinα
δφ = δφ0(1− t) + δφ1t

(15)

where α = φ1 − φ0.
In a radial gauge A = a(θ)dφ. The solid angle between

two parallel circles at θ and θ = dθ is equal to 2π sin θdφ
and should be equal to (via Stokes’ formula) 2π(a(θ +
dθ)−a(θ)), therefore da

dθ = sin θ. We require that a = 0 as
θ = 0, hence a(θ) = 1− cos(θ). The first order variation
in δΩ is equal to

∮
A along the closed path formed by

the parallelogram with vertices as the four spin vectors
(2 bare and 2 perturbed) and is given by

δΩ =

∫ 1

0

[(1−cos(θ+δθ(t)))
d(φ+ δφ(t))

dt
−(1−cos θ)

dφ

dt
]

+ δφ0 − δφ1 (16)

which after a bit of algebra can be written as

δΩ =
1− cosα

sinα
(δθ0 + δθ1) (17)

To connect the above formula with the original spin vec-
tors n0 and n1 we can also write the first order variation
as

δΩ01 = − n0 × n1

1 + n0 · n1
(δn0 + δn1) (18)

where we have defined the z-axis such that
n0 × n1 = sinα ẑ, with α ∈ [0, π] and cosα = n0 · n1,
which in turn also implies that δθi = −δni · ẑ

To tackle the problem of discrete
∫
δQ2 we consider

all four plaquettes connected to a particular site 0. The
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FIG. 7. a) Change in solid angle between two geodesics on
the sphere. b) Plaquette-wise discretization of topological
charge. Tight-binding model includes contributions of nearest
and second nearest neighbours (shown here for site 0)

.

variations in the solid angle and hence the topological
charge density term that appears in the energy functional
of Eq. (A4) has the form

δE
(0)
C =

∑
0∈�

δΩ2
� . (19)

On a plaquette with vertices i,j,k and l in anticlockwise
order δΩijkl = δΩij + δΩjk + δΩkl + δΩli with each term
being given by Eq. (18). Expanding these above terms
and keeping only terms including the vertex 0 we get (see
Fig. 7(b) for vertex numbering)

δE
(0)
C = δΩ2

01 + δΩ2
03 + δΩ2

05 + δΩ2
07

+ δΩ01δΩ30 + δΩ03δΩ50 + δΩ05δΩ70 + δΩ07δΩ10

+(δΩ01+δΩ30)(δΩ12+δΩ23)+(δΩ03+δΩ50)(δΩ34+δΩ45)

+(δΩ05+δΩ70)(δΩ56+δΩ67)+(δΩ07+δΩ10)(δΩ78+δΩ81)
(20)

We can view the above complicated expression in a tight-
binding formulation which will help us for the transfer
matrix formalism. The first two lines in Eq. (20) in-
clude the onsite energy terms, all the lines include nearest
neighbour hopping terms and the last two lines include
second nearest neighbour hopping terms. While on-site
and nearest neighbour terms also arise in the exchange
part of the functional (see appendix F), second nearest
neighbour contributions come only from the variation in
the topological charge density.

C. Recursive transfer matrix approach to calculate
magnon transmission

In the previous two sections, we have set up the ma-
chinery needed to discretize the ferromagnet-skyrmion
crystal-ferromagnet quantum Hall junction problem on a
real space grid. Now, to numerically obtain the trans-
mission properties of an incoming magnon from the left
ferromagnetic end and outgoing on the right end (as in
Fig. 1a), one needs to perform either a recursive trans-
fer matrix or recursive Green’s function calculation. For
transfer matrices, one usually recursively calculates the

FIG. 8. a) Slice-wise recursive transfer matrix procedure for
the ferromagnet-skyrmion crystal-ferromagnet junction. The
solid lines highlight the real space discretization and their in-
tersection points are the lattice sites. b) Multiple scattering
processes for propagating transmission and reflection matri-
ces. Calculate the transfer matrix for the slab of length Lc

the usual way and then do successive slice wise rotation to
propagate the transmission matrices using the infinite series.

full transfer matrix of the system by multiplying ma-
trices column by column and then performing a rota-
tion to obtain transmission and reflection matrices [33].
For Green’s functions one does the same procedure and
then arrives at the conductivity using the Fisher-Lee re-
lation [34, 35]. However, both these problems suffer from
numerical instabilities due to the presence of (growing)
evanescent modes, which cause the product matrix to
blow up. This instability is common also in the optics
community, where one discretizes Maxwell’s equations on
a real space lattice. In this section, we adapt a method
proposed by Pendry [25] for the optics problem, to ob-
tain the full transmission and reflection matrices of the
problem despite the instability. All our transmission and
reflection matrices, unless explicitly mentioned, are for a
wave entering from the left and exiting on the right.

To calculate the magnon transmission across the junc-
tion we discretize the unit cell of size a× a into N slices
in the x and the y direction. We then consider a semi-
infinite strip of unit cell width along the y-direction and
impose periodic boundary conditions along y. Now, con-
sider a magnon entering the skyrmion crystal region with
incident energy ω, transverse momentum qy and parallel
momentum qx which are related by the standard ferro-
magnetic dispersion. Using the discretization procedure
for the energy functional in Eq. (11), we can recast the re-
sulting time dependent Schrodinger equation in Eq. (A6)
as a tight binding equation which in turn can be written
as a matrix equation of the form

DΨX +ARΨX+1 +ALΨX−1 = 0 (21)

where ΨX = (χ(X, 1), χ̄(X, 1), ..., χ(X,N), χ̄(X,N))T is
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a column vector for all the χ, χ̄ with x = X (refer to
appendix A for definitions of χ and χ̄), and the 2N ×
2N matrices, D, AR and AL are matrices of coefficients
for the wavefunctions at column X, X + 1 and X − 1
respectively (see appendix A, for expressions for χ and
χ̄ and appendix F for expressions for matrix elements).
Such an equation can then be recast as a transfer matrix
equation [

ΨX+1

ΨX

]
= T̂X

[
ΨX

ΨX−1

]
T̂X =

[
−A−1

R D −A−1
R AL

1 0

] (22)

where T̂X is the 4N × 4N transfer matrix which relates
the values of χ in the nearest neighbouring columns. Us-
ing the standard properties of transfer matrices we can
propagate the wavefunction from the left ferromagnet re-
gion at x = xL through the skyrmion lattice to the right
ferromagnet region at x = xR, column by column, result-
ing in the final equation[

ΨxR+1

ΨxL

]
= T̂

[
ΨxL+1

ΨxL

]
T̂ =

xR∏
i=xL

T̂i

(23)

Since in section III we use truncated theta functions to
smoothly interpolate between zero topological charge re-
gions on the two ends and a finite periodic topological
charge in the middle, we do not have sharp boundaries
between the three separate regions. Hence we start our
transfer matrix procedure on the left from a column in
the region with zero topological charge density and we
end on a slice on the right, again deep in the region, with
zero topological charge density as shown in Fig. 8(a).
The transfer matrix procedure as illustrated relates the
values of the wavefunctions of the two end-point columns
and not the amplitudes we need to calculate the transmis-
sion and reflection coefficients. To convert such a transfer
matrix in the tight binding formulation to the transfer
matrix which relates the amplitudes of the waves in the
left region to those in the right, we first need to express
the wavefunction in terms of these amplitudes using the
standard scattering ansatz. For the wavefunction in the
starting column at x = xL, we can write

χxL,y =

N∑
i=1

Ai′e
iqxixL+iqyiy +Bi′e

−iqxixL+iqyiy

χ̄x,y =

N∑
i=1

Ai′′e
iqxixL+iqyiy +Bi′′e

−iqxixL+iqyiy

(24)

where i′ = 2i−1 and i′′ = 2i, and qxi, qyi are the wavevec-
tors of the N different modes, with 4qy = 2π/a. Note
here that generally, χxL 6= χ̄∗xL , even though χ = χ1+iχ2

and χ̄ = χ1− iχ2, because χ1, χ2 ∈ C as a result of com-
plex phase factors (further details on this are given in

appendix I). Using the form of the scattering ansatz we
can define the following rotation relating the 4N sized
column vectors[

ΨxL ,ΨxL−1

]T
=
[
χxL,1, ..., χ̄xL−1,N

]T
= QxL

[
A1e

ikx1 , A2e
ikx1 , ..., B2N−1e

−ikxN , B2Ne
−ikxN

]T
(25)

where QxL is a 4N × 4N matrix and kxi and kyi are
the different modes obtained from the discretization on
the grid, kyi = ky0 + 2πi/N , with i = 0, .., N − 1 and
kxi = ω/(2N2)(2 − cos(kyi)). These wavevectors on the
grid are related to the continuous ones by qya = kyN .
We can then express the transfer matrix equation in Eq.
(23) in terms of the scattering amplitudes on both ends
as 

C1e
ikx1

C2e
ikx1

.

.
D2N−1e

−ikxN

D2Ne
−ikxN

 = T̃


A1e

ikx1

A2e
ikx1

.

.
B2N−1e

−ikxN

B2Ne
−ikxN


T̃ = Q−1

xRTQxL

(26)

where Ci, Di represent the amplitudes for the wavefunc-
tion on the right-most slice at x = xR. The transmission
and reflection coefficients can be expressed from the ele-
ments of the rotated transfer matrix T̃ , see Eq. (28).
Such a column-wise multiplied transfer matrix procedure
runs into numerical instabilities due to growing evanes-
cent modes which blow up on increasing the length of
middle region (largest eigenvalue > 1) and are a com-
mon cause of instability in such recursive transfer matrix
methods. To overcome this we use a method common in
optics [25], in which one uses the usual recursive approach
up to a certain column and then propagates the trans-
mission and reflection matrices column-wise thereon us-
ing multiple scattering, instead of propagating the whole
transfer matrix, as shown in Fig. 8a. Such an approach
does not suffer from numerical instabilities since the re-
flection and transmission matrices are bounded because
of unitarity of the scattering matrix. To obtain the trans-
mission and reflection matrices for a slab of length Lc, we
perform the rotation shown above to obtain

Q−1
Lc
TLcQ0 = T̃Lc =

[
T̃Lc11 T̃Lc12

T̃Lc21 T̃Lc22

]
(27)

where TLc is the transfer matrix obtained relating the
columns at the two ends of the slab of length Lc and Q
is the rotation matrix as defined earlier. One can obtain
the transmission matrices Tr(Lc) and R(Lc) for the slab

from the T̃Lcij . They are given by

R(Lc) = −T̃−1
Lc22T̃Lc21

Tr(Lc) = T̃Lc11 + T̃−1
Lc12R(Lc)

(28)
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Property Ferromagnet Skyrmion crystal

Number of 0-energy defor-
mations

2 3

Ground state manifold Sphere n · n = 1 SO(3) group parameterized
by x1, x2, x3

Total angular momentum on
ground state manifold

L ∼ n 6= 0 L = 0, (π1, π2, π3 = 0)

Dynamical variables n with {ni, nj} = εijknk;
1 ≤ ni, nj , nk ≤ 3

x1, x2, x3, π1, π2, π3;
{xi, xj} = {πi, πj} = 0;
{xi, πj} = δij

TABLE I. Different properties of the bulk in the ferromagnet and skyrmion crystal highlighting the different order parameter
manifolds. The most general form of coupling between these two that respects the individual properties shown in this table are
given in Eq. 36 and 40.

where T̃Lcij , i, j ∈ [1, 2] are the 2N × 2N blocks in Eq.
(27). Say we have a situation in which we calculate the
transmission and reflection matrices, Tr(Lc) and R(Lc)
for a slab of length (Lc) within numerical accuracy using
the standard recursive protocol. We can then propagate
the transmission and reflection matrices by summing up
the infinite series from multiple scattering events from
the additional slice, as shown in Fig. 8b, to get:

Tr(Lc + 1) = Tr(1)(I − T1R(1))−1Tr(Lc)

R(Lc + 1) = R(Lc) + T2R(1)(I − T1R(1))−1Tr(Lc)

(29)

where Tr(1) and R(1) are the transmission and reflection
matrices for a wave incident from the left on the added
slice, obtained using the same procedure as in Eqs. 27,28
(but now with T (1) instead of TLc). T1, T2 are the reflec-
tion and transmission matrices for a wave incident from
the right on the slab of length Lc respectively[25]. Such
an approach, although more numerically expensive due
to more matrix inversions, resolves the numerical insta-
bilities and allows one to calculate the full transmission
and reflection matrices.

D. Coupling between Goldtsone modes - recipe for
a non-linear sigma model

On top of the microscopic numerical calculations of
the scattering problem, facilitated by the developments
in the last three subsections, it is desirable to have a
long-wavelength description for such junctions. Such a
construction provides an analytical coarse-grained frame-
work without delving into the specifics of the micro-
scopic structure. These coarse grained constructions usu-
ally take the form of non-linear sigma models in mag-
netic systems. However, the construction of such a non-
linear sigma model for our problem is complicated by
the presence of coupling between the ferromagnet and
the skyrmion crystal at the interface, since both have
different order parameter manifolds (see Table I). To un-
derstand what kind of couplings may arise at the inter-
face of such a junction, one has to first construct a good

parametrization of SO(3) to express the total angular
momentum L in the xi, πj variables (see Table I). Such a
parametrization will allow us to construct SO(3) invari-
ant Hamiltonians in the vicinity of the degenerate ground
state manifold of the non-collinear skyrmion crystal, and
will help us find ways to couple it to n in an SO(3) in-
variant way.

We start by writing rotation matrices in terms of SU(2)
matrices. Consider the family of such rotation matrices
of the form

U(x) =

[√
1− x2 + ix3 ix1 + x2

ix1 − x2

√
1− x2 − ix3

]
=
√

1− x21+ ix · σ

(30)

Since SO(3) is non-Abelian we have two distinct actions
of SU(2) on itself, either by left or right multiplication.
Note that any left multiplication commutes with any
right multiplication, U(VW ) = (UV )W , however two
left or two right multiplications do not commute. We
choose left actions to correspond to global SO(3) symme-
tries, and generators of right actions therefore, to com-
mute with generators of global symmetries - they can be
used to construct effective low energy Hamiltonians.
Let us first study the left action. Consider an infinites-
imal rotation exp(−i ε2 · σ) where ε is a small vector in

R3. Now,

(1− iε
2
· σ)U(x) = U(x+Xε(x)) +O(ε2)

Xε(x) = −
√

1− x2
ε

2
+
ε× x

2
(31)

When ε → 0, Xε(x) may be seen as a tangent vector to
the SO(3) group manifold at point x, so x→ Xε(x) is a
vector field associated to the infinitesimal rotation.

Vector fields form a Lie-algebra under the Lie-bracket.
We can check that [Xε, Xη] = Xη×ε, which is the Lie-
algebra structure of SO(3) in R3 (see appendix J for de-
tails). Now, coming to the right action of the rotation
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FIG. 9. Transmission and energy spectra for the ferromagnet-skyrmion crystal-ferromagnet junction at normal incidence qy = 0
at g/J = 0.4 (blue),0.8 (red) and 0 (magenta, only in (c-d)). The effect of increasing g in the 2nd term of the energy functional
in Eq. 11 on a) low-energy transmission - peaks shift and increase in height b) Goldstone mode dispersion - modes become
more dispersive and c) high energy transmission- slight shift in position of peaks but no significant change in height

matrix, we find that

U(x)(1+ i
ε

2
· σ) = U(x+ Yε(x)) +O(ε2)

Yε(x) =
√

1− x2
ε

2
+
ε× x

2
(32)

We can recover the same Lie-algebra structure as for the
left action here as well.

In Hamiltonian mechanics, angular momentum defined
by L̃ = εijkxjπk generates rotations in phase space owing
to its commutation relations with the x and π variables.
From the equations of Xε and Yε, one can show that the
left action is generated by ε ·L where

Li =
1

2
(−
√

1− x2πi + L̃i) (33)

and the right action is generated by ε ·R, where

Ri =
1

2
(
√

1− x2πi + L̃i) (34)

These functions satisfy the commutation relations
{Li, Lj} = εijkLk, {Ri, Rj} = εijkRk and {Li, Rj} = 0.

For the uniform (q = 0) sector, the non-collinear
skyrmion crystal Hamiltonian contains only a kinetic
term, which we take to be quadratic in the Ri variables,
since Ri = 0 identically on the degenerate ground state
manifold and Ri deviates linearly from zero when πi’s are
small. We can write this term as

HK =
1

2

∑
a,b

I−1
ab RaRb (35)

where Iab is a positive definite symmetric matrix with
real entries which may be regarded as a generalized iner-
tia matrix for a kind of top.

The simplest left-invariant coupling between the fer-
romagnetic magnetization n and the skyrmion crystal
system is given by

Hc1 = gcn ·L (36)

where gc is some coupling constant.

Since the coupling terms occur at the interface one can
also consider coupling n to a fraction of the spins com-
posing the skyrmion crystal (those belonging to the in-
terface) in an SU(2) invariant way. So we should be able
to construct triples of functions over the SU(2) group
manifold (with x coordinates) which transform as the
three components of the usual vectors under usual SO(3)
rotations. To express this in the coordinates obtained
for SU(2), we use the Heisenberg picture for observables.
We set σ(x) ≡ U†(x)σU(x). Now, let us change x to
x+Xa′ , where a′ is an infinitesimal vector. By construc-

tion, this amounts to sending U(x) to exp(−ia
′

2 ·σ)U(x).
Using the above and the relations [σi, σj ] = 2iεijkσk and
[a′ · σ,σ] = −2ia′ × σ one gets that

σ(x+Xa′) = σ(x) + a′ × σ(x) +O(a′2) (37)

We can then choose any density matrix ρ0 (with ρ = ρ†,
positive eigenvalues and Trρ0 = 1) and form a vector
valued function

〈σ〉ρ0 : SU(2)→ R3

U(x)→ 〈σ〉ρ0 ≡ Tr(σ(x)ρ0)
(38)

Then, Eq.(37) implies that

〈σ(x+Xa)〉ρ0 = 〈σ(x)〉ρ0 + a× 〈σ(x)〉ρ0 (39)

Hence, one can write down a second kind of coupling
term

Hc2 = g′cn · 〈σ(x)〉ρ0 (40)

where g′c is some other coupling constant. Therefore the
full sigma model Hamiltonian including the standard gra-
dient potential terms for the bulk would be

Hσ = Hbulk +HK +Hc1 +Hc2 (41)

where the coupling terms would be evaluated at the co-
ordinates of the interface. One can use this model to
calculate the equations of motion and the corresponding
transmission coefficients. Following this, one can fit the
results to the values obtained numerically from our trans-
fer matrix calculations to get the values of all the cou-
pling constants in the sigma model. However, we leave a
detailed analysis of such sigma models for future work.
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V. MAGNON TRANSMISSION THROUGH A
SKYRMION CRYSTAL

Using the technical advancements described in sections
V A-C, one can numerically solve the scattering prob-
lem of magnon scattering in the ferromagnet-skyrmion
crystal-ferromagnet setup. The main results of the prob-
lem provide a unique set of transport signatures for the
skyrmion crystal. They are summarized in the section
II and in Fig. 1(c-d). In this section we provide some
additional results of the scattering problem that reflect
the topology-symmetry dichotomy.

With the detailed analysis of our heuristic model of a
particle scattering in a magnetic field in hand, we return
to the full problem of the ferromagnet-skyrmion crystal
energy functional in Eq. (11). As pointed out earlier, the
effect of a non-zero coupling constant in the topological
charge density term is to provide some sense of stiffness
to the skyrmion crystal, and thereby inducing dispersion
in the Goldstone modes. To separate the dispersion ef-
fect first we look at the g = 0 case in which all Goldstone
modes are pinned to zero and the Riemann-Goldstone
Landau level is a zero energy flat band. From the full ex-
pression of the variation of the energy functional in eq A4
in appendix A, one can see that for g = 0 the expression
resembles that of the heuristic model. Hence, we can use
the intuitive understanding developed in section III.

A. Similarities with heuristic picture - high energy
sector

For g = 0, based on our transfer matrix analysis, we
see that the transmission spectra in Fig. 9c reflects the
underlying topology of the skyrmion crystal, since the
non-zero transmission occurs in energy regions which re-
flect the emergent Landau levels of the problem. We also
note the remarkable qualitative similarity of the response
with that of the heuristic model in Fig. 4(a-b). For two
skyrmions in a unit cell, we get four flux quanta acting
on a spin-1 magnon, which justifies our use of the anal-
ogous average magnetic field B0 = 8π/a2 for the results
in Fig.4(a-b)(see appendix A and [36]). We see that the
transmission peaks are suppressed, i.e we do not get full
transmission at these resonant energies, and one can un-
derstand this using similar multi-channel interference ar-
guments presented in appendix E for the heuristic model.

Besides calculating transmission coefficients we also
obtain the spectra for the skyrmion crystal from the en-
ergy functional in Eq. (11). For the g = 0 ”skyrmion
crystal”, we find that the high energy modes resemble
the dispersive Landau levels, similar to those observed
in the heuristic model for a spatially varying magnetic
field. The transmission peaks occur in energy regimes
of the effective Landau levels and the gaps in non-zero
transmission correspond exactly to the gaps in the Lan-
dau level dispersion.

The qualitative similarity with the heuristic model also

implies that magnon transmission at high energies will be
characterized by certain preferred angles of transmission
and a non-monotonic dependence of transmission on the
channel momenta. Such a non-monotonic dependence
on channels and corresponding angular spread is a clear
consequence of crystalline order.

B. Effects of Goldstone mode dispersion - low
energy sector

The lowest energy modes for the g = 0 case are pinned
to zero energy since one can deform n0(r) continuously in
the space of holomorphic textures while keeping the ex-
change energy constant (first term in Eq. 11). Hence, for
g = 0 we get localized modes in the Riemann-Goldstone
Landau level. On introducing a finite g, we see from
the Goldstone mode spectra in Fig. 9(b), that the Gold-
stone modes acquire a finite dispersion. We get three
low energy Goldstone modes, as expected for an SU(2)
skyrmion crystal. Out of these three, two modes are
almost degenerate and have a higher velocity than the
third. All these modes have a linear dispersion at low q,
as behooves an antiferromagnet. Note that, remarkably,
one can infer all this information about the Goldstone
modes just by looking at the transmission spectra in Fig.
9a. We see that there are two sets of peaks, within each
set, the peaks are equally spaced and increase in height
on increasing energy.

Such behaviour is qualitatively consistent with our
results from the heuristic model of the ferromagnet-
antifferomagnet-ferromagnet junction (see Fig. 6b).
These two sets of peaks correspond to the two Goldstone
mode branches, and their different peak positions imply
that the velocity of these two modes are different, as ver-
ified by our results of the Goldstone mode spectrum in
Fig. 9(b). We also see that there is a very small splitting
in one set of peaks, indicating the fact that the two higher
velocity modes are almost-degenerate. On increasing g,
we see that the Goldstone modes become more disper-
sive, as in Fig. 9b and one can also infer this by looking
a the transmission spectra, the peaks of which shift and
become more prominent, as in Fig. 9a.

Hence, the magnon transmission spectra encode the
nature of the Goldstone mode spectra in the emergent
Riemann-Goldstone Landau level sector of the skyrmion
crystal.

We also note from Fig. 9d that the peaks in the higher
energy effective Landau levels are slightly shifted but the
heights are relatively unaffected on increasing g, which
confirms that the physics of the Riemann-Goldstone Lan-
dau level, associated with symmetry breaking, is indeed
distinct from that induced by the underlying topology of
the spin texture. Such separation of energy scales high-
lights the topology-symmetry dichotomy of the problem
and is very nicely elucidated by the magnon transmission.
Moreover, the qualitative similarities of the two heuristic
models with the two different energy sectors also presents
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a simplified and intuitive understanding of this very rich
problem.

We note that the Goldstone modes present in Fig. 9(b)
don’t go down to exactly zero energy. This is a conse-
quence of real space discretization and the holomorphic
ansatz being an exact minimum of the exchange terms
only in the continuum limit. Because of this, for a finite
discretization scheme, the Goldstone mode eigenvalues
will actually have a small imaginary part (compared to
the real part). We have plotted only the real part of
these eigenvalues in Fig. 9(b). However, as we approach
the continuum limit, the ansatz exactly minimises the
energy and so for larger values of N , the complex part
becomes numerically insignificant and the real part of
the modes will go down to exactly 0 as q → 0 in Fig.
9(b). The phonon mode in our low-energy spectra how-
ever, shall remain gapped due to the nature of our en-
ergy functional: the spatial modulations of the topolog-
ical charge density Q0(r) explicitly break translational
symmetry. This gapped phonon branch appears as the
upper branch in Fig. 9b. We comment more on the im-
plications and feasability of the gapped magnetophonon
in the next section.

VI. DISCUSSION

A. Anisotropies and experimental considerations

In this work we have used an effective continuous
model derived from a holomorphic ansatz motivated from
the physics of isotropic skyrmion crystals. This approach
carries a long way in terms of physical intuition, analyti-
cal control and a full qualitative understanding from such
an effective theory. However, there are features beyond
the model that could be present in experiment. In this
section, we discuss how such features could modify the
results we presented. Just as importantly, we also dis-
cuss how the results from our model could be realized in
ongoing experiments.

The price we pay for using the holomorphic ansatz as
a starting point, is the absence of anisotropies. While
the energy scale for anisotropies is smaller than that of
the Coulomb interaction, they still play a role in the low-
energy physics of monolayer graphene in the zeroth Lan-
dau level [37]. The leading anisotropy in such systems
would be the Zeeman term g1µbn · B. The dispersion
for realistic models of skyrmion crystals in graphene with
such terms were studied in [38] using Hartree-Fock meth-
ods. The authors showed that the Zeeman term gaps out
one of the three Goldstone modes. Hence, we expect that
the transmission signatures we predict for the Goldstone
modes can still be observed in experiments on monolayer
graphene, with the modification that the spacing of the
peaks would be less linear in the low-energy sector of
the transmission spectra. The higher energy signatures
from the effective Landau levels should also be robust to
the presence of any relevant anisotropies such as the Zee-

man, or even the lattice scale, terms. We also note, as
briefly mentioned in the section above, due to our energy
functional being constructed to have our truncated theta-
function ansatz as the minima, the magnetophonon mode
obtained from our spectra in Fig. 9(b) is also gapped.
In isotropic and fully periodic skyrmion crystals such a
mode is expected to be gapless and have the characteris-
tic ∼ q2 dispersion for short range and q3/2 dispersion for
Coulomb interactions in two dimensions [39]. However,
one nonetheless expects the phonon mode to be gapped in
the presence of the junction between regions of different
filling. Moreover, anisotropies also gap out the phonon
mode [40], hence we do not expect its presence to alter
our results much.

Another source of potential mismatch between exper-
iment and our theory would be the range of our inter-
action term. The interaction term in our effective en-
ergy functional is a delta function (in real space) terms,
whereas the Coulomb interaction is long-range. However,
such an interaction can be engineered in graphene us-
ing metallic gates which screen the Coulomb interaction.
A typical magnon transport experiment on graphene in-
volves a sheet of monolayer graphene sandwiched in be-
tween hBN substrates and additional metallic gates on
top and bottom. The gate-screened potential in momen-
tum space is given by

V (q) =
4πe2

√
εxεz

sinh(qd
√

εx
εz

) sinh(qd′
√

εx
εz

)

q sinh(q(d+ d′)
√

εx
εz

)
(42)

where d and d′ are the distance from the top and bottom
gates to the graphene sample and εx,εz are the static
in and out-of plane permittivites of the hBN [41]. On
tuning the parameters d and d′, it is plausible to expect
that one can realize a potential structure that is fairly flat
in momentum space, leading to a localized delta function
in real space. Moreover, by tuning the strength of the
interaction, one can also tune the coupling constant g,
which controls the dispersion of the Goldstone modes and
hence one can observe the variations in the transmission
spectra as mentioned in the previous section.

For current experiments on graphene, the external field
Bext ∼ 10T , hence lB ∼ 10nm. In our model, we as-
sume that all spatial variations are on scales larger than
the magnetic length. In particular, the two important
scales are the skyrmion crystal lattice constant and the
interface width, governed by electrostatics. In our ansatz
these two length scales are comparable. Hence, to ex-
actly derive results from our model for experiment, these
two length scales should be at least an order of magni-
tude larger than lB . If, in experiments the skyrmion pe-
riod is of the order of lB , or if the ferromagnet-skyrmion
crystal interface is much sharper then one might need to
resort to more microscopic time-dependent Hartree-Fock
treatments which will likely change some quantitative de-
tails, but should retain the structure of transmission from
Goldstone modes in the Riemann-Goldstone Landau level
and higher energy effective-Landau levels presented here.
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Such qualitative similarity is fair to expect for low mo-
mentum physics given the early work on skyrmions which
compared Hartree-Fock and effective continuous theory
treatments [3, 4, 30, 42], and is also bolstered by the qual-
itative similarities between our heuristic model for the
ferromagnet-antiferromagnet junction and a full Hartree-
Fock calculation for the junction with ν = 0 sandwiched
in the middle [29].

In our model, for theoretical purposes, the effective
Landau level gap is ∼ J , the exchange coupling constant.
However, we can estimate what this effective gap, ~ωG,
will be in experiment. To do so we neglect the g terms
since as we have seen in the last section they only have
a qualitative effect on the Goldstone modes. Now, we
can use the similarity with the heuristic model in section
III, to consider a magnetic field B = 4πQ0 with Q0 =
δν/(2πl2B) where δν is the deviation from unit filling in
the central region. The spectral gap for the simplified
energy functional is 2JB. Using Eq. (A6), we get αωG =
4JB, where α is defined in appendix A. Using the values
of α and B we can write ~ωG = 32πJδν. Now using
the standard value of J = e2/(32

√
2πεlB) we obtain a

spectral gap ~ωG =
√

π
2
e2

εlB
δν. The gap is linear in δν.

This is important as δν is easily tunable in experiment.
The experiment in [22], which was part of our moti-

vation for this project, prepared a junction similar to
the one suggested in our paper and reported the obser-
vation of a possible skyrmion crystal due to suppression
of transmission on doping slightly away from ν = 1 in
the central region. At such a filling of the central re-
gion, theoretically one would expect the formation of a
skyrmion crystal [4], which has a qualitatively different
Goldstone mode dispersion compared to the ferromag-
net, and the observed suppression would agree with the
picture of magnon decay into some of these. This exper-
iment raised the important question of the non-trivial
interaction between ferromagnetic magnons and excita-
tions with qualitatively different dispersions.
While consistent with the hypothesis of the formation
of the skyrmion crystal, the reported suppression does
not tell us much about the nature of its Goldstone/high-
energy modes. Moreover, such suppression can also arise
within the context of elastic scattering, due to any other
spin structure which hosts a qualitatively different dis-
persion as compared to the incoming magnon, for ex-
ample similar suppression is seen for the case of the
ferromagnet-antiferromagnet junction (section III and
[28, 29]). Our results provide concrete signatures in non-
local response which are unique to the skyrmion crystal
and as far as we can see do not appear in any other phase
in the quantum Hall phase diagram. The combination of
Landau-level like transmission and equally spaced low
energy peaks due to the linear nature of the Goldstone
modes would elucidate both the degree of crystalline or-
der and the nature of the skyrmion crystal. Further ex-
periments in which the non-local response is studied as a
function of the incoming magnon energy should be able
to detect such signatures.

B. Outlook

We have shown how magnon transport through
skyrmion crystals probes the interplay of topology and
symmetry breaking. We have shown that the magnon
transmission spectra allows one to probe the topology
arising from the high-energy effective Landau level struc-
ture which comes from the texture of skyrmion crys-
tal. Moreover, and perhaps more interestingly, low-
energy transmission spectra can also probe the nature
of the Goldstone modes in the Riemann-Goldstone Lan-
dau level, which arises from a complex interplay of the
topology as well as SU(2) symmetry breaking. Therefore,
not only does our work provide a rich example of the
salient features of the confluence of topology and sym-
metry breaking, it also presents a set of results which
allow one to probe crystalline order and map out the ex-
citation spectrum of a quantum Hall skyrmion crystal –
direct experimental evidence of which has not been es-
tablished conclusively – in current ongoing experiments.

We have also provided a simpler tool set comprising
two heuristic models which allow us to intuitively un-
derstand parts of the complex problem. Moreover, to
solve the complex problem, we have made several tech-
nical advances which are easily transferable to analogous
problems elsewhere. Firstly we have provided an analyt-
ical framework to study junctions of topologically trivial
and non-trivial structures. Secondly, we have provided a
novel method for the discretization of topological charge
in real space, of possible use in various fields, including
metallic magnets. Thirdly, we have provided an example
of the construction of a novel type of non-linear sigma
model for such a junction-like structure between two dif-
ferent ground state manifolds. Such a construction and
its extensions can be used in metallic magnets as well,
where two magnetic materials with different collective
excitations are separated by domain walls.

Besides monolayer graphene, where quantum Hall
skyrmion crystals are expected to form near unit filling
of the zeroth Landau level, there are various other plat-
forms which host skyrmion crystals. Metallic magnets
in two and three dimensions, for example, as mentioned
in the main text have been a rich source of skyrmion
crystal physics. Besides these usual suspects, with the
advent of twistronics, spurred by the experiments on
twisted bilayer graphene [43, 44], there have been sev-
eral proposals for the realization of skyrmion crystal
phases in such settings. For example, in twisted bilayer
graphene, skyrmions have been proposed as the lowest
energy charged excitations of the insulating phase, and
possibilities of such skyrmions forming a crystal have also
been put forward [45–48]. Also, a recent experiment in
twisted bilayer graphene has used SQUID measurements
to map out the inhomogeneous spatially varying Berry
curvature-induced magnetism at zero external field [49]
near the magic angle. While we have considered pe-
riodically varying effective magnetic fields in our prob-
lem, one could extend this to incorporate disordered pro-
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files. Such profiles should have a distinct signature in
the magnon response. Hence, our work motivates the
possibility of the exploring the zero-field Chern mosaic
in twisted bilayer graphene using magnon transport. Be-
sides graphene, skyrmion crystal phases have also been
proposed in other twisted van der Waals magnets [50, 51].
Our work presents a route to detect skyrmion crystals in
all these systems using magnon scattering.

One can also use our analytical ansatz to formulate
the scattering problem for other topologically non-trivial
structures such as meron or bimeron crystals [52]. Meron
crystals have a different collective mode dispersion [40],
hence it would be interesting to see how their trans-
port signatures differ for magnon scattering. Most of
the theoretical work thus far has focused on integer fill-
ings in the central region. One could also ask the ques-
tion of what response ground states of fractional fillings
have in such magnon scattering. Our analytical ansatz
of the theta functions, as mentioned in the main text,
is closely related to the analytic part of the Laughlin-
Jastrow wavefunctions under periodic boundary condi-
tions [32]. Hence using such truncated versions of simi-
lar holomorphic functions could be a good starting point
for such a theoretical analysis. Moreover, fractionally
charged skyrmions have also been predicted near certain
fractional fillings [53–56], and similar suppression of the
non-local response as for integer charged skyrmion crys-
tals was also observed [22]. Hence, studying their re-
sponse and comparing with our results would be an in-
teresting direction to pursue.

Another avenue of theoretical research would be to
explore the scattering problem for crystals of entangle-
ment skyrmions. Entanglement skyrmions are textured
of entangled spin-valley degrees of freedom [24]. Recent
work has shown that such skyrmions could be realized in
monolayer graphene under realistic values of anisotropies
[57]. It would be interesting to explore if the injection of
spin-waves could detect the degree of entanglement be-
tween spin and valley degrees of freedom. The non-linear
sigma model construction shown in this paper would also
be a much richer theoretical problem for the entangled
skyrmion case due to the entanglement skyrmions living
in CP3 space.

Moreover, as also mentioned in the main text, the pres-
ence of effective Landau levels for the magnons presents
such skyrmion crystals as a fertile platform for topo-
logical magnonics, a point appreciated also in a recent
work of a skyrmion crystal in a three dimensional metal-
lic magnet [58]. Such connections allow one to trans-
fer the physics of Chern bands, edge states and bulk-
boundary correspondence from topological band theory
to magnons. Besides quantum Hall junctions, such junc-
tion like structures have also been considered for do-
main walls in two dimensional magnets [59, 60]. Two
dimensional antiferromagnets host stable skyrmions [61]
and recently, skyrmion domain walls between a ferromag-
net and antiferromagnet have also been considered [62].
Hence, it would be interesting to study how the signa-

tures of an antiferromagnetic skyrmionic crystal would
differ from our results of a ferromagnetic one.

Given the angular dependence of the transmission pre-
dicted in our work for magnon scattering off skyrmion
crystals, several interesting experimental possibilities
also emerge. One could create geometrically optimized
junctions to maximize magnon transmission, and perhaps
also place a series of such junctions to create a narrow
beam of magnons with very little angular spread.

Overall, the new experimental capacities are remark-
ably well-suited to study phenomena arising from the
combination of symmetry-breaking and topology in two-
dimensional systems, and we hope this work will moti-
vate further studies of this complex of questions in both
theory and experiment.
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Appendix A: Equations of motion and mapping to
Schrödinger equation

In this appendix we provide the details of the spin-
wave theory calculations starting from Eq. (11) in
the main text. Due to our construction of the energy
functional, we have seen that the holomorphic texture
|ψ(r)〉0 and hence n0(r) forms a locally stable minimum,
so we have a well defined collective mode (magnon)
spectrum for fluctuations around n0(r).

We introduce small deviations such that n(r, t) =
n0(r) + δn(r, t). First, we need to construct local coor-
dinates χ1(r) and χ2(r) around n0(r) on the sphere. To
do so, we introduce local orthonormal frames (n0,e1,e2)
such that n0(r) = e1(r) × e2(r), using which we can
write

δn(1)(r) = χ1(r)e1(r) + χ2e2(r) (A1)

Since
∣∣n(r, t)

∣∣2 = 1, we get n0(r) · δn(1)(r, t) = 0. To
study collective modes, we need to expand the total
energy to second order in χ1(r) and χ2(r). Normaliz-
ing n(r) and then expanding up to second order we get



21

δn = δn(1) + δn(2), with

δn(2)(r) = −1

2
[χ1(r)2 + χ2(r)2]n0(r) (A2)

Now, by expanding ∂in · ∂in to 2nd order and using the
fact that n0(r) is a local minimum of the energy func-
tional we get the following expression for the energy func-
tional

E = E0+g

∫
δQ(r)2+J

∫
[∂x(δn(1))]2+[∂y(δn(1))]2−

[(∂xn0)2 + (∂yn0)2](χ1(r)2 + χ2(r)2) (A3)

where δQ is the 1st order variation of the topological
charge density. Using eq A2, A3 and the holomorphic
constraint arising from minimizing the exchange energy
at fixed topological charge , we can write the change in
energy as

δE(2) = g

∫
δQ(r)2+J

∫ [
|i∂xχ+Axχ|2+|i∂yχ+Ayχ|2

− (c21x + c22x)|χ|2
]
dxdy (A4)

where Ax/y = ê1 ·∂x/yê2 , c1x/y = ê1 ·∂x/yn0 and c2x/y =
ê2 · ∂x/yn0. We find that the second order variation of
the exchange term can be interpreted as the energy of
a quantum particle described by a wave-function χ(r) =
χ1(r) + iχ2(r), ¯χ(r) = χ1(r) − iχ2(r) and subject to
a vector potential A, an effective magnetic field B =
4πQ0 and a scalar potential c21x + c22x (see appendix B
and C for more details on the effect of the holomorphic
constraint and gauge invariance of the energy functional).
The physical origin of this effective magnetic field, as
mentioned earlier, comes from the Berry phase picked up
by the magnon when traversing through the skyrmion
crystal.

In order to get linear equations of motion we now ex-
pand the standard Landau-Lifshitz equations to first or-
der in δn. Since δE/δn = 0 for the configuration n0(r),
the linearized version of the standard Landau-Lifshitz
equations gives us

α
∂

∂t
δna = εabcnb

δE(2)

δδnc
(A5)

where α = ~/(4πl2B), [3, 30] assuming that the Landau
level filling factor ν remains everywhere close to 1. Now,
on using the equations derived in this section we can
express the linearized equation in matrix form as

α
∂

∂t

[
χ1

χ2

]
=

[
0 −1

1 0

][
δE(2)/δχ1

δE(2)/δχ2

]

α
∂χ

∂t
= 2i

δE

δχ̄

α
∂χ̄

∂t
= −2i

δE

δχ

(A6)

which is a time-dependent Schrödinger equation for the
Bogoliubov-de Gennes like energy functional E.

Appendix B: Effect of holomorphic constraint

The holomorphic constraint results from minimizng
the exchange energy at fixed total topological charge.
Let’s see how this arises. We denote vx = ∂xn0 and
vy = ∂yn0, both of these quantities belong to the
plane perpendicular to n0, so we can regard them as
2-component vectors.
The exchange energy density is v2

x+v2
y and the local topo-

logical energy density is 1/(4π)vx × vy = 1/(4π)J ′(vx) ·
vy = −1/(4π)vx · J ′(vy), where J ′ = (0,−1; 1, 0). Let us
minimize v2

x + v2
y at fixed vx × vy, i.e we extremize the

function (vx,vy)→ (v2
x + v2

y)/2−λvx× vy, where λ is a
Lagrange multiplier. We get

vx + λJ ′(vy) = 0

vy − λJ ′(vx) = 0
(B1)

which implies that v2
x+λ2J ′2(vx) = 0 and (1−λ2)vx = 0,

so λ = ±1. Since vy = λJ ′(vx) and vx × vy =
λJ ′(vx) · J ′(vx), λ = 1(−1) implies a positive (negative)
local topological charge density. In our case Q0 is posi-
tive, therefore the holomorphic constraint corresponds to
λ = 1. This implies, vy = J ′(vx), so(

c1y
c2y

)
=

(
−c2x
c1x

)
(B2)

where c(1/2)(x/y) = e(1/2) · ∂(x/y)n0 as in the main text.
Therefore

Q0(r) =
1

4π
n0 · (∂xn0 × ∂yn0)

=
1

4π
(c1xc2y − c1yc2x)

=
1

4π
(c21x + c22x)

(B3)

Appendix C: Checks for gauge-invariance

In our choice of local frames in the spin-wave the-
ory calculations, we have gauge freedom. Instead of
choosing e1, e2 we could also choose e′1 = cos(λ(r))e1 +
sin(λ(r))e2 and e′2 = − sin(λ(r))e1 + cos(λ(r))e2. Then
we would have(

χ1(r)

χ2(r)

)
=

(
cos(λ(r)) − sin(λ(r))

sin(λ(r)) cos(λ(r))

)(
χ′1(r)

χ′2(r)

)
χ(r) = eiλ(r)χ′(r)

(C1)

where χ = χ1 + iχ2 as in the main text. Under the
gauge transformation above, (c1x, c2x)T and (c1y, c2y)T

transform as (χ1, χ2)T . The relations in Eq. B2 and
B3 expressing the holomorphic nature of n0(r) are pre-
served under gauge transformations, since J ′ commutes
with R(λ) (the rotation matrix in the top line of the
above equation). Now we look at the influence of a gauge
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transformation on the terms in the energy functional in
eq A4.

A′x = e′1 · ∂xe′2 = e′1 · (−e′1∂xλ− sin(λ)∂xe1 + cos(λ)∂xe2)

= −∂xλ+Ax
(C2)

and the same result holds for Ay. Together with Eq. C1
this implies that

∇χ− iAχ = eiλ(∇χ′ − iA′χ′) (C3)

which ensures that the all the exchange terms in the en-
ergy functional are gauge invariant. To show the gauge
invariance of the δQ terms let us first expand δQ to first
order in δn(1) (see Eq. (A1) for expression). We can
write

4πδQ = δn(1) · (∂xn0×∂yn0) +n0 · (∂xδn(1)×∂yn0)+

n0 · (∂xn0 × ∂yδn(1)) (C4)

The first term vanishes, since ∂xn0 and ∂yn0 are both

orthogonal to n0 as well as to δn(1). To evaluate the
last two terms we need to project ∂xδn

(1) on the plane
orthogonal to n0 which is equal to (∂xχ1 + Axχ2)e1 +
(∂xχ2 − Axχ1)e2. Using this and Eq. B2 we can write
the 2nd term in the above equation as

n0·(∂xδn(1) × ∂yn0) =

∣∣∣∣∣∂xχ1 +Axχ2 −c2x
∂xχ2 −Axχ1 c1x

∣∣∣∣∣
= c1x(∂xχ1 +Axχ2) + c2x(∂xχ2 −Axχ1)

(C5)

Similarly, once can also write the 3rd term as,

n0·(∂xn0 × ∂yδn(1)) =

∣∣∣∣∣c1x ∂yχ1 +Ayχ2

c2x ∂yχ2 −Ayχ1

∣∣∣∣∣
= c1x(∂yχ2 +Ayχ1)− c2x(∂yχ1 +Ayχ2)

(C6)

Now, we can use Eq. C3 to show that (∂xχ1 +
Axχ2, ∂xχ2 −Axχ1)T and (∂yχ1 +Ayχ2, ∂yχ2 −Ayχ1)T

transform like (χ1, χ2)T . This ensures the gauge invari-
ance of eqs C5 and C6, since the determinant between
two column vectors is invariant under rotations. Hence,
this also ensures the gauge invariance of the δQ term in
the energy functional

Appendix D: Gauge-fixing procedure

To mirror the problem of the experimentally relevant
situation of a skyrmion crystal sandwiched between two
ferromagnets, our heuristic model has to comprise a junc-
tion with zero vector potential on either side with a finite
and varying vector potential in the central region. The
heuristic model Hamiltonian with a finite and modulat-
ing magnetic field in the central region induces a vector
potential which increases from zero to a non-zero finite

FIG. 10. Gauge fixing procedure to ensure zero vector poten-
tial in the left and right ends. a)Illustration of the procedure
explained in this section for the case p = 1, q = 4 b) Sign
convention and notation for components of vector potential

value. However one can make a gauge transformation to
ensure that the vector potential vanishes in the both the
ends. In the Landau gauge

Ãy(x, y) =

∫ x

−∞
B(x′, y)dx′, Ãx = 0 (D1)

while this vector potential has the same periodicity in
y as the magnetic field, Ay(∞, y) 6= 0 and is also de-
pendent on y. One can fix this, while keeping the same
y−period a/2 of the magnetic field, provided the total
flux within an infinite strip along x of width a/2 along y
is an integer p (in units of the flux quantum). Such a pro-
cedure is only required for the heuristic model and not
the actual skyrmion crystal problem, since in the latter
we can choose local frames e1,2(r) such that the associ-
ated vector potential vanishes far away from interfaces
inside both ferromagnetic regions. We also note that in
a skyrmion crystal the condition for integer units of flux
quantum within an infinite strip of half period is satis-
fied.
For the procedure, we introduce the following notations
for the lattice discretization of the problem. We define
the magnetic field associated with a plaquette as

B(x, y) ≡ Ax(x, y)+Ay(x+1, y)−Ax(x, y+1)−Ay(x, y)
(D2)

where A(x/y) is the vector field along the x̂/ŷ direction
on the link originating from the lattice point (x, y) (refer
to Fig. 10b for sign convention). Now, we put flux tubes
each carrying flux −1 at x = x0 and y = yi+ma/2, with
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FIG. 11. Incoming and outgoing amplitudes for a) A single
interface problem and b) A double interface problem.

0 ≤ y1 < y2 < ... < yp ≤ a/2− 1, x0 the mid-point of the
central region and m an arbitrary integer. This singular
flux configuration is described by the vector potential:

δAx(x, y) = 0, x 6= x0

δAy(x, y) = 0, x ≤ x0

δAy(x, y) = −Ay(∞, y), x ≥ x0 + 1

(D3)

The condition on fluxes reads:

δAx(x0, y)−δAx(x0, y+1)−Ay(∞, y) = −
∑
i=1

p
∑
m

δy,yi+mq

(D4)
Starting from an arbitrary δAx(x0, y), these equations
determine successively δAx(x0, y± 1),δAx(x0, y± 2) and
so on. See Fig. 10a for a pictorial description of the flux
addition procedure.

Appendix E: Multi-channel scattering - role of
interference

To understand the role of interference between chan-
nels, for simplicity, we will consider a 1D system with
coordinate x and N internal states (transverse positions,
for example). Consider N -component wave functions
Ψ(x) ∈ CN , subjected to the Hamiltonian

H =
1

2
(
−→
∂x + iA(x))M−1(x)(

−→
∂x + iA(x)) + V (x) (E1)

where M(x) is a positive definite, real and symmet-
ric N × N matrix, a space dependent effective mass.
V (x) = V †(x) plays the role of a local potential together
with ”hopping terms” in the transverse direction. Then
A(x) = A†(x) encodes an orbital generalized magnetic
field.
Let Ψ satisfy HΨ = EΨ with E ∈ R. Then, we

have a current J(x) = 1
2i (Ψ

†(x)M−1(x)(
−→
∂x + iA)Ψ(x)−

Ψ†(x)(
←−
∂x − iA)M−1(x)Ψ(x)) which is independent of x.

The Schrodinger equation Hψ = Eψ is linear and second
order in d

dx , therefore it has a 2N -dimensional space of
solutions. For any point x, a solution is uniquely deter-

mined by specifying Ψ(x) and dΨ(x)
dx in CN . The current

J(x) may be seen as a Hermitian form

J =
1

2

(
ψ† ψ†(

←−
∂x − iA)

)(
0 −iM−1

iM−1 0

)(
ψ

(
−→
∂x + iA)ψ

)
(E2)

The linear map (ψ, ∂xψ)T → (ψ, (∂x + iA)ψ)T is one-
to-one, so as a hermitian form, J has the same signature
as the middle matrix in the above equation. In a basis
where M−1 is diagonal, we see that the eigenvalues of the
matrix are ±m1, ...,±mN , where mi > 0 for 1 ≤ i ≤ N .
So we get the important result that the signature of J
is of the type (N,N), at every point, independently of
possible spatial variations of M(x) and A(x).
For a translationally invariant medium, we can look for
plane-wave solutions ψ(x) = eikxψ, with k ∈ C. ψ ∈ CN

satisfies the eigenvalue equation

1

2
(k1N +A)M−1(k1N +A)ψ + V ψ = Eψ (E3)

Let us consider the current carried by such eigenstates.
Since the current is conserved, it vanishes unless the
wavevector is real. However, we can also get a finite
current from evanescent modes if we take linear super-
positions ψ(x) = eik1xψ1 + eik2xψ2 when k1 = k∗2 . Since
J has signature (N,N), we have 2p propagating modes
(0 ≤ p ≤ N), with p carrying a positive current and
the other p carrying a negative current. The remaining
2(N−p) evanescent modes are grouped in pairs of modes
with complex conjugate momenta.
The propagating modes with positive current have mo-
menta k1, · · · , kp, and those with negative current have
momenta k′1, · · · , k′p. In a time-reversal invariant effec-
tive medium (as it is the case when the vector potential
vanishes), it is possible to label these momenta so that
kj + k′j = 0. But in the presence of a non-zero vec-
tor potential, as inside a Skyrmion crystal, there is no
simple relation between the sets of kj and of k′j values.
For evanescent modes, the corresponding momenta form
pairs (kj , k

′
j) with k′j = k∗j for p + 1 ≤ j ≤ N . We shall

always assume that =(kj) > 0 for such modes.
A general scattering solution at energy E can then be
written in terms of 2N complex amplitudes Aj , Bj where
1 ≤ j ≤ N as

ψ(x) =

N∑
j=1

Aje
ikjxψj +

N∑
j=1

Bje
k′jxψ′j (E4)

It is possible to normalize the eigenstates ψj ,ψ
′
j such that

(ψj , Jψj) = 1 = −(ψ′j , Jψ
′
j); 1 ≤ j ≤ p

(ψ′j , Jψj) = 1 = (ψj , Jψ
′
j); p+ 1 ≤ j ≤ N

(E5)

and all other bilinears vanish. Then, using this normal-
ization one gets

(ψ, Jψ) =

p∑
j=1

(|Aj |2−|Bj |2)+

N∑
j=p+1

(A∗jBj+B
∗
jAj) (E6)

Let us first consider the problem of a single interface
as shown in Fig. 11(a). While the sign of the current de-
termines the incoming and outgoing waves for the prop-
agating channels, for evanescent channels we choose the
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waves which decay towards the interface as incoming and
the ones which decay away from the interface as outgoing.
The scattering matrix is then defined as(

A′p
A′e

)
=

(
tpp tpe
tep tpp

)(
Ap
Ae

)
+

(
r′pp r′pe
r′ep r′ee

)(
B′p
B′e

)
(
Bp
Be

)
=

(
rpp rpe
rep rpp

)(
Ap
Ae

)
+

(
t′pp t′pe
t′ep t′ee

)(
B′p
B′e

) (E7)

Imposing (ψ, Jψ) = (ψ′, J ′ψ′) for any choice of incoming
amplitudes and using Eq. E6 gives the unitarity rela-
tions:

t†pptpp + r†pprpp = 1

t†petpp + r†perpp = rep

t†petpe + r†perpe = ree + r†ee

(E8)

t†ppr
′
pp + r†ppt

′
pp = 0

t†per
′
pp + r†pet

′
pp = t′ep

t†ppr
′
pe + r†ppt

′
pe = −t†ep

t†per
′
pe + r†pet

′
pe = t′ee − t†ee

(E9)

For the relevant problem of two interfaces (Fig. 11(b)),
one can write down a composition rule. To keep track of
the distance L between the two interfaces we write Aeikx

as AeikLeik(x−L). We may write(
eik

(r)LA(r)

eik
′LB

)
=

(
t(r) r′(r)

r(r) t′(r)

)(
eikLA

eik
′(r)LB(r)

)
(E10)

In particular B = e−ik
′Lr(r)eikLA = r(r)(L)A, if B(r) =

0. Our choice =(kj) > 0 and =(k′j) = −=(kj) < 0 for

evanescent channels ensures that r
(r)
pe (L), r

(r)
ep (L), and

r
(r)
ee (L) decay exponentially with L. This is also the case

for t
(r)
pe (L) whereas t

(r)
pp (L) oscillates with L.

The general composition law reads

t = t(r)(L)(1− r′(l)r(r)(L))−1t(l) (E11)

In the limit where L=(kj)� 1 for all p+ 1 ≤ j ≤ N , we
get for large L

t ≈ t(r)(L)Πp(1− r′(l)pp r
(r)
pp (L))−1Πpt

(l) (E12)

where we have introduced the rank p projector Πp on the
subset of propagating channels inside the intermediate re-
gion. From the above equation we can directly see that
if p = 0, i.e all channels are evanescent, in the large L
limit, there is no transmission. Moreover, if there is only

one propagating channel, p = 1, and |r(l)
pp | and |r(r)

pp | are
close to 1, sharp resonances with maximal transmission
are possible. However, when p ≥ 2, interference between
the various propagating channels in the intermediate re-
gion decreases the maximal transmission at resonances.

To illustrate this point further, we note that the unitary
relations E8, E9 imply that the scattering sub-matrix Spp
associated to an interface and defined by:

Spp =

(
rpp t′pp
tpp r′pp

)
(E13)

is unitary.
From Eq. E12, we see that resonances may occur when

t
(l)
pp and t

(r)
pp are small. When t is small, we can write a

unitary scattering matrix as

S ∼=

(
r0(1− 1

2 t
†t) −r0t

†r′0
t (1− 1

2 tt
†)r′0

)
(E14)

where r0 and r′0 are unitary matrices and all entries of t
are small of order ε. Then S†S = 1 + O(ε3). Using this

parameterization for S
(l)
pp and S

(r)
pp and dropping the pp

subscript for notational convenience, Eq. E12 becomes:

t ∼= t(r)eikL(1− (1− t(l)t†(l)/2)r
′(l)
0 e−ik

′Lr
(r)
0

× (1− 1

2
t†(r)t(r))eikL)−1t(L) (E15)

So, the condition for resonance now selects the energies

at which the unitary matrix r
′(l)
0 e−ik

′(E)Lr
(r)
0 eik(E)L has

an eigenvalue equal to 1. When the number of propagat-
ing channels is at least two, we expect that the behavior
of the transmission near these resonances is going to be
significantly more complex than for a single propagating
channel.

Appendix F: Tight-Binding model and forms of the
matrix elements

In the main text we saw that the Schrödinger equation
could be expressed as a tight binding equation relating
the wavefunctions of a slice to those to its left and right.
On discretizing the energy functional and then taking
the derivative we get a tight-binding problem with near-
est and next nearest neighbour hoppings. In this section
we give illustrative examples of how the matrix elements
for the matrices relating the different slices look. The
nearest and next nearest neighbour from the right con-
tributions will enter as matrix elements in the AR matrix,
similar contributions from the left will enter in the AL
matrix and onsite contributions and nearest neighbour
contributions from above and below will enter in the D
matrix. Let us look at some of the forms of these matrix
elements.
First consider the exchange term. One can discretize this
term by simply writing the contribution from the ith site
as

EJi = J(ni − ni+1)2 (F1)

exapnding the above equation we get constants plus an
ni · ni+1 term. One can expand this term by expressing
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the ni in terms of χ1 and χ2 by using Eqs. (A1), (A2)
in appendix A. On doing so, and keeping upto O(χ2

1/2)

terms one finds that

∂Eji
∂χ1i

= n0i · n0jχ1i − e1i · (χ1je1j + χ2je2j) (F2)

∂Eji
∂χ2i

= n0i · n0jχ2i − e2i · (χ1je1j + χ2je2j) (F3)

from the above two equations one can directly read out
the nearest neighbour and on-site contributions from the
coefficients of χ1/2j and χ1/2i respectively. The exchange
term does not induce next-nearest neighbor hopping.
Now, after discretizing the topological charge terms as in
the main text, we obtained a tight-binding model with
hopping terms up to second nearest neighbours. Let us
consider one term from the first line in Eq. 20 of the
main text. The derivative of this term can be expressed
as

∂δΩ2
01

∂χ10
= 2δΩ01

∂δΩ01

∂χ10

= 2δΩ01(−fα01
z01 · e10)

(F4)

where fα01
= sin(α01)/(1 + cos(α01)), and n0 × n1 =

sin(α01)z01. One can then expand δΩ01 using Eq. 18 in
the main text, and then read off the coefficients same as
above. A similar procedure can be used for all the other
terms in Eq. 20.

Appendix G: Scaling functions for discretization

Th real space discretization procedure outlined in the
main text requires each coupling constant to be scaled
by a factor, so that the results are independent of N is
the large N limit.
From the standard finite-difference type discretization
scheme for the exchange terms, we know that the denom-
inator will be (a/N)2 because of the double derivative,
where a/N is the grid-size. Therefore, to get the cor-
rect continuum limit J should be multiplied by (N/a)2.
Similarly from the expression of the topological charge
density, we can see that the denominator will be (a/N)4,
hence g should be multiplied by (N/a)4.
While the argument above for the exchange term is pretty
well known, the argument for the scaling of the g term
might be a bit too simplistic. In which case one can also
come up with a more sophisticated argument with the
same result. Let us denote the topological charge of the
n0 field generated by the theta functions in section III,
over a plaquette, to be Q�. If we change n0 to n0 +n1,
where n1 is some small deviation such that n0 · n1 = 0
everywhere, Q� is changed into Q� +4Q�, where

4Q� =
1

4π

∮
n0 ·

(
n1 ×

∂n0

∂u

)
du (G1)

Here, the integral is taken along the boundary of the
above square plaquette and u is an arbitrary parame-
ter on this boundary. It is convenient to write n1 =

v(r)×n0(r), where v(r) is an infinitesimal rotation vec-
tor. Using the fact that n0 · ∂n0/∂u = 0, we get

4Q� =
1

4π

∮
v · ∂n0

∂u
du (G2)

Using Green’s equation one can express the above as an
integral over the whole plaquette as:

4Q� =
1

4π

∫ ∫
�
dxdy

(
∂v

∂x
· ∂v
∂y
− ∂v

∂y
· ∂n0

∂x

)
(G3)

As in the next section we check that if v is constant in
space (global rotation in spin space), 4Q0 = 0. Also,
we see that 4Q� is expected to be proportional to the
plaquette area (a/N)2, when N is large and n0 and v are
smooth fields. Therefore, we may write

4Q� = δρ(a/N)2, (G4)

with δρ being the variation of the local topological charge
density. Therefore the 1st term in Eq. A4 should scale
as (in the large N limit, which is the relevant limit for
numerics)

g

∫
(δρ)2dxdy ≈ g

∑
plaq

[4Q�(
N

a

2

)]2(
a

N
)2

≈ g′
∑
plaq

(4Q�)2(
a

N
)2

(G5)

Hence, we see that the scaled version should be g′ =
g(N/a)4

Appendix H: Test for topological charge
discretization scheme

To test whether our geodesic scheme for discretizing
the topological charge density is correct, we perform the
following non-trivial check. As in the last section we take
an infinitesimal rotation vector v, constant in space, and
rotate the ground state spin vector n0(r). On doing so,
we can define new variables χ′1 and χ′2 which are related
to the old variables by

χ′1(r) = v · e2(r)

χ′2(r) = −v · e1(r)
(H1)

Using the above expressions we form a column vector of
the χ′(r) = χ′1(r)+iχ′2(r) and χ̄′(r) = χ′1(r)(r)−iχ′2(r)
from all the sites. We then right multiply the Hamilto-
nian constructed from only the topological charge density
term (J = 0) and multiply it with this vector. If the dis-
cretization scheme is correct, then this product should be
zero, since an infinitesimal global rotation should not in-
duce any variation of the topological charge density. We
have checked this in our calculations and indeed it does
return a column of values which are for all intents and
purposes zero (O(1e− 16)).
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Appendix I: Boundary conditions for spectra and
relation between χ and χ̄

To obtain the spectra of the skyrmion crystal, we con-
sidered periodic boundary conditions along both x and
y- axes of an a × a unit cell. For the tight-binding
model after taking the derivative of the discretized en-
ergy functional, this implies that the for the right(left)-
most site, the right(left) nearest neighbor contribution
will pick up a eiqxa(e−iqxa) phase-factor and similarly
for the top(bottom)-most site, the top(bottom) nearest
neighbor contribution will pick up a eiqya(e−iqya) phase
factor. The phase factors encode how the momentum
dependence enters the Hamiltonian matrix. The Hamil-
tonian is constructed in the site basis, so if there are N
rows and columns each in the unit cell, the Hamiltonian
has a size 2N2×2N2, where the factor of 2 comes because
of the presence of both χ and χ̄. Each diagonal 2N ×2N
block of the Hamiltonian comprises the on-site, right and
left nearest neighbor contributions that come from that
particular row. The off-diagonal blocks comprise the up
and down nearest neighbor terms as well as the second
nearest neighbor contributions.
An important point to note while doing these calculations
for the spectra and the scattering problem is that χ and χ̄
aren’t always complex conjugates of one another. To see
this remember that from appendix A, χ = χ1 + iχ2 and
χ̄ = χ1 − iχ2, however, both χ1 and χ2 pickup complex
phase factors e±iqx/ya due to the boundary conditions as
described above. For qx, qy = 0, the relation χ = χ̄∗

holds since χ1 and χ2 are real. However, generally, this
is not the case, since χ1, χ2 ∈ C, and so χ 6= χ̄∗.

Appendix J: Lie-algebra structure in non-linear
sigma model

In this appendix we give details on some of the calcula-
tions to show the Lie-algebra structure of the vector fields
mentioned in section X of the main text. We showed that
x → Xε(x) is a vector field associated to the infinitesi-
mal left rotation exp(−iε · σ/2). We know that vector
fields form a Lie-algebra under the Lie-bracket. The Lie-
bracket is defined as

L[X,Y ](f) = (LXLY − LY LX)f (J1)

for any arbitrary function f , where LXf ≡
∑
iX

i∂if
denotes the Lie derivative of f along vector field X. We
can write the Lie derivative as

(LXLY − LY LX)f = Xi∂i(Y
j∂jf)− Y j∂j(Xi∂if)

= (Xi∂iY
j − Y i∂iXj)∂jf ≡ [X,Y ]j∂jf

(J2)

therefore we get [X,Y ] = X ·∇Y −Y ·∇X ≡ Y ′(X)−
X ′(Y ) where X ′ denotes the Jacobian matrix (X ′)ji ≡

∂iX
j . Now, let us compute [Xε,Xη]. Using Eq. 31 from

the main text we can write

X ′η(Xε) = − x√
1− x2

· (
√

1− x2
ε

2
− ε

2
× x)

η

2

− η
2
× (
√

1− x2
ε

2
− ε

2
× x)

= −1

4

(
(x · ε)η +

√
1− x2 η × ε− η × (ε× x)

)
(J3)

Similarly one can also write

X ′ε(Xη) = −1

4

(
(x · η)ε+

√
1− x2 ε× η− ε× (η×x)

)
(J4)

Using the above two equations one gets

[Xε,Xη] =
1

4

((
(x · η)ε− (x · ε)η

)
+ 2
√

1− x2ε× η

−
(
ε× (η × x)− η × (ε× x)

))
=
√

1− x2
ε× η

2
− 1

2
(ε× η)× x

= Xη×ε
(J5)

and hence, we recover the Lie-algebra structure of SO(3).
Similarly for the right action we get,

[Yε,Yη] = −Yε×η = Yη×ε (J6)

Let us examine the correspondence between Poisson
brackets {g, h} and Lie brackets [Xg, Xh] of their associ-
ated Hamiltonian vector fields Xg and Xh. Hamilton’s
equations, relating Xg to g, are equivalent to requiring
LXgf = {f, g} for any function f over phase-space. Then
we have that

LXgLXh(f) = {{f, h}, g}
LXhLXg (f) = {{f, g}, h}

(J7)

hence one can express the Lie-bracket as

L[Xg,Xh](f) = {{f, h}, g}+ {{g, f}, h} = −{{h, g}, f}
== {f, {h, g}} = LX{h,g}(f)

[Xg, Xh] = X{h,g}
(J8)

where in the 2nd equality of the first line in the above
equation we have used the Jacobi identity.
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