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Stress-strain constitutive relations in solids with an internal angular degree of freedom can be
modelled using Cosserat (also called micropolar) elasticity. In this paper, we explore Cosserat
materials that include chiral active components and hence odd elasticity. We calculate static elastic
properties and show that the static response to rotational stresses leads to strains that depend on
both Cosserat and odd elasticity. We compute the dispersion relations in odd Cosserat materials
in the overdamped regime and find the presence of exceptional points. These exceptional points
create a sharp boundary between a Cosserat-dominated regime of complete wave attenuation and
an odd-elasticity-dominated regime of propagating waves. We conclude by showing the effect of
Cosserat and odd elastic terms on the polarization of Rayleigh surface waves.

The elastic behavior of an isotropic solid at equilibrium
can be characterized by two elastic constants, namely the
shear modulus and the bulk modulus [1]. This simple de-
scription of elastic properties using two coefficients is pos-
sible because of symmetries such as: isotropy, parity, and
time reversal invariance. However, this simple definition
does not apply to a variety of other systems, for example
nematic solids [2] and Cosserat (or micropolar) solids [3].
Typical elastic solids can be microscopically modelled by
considering point masses connected by springs. By con-
trast, Cosserat elasticity is based on a more complex pic-
ture, and includes an angle (φ) describing the microscopic
orientational degree of freedom. Even for models consist-
ing of point particles, Cosserat-like elasticity can emerge
due to a geometry based on rotating elements [4]. Re-
cent advances in additive manufacturing (or 3D printing)
have led to rapid developments in the design of metama-
terials with Cosserat elasticity [5–11]. Cosserat elastic-
ity can also emerge in disordered solids [12–17], elastic
polymers [18, 19], and bio-membranes with viscoelastic
responses [20–22]. The Cosserat filament model has been
used to explore the effect of microrotations in biological
filaments [23–27].

Active solids [28–33] are solids that are far from equi-
librium due to forcing at the microscopic scales [34–36].
To consider the effect of activity and chirality, a situation
that can emerge when activity is present in the form of
an active torque, in an elastic Cosserat solid one must
include the effect of odd elasticity. The odd elasticity is
connected to the breaking of two essential symmetries of
classical solids – parity invariance and time reversal in-
variance – and appears in the elasticity tensor as a term
breaking the major symmetry of the fourth rank elas-
tic tensor, i.e., κoijkl = −κoklij . Recent literature [37–51]
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has extensively studied the effects of odd elasticity and
other forms of odd responses in solids and fluids, and it is
therefore worthwhile to study the effects of odd elasticity
in solids with active torques.

In this paper, we show how the simultaneous presence
of both odd elasticity and the Cosserat term affects the
static and dynamic elastic response of chiral active solids
in the over-damped regime. We find that the static re-
sponse to off-diagonal stresses is strongly dependent on
both Cosserat and odd elasticity. We also find that dy-
namic modes have an exceptional point [52, 53] in the
dispersion relation due to the competition of Cosserat
and odd elasticity. In the overdamped regime, this excep-
tional point is characterised by a transition from damped
oscillations to diffusive (or attenuating) solutions. The
diffusive solutions near these exceptional points have
a diffusion coefficient proportional to the square root
of the coefficient of Cosserat elasticity, in contrast to
both equilibrium Cosserat solids which have no excep-
tional points and odd-elastic solids without Cosserat
terms. Furthermore, the edge of these solids exhibits edge
modes [1, 54, 55] whose polarization is affected by the
combination of odd and Cosserat elasticity. The Cosserat
elastic coefficient results in a renormalization of the usual
elastic terms for these edge waves, while the odd elastic
coefficient mixes the longitudinal and transverse waves
at the edge.

Effective theory with odd elasticity — We begin by
considering the stress tensor in a two-dimensional odd
Cosserat solid (Fig. 1). We can write the constitutive re-
lation between stress σij and strain uij in these materials
as:

σij = µuij +Bδijukk +
κc

2
εij

(
φ− 1

2
∇× u

)
+ κo

(
∂iu
∗
j + ∂∗i uj

)
. (1)

Here, the vector u is the displacement field. The stress
tensor σij depends on strain tensor uij , which is de-
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FIG. 1. Odd Cosserat materials. (a) The presence of extended objects at lattice points connected by springs necessitates
an additional angle variable to define the strain. These microrotations are modelled using the so-called Cosserat term. In
addition, the bonds can be chiral and active, which can be modelled (to leading order) using so-called odd elasticity. The active
bonds illustrated above can be thought of as springs that inject energy and angular momentum, i.e., possess some form of active
torque. (b) Rod-like elastic filaments (like actin filaments) have an angular degree of freedom and their elastic properties have
been modelled using Cosserat elasticity. (c) Granular material with active torque and (d) active biomembranes with chiral
processes are two other examples of odd Coserat materials.

fined as the spatial gradients of the displacement uij =
1/2(∂iuj + ∂jui), described by the elastic coefficients µ
and B. The coefficient of Cosserat elasticity κc describes
a coupling of the internal displacement gradients to an
orientational degree of freedom with angle φ. The two-
dimensional Levi-Civita symbol is denoted by εij . The
odd elastic coefficient is denoted by κo and we define
u∗i = εijuj . The odd-Cosserat model described in Eq.(1)
respects rotational invariance.

The dynamics of solids can depend not just on the re-
lation between the elastic stresses and strains, but also
on viscous stresses proportional to the strain rates i.e.,
σvisij = ηijklu̇kl. A combination of viscous and elastic
stresses in solids is described by the Kelvin-Voigt model
of viscoelasticity, which in turn can be generalised to in-
clude odd elastic terms [39]. However, in this paper we
focus on the elastic properties only and hence neglect for
simplicity the viscosus stress. In addition to the consti-
tutive relation given in Eq.(1), the equation of motion
for the displacement field can be written as:

ρ∂2t ui + Γ∂tui = ∂jσij

I∂2t φ+ Γφ∂tφ = α∇2φ− κc
(
φ− 1

2
∇× u

)
+ τa, (2)

where ρ is the mass density and I is the moment of inertia
density. The coefficients Γ and Γφ are friction coefficients
that arise due to the damping of relative motion with
respect to a substrate. The coefficient α is a diffusive
coefficient. The term proportional to κc is required by
angular momentum conservation [56]. The active torque
is denoted by τa. The above equations (Eq. (2)) do not
take into account non-linear terms.

So far we have discussed the presence of odd elastic-
ity in the equation for uij . We now consider terms that
constitute active contributions in the equation of motion
for φ. The Cosserat term can be derived from a free en-
ergy F =

∫
dx (κc/2) (φ− (1/2)∇× u)

2
. Model-A type

dynamics [57, 58] using this free energy gives us the equa-
tions of motion for Cosserat materials (see supplementary
section [59]). In order for a term to qualify as an active
contribution, the term has to be such that it cannot be
derived from an equilibrium free energy. Therefore, we
do not find a linear active term in the equation for φ. The
leading order active contribution arising in this equation
is nonlinear and given by:

τa = λ|∇φ|2 + . . . . (3)

Mathematically, these terms are similar to the type of
active terms that arise in active binary mixtures [60–
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62] [63]. An important point to be noted here is that
because of the positive definite nature of the term, the
sign of λ decides the sense of the active torque, making
the system naturally chiral. However, in the presence
of either polar or nematic activity, it is possible to have
linear active terms. It is also possible to model active
torques in the form of torque dipoles [64–67].

Elastostatics of odd Cosserat materials — Using the
stress tensor in Eq.(1), we now discuss the static proper-
ties of odd Cosserat materials. Since we are considering
the static regime, all time derivatives drop out. In static
equilibrium, solids balance external stresses by the elas-
tic stresses, which are proportional to the strain. In the
case of Cosserat solids, there is an additional degree of
freedom, which is the angle φ. This force balance can be
written as a set of linear equations with the applied stress
on one side and the internal stress on the other side. If
we now additionally neglect the higher order spatial gra-
dients arising due to diffusion we then have a linear prob-
lem where we can choose a profile of external stress and
from that obtain the strain in static equilibrium. Ma-
terial properties like the Young’s modulus (E), Poisson
ratio (ν), and odd ratio (νo, defining the transverse tilt
of the solid under uniaxial compression, see Ref. [68]) can
be computed using this method. We find the emergence
of auxetic properties (negative value of ν) in the limit
of large odd elasticity (2(κo)2 > µB), which has been
previously reported for non-Cosserat odd elastic solids in
Ref. [68]. Details of this computation is provided in [59].

While the moduli (E, ν, and νo) remain largely un-
affected under the application of a uniaxial pressure, we
can obtain generic expressions of strain in the presence
of applied stress. Let us consider a problem where we
have only applied rotational and transverse stresses, i.e.,
only σxy and σyx are non-zero. Under such an external
stress, components of the strain tensor have the form:

∂ux
∂x

= −κ
o(v1 + v2)

4κo2 + µ2
,

∂uy
∂y

=
κo(v1 + v2)

4κo2 + µ2
,

∂uy
∂x

=
v2 − v1

ε
+
v2 − v1
κc

+
µ(v1 + v2)

2(4κo2 + µ2)
,

∂ux
∂y

= −v2 − v1
ε

− v2 − v1
κc

+
µ(v1 + v2)

2(4κo2 + µ2)
, (4)

where, v1 = σxy, v2 = σyx, and ε is a regularizing term
added to the equation of motion of φ to make the matrix
invertible. Physically, one can think of ε as an effective
renormalization of the higher order spatial gradients that
have been neglected and also from coupling to external
substrate.

Elastodynamics of odd Cosserat materials — We
now consider the dynamics of the system described
by Eq. (1) and Eq. (2). In the under-damped limit
(i.e., Γ → 0, Γφ → 0, and ignoring other viscous ef-
fects), we can obtain oscillatory solutions from the elas-
tic terms. We now consider propagating waves of the

form exp(i(k · x− ωt)), where x is the position coordi-
nate and k is the wavevector which gives us wavenumber
k = |k|. The frequency is given by ω and t is time. In the
limit of large odd elasticity, we obtain a dispersion rela-
tion: ω = eiπ/4k

√
κo/ρ, where, ω is the frequency and k

is the wavenumber. The above dispersion relation corre-
sponds to a propagating wave in displacement with speed√
κo/2ρ and a damping constant

√
κo/2ρ. In the case of

a normal elastic solid without any Cosserat coupling or
odd elasticity, we have the usual elastic waves with dis-
persion relations ω = k

√
µ/ρ and ω = k

√
(B + µ)/ρ.

Therefore, unlike normal elastic waves, in odd elastic
solids, we have spontaneous damping and injection of
energy in the form of linear displacement fluctuations
within the solid.

We now consider the over-damped regime, where we
can neglect inertial effects and absorb the damping coef-
ficients (Γ and Γφ) into the other coefficients of the prob-
lem. In typical elastic materials, such an over-damped
limit gives rise to damped modes due to the effects of the
shear modulus and bulk modulus. Odd elasticity gives
rise to propagating waves, which are analogous to the
Avron waves in odd-viscous fluids [48, 69, 70]. However,
for an odd solid these are waves in displacement and not
in velocity. We now compute the dispersion relation for
a Cosserat solid in the presence of odd elasticity. For the
purpose of this calculation, we ignore the bulk modulus
and consider the limit where we can neglect the fluc-
tuations in φ, i.e., φ = φ0. We obtain a closed form
expression of the dispersion relation given by:

ω = i
k2

8

(
−8µ− κc ±

√
κc2 − 64κo2

)
, (5)

which is consistent with our understanding that the
Cosserat term is predominantly a diffusive term in the
equations of elastodynamics, whereas odd elasticity gives
rise to wave solutions with speed proportional to

√
κo.

Note that we obtain an exceptional point at κc = 8κo,
where the eigenvalues are degenerate and have a square
root branch point [52, 53]. At the exceptional point, two
eigenvectors coalesce to a single one and the eigenvalues
are degenerate. At this exceptional point, we find the
transition from a diffusive solution with diffusivity pro-
portional to

√
κc to a damped wave solution with speed

proportional to
√
κo. This is the key differentiating fea-

ture of the odd Cosserat elasticity from both equilibrium
elastic solids and active odd elastic solids.

For the usual Cosserat solids with κo = 0, the excep-
tional points are absent because of the Hermitian nature
of the matrix. The discriminant of the cubic equation
does not take negative values because it can be written
as a sum of positive numbers. However, in the more gen-
eral case, if we take into account the effect of both κc and
κo we obtain ω = iΛ that are solutions to the cubic equa-
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FIG. 2. Dependence of frequency on odd and Cosserat
elasticity. Real and imaginary parts of the dispersion rela-
tion for an odd Cosserat solid. The three solutions of ω (three
eigenfrequencies) have both real and imaginary parts. The
first row, i.e., (a) and (b), is the eigenfrequency correspond-
ing to the first eigenmode, the second row, i.e., (c) and (d),
is the eigenfrequency corresponding to the second eigenmode,
and the third row, i.e., (e) and (f), is the eigenfrequency cor-
responding to the third eigenmode. The first column (a),(c),
and (e) shows the behavior of the real part and the second
column (b),(d), and (f) shows the behavior of the imaginary
part. The real part corresponds to oscillations and emerges
only for finite odd elasticity in both the second and the third
eigenmodes. For these plots, we have fixed the values of µ
and k at µ = 1 and k = 1.

tion (see supplementary material [59] for calculation):

Λ3 +
(
4κc + κck2 + 8µk2

)
Λ2

+
(

32µκck2 + 4(4µ2 + µκc + 4κo2)k4
)

Λ

+ 64κc(κo2 + µ2)k4 = 0. (6)

In the supplementary material [59], we derive the con-
dition for a positive discriminant based on the solutions
to this cubic equation. In Fig. 2, we show the real and
imaginary part of the dispersion relations showing the
emergence of a non-zero imaginary part for finite odd
elasticity as a signature of the exceptional points.

Rayleigh waves — We consider the effect of both the
Cosserat and the odd terms on a stress-free edge. We con-
sider solutions of the form u = Uei(kx−ωt)eay (and ignore
fluctuations in φ) and a boundary on the line parallel to
the x-axis, i.e., the y-direction is normal to the edge. Im-
plementing a zero normal stress implies σyy = σxy = 0

(and φ = 0). We find that while Cosserat elasticity renor-
malizes parameters, the polarization of these edge waves
depends crucially on the presence and nature of odd elas-
ticity. We perform the detailed computation in Ref. [59].

The difficulty in solving problems pertaining to the
edge is that the edges are naturally asymmetric, i.e., the
direction along the edge and perpendicular to the edge
are qualitatively different. We now define two types of
waves: one which is transverse and one which is longi-
tudinal. The decay length along the y-direction for the
transverse and longitudinal waves are at and al, respec-
tively. The amplitudes are given by Ut and Ul, and we
obtain the following relations:

Ut

[
−i2kκoat +

µ

2
(k2 + a2t )−

κc

4
(k2 − a2t )

]
+

Ul
[
−iκo(k2 + a2t ) + µkal

]
= 0,

Ut
[
µkat − iκo(k2 + a2t )

]
+

Ul
[
−B(k2 − a2l ) + µa2l − i2κokal

]
= 0. (7)

In the above relations, we find that the odd elasticity
makes the equations complex. The amplitudes acquire
phases proportional to the odd elasticity, thus indicat-
ing that the Rayleigh surface waves acquire a phase pro-
portional to κo. Physically, this occurs because the odd
elasticity term mixes the longitudinal and the transverse
waves at the edge while the Cosserat term has a much
less drastic effect of simply renormalising the equilibrium
elastic constants. For a chiral Cosserat solid without odd
elasticity, the chiral effects can be incorporated in the so-
lutions by choosing a different boundary condition for φ
(instead of φ = 0 as we have done above). Therefore, in
an odd Cosserat solid, we obtain surface waves that are
in a mixed state of the usual longitudinal and transverse
waves and the effective parameters are renormalized due
to the presence of the Cosserat elasticity.

Conclusions — To conclude, we have studied in this pa-
per the effects of adding odd elasticity to Cosserat solids.
We find while studying the static response that strain at
mechanical equilibrium acquires components that, gener-
ically, are dependent on both odd and Cosserat elas-
ticity. The linear dispersion relations of odd Cosserat
materials exhibit exceptional points where the solutions
change from diffusive to propagating waves. Previous
studies of odd elastic solids have also observed excep-
tional points, but in odd Cosserat materials, the excep-
tional points arise due to a competition between odd
elasticity and Cosserat elasticity. A signature of these
exceptional points appears in the surface waves by the
generation of waves which are mixtures of transverse and
longitudinal modes. We envision experimental verifica-
tion of our results in robotic metamaterials, disordered
solids, and active gels.
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I. COSSERAT AND ANGULAR MOMENTUM CONSERVATION (PASSIVE SOLIDS)

The under-damped equation of motion in two dimensional space(neglecting other terms like viscosity e.t.c.) in the
presence of Cosserat stress is given by:

ρ∂2t ui = ∂jσij

I∂2t φ = α∇2φ− κc
(
φ− 1

2
∇× u

)
, (8)

where,

σcij =
κc

2
εij

(
φ− 1

2
∇× u

)
, (9)

the above equations conserve angular momentum in spite of the presence of an anti-symmetric stress (shown in Eq. 9)
because of the term with coefficient κc in the equations of motion for local angular momentum.If one considers a
closed loop integral of the above stress one can show that the net torque injected due to this stress and is given by
σxy−σyx which is compensated by the κc term in the evolution equation for local angular momentum. This argument
also works for micropolar fluids where the φ is replaced by the rate of change of φ (we can call it Ω) the displacement
vector is replaced by the velocity vector.

In over-damped case the above equations reach a state where the local angle relaxes to the curl of the strain i.e.
2φ = ∇ × u and one reaches a state where the anti-symmetric stress vanishes and the local-angular momentum
evolution equation becomes irrelevant. For problems relating to micropolar fluids similar arguments can be made and
twice the local angular momentum relaxes to vorticity of the fluid in finite time.

Thus, we find that even for passive solids the under-damped equation may have important contribution from
anti-symmetric stress in the equation of motion.

II. IS SYMMETRIZATION OF STRESS TENSOR POSSIBLE IN PASSIVE COSSERAT SOLIDS?

Linear momentum due to the strain rate is defined as gi = ρu̇i and hence the conservation law is given by ρüi = ∂jσij .
For simplicity we consider a system with only the stress given in Eq. 9. Let us consider the following transformations:

g′i = gi +
1

2
∂jεijIφ̇,

φ′ = 0,

σ′ij = 0 (10)

In fluid systems this simply gives us the equations of motion in the primed variables. However, in solids this argument
may not be simply used because the under-damped motion in solids do not give relaxation dynamics and hence
anti-symmetric modes remain intact and the over-damped equations are not conservation laws.

III. EQUILIBRIUM ELASTIC THEORY WITH AN ANGLE

Let us begin by first deriving the Gibbs-Duhem relations and equilibrium stress for a Cosserat viscoelastic material.
The free energy can be written as:

F =

∫
dx

[
1

2
ρu̇iu̇i +

1

2
Iρφ̇2 + f0(∂iuj , ∂iφ, φ)

]
, (11)
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in the above free energy we have used I ≡ Iρ, where I is a proportionality coefficient and this assumption states that
moment of inertia density is proportional to mass density. We can also define chemical potential like terms as:

µφ ≡
∂f0
∂φ
− ∂i

∂f0
∂(∂iφ)

,

µj ≡ −∂i
∂f0

∂(∂iuj)
(12)

Under infinitesimal spatial translations the change in free energy is:

δF =

∫
dx

(
ρu̇iδu̇i +

u̇iu̇i
2
δρ+ Iρφ̇δφ̇+

Iφ̇2

2
δρ+ µφδφ+ µiδui

)
+

∮
dsα

(
fδxα +

∂f0
∂(∂αφ)

δφ+
∂f0

∂(∂αui)
δui

)
(13)

where, f ≡ 1
2ρu̇iu̇i + 1

2Iρφ̇
2 + f0(∂iuj , ∂iφ, φ). Now, we use the following relations for infinitesimal transformations:

δρ = −δxα∂αρ
δu̇i = −δxα∂αu̇i
δφ̇ = −δxα∂αφ̇
δφ = −δxα∂αφ
δui = −δxα∂αui (14)

Using the above expressions and by using divergence theorem we obtain:

δF =

∫
dx ((∂βµφ)φ+ (∂βµi)ui) δxβ +

∮
dsα

(
(f0 − φµφ − µiui)δαβδxβ −

∂f0
∂(∂αφ)

(∂βφ)δxβ −
∂f0

∂(∂αui)
(∂βui)δxβ

)
(15)

From the above expression for free energy change in a infinitesimal translation we obtain the equilibrium stress as
below:

σeαβ = (f0 − φµφ − µiui)δαβ −
∂f0

∂(∂αφ)
(∂βφ)− ∂f0

∂(∂αui)
(∂βui) (16)

and the Gibbs-Duhem relation:

−∂βσeαβ = (∂αµφ)φ+ (∂αµi)ui (17)

A. Irreversible thermodynamics and Cosserat viscoelasticity

For a non equilibrium system the entropy evolution is given by:

∂ts+ ∂αJ
s
α = θ, (18)

where, s is the entropy density, Jsα = svα + jsα is the entropy flux, jsα is the relative entropy flux in the COM frame,
and θ > 0 is the entropy production rate per unit volume due to irreversible processes. Similarly the free energy
density follows:

∂tf + ∂αJ
f
α = θf , (19)

where, Jfα is the free energy flux and θf is the source of free energy. The free energy density obeys the local
thermodynamic relation f = e−Ts. The relative flux in the COM frame is jfα and we have the relation Jfα = fvα+jfα.
The total energy flux is the sum of free energy transport and heat transport i.e. Jeα = (f +Ts)vα+ jfα+ jQα . We define
jQα = Tjsα. Thus free energy flux is jfα = jeα − jQα is part of the relative energy flux that is nor heat. In isothermal
system at temperature T the local reduction of free energy is directly related to entropy production: Tθ = −θf .



7

Let us now derive the constitutive relations of Cosserat viscoelasticity from the principles of irreversible thermody-
namics. To begin with a free energy given by:

F =

∫
dx

[
1

2
ρu̇iu̇i +

1

2
Iρφ̇2 + f0(∂iuj , ∂iφ, φ)

]
f0 ≡

κc

2

(
φ− 1

2
εkl∂kul

)2

+ κijklukluij +
α

2
(∂iφ)(∂iφ) (20)

Therefore, we have the following:

∂f0
∂φ

= κc
(
φ− 1

2
εkl∂kul

)
,

− ∂i
∂f0
∂(∂iφ)

= −α∂i∂iφ,

− ∂i
∂f0

∂(∂iuj)
=
κc

2
εij∂i

(
φ− 1

2
εkl∂kul

)
− ∂i

(
κijkl

1

2
(∂kul + ∂luk)

)
, (21)

and the conservation laws given by:

∂t(ρu̇i) = −∂jσij ,
∂tρ = −∂j(ρu̇j),
∂t(Iρφ̇) = εijσij − ∂jχj . (22)

The free energy evolution is given by:

Ḟ =

∫
dx

[
u̇2i
2
ρ̇+ u̇i∂t(ρu̇i) +

I

2
φ̇2ρ̇+ φ̇∂t(Iρφ̇) + φ̇

(
∂f0
∂φ
− ∂i

∂f0
∂(∂iφ)

)
− u̇j

(
∂i

∂f0
∂(∂iuj)

)]
∫
dx

[(
− u̇iu̇i

2
− Iφ̇2

2

)
∂j(ρu̇j)− u̇i

(
∂jσij +

κc

2
εij∂j

(
φ− 1

2
εkl∂kul

)
− ∂j

(
κijkl

1

2
(∂kul + ∂luk)

))
+ φ̇

(
εijσij − ∂jχj + κc

(
φ− 1

2
εkl∂kul

)
− α∂k∂kφ

)]
(23)

If we now consider the integrand and look at it part by part then the first part is given by:

− 1

2
(u̇iu̇i + Iφ̇φ̇)∂j(ρu̇j)

= −1

2
∂j

[
u̇iu̇iρu̇j + Iφ̇2ρu̇j

]
+

1

2
ρu̇j∂j(u̇iu̇i + Iφ̇2) (24)

This gives us the integral: ∫
dx
(
ρu̇iu̇j∂j u̇i + Iρφ̇u̇j∂j φ̇

)
+ Surface terms (25)

The second part is given by:

− u̇i
(
∂jσij +

κc

2
εij∂j

(
φ− 1

2
εkl∂kul

)
− ∂j

(
κijkl

1

2
(∂kul + ∂luk)

))
= −∂j

(
u̇i

(
σij +

κc

2
εij

(
φ− 1

2
εkl∂kul

)
−
(
κijkl

1

2
(∂kul + ∂luk)

)))
+ ∂j u̇i

(
σij +

κc

2
εij

(
φ− 1

2
εkl∂kul

)
−
(
κijkl

1

2
(∂kul + ∂luk)

))
(26)

Which gives the integral:
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∫
dx∂j u̇i

(
σij +

κc

2
εij

(
φ− 1

2
∂kl∂kul

)
−
(
κijkl

1

2
(∂kul + ∂luk)

))
+ Surface terms (27)

Finally, the third part is:

φ̇

(
εijσij − ∂jχj + κc

(
φ− 1

2
εkl∂kul

)
− α∂k∂kφ

)
φ̇

(
εijσij + κc

(
φ− 1

2
εkl∂kul

))
− ∂k

(
φ̇ (χk + α∂kφ)

)
+ (χk + α∂kφ) ∂kφ̇ (28)

This gives the integral:∫
dxφ̇

(
εijσij + κc

(
φ− 1

2
εkl∂kul

))
+ (χk + α∂kφ) ∂kφ̇+ Surface terms (29)

Therefore, we get the final form of the integral excluding the surface terms:

Ḟ =

∫
dx ∂j u̇i

[
ρu̇iu̇j + σij +

κc

2
εij

(
φ− 1

2
εkl∂kul

)
−
(
κijkl

1

2
(∂kul + ∂luk)

)]
+ ∂j φ̇

[
Iρφ̇u̇j + χj + α∂jφ

]
+ φ̇

[
εijσij + κc

(
φ− 1

2
εkl∂kul

)]
(30)

Flux↔ Force

ρu̇iu̇j + σij +
κc

2
εij

(
φ− 1

2
εkl∂kul

)
−
(
κijkl

1

2
(∂kul + ∂luk)

)
↔ ∂j u̇i

Iρφ̇u̇j + χj + α∂jφ↔ ∂j φ̇

εijσij + κc
(
φ− 1

2
εkl∂kul

)
↔ φ̇. (31)

Therefore, we obtain the phenomenological equations:

ρu̇iu̇j + σij +
κc

2
εij

(
φ− 1

2
εkl∂kul

)
−
(
κijkl

1

2
(∂kul + ∂luk)

)
= η∂j u̇i + λ1∂i∂j φ̇,

Iρφ̇u̇j + χj + α∂jφ = λ2∂i∂j u̇i + λ3∂j φ̇,

εijσij + κc
(
φ− 1

2
εkl∂kul

)
= λ4φ̇+ λ5∂j∂j φ̇+ λ6∂i∂j∂j u̇i. (32)

If we now consider the part of force and flux that are even under time reversal symmetry we get :

ρu̇iu̇j + σreactive
ij +

κc

2
εij

(
φ− 1

2
εkl∂kul

)
−
(
κijkl

1

2
(∂kul + ∂luk)

)
= 0,

Iρφ̇u̇j + χreactive
j + α∂jφ = 0,

εijσ
reactive
ij + κc

(
φ− 1

2
εkl∂kul

)
= 0. (33)

Similarly, if we consider the part of flux and force that is odd under time reversal symmetry we get:

σdissipative
ij = η∂j u̇i + λ1∂i∂j φ̇,

χdissipative
j = λ2∂i∂j u̇i + λ3∂j φ̇,

εijσ
dissipative
ij = λ4φ̇+ λ5∂j∂j φ̇+ λ6∂i∂j∂j u̇i. (34)
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In the equilibrium limit of a solid all explicit time derivatives are zero and we obtain the equilibrium limit:

σij +
κc

2
εij

(
φ− 1

2
εkl∂kul

)
−
(
κijkl

1

2
(∂kul + ∂luk)

)
= 0,

χj + α∂jφ = 0,

εijσij + κc
(
φ− 1

2
εkl∂kul

)
= 0. (35)

Thus, we obtain the equilibrium theory of Cosserat elastic solids. I have assumed that all the coefficients are even
under time reversal in the above discussion. Another thing to point out here is that the theory is very similar to the
Kelvin-Voigt type theory of viscoelastic solids.

IV. ELASTOSTATICS CALCULATION

The linear problem of elastostatics can be defined by the equations below:
B + µ B κo κo 0
B B + µ −κo −κo 0

−κo κo µ
2 −

κc

4
µ
2 + κc

4
κc

2

−κo κo µ
2 + κc

4
µ
2 −

κc

4 −κ
c

2

0 0 κc

2 −κ
c

2 −κc − ε



∂xux
∂yuy
∂xuy
∂yux
φ

 =


p1
p2
v1
v2
θ

 (36)

from the above description we can extract the Young’s modulus (E), Poisson ratio (ν), and odd ratio (νo) by setting
p1 = v1 = v2 = θ = 0 and p2 = p (Uniaxial stress along y-direction). We obtain:

E ≡ p

∂yuy
=

(4κo2 + µ2)(µ+ 2B)

2κo2 + µ2 + µB
,

ν ≡ −∂xux
∂yuy

=
−2κo2 + µB

2κo2 + µ2 + µB
,

νo ≡ − ∂yux
2∂yuy

=
κo(µ/2 +B)

2κo2 + µ2 + µB
. (37)

For a more general form of stress the strain can be written as:

∂xux =
2κo2(p1 + p2)− κo(v1 + v2)(µ+ 2B) + µ(µp1 +B(p1 − p2))

(4κo2 + µ2)(µ+ 2B)
,

∂yuy =
2κo2(p1 + p2) + κo(v1 + v2)(µ+ 2B) + µ(µp2 +B(p2 − p1))

(4κo2 + µ2)(µ+ 2B)
,

∂xuy =
κo(p1 − p2)

4κo2 + µ2
− θ + v1 − v2

ε
+
v2 − v1
κc

+
µ(v1 + v2)

2(4κo2 + µ2)
,

∂yux =
κo(p1 − p2)

4κo2 + µ2
+
θ + v1 − v2

ε
+
v1 − v2
κc

+
µ(v1 + v2)

2(4κo2 + µ2)
,

φ = −θ + v1 − v2
ε

. (38)

V. DISPERSION RELATION FROM CUBIC EQUATION

The dispersion relation (Note, that frequency ω = iΛ) of an odd-Cosserat solid can be obtained as a solution to the
cubic equation :

Λ3 + b Λ2 + c Λ + d = 0, (39)
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where,

b = 4κc + κck2 + 8µk2,

c = 32µκck2 + 4k4(4µ2 + µκc + 4κo2)

d = 64κck4(κo2 + µ2). (40)

The general solutions of the equation is given by:

Λ =− b

3
− 21/3(−b2 + 3c)

3Θ
+

Θ

3× 21/3
,

− b

3
+

(1 + i
√

3)(−b2 + 3c)

3× 22/3Θ
− (1− i

√
3)Θ

6× 21/3
,

− b

3
+

(1− i
√

3)(−b2 + 3c)

3× 22/3Θ
− (1 + i

√
3)Θ

6× 21/3
. (41)

where,

Θ =
(
−2b3 + 9bc− 27d+ 3

√
3
√
−b2c2 + 4c3 + 4b2d− 18bcd+ 27d2

)1/3
(42)

In the case of κo = 0, the above relations greatly simplify and we obtain:

Λ =− 4k2µ,

− 4κc − κck2 − 4µk2 ±
√
−64k2κcµ+ ((4 + k2)κc + 4k2µ)2. (43)

VI. RAYLEIGH EDGE MODES

Similar to the bulk waves discussed above one can derive surface waves in the above system of equations. We
consider the equations:

u̇ = µ∇2u + κo∇2u∗ − κc

4
∇∗(∇× u), (44)

and an ansatz u = Uei(kx−ωt)eay in a plane semi-infinite in the y–direction and consider y < 0. This gives a dispersion
relation given by:

ω =
i

8
(a2 − k2)

[
8µ+ κc ±

(
κc2 − 64κo2

)1/2]
(45)

Let us now consider zero normal stress boundary conditions (σyy = 0 and σxy = 0) we obtain the following as
boundary conditions at y = 0 :

σyy = 0 = B∂xux + (µ+B)∂yuy − κo∂xuy − κo∂yux,

σxy = 0 = κo∂yuy − κo∂xux +
κc

2
φ+

(
µ

2
− κc

2

)
∂xuy +

(
µ

2
+
κc

2

)
∂yux. (46)

For our purpose, here we will set φ = 0 as a boundary condition on φ at y = 0. Now the field u will have a transverse
and a longitudinal component such that ∇ · ut = 0 and ∇× ul = 0, the superscripts l and t denote longitudinal and
transverse respectively. We will also use the notation al and at to denote the decay length of the longitudinal and
transverse waves respectively and Ul and Ut for amplitudes of the longitudinal and transverse waves. Therefore, we
obtain:

utx = atUt exp(ikx+ aty − iωt),
uty = −ikUt exp(ikx+ aty − iωt),
ulx = kUl exp(ikx+ aly − iωt),
uly = −ialUl exp(ikx+ aly − iωt). (47)
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Now, we can write the x and y components in terms of the longitudinal and transverse components. Therefore, we
get:

ux = (atUte
aty + kUle

aly) exp(i(kx− ωt)),
uy = −i(kUteaty + alUle

aly) exp(i(kx− ωt)). (48)

Using the above forms we can compute the spatial derivatives of u which is:

∂xux = ik(atUte
aty + kUle

aly) exp(i(kx− ωt)),
∂xuy = k(kUte

aty + alUle
aly) exp(i(kx− ωt)),

∂yux = (a2tUte
aty + kalUle

aly) exp(i(kx− ωt)),
∂xuy = −i(kakUteaty + a2lUle

aly) exp(i(kx− ωt)). (49)

At y = 0 we get:

∂xux = ik(atUt + kUl) exp(i(kx− ωt)),
∂xuy = k(kUt + alUl) exp(i(kx− ωt)),
∂yux = (a2tUt + kalUl) exp(i(kx− ωt)),
∂xuy = −i(kakUt + a2lUl) exp(i(kx− ωt)). (50)

Now, going back to the condition on normal stress we obtain:

Ut

[
−i2kκoat +

µ

2
(k2 + a2t )−

κc

4
(k2 − a2t )

]
+ Ul

[
−iκo(k2 + a2t ) + µkal

]
= 0,

Ut
[
−iµkat − κo(k2 + a2t )

]
+ Ul

[
iB(k2 − a2l )− iµa2l − 2κokal

]
= 0 (51)

While, Cosserat elasticity has an effect of rescaling parameters in the Rayleigh waves the presence of odd elasticity
introduces additional phase in the amplitudes indicating that the Rayleigh surface waves are circularly polarised and
the sense of polarisation given by the sign of odd elasticity.
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