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We demonstrate that an interferometer based on modulated magnetic field pulses enables precise
characterization of the energies and lifetimes of Efimov trimers irrespective of the magnitude and
sign of the interactions in 85Rb thermal gases. Despite thermal effects, interference fringes develop
when the dark time between the pulses is varied. This enables the selective excitation of coherent
superpositions of trimer, dimer and free atom states. The interference patterns possess two distinct
damping timescales at short and long dark times that are either equal to or twice as long as the
lifetime of Efimov trimers, respectively. Specifically, this behavior at long dark times provides
an interpretation of the unusually large damping timescales reported in a recent experiment with
7Li thermal gases [Yudkin et al., Phys. Rev. Lett. 122, 200402 (2019)]. Apart from that, our
results constitute a stepping stone towards a high precision few-body state interferometry for dense
quantum gases.

I. INTRODUCTION

Efimovian trimers constitute an infinite set of particle
triplets occurring in the absence of two-body binding [1–
7]. Owing to their universal character, they have been
explored in both nuclear and atomic physics [4, 8–11]
and in the context of many-body physics as the binding
mechanism for magnons [12] and polaritons [13]. Fur-
thermore, the role of Efimov states is pivotal for some
ultracold gases in equilibrium, e.g. polarons [14–17] and
in some out-of-equilibrium [18–23], despite their short
lifetime due to collisional decay, i.e. three-body recombi-
nation processes. Recent investigations in dense gas mix-
tures demonstrate that such processes can be suppressed
due to medium effects [24]. Specifically, this puts forward
the idea that the intrinsic properties of Efimov states , i.e.
the binding energies and lifetimes, are potentially mod-
ified. Hence, dynamically probing simultaneously both
intrinsic properties of Efimov trimers could provide al-
ternative ways to study the impact of an environment.
To address such effects, a promising dynamical proto-

col is to expose a many-body system in a double sequence
of magnetic field modulations (pulses). The latter has
been used successfully to precisely measure the binding
energies and lifetimes of dimers [25] near a Feshbach res-
onance [26]. Beyond two-body physics, employing this
Ramsey-type protocol for a thermal gas of 7Li atoms,
Yudkin et al. precisely probed Efimov molecules even
near the atom-dimer threshold [27, 28]; an experimen-
tally challenging region. Specifically, the surviving atom
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number exhibited damped Ramsey fringes that were ro-
bust against thermal effects. However, the correspond-
ing damping timescale was found to exceed the typical
lifetime of Efimov trimers even for 85Rb3 [22]. In this re-
gard, it has remained elusive how the lifetime of Efimov
trimers emerges in the interference fringes induced by
magnetic field pulses. To address the intricate dynamics
of a three-body system requires a time-dependent the-
oretical framework establishing also a systematic path-
way to explore the role of few-body physics in out-of-
equilibrium many-body systems [20, 22].

Such an approach is developed here to investigate the
three-body dynamics of a thermal gas. We consider
85Rb atoms since the lifetimes of the ensuing trimers
and dimers are known experimentally [22] in contrast to
7Li [27]. Our study establishes that, by implementing
double magnetic field pulses, the intrinsic properties of
Efimov trimers are readily probed regardless of the sign
or magnitude of the scattering length; at which these
states occur. Rich interferometric spectra exhibit both
low- and high-frequencies independent of the gas tem-
perature. The low-frequency components originate from
the coherent superposition of the trimer with the dimer
state, consistent with the observations in Ref. [27]. The
additional high-frequencies arise from the coherent popu-
lation of the trimer or dimer states with the ones lying at
the “at break-up” threshold. The characteristic damping
time of the field generated interference fringes is shown to
be twice the lifetime of the Efimov trimers, providing an
explanation for the unusually long decay times observed
in Ref. [27].

This work begins by introducing the time-dependent
framework for the three-body system in Sec. II, providing

http://arxiv.org/abs/2306.01199v3
mailto:gbougas@physnet.uni-hamburg.de


2

1 2 3

-1

-0.5

0

0.5

FIG. 1. (a) Energy spectrum of three harmonically trapped 85Rb particles with ωr/(2π) = 350Hz. Efimov trimer (T), atom-
dimer (AD) and trap (A) states are depicted. Initially the scattering length is set at abg = 819a0 (dashed vertical line), then
modulated with amplitude am (gray region). Note a0 is the Bohr radius. (b) A schematic illustration of the Ramsey-type
interferometer: A first pulse with envelope χ(t) associates atom-dimers and Efimov states out of trap states (first and second
sub-graphs in (b)), the system then evolves freely during the dark time td (third sub-graph in (b)), while a second pulse
further admixes the states together with their dynamical phases that were accumulated during td (fourth sub-graph in (b)).
(c) The ratio of thermally averaged (RTA) probabilities, PT (td) at abg = 819a0 and distinct temperatures (see legend). Inset:
A zoom out plot of RTA at early td. (d) [(e)] Frequency spectra referring to region I [II] of the RTA quantifying its single
[multifrequency] behavior at different values of temperature T . The vertical dotted lines correspond to the three-level model

(TLM) predictions for E
(2)
T

, E
(1)
AD

and a trap state (see text).

also details on the employed techniques. Subsequently,
in Sec. III, the association mechanisms of the dynamical
scheme are examined. The role of the lifetime of the Efi-
mov states is studied in Sec. IV for both repulsive and
attractive background interactions. Sec. V summarizes
our major findings and future perspectives are discussed.
Appendix A outlines the steps to numerically solve the
three-body time-dependent Schrödinger equation in hy-
perspherical coordinates, while the explicit form of the in-
teraction potential matrix elements using field-free eigen-
states is given in Appendix B. Further insights into the
three-level model via first-order time-dependent pertur-
bation theory are provided in Appendix C.

II. TIME-DEPENDENT THREE-BODY

SYSTEM AND INTERFEROMETRY PROTOCOL

Our paradigm system consists of three 85Rb atoms of
mass m confined in a spherically symmetric harmonic
trap with radial frequency ωr. Following the prescription
of Refs. [29–34], we set ωr = 2π × 350Hz yielding a single

atom trap length ar = √h̵/(mωr), that compares to the

interparticle spacing (∼ ⟨n⟩−1/3) used in Ref. [22] for a

local peak density n0 = 5 ⋅ 1012 cm−3. The dynamics and
the universal characteristics of the three-body system are
addressed by employing contact interactions with a time-
dependent s-wave scattering length, i.e. a(t). The three-
body Hamiltonian reads:

H(t) = 3

∑
i=1
(−h̵2∇2

i

2m
+ mω2

r

2
r
2
i ) +∑

i<j

4πh̵2a(t)
m

δ(rij)Ôij ,

(1)

where ri denotes the position of the i-th atom, and
Ôij = ∂rij(rij ⋅) is the Fermi-Huang regularization opera-
tor with rij = ∣ri − rj ∣. Fig. 1(b) depicts the dynamical
profile of a(t) determined by the double pulse magnetic
field sequence used in Ref. [27], namely

a(t) = abg + am cos (Ωt)[χ(t) + χ(t − td − 2t0 − τ)], (2)

with χ(t) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin2 ( πt
2t0
) , 0 ≤ t < t0

1, t0 ≤ t < t0 + τ
sin2 (π(t−τ)

2t0
) , t0 + τ ≤ t ≤ 2t0 + τ

0, otherwise

. (3)

Here, abg indicates the background scattering length of
the time-independent system, and am is the pulse’s am-
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plitude yielding ∼ 20% change to abg. Ω is the driving fre-
quency and χ(t) denotes the envelope of the pulse where
t0 and τ are the ramp on/off times and length of the pulse
envelope, respectively. The time between the two pulses
is represented by td, i.e. dark time, where the system
freely evolves.
Owing to Eq. (2), it suffices to simulate the corre-

sponding time-dependent Schrödinger equation in the
center-of-mass of the three-body system. Namely, only
the relative Hamiltonian depends explicitly on time, i.e.
H(t) = Hcm + Hrel(t). Regarding the center-of-mass
HamiltonianHcm we assume from here on that the three-
atom setting always resides in its ground state, ∣0⟩cm.
Subsequently, the Hrel(t) is further decomposed into two
terms: (i) a field-free Hamiltonian that describes three
atoms in a spherical trap interacting with abg scatter-
ing length and (ii) an explicit time-dependent interac-
tion term [for more details see Appendix A1]. The spec-
trum of the relative field-free Hamiltonian is obtained via
the adiabatic hyperspherical approach [4–7, 35]. In this
method all the relative degrees of freedom are expressed
by a hyperradius R, that describes the overall system
size, and a set of five hyperangles ̟, that address the
relative particle positions. Subsequently, the field-free
eigenstates ∣n⟩ are expanded in a set of hyperangular ba-
sis functions, Φν(R;̟), treating the hyperradius as an
adiabatic parameter [4, 5],

⟨R,̟∣n⟩ = R−5/2∑
ν

F (n)ν (R)Φν(R;̟), (4)

where the expansion coefficients F
(n)
ν (R) are the so-

called hyperradial channel functions.
Within the adiabatic hyperspherical approach, the de-

termination of the eigenstates ∣n⟩ along with their cor-
responding eigenenergies is performed in two steps. The
hyperangular wavefunctions are obtained first, treating
R as an adiabatic parameter. Subsequently, the hyperra-
dial channel functions and E(n) are calculated from the
resulting equations that include all the relevant nonadi-
abatic coupling terms. A more elaborate discussion on
the adiabatic hyperspherical approach is provided in Ap-
pendix A2.
The stationary eigenenergies E(n) versus the scatter-

ing length abg are shown in Fig. 1(a). Their corre-
sponding eigenstates, ∣n⟩, fall into three classes: Efimov
trimers (T ), atom-dimers (AD) and trap (A) states [red,
blue and green lines in Fig. 1 (a)]. Furthermore, the
adiabatic hyperspherical approach allows to express the
time-dependent wave function of Eq. (1) in terms of the

field-free eigenstates, i.e. ∣Ψ(α)
3b
(t)⟩ = ∑n c

(α)
n (t) ∣n⟩ ∣0⟩cm

with c
(α)
n (t) being the probability amplitude of the n-

th stationary state. The initial boundary condition is

c
(α)
n (0) = δnα where the index α enumerates solely trap
states, i.e. α ∈ A. Plugging this expansion into the
time-dependent Schrödinger equation (TDSE) under the
Hamiltonian of Eq. (1) leads to a matrix differential
equation for the time-dependent expansion coefficients,

ih̵
dc(α)(t)

dt
=Hrel(t) ⋅ c(α)(t). (5)

Here,Hrel(t) represents the relative Hamiltonian matrix
expressed in the field-free basis. Given the decomposition
of Hrel(t) into a field-free Hamiltonian and an explicit
time-dependent interaction term, it is convenient to em-
ploy the second-order split-operator method [36, 37] for
solving Eq. (5) [for additional information refer also to
Appendix A3].
According to Fig. 1(b), initially the three particles in-

teract with a(t = 0) = abg = 819 a0 [see dashed vertical
line in Fig. 1(a)] residing in a specific trap state. Simi-
lar to Ref. [27], at abg the system supports two Efimov
trimer states, with the second (excited) one at energy

E
(2)
T lying close to the first atom-dimer energy in the

trap, E
(1)
AD, which represents the atom-dimer threshold.

At t ≠ 0 the first pulse turns on with an envelope χ(t)
of amplitude am [gray region in Fig. 1 (a)], where a(t)
modulates with angular frequency Ω [27, 38]. The latter
is equal to the energy difference between the first trap

and atom-dimer states, i.e. Ω/2π = (E(1)
A
− E(1)

AD
)/h =

63.8 kHz, as in the experiment of Ref. [27]. Furthermore,
the pulse’s full-width-at-half-maximum is 27µs providing
an energy bandwidth of 6.5 kHz matching the energy dif-
ference between the second trimer and first atom-dimer
states, ∣E(2)T −E

(1)
AD ∣/h. This implies that the first excited

trimer E
(2)
T and atom-dimer E

(1)
AD states are coherently

populated since the pulse cannot energetically resolve
them. After the first pulse, the system occupies several
∣n⟩ eigenstates which freely evolve during the dark time
td, each accumulating a dynamic phase [see Fig. 1(b)]. At
t = td, a second pulse, identical to the first one, is applied,
admixing different stationary eigenstates and their cor-
responding dynamical phases. By the end of the second
pulse, we extract the probability to occupy the Efimov
trimer state as a function td.
In a typical experiment, the three-body dynamics takes

place in a thermal gas at temperature T [27, 28]. Hence,
after the double pulse sequence the probability density
to occupy the Efimov trimer needs to be thermally aver-
aged over a Maxwell-Boltzmann ensemble of initial trap
states. For our purposes, we introduce a ratio of ther-
mally averaged (RTA) probabilities, PT (td), to populate
Efimov trimer states after two pulses (numerator) versus
one pulse (denominator),

PT (td) = ∑α∈A∑j∈T e
−

E
(α)
A

kBT ∣c(α)j (2τ̃ + td)∣
2

∑α∈A∑j∈T e
−

E
(α)
A

kBT ∣c(α)j (τ̃)∣
2

, (6a)

c
(α)
j (2τ̃ + td) =∑

n

Ujn(2τ̃ + td, τ̃ + td)e−iE
(n)td/h̵Unα(τ̃ ,0),

(6b)

where kB is the Boltzmann constant, τ̃ = 2t0 + τ is the
pulse duration, and Uij(⋅, ⋅) represents the three-body
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FIG. 2. (a) PT (td) for different temperatures (see legend),

taking into account the decay width, Γ(2)/h = 748Hz of the
first excited Efimov state at abg = 2030a0 . The gray solid
lines outline the upper and lower peak envelopes. The in-
set presents the frequency spectrum pertaining to region II,
∣FII(ω)∣. (b) The mean peak-to-peak envelope, Pp

T
(td) is fit-

ted with the exponentials fi/ii(td) = gi/iie
−Γi/ii(td−t

0

i/ii)/h̵ +
wi/ii at dark time intervals i and ii (black and green dashed
lines) with gi/ii, wi/ii representing fitting constants. The char-
acteristic decay time of the oscillations at long td is twice as
long as the intrinsic Efimov lifetime h̵/Γ(2).

evolution operator during a single pulse, expressed in the
field-free basis.

III. DYNAMICAL SUPERPOSITION OF

EFIMOV TRIMERS

Fig. 1(c) depicts PT (td) for two characteristic tem-
peratures T , where oscillatory fringes are observed that
persist after thermal averaging. Namely, PT (td) ex-
hibits fast oscillations throughout regions I and II, and
additional slow ones only in region II. The contribut-
ing frequencies are identified in the Fourier spectra of
RTA demonstrated in panels (d) and (e) for regions I
and II, respectively. In region I, independently of the
temperature, a single frequency dominates in PT (td) at
ω/(2π) = 71.8kHz [Fig. 1 (d)] corresponding to the en-

ergy difference ∣E(1)A −E
(2)
T ∣/h. For longer dark times (re-

gion II), three distinct frequencies occur, Fig. 1(e), with
the high ones, i.e. ω/(2π) = 63.7 and 69.9kHz, referring

to the superposition of the first trap state with the first
atom-dimer and excited Efimov states, respectively. The
low-frequency peak at ω/(2π) = 6.5kHz originates from
interfering amplitudes between the first atom-dimer and
first excited Efimov state pathways. Note that region
II (∼ 1.2kHz) shows better frequency resolution than re-
gion I (∼ 10kHz), which results in small deviations be-
tween the highest frequencies in both regions. Due to
the finite resolution, a small mismatch also occurs be-
tween the difference 69.9−63.7kHz and the low frequency
peak in region II. Similar low-frequency and temperature
independent oscillatory fringes were also experimentally
observed for 7Li atoms [27, 28]. However, the present
analysis reveals that high-frequency interferences are also
imprinted in the RTA probability, where the early dark

time fringes can be experimentally utilized to measure
the Efimov binding energy at a given abg.
The fact that PT (td) features three main frequencies,

irrespectively of T , is traced back to the incoherent sum
of the trimer probability [see Eq. (6a)]. Namely, all con-
tributions involving higher-lying trap states peter out,

except for three arising from the ground trap state E
(1)
A ,

the first atom-dimer E
(1)
AD and the first excited Efimov

state E
(2)
T . This particular set of eigenstates survives

upon the thermal average due to the specifics of the pulse
and its envelope. Recall that the driving frequency is in

resonance between the E
(1)
A and E

(1)
AD stationary eigen-

states, whereas the duration of the pulse is short in order
to coherently populate only the first atom-dimer and first
excited Efimov states.
Focusing on this aspect, a three-level model (TLM)

Hamiltonian containing E
(2)
T

, E
(1)
AD

and a single trap state
is constructed [39]. The three-level system is initialized
in the single trap state and we apply square pulses of the
scattering length [Eqs. (2) (3)] to trigger the dynamics
of the three-body setup. Within this picture, the proba-
bility amplitude to occupy the first excited Efimov state
at the end of the second pulse is obtained by employ-
ing first-order time-dependent perturbation theory [for
additional details see also Appendix C]. Moreover, ap-
proximations for the energy levels of the trap states and
the matrix elements to occupy the trimer state lead to
analytical expressions for PT (td) [see also Appendix B
and C]. It is shown that the latter is decomposed into
three oscillatory terms. The TLM predictions for the
frequencies, illustrated as vertical dotted lines in Figs. 1
(d), (e), are found to be in excellent agreement with the
full numerical calculations.

IV. IMPACT OF THE LIFETIME OF THE

TRIMER

In Fig. 1(c)-(e), our analysis neglects the decay of the
Efimov trimers and dimer states. However, in thermal
gases three-body recombination or relaxation processes
are present resulting in finite lifetimes of the trimers
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FIG. 3. (a) PT (td) at abg = −2030a0 and various tempera-
tures (see legend). The driving frequency is resonant with
the transition between the ground Efimov and the first trap
state, and the decay width of the former Γ(1)/h = 41kHz. The
inset presents the frequency spectrum of region I, ∣FI(ω)∣. (b)
The mean peak-to-peak envelope, Pp

T
(td) at T = 270nK is fit-

ted with fi/ii(td) = gi/iie
−Γi/ii(td−t

0

i/ii)/h̵+wi/ii at the dark time
intervals i and ii. Even at attractive interactions the energy
and lifetime of Efimov states can be simultaneously assessed.

and dimers. In the following, we choose abg = 2030a0
that is significantly larger than the van der Waals length
scale lV dW = 82.5a0 for 85Rb, yielding negligible finite
range effects [26]. Therefore, in this universal regime,
the zero-range theory predicts that the lifetime of the
first excited Efimov state is h̵/Γ(2) = 212µs (Γ(2) de-
notes the decay width) [22, 40–42]. Also, since the de-
cay of dimers lie within the range 2-9 ms, for local peak
density n0 = 5 ⋅ 1012 cm−3 [43–45], they can be safely
neglected within the considered range, td ≤ 1 ms, ren-
dering the lifetime of Efimov trimers the most relevant
decay mechanism. Furthermore, the pulse frequency is
Ω/2π = 10.8 kHz over a time span 2t0 + τ = 134.7µs en-
suring that the Efimov trimers do not decay during the
pulse. Under these considerations, it suffices after the

first pulse to multiply the amplitude of the E
(2)
T state

with the factor e−Γ
(2)td/(2h̵), as was employed in Refs.

[46, 47].

The interference fringes of the RTA probability includ-
ing the effect of the decay at 150 and 270 nK are pro-
vided in Fig. 2(a). Owing to the large abg, the frequen-
cies are in the range of tenths of kHz adequately agreeing
with the TLM calculations [see dashed lines in the inset

Fig. 2 (a)]. Isolating the impact of the Efimov states de-
cay on the RTA probability, Fig. 2 (b) shows the mean
peak-to-peak envelopes of PT (td), i.e. P

p
T (td). Fitting

P
p
T (td) with fi/ii(td) = gi/iie−Γi/ii(td−t

0

i/ii)/h̵ + wi/ii at the
dark time intervals i and ii [see dashed lines in Fig. 2
(b)] reveals two distinct decay widths independent of the
temperature. Namely, Γi/h = 749.925(1.47)Hz close to

Γ(2)/h, while at later td, Γii/h = 375.03(1.63) Hz, ap-

proximately Γ(2)/(2h). This means that at early dark
times PT (td) falls off according to the intrinsic lifetime

of the E
(2)
T Efimov trimer. In region II, where the inter-

ference between the first atom-dimer and the first excited
trimer is pronounced, the decay of the RTA probability

is nearly twice the lifetime of the E
(2)
T

state. This effect
can in principle explain the unusually long decay times
observed in the experiment [27].
Including the trimer’s lifetime in the TLM allows to

gain insights on the decay of the RTA probability, where
PT (td) becomes proportional to

PT (td) ∝ [BT,A(td) + BT,AD(td)]e−Γ
(2)td
2h̵ +BAD,A(td)

+e−
Γ
(2)td
h̵ . (7)

The terms Bi,j(td) = Ai,j(td) sin [(E(σ)i −E(1)j )td/h̵] with
σ = 1+δi,T originate from the superposition of states i, j,
and Ai,j(td) refer to their amplitudes (see details in Ap-
pendix C). The first three terms correspond to the three
dominant frequencies shown as dashed lines in the inset

of Fig. 2 (a). The mixed contributions that involve E
(2)
T

with another state, contain only the factor e−Γ
(2)td/(2h̵).

Therefore, within region II where the coherent admixture

between the E
(1)
AD

and E
(2)
T

states is manifested, the decay
time of PT (td) is virtually twice as long as the intrinsic
Efimov lifetime. The last non-oscillatory term in Eq. (7)
involves only the Efimov state and thus decays according

to e−Γ
(2)td/h̵. The above expression holds in general for

any atomic species and abg > 0, provided that both the
first excited Efimov and first atom-dimer are coherently
populated.
As a generalization, the RTA probability is demon-

strated in Fig. 3 at negative scattering lengths, e.g.
abg = −2030a0, where the atom-dimer pathways are in-
trinsically absent since no universal dimer exists. The

pulse frequency Ω/2π = ∣E(1)T −E
(1)
A ∣/h = 232.2 kHz and its

duration is 2t0+τ = 3.7µs. Note that here the pulse reso-
nantly couples the first trap and the Efimov ground state,
whereas the pulse’s length is shorter than the ground Efi-
mov state lifetime h̵/Γ(1)=3.9 µs [48]. As expected, the
PT (td) in Fig. 3(a) oscillates with a single frequency, i.e.

ω/(2π) = ∣E(1)T −E(1)A ∣ /h = 233.5kHz, only in region I and

vanishes fast due to the large Γ(1) decay width. More-
over, Fig. 3(b) showcases the mean peak-to-peak ampli-
tude P

p
T (td) and their fittings at the dark time intervals

i and ii [see dashed lines in Fig. 3 (b)]. Similar to Fig. 2
(b), we extract two decay widths with their values being
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Γi/h = 41.35(5.35)kHz and Γii/h = 17.56(7.02)kHz at

T = 270nK, which within error bars are close to Γ(1)/h
and Γ(1)/(2h), respectively. These findings are in ac-
cordance to the description of Eq. (7), omitting terms
associated with atom-dimer transitions.

V. CONCLUSIONS AND OUTLOOK

In summary, the present theory demonstrates that the
double magnetic field interferometer has broad appli-
cability. Namely, it permits the simultaneous extrac-
tion of the binding energy and the lifetime of Efimov
states regardless the sign/magnitude of the scattering
length and the temperature of the gas. This is feasible
due to the generated superpositions of the trimer with
the first atom-dimer and trap state at repulsive inter-
actions, or only with the first trap eigenstate at attrac-
tive interactions. These superpositions are manifested as
interference (Ramsey) fringes in the probability to oc-
cupy trimers, observed over a wide range of tempera-
tures. Corroborating our results, a three-level model is
constructed, taking into account only the contributions
stemming from the Efimov trimer, the first atom-dimer
and trap state.
Going beyond previous studies, our analysis demon-

strates that the Ramsey fringes possess long damping
times equal to twice the intrinsic lifetime of Efimov
trimers. This behavior is illustrated at long dark times
between the pulses, attributed to the superposition of the
trimer with the first atom-dimer state. This relation in
particular provides also an upper bound to the lifetime of
7Li Efimov trimers which has remained unknown to date.
Furthermore, our work predicts that there are additional
interference terms surviving the thermal average at short
dark times. Namely, in this regime the system exhibits
interference fringes with frequencies that coincide with
the binding energy of the Efimov states, whereas the de-
cay of these oscillations is dictated by the lifetime of the
trimers. This demonstrates that it is possible to extract
the binding energy of the trimer at this early dark time
regime, irrespective of the interaction strength. This ex-
tends the current experimental practice, exploring the
long dark time region [27, 49].
Owing to the sensitivity of the Ramsey-type dynamical

protocol, the corresponding interferometric signals could
be further employed for probing Efimov states especially
at attractive interactions. At this regime, trimers merge
with the three-atom continuum at a scattering length
related only to the van der Waals length, the so-called
van der Waals universality [50–55]. The interferometry
scheme can thus be utilized at this regime, providing
stringent tests on the universality. Furthermore, recent
experiments explore the modifications of three-body re-
combination processes in mixtures of a bosonic thermal
gas with a degenerate fermion gas [24]. Hence, creation of
dynamically coherent superpositions between few-body
states can reveal the influence of a dense many-body en-

vironment on them.
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Appendix A: The three-body time-dependent

Schrödinger equation in hyperspherical coordinates

The time-dependent three-body Hamiltonian is decom-
posed in the center-of-mass frame and further expressed
in hyperspherical coordinates. An expansion in the field-
free eigenstates is subsequently utilized to cast the TDSE
in matrix form, tackled with the split operator method.

1. Center-of-mass decomposition

According to Eq. (1) in the main text, the three-body
Hamiltonian in the laboratory frame reads

H(t) = 3

∑
i=1
(−h̵2∇2

i

2m
+ mω2

r

2
r
2
i ) +∑

i<j

4πh̵2a(t)
m

δ(rij)Ôij .

(A1)

In order to eliminate the three degrees of freedom as-
sociated to the center-of-mass Hamiltonian we perform a
transformation from the laboratory to the center-of-mass
frame. The Hamiltonian splits into a time-independent
center-of-mass part and another one describing the rela-
tive degrees of freedom, i.e. H(t) = Hcm +Hrel(t). Evi-
dently, Hrel(t) encapsulates the relevant three-body dy-
namics, which in hyperspherical coordinates, [4, 35, 56]
takes the following expression

Hrel(t) = − h̵2

2µ

1

R5/2
∂2

∂R2
(R5/2⋅) + 15h̵2

8µR2
+ h̵2

Λ
2

2µR2

+1
2
µω2

rR
2 + Vbg(R;̟) + V (R;̟)f(t). (A2)

In this coordinate system, R describes the overall sys-
tem size, and the five hyperangles collectively indicated
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by ̟ address the relative particle positions. Vbg(R;̟)
and V (R;̟) are the contact interaction potentials as-
sociated to the background (abg) and amplitude scatter-
ing length (am) respectively, expressed in hyperspheri-
cal coordinates. Moreover, we have isolated the time-
dependence in the function f(t) = [a(t) − abg]/am. Λ

2

is the grand angular momentum operator describing the
total angular momentum of the three atoms [57], and µ
is the three-body reduced mass.
According to Eq. (A2), Hrel(t) splits into a field-free

Hamiltonian that describes three particles interacting
with abg scattering length and a time-dependent part
which contains the pulse field, i.e. Hrel(t) = Hbg +
V (R;̟)f(t). This particular structure of Hrel(t) sug-
gests that the time-dependent three-body wave function
pertaining to the Hamiltonian Eq. (A1) can be conve-
niently expanded on the field-free basis set, ∣n⟩, a basis
such that Hbg is a diagonal matrix.

2. Eigenstates of the background Hamiltonian

Therefore, in order to obtain the eigenstates {∣n⟩} of
Hbg, we employ the adiabatic hyperspherical represen-
tation [4, 5], where the hyperradius R is treated as an
adiabatic parameter. For completeness reasons, a brief
description on the calculation of ∣n⟩ in this formalism is
provided below. Namely, Hbg is recasted as follows:

Hbg = − h̵2

2µ

1

R5/2
∂2

∂R2
(R5/2⋅)

+ 15h̵2

8µR2
+ h̵2

Λ
2

2µR2
+ 1

2
µω2

rR
2 + Vbg(R;̟)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Had(R;̟)))

, (A3)

where Had(R;̟) refers to the adiabatic hyperangular
Hamiltonian which parametrically depends on the hyper-
radius R. In addition, the eigenstates ∣n⟩ are expressed
by the ansatz

⟨R,̟∣n⟩ = R−5/2∑
ν

F (n)ν (R)Φν(R;̟), (A4)

where F
(n)
ν (R) [Φν(R;̟)] denotes the hyperradial

[hyperangular] component of ∣n⟩. More specifically,
Φν(R;̟) are obtained by diagonalizing Had(R;̟) at
fixed hyperradius R [35, 56] according to the expression

Had(R;̟)Φν(R;̟) = Uν(R)Φν(R;̟), (A5)

where Uν(R) represents the ν-th hyperspherical poten-
tial curve that depends only on R. The hyperradial func-

tions F
(n)
ν (R) are determined by acting with Hbg on ∣n⟩

and integrating over all the hyperangles ̟. This yields
a system of coupled hyperradial equations that include
the non-adiabatic couplings [4, 35]. By diagonalizing the
resulting matrix equations we obtain the eigenenergies

E(n) and hyperradial wave functions F
(n)
ν (R) [4, 35].

3. Solution of the TDSE

Expanding the time-dependent three-body wave func-
tion in terms of ∣n⟩ yields the following relation:

∣Ψ(α)
3b
(t)⟩ =∑

n

c(α)n (t) ∣n⟩ ∣0⟩cm , (A6)

where the time-dependent coefficients initially satisfy

c
(α)
n (t = 0) = δnα, and the α index refers to an initial
trap state. ∣0⟩cm is the center-of-mass ground state.
Plugging Eq. (A6) into the TDSE under the Hamilto-

nian of Eq. (A1) leads to a matrix differential equation
for the time-dependent expansion coefficients,

ih̵
dc(α)(t)

dt
= (Hbg + f(t)V ) ⋅ c(α)(t). (A7)

Eq. (A7) is solved numerically by utilizing the second-
order split-operator method [36]. Namely, the propagator

of the c
(α)(t) vectors within the time interval (t, t + dt)

reads

c
(α)(t + dt) = e−iHbgdt/(2h̵)e−iV /h̵ ∫

t+dt
t

dt
′
f(t′)

×e−iHbgdt/(2h̵)c(α)(t) +O(dt3). (A8)

Appendix B: Matrix elements of the interaction

potential with the field-free eigenstates

Having at hand the set of field-free eigenstates {∣n⟩},
obtained from the adiabatic hyperspherical formalism,
the matrix elements of the interaction potential associ-
ated to am, Vn′n, can be evaluated as

Vn′n = ∑
ν,ν′
∫ dR F

(n′)∗
ν′ (R)Mν′ν(R)F (n)ν (R), (B1)

Mν′ν(R) = ⟨Φν′(R)∣V ∣Φν(R)⟩̟ , (B2)

where ⟨⋅⟩̟ indicates that the integral is performed over
the hyperangles.
Eq. (B2) can be recasted in a simple form by exploit-

ing the property V (R;̟) = −(am/abg)R3 ∂RVbg(R;̟)
between the contact potentials and utilizing the Hellman-
Feynman theorem [58]. Namely, for ν ≠ ν′ the relation
Mν′ν(R) = −(am/abg)R ⟨Φν′(R)∣∂RΦν(R)⟩̟ [Uν′(R) −
Uν(R)] holds. Similar expressions are derived for ν = ν′
which can be regrouped as follows

Mν′ν(R) = am

abg

h̵2

2µR
(−)1+sgn(ν−ν′)√∂Rs2ν(R)∂Rs2ν′(R).

(B3)
Here, s2ν(R) are related to the potential curves, i.e.
2µR2/h̵2Uν(R) = s2ν(R)−1/4, and sgn(⋅) denotes the sign
function.
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Appendix C: Three-level model and perturbation

theory

To provide a simplified picture of the full dynamics of
the few-body bound states we next construct an effective
three-level model. Within this model, we consider only
three field-free eigenstates, the first excited Efimov trimer
(T), the first atom-dimer (AD) and an initial trap state
α.
At the end of the first pulse, the probability ampli-

tude to occupy the T state, c̄
(α)
T , within first-order time-

dependent perturbation theory [59], reads

c̄
(α)
T (t0 + τ) = VT,αRT,α(t0 + τ), (C1a)

Rn,m(t0 + τ) = −ei(ωn,m+Ω)(t0+τ)/2 sin [(ωn,m +Ω) t0+τ2
]

h̵(ωn,m +Ω)
−(Ω↔ −Ω), (C1b)

where ωn,m ≡ (E(n) −E(m))/h̵.
During the dark time td, the probability ampli-

tude of the n-th state acquires the phase factor

e−iE
(n)td/h̵c̄

(α)
n (t0 + τ). In particular, the amplitude of

the first excited Efimov state is supplemented with the

factor e−Γ
(2)td/(2h̵), due to the width Γ(2) of the Efimov

state, leading to the decay of the latter during td.
The second pulse mixes all states together, and the

probability amplitude to occupy the T state at the end
of this pulse reads,

d̄
(α)
T (2t0 + 2τ + td) = ∑

j=T,AD

[VT,jRT,j(t0 + τ)
×c̄(α)j (t0 + τ)e−iE(σ)j

td/h̵−Γ(2)td/(2h̵)δT,j]
+VT,αRT,α(t0 + τ)c̄(α)A (t0 + τ)e−iE(α)A

td/h̵, (C2)

where σ = 1 + δj,T .
To obtain the ratio of the thermally averaged

probability PT (td), we weight the probabilities

∣d̄(α)
T
(2t0 + 2τ + td)∣2 and ∣c̄(α)

T
(t0 + τ)∣2 according to

the Maxwell-Boltzman distribution for the trap states of

energy E
(α)
A at temperature T ,

PT (td) = ∑α∈A e
−

E
(α)
A

kBT ∣d̄(α)T (2t0 + 2τ + td)∣2
∑α∈A e

−
E
(α)
A

kBT ∣c̄(α)
T
(t0 + τ)∣2

, (C3)

where kB is the Boltzmann constant.

In order to derive an analytical expression for Eq. (C3)
additional approximations are used. Namely, the expres-

sions for d̄
(α)
T (2t0+2τ +td) and c̄

(α)
T (t0+τ) can be further

simplified by employing the rotating-wave approximation
[59].

Furthermore, the energy of the α-th trap state is
roughly approximated by the non-interacting energy
spectrum, E

(α)
A = E

(1)
A + 2αh̵ωr, where E

(1)
A is the en-

ergy of the first trap state. In addition, we approximate
the VT,α matrix elements with a quartic root of the en-
ergy of the α-th trap state, a dependence corroborated
by a fitting procedure. Under these considerations, Eq.
(C3) obtains the same form as Eq. (5) in the main text,

PT (td)∝ [BT,A(td) + BT,AD(td)]e−Γ(2)td/(2h̵) +BAD,A(td) + e−Γ(2)td/h̵, (C4)

where the B-terms are given by the expressions

BT,A(td) = C1 I

⎡⎢⎢⎢⎢⎣e
−i∆φ1Φ

⎛⎝ef(kBT ,td,ωr),−0.5, E
(1)
A

2h̵ωr

⎞⎠
⎤⎥⎥⎥⎥⎦ (C5a)

BT,AD(td) =∑
±
(−)±C±2 sin [(E(2)

T
−E(1)

AD
)td/h̵ ±Ω(t0 + τ)/2] (C5b)

BAD,A(td) =∑
±
C±3 R

⎡⎢⎢⎢⎢⎣e
−i∆φ2±iΩ(t0+τ)/2Φ

⎛⎝ef(kBT ,td,ωr),−0.5, E
(1)
A

2h̵ωr

⎞⎠
⎤⎥⎥⎥⎥⎦ (C5c)

f(kBT , td, ωr) = −2h̵ωr

kBT
+ 2iωr[td + 1.5(t0 + τ)]. (C5d)

Φ(a, b, z) is the Hurwitz-Lersch zeta function [60] and the phases ∆φ1 and ∆φ2 are defined as follows,

∆φ1 ≡ (E(2)T −E(1)A )td
h̵

− 3E(1)A

t0 + τ
2h̵

(C6)

∆φ2 ≡ (E(1)AD −E
(1)
A )td

h̵
− 3E(1)A

t0 + τ
2h̵

. (C7)



9

The explicit form of the prefactors C1,C
±
2 ,C

±
3 is given

by,

C1 = h̵Ω

VT,T

[Φ(e−2h̵ωr/(kBT ),−0.5, E
(1)

A

2h̵ωr
)]−1

sin2[Ω(t0 + τ)/2] , (C8)

C±2 = VT,AD

VT,T

h̵Ω

sin2[Ω(t0 + τ)/2]
× sin[(ωT,AD ±Ω)(t0 + τ)/2]

h̵(ωT,AD ±Ω) , (C9)

C±3 = (−)± VT,AD∣VT,T ∣2
sin[(ωT,AD ±Ω)(t0 + τ)/2]

2h̵(ωT,AD ±Ω)
h̵2Ω2

sin4[Ω(t0 + τ)/2] ×
⎡⎢⎢⎢⎢⎣Φ
⎛⎝e−2h̵ωr/(kBT ),−0.5, E

(1)
A

2h̵ωr

⎞⎠
⎤⎥⎥⎥⎥⎦
−1

,

(C10)

Note that there are revivals of the oscillatory signals
BT,A(td) and BAD,A(td) at later dark times nπ

ωr
−1.5(t0+

τ), which are attributed to the trap [33].
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H.-C. Nägerl, and R. Grimm, “Evidence for efimov
quantum states in an ultracold gas of caesium atoms,”
Nature 440, 315–318 (2006).

[9] M. Kunitski, S. Zeller, J. Voigtsberger, A. Kalinin,
L. Ph. H. Schmidt, M. Schöffler, A. Czasch,
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