
Spin Seebeck effect in the classical easy-axis antiferromagnetic chain

X. Zotos1,2
1Department of Physics, University of Crete, 70013 Heraklion, Greece and

2 Max-Planck-Institut für Physik Komplexer Systeme, 01187 Dresden, Germany
(Dated: November 29, 2023)

By molecular dynamics simulations we study the spin Seebeck effect as a function of magnetic
field in the prototype classical easy-axis antiferromagnetic chain, in the far-out of equilibrium as
well as linear response regime. We find distinct behavior in the low field antiferromagnetic, middle
field canted and high field ferromagnetic phase. In particular, in the open boundary system at low
temperatures, we observe a divergence of the spin current in the spin-flop transition between the
antiferromagnetic and canted phase, accompanied by a change of sign in the generated spin current
by the temperature gradient. These results are corroborated by a simple spin-wave phenomenological
analysis and simulations in the linear response regime. They shed light on the spin current sign
change observed in experiments in bulk antiferromagnetic materials.

INTRODUCTION

The generation and control of spin currents is a central
topic in the field of spintronics [1]. In particular the spin
Seebeck effect [2], the generation of a spin current by a
temperature gradient in a magnetic field, has been exten-
sively experimentally and theoretically studied in a great
variety of bulk magnetic systems as for instance, the fer-
rimagnetic YIG/Pt heterostructures, antiferromagnetic
materials (e.g. Cr2O3, Fe2O3) and Van der Vaals 2D ma-
terials as the quasi-2D layered ferromagnets, Cr2Si2Te6
and Cr2Ge2Te6 (for an extensive reference [1]). In par-
ticular, concerning easy-axis bulk antiferromagnetic ma-
terials, there is experimental [3–6] and theoretical [7–10]
interest and debate concerning the sign of the generated
spin current [2, 11].

In a different research domain, the physics of (quasi-
) one dimensional magnetic systems, both classical and
quantum, has been studied for years, starting with the
Bethe ansatz solution of the antiferromagnetic spin-1/2
chain. In particular, the exotic physics of easy-axis an-
tiferromagnetic spin chains [12] and quantum spin liq-
uid materials with topological spinon excitations has
attracted great interest. The spin Seebeck effect in
the spin-1/2 chains Sr2CuO3 with spinon and CuGeO3

with triplon excitations has been studied experimentally
[13, 14] and rigorously evaluated theoretically [15] in the
easy-plane regime. Furthermore, the thermal transport
of classical spin chains has been studied by numerical
dynamics simulations [16] and lately, the character of
spin transport, ballistic, diffusive or anomalous, in clas-
sical and quantum (anti-) ferromagnetic chains attracts
a great deal of attention (for a recent tour de force and
references therein see [17]).

The spin Seebeck effect has never been studied for
the easy-axis classical antiferromagnetic spin chain and
it makes sense to try to understand the physics of the ef-
fect in this prototype but realistic model. It allows us to
clarify the relation of the sign of the induced spin current
by a temperature gradient across the spin-flop transition

occuring at a critical field and serves as a bridge between
spintronics studies in bulk materials and model magnetic
systems. Besides the academic interest, quasi-one dimen-
sional compounds exist that can offer a platform for ob-
taining spin currents besides the bulk materials usually
studied.
In the following, we first employ standard molecular

dynamics (MD) simulations [18] to study the out of equi-
librium spin current generation by a thermal current in a
magnetic field. We find a sign reversal of the spin current
at the critical field between the antiferromagnetic and
canted ferromagnetic phase that we analyze by a simple
spin-wave theory. The divergence of the induced current
at the spin-flop transition, could be observed in large
spin quasi-one dimensional spin chain compounds. The
picture of the far-out of equilibrium spin Seebeck effect
is corroborated by a simple spin-wave phenomenological
model and simulations in the linear response regime.

MODEL

The model we study is the classical antiferromagnetic
Heisenberg chain with easy-axis anisotropy given by the
Hamiltonian,

H =

L∑
l=1

J⊥(S
x
l S

x
l+1 + Sy

l S
y
l+1) + ∆Sz

l S
z
l+1 − hSz

l , (1)

where Sl is a unit vector with components Sx,y,z
l , J⊥ > 0

is the in-plane and ∆ > 0 the easy-axis exchange inter-
actions with ∆ > J⊥ and h the magnetic field. We will
use the common parametrization Sx

l = sin θl ·cosϕl, S
y
l =

sin θl · sinϕl, S
z
l = cos θl.

The spin dynamics is given by Landau-Lifshitz equations
of motion,

d

dt
Sl = Sl ×

(
− ∂H

∂Sl

)
. (2)

To study far-out of equilibrium transport, we use a
straightforward numerical method, simulating the micro-
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scopic heat transfer by embedding the spin system be-
tween two Langevin thermostats at temperatures TL, TR,
realized by two Heisenberg chains of length NL, NR. We
apply the Heun method [18] to numerically integrate the
stochastic version of the Landau-Lifshitz-Gilbert equa-
tion for magnetic systems,

(1+α2)
d

dt
Sl = Sl×(ξl−

∂H

∂Sl
)−αSl

[
Sl×(ξl−

∂H

∂Sl
)
]
(3)

where α is a damping coefficient and ξl a white Gaussian
noise representing the thermostat at temperature T ,

⟨ξl(t)⟩ = 0, ⟨ξl(t1)ξk(t2)⟩ = 2αTδlkδ(t1 − t2).

The spin JS and energy JE currents are given by the
corresponding spin and energy continuity equations [19,
20],

JS =
∑
l

J⊥(S
x
l S

y
l+1 − Sy

l S
x
l+1) (4)

JE = −
∑
l

J2
⊥(S

x
l−1S

z
l S

y
l+1 − Sy

l−1S
z
l S

x
l+1)

− J⊥∆Sz
l−1(S

x
l S

y
l+1 − Sy

l S
x
l+1)

− J⊥∆(Sx
l−1S

y
l − Sy

l−1S
x
l )S

z
l+1. (5)

We first establish the phase diagram, in the zero tem-
perature limit, by considering the high field region where
θl = θ, ϕl+1 − ϕl = π, obtaining by minimization of the
energy,

Eferro = −J⊥ sin2 θ +∆cos2 θ − h cos θ

z ≡ cos θ =
h

2(J⊥ +∆)
. (6)

The critical field hf = 2(J⊥ + ∆) above which we have
the ferromagnetic phase is obtained setting z = 1. The
critical magnetic field hc, above which we have a canted
ferromagnetic phase and below an antiferromagnetic one
with θl+1 − θl = π, is obtained by equating the energies
of the two states

Eferro = Eafo = −∆, hc = 2
√
∆2 − J2

⊥.

MD RESULTS

In Fig.1 we show the ratio of the mean spin current
⟨JS⟩ to the mean thermal current ⟨JQ⟩ = ⟨JE⟩ − h⟨JS⟩.
The mean values, ⟨O⟩ = 1

L ⟨
∑

l Ol⟩, Ol a local quantity,
are obtained by averaging over about 108 samples by

sweeping over all lattice sites (we take, NL = NR =
L/2). The thermal current is induced by setting the
left (right) baths at different temperatures TL(TR), cre-
ating a constant temperature gradient along the chain.
In the middle of the chain (l = 1, L) the damping coef-
ficient α and the white Gaussian noise ξl are set equal
to zero. The mean temperature is T = 0.02, with up to
TL = 0.03, TR = 0.01. Here, J⊥ = 0.8 and we take
∆ = 1 as the unit of energies and temperature, implying
critical fields hc = 1.2, hf = 3.6.
Concerning the numerical simulation, we find that the

results are essentially independent of the temperature
gradient within the accuracy of the simulation. The ther-
mal gradient induces a thermal current, which in turn
induces a spin current. Being a second order effect, the
measured spin current shows rather large fluctuations in
the data compared to the thermal current. Thus we use
relatively large temperature gradients to improve the ac-
curacy of the data. In the particular simulations we used
as baths isotropic antiferromagnetic Heisenberg chains
(J⊥ = ∆ = 1) in zero magnetic field for which the energy-
temperature relation is known. However, we found that
the use of other baths, e.g. a ferromagnetic chain, or
a phonon bath, does not qualitatively change the spin
current-thermal current relation.
The most notable feature in the data in Fig.1 is the

sharp reversal of the spin current at the spin-flop tran-
sition (to be dicussed later in the framework of a spin
wave theory) and the size dependence indicating a di-
verging spin current in the zero temperature limit. In
the low field antiferromagnetic phase the spin current is
in the same direction as the thermal current, while in
the ferromagnetic one it is opposite to the thermal cur-
rent. Of course, as expected, reversing the direction of
the magnetic field, reverses this relation. In the second
part of the figure (below), we show the magnetic field de-
pendence of the average magnetization ⟨Sz⟩ and nearest
neighbor spin correlation ⟨Sz

l+1S
z
l ⟩, clearly indicating the

development of the three magnetic phases.
In Fig.2, we show the same quantities at a higher tem-

perature where the transitions are smoothed out but the
same features remain. Also, the finite size effects are re-
duced as well as the ratio of the spin to thermal current,
in relation to the temperature increase.
In Fig.3 we show the field dependence of the spin and

thermal conductivities separately. While the thermal
current shows anomalies at the spin-flop and ferromag-
netic transition, the spin current is clearly responsible for
the sign changes and overall behavior shown in Fig.1.
Finally in Fig.4 we show the temperature dependence

of the spin Seebeck effect by the ratio ⟨JS⟩/⟨JQ⟩ at
h = 0.8. In this field we are at the antiferromagnetic
regime at low temperatures and the sign of the ratio is
positive. Raising the temperature, the antiferromagnetic
phase ”melts” with the appearance of an increasing num-
ber of domain walls, till a critical temperature T ∼ 1
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FIG. 1. Ratio of spin to thermal current as a function
of magnetic field for J⊥ = 0.8. The mean (TL + TR)/2
temperature is T = 0.02 and the system sizes, L =
160 (blue), 320 (green), 640 (red), 1280 (black). Also shown
below the mean magnetization (black line) and nearest neigh-
bor spin-spin correlation (black triangles).

-1

 1

<
JS

>
/<

JQ
>

-0.5

 0

 0.5

 1

 0  1  2  3  4  5  6hc hfh

<Sz>
<Sz

l+1 Sz
l>

FIG. 2. Ratio of spin to thermal current as a func-
tion of magnetic field for J⊥ = 0.8. The mean (TL +
TR)/2 temperature is T = 0.2 and the system sizes, L =
160 (blue), 320 (green), 640 (red). Also shown below the mean
magnetization (black line) and nearest neighbor spin-spin cor-
relation (black triangles).

where we observe a change to a negative sign of the spin
current, as in the ferromagnetic regime. To get an insight
to this picture we show the temperature dependence of
the uniform magnetization, rather small at this field and
the decreasing nearest neighbor antiferromagnetic spin-
spin correlations.
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FIG. 3. Spin and thermal conductivities as a function
of magnetic field for J⊥ = 0.8. The mean (TL + TR)/2
temperature is T = 0.02 and the system sizes, L =
160 (blue), 320 (green), 640 (red), 1280 (black).

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2
T

<Js>/<JQ>
<Sz>

<Sz
l+1Sz

l>

FIG. 4. Ratio of spin to thermal current, magnetization and
nearest neighbor correlations as a function of temperature for
a magnetic field h = 0.8 and L = 160.

SPIN-WAVE ANALYSIS

We can reach an understanding of the spin current sign
reversal and divergence at the spin-flop transition, by
considering a simple linear spin-wave theory. First, in the
high field |h| > hc canted ferromagnetic phase, linearizing
in Sx

l , S
y
l the equations of motion (2), we obtain,

Ṡx
l = −Sy

l (2∆z − h) + zJ⊥(S
y
l+1 + Sy

l−1)

Ṡy
l = +Sx

l (2∆z − h)− zJ⊥(S
x
l+1 + Sx

l−1)],

(the dot indicating the time derivative). With the sub-
stitution,
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Sx
l ± iSy

l = uei(ql−ω±t), (7)

we obtain the spin-wave spectrum,

ω± = ±h∓ 2z(∆− J⊥ cos q)

with positive eigenfrequencies,

ω = h
(
1− ∆− J⊥ cos q

J⊥ +∆

)
. (8)

Using (4,5,7), by substituting the values of Sx,y,z
l for a

spin-wave of wavevector q we obtain for the spin and
thermal current per unit length,

jsq = J⊥u
2 sin q,

jϵq = = −2J⊥u
2(J⊥ cos q −∆)z · sin q

u2 = 1− z2

jQq = jϵq − hjsq

jQq = −
(J⊥(1 + cos q)

∆ + J⊥

)
· hjsq .

Thus we see that in the high field region, for h > 0
the spin and thermal current have opposite sign, jQq >

0, jsq < 0 and of course for h < 0, jQq > 0, jsq > 0.
In the low field antiferromagnetic region, the equations

of motion are,

Ṡx
2l = −Sy

2l(2∆Sz
odd − h) + Sz

evenJ⊥(S
y
2l+1 + Sy

2l−1)

Ṡy
2l = +Sx

2l(2∆Sz
odd − h)− Sz

evenJ⊥(S
x
2l+1 + Sx

2l−1)

Ṡx
2l+1 = −Sy

2l+1(2∆Sz
even − h) + Sz

oddJ⊥(S
y
2l + Sy

2l+2)

Ṡy
2l+1 = +Sx

2l+1(2∆Sz
even − h)− Sz

oddJ⊥(S
x
2l + Sx

2l+2),

with Sz
odd,even the alternating Sz component at the odd,

even sites. With the substitution,

Sx
2l ± iSy

2l = u±e
iq2l−ω±t

Sx
2l+1 ± iSy

2l+1 = v±e
iq(2l+1)−ω±t

and taking e.g. Sz
even = +1, Sz

odd = −1, we obtain the
eigenvalue problem,

(
±(2∆ + h) ±2J⊥ cos q
∓2J⊥ cos q ∓(2∆− h)

)(
u±
v±

)
= ω±

(
u±
v±

)
for the frequency spectrum,

ω+± = +h± 2
√

∆2 − J2
⊥ cos2 q

ω−± = −h± 2
√
∆2 − J2

⊥ cos2 q. (9)

The positive frequency dispersions are, ω±+ = ±h +

hc

√
∆2−J2

⊥ cos2 q

∆2−J2
⊥

. The lower frequency dispersion ω−+

vanishes as q → 0 at the critical field hc, signaling the
spin-flop transition.
Setting u−− = cosϕ, v− = sinϕ, tanϕ =

−∆−
√

∆2−J2
⊥ cos2 q

J⊥ cos q , we obtain the currents for the lower
frequency dispersion,

jsq = −J⊥u− · v− sin q = J⊥
J⊥ cos q

2∆
sin q

jϵq =
1

2
J2
⊥(v

2
− − u2

−) sin 2q

=
1

2
J2
⊥

√
∆2 − J2

⊥ cos2 q

∆
sin 2q

jQq = js · (hc ·

√
1 +

J2
⊥(1− cos2 q)

∆2 − J2
⊥

− h),

jsq/j
Q
q > 0. (10)

For the higher frequency dispersion ω++, setting, u+ =

cosϕ, v+ = sinϕ, tanϕ =
−∆+

√
∆2−J2

⊥ cos2 q

J⊥ cos q , we obtain
the currents,

jsq = J⊥u+v+ sin q = −J⊥
J⊥ cos q

2∆
sin q

jϵq =
1

2
J2
⊥(u

2
+ − v2+) sin 2q

=
1

2
J2
⊥

√
∆2 − J2

⊥ cos2 q

∆
sin 2q

jQq = js · (−2
√

∆2 − J2
⊥ cos2 q − h)

jsq/j
Q
q < 0.

Thus, in the antiferromagnetic region, as observed in
the simulations above, for |h| < hc the spin and ther-
mal current of the dominating lower frequency disper-
sion spin-waves have the same sign jsq/j

Q
q > 0. We can

also get a hint on the diverging behavior of ⟨Js⟩/⟨JQ⟩ for
h → hc from (10) as at low energies for q → 0 this ratio
diverges.

”LANDAUER” APPROACH

The classical Heisenberg chain is a strongly interact-
ing model with nonlinear equations of motion describing
the spin dynamics. Therefore we expect normal trans-
port coefficients [16] e.g. finite thermal and spin conduc-
tivity, due to spin wave - spin wave scattering, although
the anomalous behavior of spin transport in the isotropic
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Heisenberg model is presently in the focus of many the-
oretical studies [17].

Nevertheless, for this open system with baths, we can
obtain a heuristic description, shown in Fig.5, of the spin
to thermal current ratio over the whole phase diagram by
considering a phenomenological ”Landauer” type model.
This can be justified by the low temperature in the sim-
ulations which implies a low spin wave density.

Assuming that spin and energy currents are emitted
at the left-right leads at temperatures TL,R, (βL,R =
1/TL,R), we obtain for h < hc (antiferromagnetic region),

⟨JS⟩ =
∑
±

∫ +π/2

0

dq

2π
(nL

±q − nR
±q)j

s
±q

⟨JQ⟩ =
∑
±

∫ +π/2

0

dq

2π
(nL

±q − nR
±q)j

Q
±q

summing the contributions over the positive frequency
dispersions (9) with nL,R

±q = 1/(eβL,Rω±q −1) (here we as-
sume for simplicity a bosonic thermal distribution func-
tion). Similar expressions are obtained for h > hc sum-
ming over the positive frequency dispersion (8).
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FIG. 5. Spin current to thermal current ratio and magneti-
zation as a function of magnetic field for J⊥ = 0.8. Average
temperature T = (TL + TR)/2 = 0.02.

LINEAR RESPONSE

Last but not least, in linear response the spin and ther-
mal currents are related by transport coefficients Cij ,(

JQ

JS

)
=

(
CQQ CQS

CSQ CSS

)(
−∇T
∇h

)
, (11)

where CQQ = κQQ (Css = σss) is the heat (spin) conduc-
tivity. The coefficients Cij are given by the thermal aver-
age of time-dependent current-current correlation func-

tions in a closed system with periodic boundary condi-
tions,

Ci,j =
1

L

∫ ∞

0

dt⟨J i(t) · Jj(t = 0)⟩.

The time dependence is obtained by the same molecular
dynamics procedure (3) after equilibrating the system at
a given temperature and then switching-off the thermal
noise. In Fig.6 we show two situations, (i) a system with
no spin accumulation by setting ∇h = 0, relevant to
an open system and (ii) a system with no spin current,
⟨JS⟩ = 0 giving the spin Seebeck coefficient S = ∇h

∇T =
CSQ

CSS
. For the open system, we find the same behavior of

⟨JS⟩/⟨JQ⟩ as in the MD simulations.
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FIG. 6. Linear response coefficients as a function of magnetic
field at J⊥ = 0.8 for L = 160 (blue) and L = 320 (red) at
temperature T = 0.05.

CONCLUSIONS

We have studied the spin Seebeck effect in the
most simple prototype classical easy-axis magnetic chain
model by molecular dynamics simulations and basic spin
wave theory. We have found a sign change at the spin
flop transition and clarified the role of spin wave exci-
tations in the low field antiferromagnetic phase as well
as in the high field ferromagnetic phase. This classical
model could be realized experimentally in quasi-one di-
mensional large spin compounds but also provides a guide
to the spin Seebeck effect studied over many years in
bulk magnetic materials. The observations of this study
should be extended to quantum spin systems, as the spin-
1/2 easy-axis Heisenberg model, where the integrability
of the model [15] allows an exact evaluation of the spin
Seebeck coefficient. The scope is to assess the potential
of the large variety of spin chain materials for spintronic
applications.
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Phys. Rev. B 93, 014425 (2016).

[8] Y. Yamamoto, M. Ichioka, and H. Adachi, Phys. Rev. B
100, 064419 (2019).

[9] D. Reitz, J. Li, W. Yuan, J. Shi, and Y. Tserkovnyak,
Phys. Rev. B 102, 020408(R) (2020).

[10] Y. Yamamoto, M. Ichioka, and H. Adachi, Phys. Rev. B
105, 104417 (2022).

[11] D. Reitz and Y. Tserkovnyak, arXiv:2307.02734.
[12] H.J. Mikeska and M. Steiner, Advances in Physics, 40,

191 (1991).
[13] D. Hirobe, M. Sato, T. Kawamata, Y. Shiomi, K. Uchida,

R. Iguchi, Y. Koike, S. Maekawa, and E. Saitoh, Nat.
Phys. 13, 30 (2017).

[14] Y. Chen, M. Sato, Y. Tang, Y. Shiomi, K. Oyanagi,
T. Masuda, Y. Nambu, M. Fujita and E. Saitoh, Nat.
Comm. 12:5199 (2021).

[15] C. Psaroudaki and X. Zotos, J. Stat. Mech. 063103
(2016).

[16] A.V. Savin, G.P. Tsironis and X. Zotos, Phys. Rev. B72,
140402(R) (2005).

[17] Google Quantum AI and Collaborators,
arXiv:2306.09333.

[18] J. L. Garcia-Palacios and F. J. Lazaro, Phys. Rev. B58,
14937 (1998)

[19] F. Naef and X. Zotos, J. Phys. C 10, L183 (1998).
[20] F. Heidrich-Meisner, A. Honecker, and W. Brenig Phys.

Rev. B71, 184415 (2005).


	Spin Seebeck effect in the classical easy-axis antiferromagnetic chain
	Abstract
	Introduction
	Model
	MD results
	Spin-wave analysis
	''Landauer" approach
	Linear response
	Conclusions
	Acknowledgments
	References


