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Topological phases have been reported on self-similar structures in the presence of a perpendicular
magnetic field. Here, we present an understanding of these phases from a perspective of spectral flow
and charge pumping. We study the Harper-Hofstadter model on self-similar structures constructed
from the Sierpinski gasket. We numerically investigate the spectral flow and the associated charge
pumping when a flux tube is inserted through the structure and the flux through the tube is
varied adiabatically. We find that the nature of the spectral flow is qualitatively different from
that of translationally invariant non-interacting systems with a perpendicular magnetic field. We
show that the instantaneous eigenspectra can be used to understand the quantization of the charge
pumped over a cycle, and hence to understand the topological character of the system. We show
the correspondence between the local contributions to the Hall conductivity and the spectral flow
of the edge-like states. We also show that the edge-like states can be approximated by eigenstates
of the discrete angular-momentum operator, their chiral nature being a consequence of this.

I. INTRODUCTION

The study of topologically non-trivial phases is an
important research area in condensed matter physics.
In the context of non-interacting systems, these phases
are well understood and classified in the presence of
translational symmetry [1–9]. Also, in the absence
of translational symmetry, topologically non-trivial
phases have been reported in amorphous solids and
quasicrystalline systems which retain the notion of a
well-defined bulk and edge [10–12]. These phases are
identified by the presence of their signature robust edge
states and are characterized by respective topological
invariants.

In recent years, the study of topologically non-trivial
phases in systems which lack the notion of a well-defined
bulk and edge, has gained interest. Self-similar struc-
tures like finite truncations of the Sierpinski carpet and
the Sierpinski gasket have been studied in the presence
of a uniform perpendicular magnetic field [13–16]. Also,
generalized two-orbital Bernevig-Hughes-Zhang models
have been studied on such structures [17, 18]. Several
non-trivial phases have been reported in such systems.
These phases seem to be identified with the presence of
gapless ‘edge-like’ states which are chiral in nature and
are localized around each of the intrinsic ‘holes’ present
in these structures. Also, the Hall conductivity in such
phases is shown to be quantized and robust to small
disorders.

Although, topological phase diagrams of some well-
known models on self-similar structures are present in
the literature, only a limited microscopic understanding
of such phases is available at present. For example, in
the case of self-similar structures, understanding of these
topologically non-trivial phases in terms of winding
of the eigenstates over some manifold, analogous to
the winding of the Bloch states in the k-space for
translationally invariant non-interacting systems, is not

present at the moment. Given the lack of an ‘eigenstate
winding’ perspective for self-similar structures, we
use the perspective of adiabatic charge pumping in
this work to understand the emergence of topology in
self-similar systems and the quantization of real-space
indices. Adiabatic pumping in translationally invariant
non-interacting systems have been thoroughly studied.
These systems form multiple magnetic bands (or Landau
levels in the continuum case) when subjected to a
perpendicular magnetic field. When additional flux is
threaded through the system using a thin long solenoid,
some states flow across the band-gap from one band
to another. The Chern number can be expressed as
the number of such states flowing across the band-gap.
However, it is presently unclear if it is possible to
directly translate these ideas and results over to the case
of self-similar systems.

From our study, we find that the nature of the spectral
flow is qualitatively different from that of translationally
invariant non-interacting systems with perpendicular
magnetic field. In this case, the spectral flow happens
throughout the eigen-spectra as opposed to the case with
translationally invariant systems where spectral flow is
observed across the band gap. We find that the position
of the flux-tube plays an important role in determining
the states undergoing spectral flow. We show that
the charge pumped is quantized in the adiabatic limit,
irrespective of the position of the flux-tube. We show
that the instantaneous eigenspectra can be used to
understand the quantization of the charge pumped
over a cycle, making it a diagnostic tool to study the
topological character of self-similar systems. We also
explicitly calculate the local Hall conductivity of the
system. We show the correspondence between the local
contributions to the Hall conductivity and the spectral
flow of the edge-like states. We also show that the
edge-like states can be isolated from its degenerate
group of states by tuning the flux through the flux-tube
and find that they can be approximated by eigenstates
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of the discrete angular-momentum operator, their chiral
nature being a consequence of this.

This article is organized in the following way. In Sec.
II, we define the system by defining the model and the
self-similar structures which are studied in this work. In
Sec. III, we describe the adiabatic charge pumping in the
system by showing the instantaneous eigenspectra and
by describing the quantization of the associated charge
pumping. In Sec. IV, we study the properties of indi-
vidual edge-like states. In Sec. V, we calculate the Hall
conductivity, show its local contributions, and show its
topological character by showing its quantization and ro-
bustness to disorder. Finally, we present a summary and
discuss the outlook of this work in Sec. VI.

II. THE SETUP

We aim to study non-interacting spinless fermions on
self-similar structures in the presence of a uniform mag-
netic field. The structures we consider are embedded
in two dimensions and the magnetic field is perpendicu-
lar to the embedding surface. In this work, we consider
two different discretizations of the Sierpinski gasket (SG),
namely SG-3 and SG-4. These structures are constructed
by discretizing the recursive generation scheme of the
Sierpinski Gasket. Finite truncations of such structures
are said to be of generation g if the recursion scheme is
truncated after the gth iteration. The detailed construc-
tion of these structures is mentioned in Ref. [18]. Exam-
ples of finite generation of SG-3 and SG-4 are shown in
Fig. 1. We choose to primarily look at these two struc-
tures because of the relatively slow growth in the system
size N as a function of the generation g. For example,
N = 3g for SG-3 and N = (3g + 3)/2 for SG-4, whereas
N = 8g for a self-similar structure constructed from the
Sierpinski Carpet. This makes it comparatively easier to
numerically access higher generations and reach closer to
the limiting fractional dimension for SG-3 and SG-4.

The Hamiltonian for the system is the Harper-
Hofstadter Hamiltonian given by:

H = −
∑
<jk>

e−iθjkc†jck + h.c. (1)

where j, k are the labels for the sites positioned at
~rj and ~rk, <> denotes the nearest neighbors, and

θjk = (1/φ0)
∫ ~rj
~rj

A · dl denotes the Peierls phase with

the flux quantum φ0 = h/e. Here, A is the associ-
ated magnetic vector potential. For all the numerics,
we have used the Landau gauge, A = (0, Bx, 0).
We have parametrized the magnetic strength by
B = 2πφ/(

√
3a2/4), where a is the distance between

nearest neighbor sites and 2πφ is the flux piercing
through the smallest triangles of the structures.

(a) (b)

FIG. 1. (a) SG-3 with g = 7, and (b) SG-4 with g = 7. For
the calculation of the real space Chern number using Eq. (3),
we choose a subsection of the system and divide it into three
partitions. The partitions are shown with red, green and blue
and the projectors onto these partitions are labeled A, B, and
C respectively.

To study the spectrum, we look at the normalized den-
sity of states ρE , which is given by

ρE(E) =
∑
n

1

N
δ(E−En) =

∑
n

1

Nπ
lim
ε→0

ε

(E − En)2 + ε2

(2)
where N is the total number of eigenstates and n denotes
the index of each eigenstate. We also calculate the real
space Chern number for different fillings using Kitaev’s
prescription given by

C(P ) = 12πi(Tr(APBPCP )− Tr(APCPBP )) (3)

where A,B,C are the projections onto the three partitions
shown in Fig. 1, and P =

∑
n∈occ |n〉 〈n| is the projector

onto the set of occupied eigenstates. The normalized den-
sity of states and the Chern numbers as a function of the
magnetic field are shown in Fig. 2. It is immediately clear
from Fig. 2 that most of the spectrum has a very low ρE .
This is significantly different from the Hofstadter butter-
fly on lattices with open boundary conditions which have
well-defined bulk regions (high ρE) and edge regions (low
ρE) in the spectrum. Moreover, for both SG-3 and SG-
4, almost the entire region with low ρE is characterized
by C = ±1 and all states in these regions are edge-like
states. A few examples of such edge-like states can be
found in references [13, 17, 18].

III. ADIABATIC CHARGE PUMPING

We insert an infinitely long, thin solenoid through a
given point (x0, y0). The flux, 2πϕ, through the solenoid
is then varied adiabatically from 0 to 2π. We are in-
terested in studying the response of the system to the
change in flux. To study that, it is important to study
the many-body ground state of the system. Since the
flux is pumped adiabatically and the Hamiltonian is non-
interacting in nature, the many-body ground state of the
system at a given instant is the Slater determinant of the
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FIG. 2. Density of states and the real space Chern number
for (a) SG-3, N = 36 and, (b) SG-4, N = (37 + 3)/2. The
density of states, ρE , is computed using Eq. (2) with ε = 10−3

and the Chern number is computed using Eq. (3).

occupied single-particle eigenstates of the instantaneous
Hamiltonian, H(ϕ), with a dynamical and a geometric
phase factor. So we first take a look at the single-particle
eigenstates and eigenvalues of H(ϕ). For the rest of the
numerics in the text, given a state |ψ〉 =

∑
j ψj |rj〉, the

localization is shown by computing the normalized onsite
density, ρj = |ψj |2/max(|ψj |2).

A. Instantaneous spectrum and spectral flow

The form of the Hamiltonian H(ϕ) is the same as
in Eq. (1), except that an additional Peierls phase,

θ̃jk = (e/h)
∫ ~rk
~rj

Aϕ · dl, gets added to each bond due to

the flux-tube. Here Aϕ is the vector potential due to
the flux tube, and for the numerical computations, it is
taken to be Aϕ = (0, ϕ/r, 0) in cylindrical coordinates.
The spectrum of H(ϕ) at ϕ = 0 and ϕ = φ0 are identical
as the Hamiltonian returns to itself, up to a gauge
transformation. In fact, the spectrum is periodic in ϕ
with a period of φ0. But for ϕ 6= nφ0, n ∈ Z, the
spectrum of the Hamiltonian changes in general resulting
in the flow of the energy of individual eigenstates. We
track the flow of the energies of the eigenstates as a
function of ϕ. We say that a given state has undergone
a spectral flow if the state does not return back to the
same initial energy as ϕ is changed from 0 to φ0.

Figure 3 shows the spectral flow of the Harper-
Hofstadter model on SG-3. We would like to highlight
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FIG. 3. Spectral flow for SG-3, N = 37 with φ/φ0 = 0.3. (a)
shows the flow of the eigenstates as a function of ϕ/φ0 for a
part of the spectrum. (b) is a zoomed in version of the spec-
tral flow highlighting the nature of the flow. (c) shows the
localization of different edge-like states corresponding to dif-
ferent spectral flow (computed at ϕ/φ0 = 0.2). The coloured
dots in (b) represent the points at which the states in (c),
marked with corresponding colors, were computed. The po-
sition of the flux tube is marked by a red cross-hair on the
plots in (c).

the fact that the spectral flow here is qualitatively
different from that of the Harper-Hofstadter model on
a 2-dimensional lattice. In the case of a 2-dimensional
lattice, spectral flow is observed across the band-gap.
The states in the bulk undergoing spectral flow move in
energy (up or down depending on the Chern number),
from one band to the next band, across the gap. The
edge states, which lie entirely in the gap, undergo
spectral flow in the opposite direction to that of the bulk
states. In contrast, in the case of SG-3, spectral flow is
observed almost throughout the entire spectrum (in the
low ρE regions). Here, the states undergoing spectral
flow go from one group of degenerate states with low
degeneracy in the low ρE region to another, as opposed
to one ‘band’ to another or one high ρE region to another.

The states in the low ρE regions of the spectrum
can be qualitatively grouped into four groups (column
(b) of Fig. 3): (I) the states which flow up in energy
(positive spectral flow), (II) states which flow down in
energy (negative spectral flow), (III) states with almost
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FIG. 4. Fidelity computations for avoided crossings. Fidelity
is defined here as: Fn,m = 〈ψn(ϕ)|ψm(ϕ− δϕ)〉. For the nu-
merics, we have chosen δϕ = 0.01φ0 and N = 37. (a) shows
a part of the instantaneous spectrum when the flux tube is
placed inside one of the triangles of the second generation
(shown in Fig. 3(c)). The flow of two particular states, one
of them being primarily localized on the sites immediately
enclosing the triangle of the second generation and the other
being localized on the sites of the outermost triangle of the
SG, are marked in blue and green colors. (b) and (c) show
the fidelity of these two states as a function of ϕ. Large dips
in Fn,n and a correspondingly large peak in Fn,n−1 (Fn,n+1)
are seen when the highlighted states come close in energy
with another state localized on far off sites. These indicate
that the state |ψn〉 has flowed to |ψn−1〉 (|ψn+1〉) without any
significant hybridization. On the other hand, shallow dips in
Fn,n and a correspondingly small peak in Fn,n−1 (Fn,n+1)
are seen when the highlighted states come close in energy to
a state localized on sites relatively close to the highlighted
states. These indicate avoided crossings with significant hy-
bridization.

no change in energy, but are degenerate at ϕ = 0 with
states undergoing spectral flow, and (IV) states with
almost no change in energy and are not degenerate at
ϕ = 0 with states undergoing spectral flow. We find
that the states in group I are edge-like states localized
on the sites forming a loop which encloses the flux tube.
The states in group II are edge-like states localized on
the outermost triangle on SG-3. The states in group III
and IV, which do not undergo a spectral flow, are also
edge-like states but they are localized on sites forming
loops which do not enclose the flux tube. We find that
the real space localization is more or less the same for
all states belonging to a given group, for low values of
ϕ and sufficiently away form the point of avoided cross-
ings. This means that the states retain their edge-like
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FIG. 5. Change in the spectral flow due to the change in
the position of the flux tube for SG-3 (N = 36, φ/φ0 = 0.3).
Columns (a), (b) and (c) show a portion of the spectral flow
for three different positions of the flux tube. The position of
the flux tube is marked by a red cross-hair in the SG-3 di-
agrams at the top of the respective columns. A few typical
states which are localized on sites enclosing holes of different
generations are chosen and their spectral flows are highlighted
with different colors. Column (d) shows the localization of
these typical states (ϕ/φ0 = 0.2). To mark the correspon-
dence, we have put circles of respective colors on the top-left
corner of each of the localization plots. The black dashed line
shows the position of the Fermi energy, EF = 0.03. The figure
shows that only the edge-like states enclosing the flux tube
undergo spectral flow.

localization away from the avoided crossings during the
spectral flow. The representative real space localization
of the states in the above mentioned groups, for a given
position of the flux tube, are shown in column C of Fig.
3 for these four groups. Close to the avoided crossings,
the nature of the states changes due to hybridization.

The extent of hybridization is dependent on the
localization of the states; states localized nearby in
real-space hybridize strongly in the absence of any sym-
metry. Here, the states belonging to different groups are
edge-like states, localized on sites immediately enclosing
triangles of different generations. Hence the extent of
hybridization is not significant. This has been checked
by fidelity computations, shown in the Fig. 4. Fidelity is
defined as: Fn,m = 〈ψn(ϕ)|ψm(ϕ− δϕ)〉, where |ψn(ϕ)〉
and |ψm(ϕ)〉 are instantaneous eigenstates of the Hamil-
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tonian (H(ϕ) |ψn(ϕ)〉 = En(ϕ) |ψn(ϕ)〉), labeled by
labels n,m such that n > m =⇒ En ≥ Em. A high
value of Fn,m ≈ 1 means that the state |ψm(ϕ− δϕ)〉
flows to |ψn(ϕ)〉 without significant hybridization when
the flux ϕ is changed by an amount δϕ.

Why certain states undergo spectral flow and certain
states do not can be understood from their localization.
For states belonging to group I and II, the states are
always localized on a closed loop enclosing the flux
tube. Hence, they are sensitive to flux (Aharonov-Bohm
effect) and undergo spectral flow. On the other hand,
the states which belong to group III and IV are localized
on loops which do not enclose the flux tube. Hence,
the vector potential of the flux tube can be effectively
gauged out resulting in these states being not sensitive
to the flux. As a result, they do not show spectral
flow. This becomes further clear from Fig. 5 where we
show the change in the spectral flow by changing the
position of the flux. Clearly, a state localized on a given
loop only undergoes spectral flow when the flux tube is
enclosed within the loop. Also, for a bunch of degenerate
edge-like states localized on different loops, the flux tube
breaks the degeneracy if enclosed by one of the loops,
resulting in spectral flow of only the state enclosing the
flux tube (Fig. 6).

There are a few other states in the spectra which we
have not discussed in detail in this work. These states
belong to the very few high ρE regions in the spectra. In
terms of localization, they are predominantly bulk-like
in nature. Also, they do not show a clear spectral flow,
owing to the high ρE around them.

B. Charge transport from the instantaneous
spectrum

Let us consider a case where we have filled our system
to a certain Fermi energy, EF (dashed black line in
Fig. 5). At ϕ = nφ0 : n ∈ Z, let us denote the set of
states with positive spectral flow (group I in Sec. III A)
as {|ψpm〉} with energies {Em}, and the set of states
with negative spectral flow (group II in Sec. III A) as
{|ψnm′〉} with energies {Em′}. Here, m, m′ are the
labels for the eigenstates localized on sites immediately
enclosing a single triangle of a given generation of
SG-3, such that their energies are ordered increasingly
(Em < Em+1 for all m). Now, let us assume EF is such
that Em < EF < Em+1 and Em′−1 < EF < Em′ for
some m, m′.

When we vary the flux adiabatically by a unit through
the flux tube, the Hamiltonian returns back to itself (up
to a gauge transformation), but the states undergoing
spectral flow do not return back to themselves. In the
beginning of the pumping cycle, ψpm, ψnm′−1 were
occupied and ψpm+1, ψnm′ were empty. During the

pumping cycle, the filled state ψpm gets pushed up in
energy across EF and flows to ψpm+1, and the empty
state ψnm′ flows down in energy across the EF to
ψnm′−1. As a result of this spectral flow, at the end of
the pumping cycle, ψpm+1 is filled and ψnm′−1 is empty.
This spectral flow is observed for all m, m′ such that
Em and Em′ are away from the gaps (regions with zero
ρE) in the energy spectrum at ϕ = 0. And as long as EF
is away from these gaps, exactly one state with positive
spectral flow and one state with negative spectral
flow cross the Fermi energy during the pumping cycle.
Now, as pointed out earlier in the previous subsection,
ψnm′∀m′ are localized on the sites on the outermost
triangle and ψpm∀m are localized on the closest sites
enclosing the flux tube. So, when a unit flux is pumped,
a single state localized on the outer-most sites of SG-3
is emptied and a single state localized near the flux tube
gets filled, effectively pumping a unit charge radially
from the outer-most loop to the loop closest to the flux
tube. The mathematical details corresponding to the
above arguments can be found in appendix A.

We want to highlight the local nature of the radial
charge transport happening in this case. From the in-
stantaneous spectrum (columns (a), (b), (c) of Fig. 5), it
is clear that edge-like states, localized on sites immedi-
ately enclosing different triangles of SG-3, undergo spec-
tral flow and cross the Fermi energy as the position of
the flux tube is changed. As described in the previous
paragraph, only these states which flow across the Fermi
energy contribute to the radial charge transport as a re-
sult of adiabatic pumping. So, given the position of the
flux-tube and the Fermi energy, it is possible to exactly
determine which edge-like states are contributing to the
transport. Also, the position of the flux-tube can be used
as a tuning parameter to selectively pump particles from
sites immediately enclosing a particular triangle to the
outermost triangle. In Sec. V, we also compute the local
Hall conductivity in a slightly different setting which also
reveals the local nature of the transverse charge transport
in greater detail.

IV. PROPERTIES OF EDGE-LIKE STATES

Pumping flux through a flux-tube at a given position
not only makes it possible to determine how the states
contribute to the transport, but it also makes it possible
to numerically study each edge-like state individually.
The edge-like state localized on sites immediately
enclosing triangles of a given generation are usually
degenerate in energy as there are often multiple triangles
of a given generation in SG-3. One example is shown
in Fig. 6(a), where three states are degenerate, because
there are three triangles of the second generation. The
number of triangles of a given generation increases
exponentially with the generation. So, it becomes hard
to isolate a single edge-like state localized on the sites
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FIG. 6. The figure shows the degeneracy between edge-like
states of SG-3 (N = 37) at φ = 0.3φ0, highly localized on sites
immediately enclosing triangles of the second generation, be-
ing lifted when the flux through the tube, ϕ, is changed from
0 to 0.07φ0. (a) shows the localization of a single eigenstate
from a bunch of triply degenerate edge-like states at ϕ = 0.
Upon increasing ϕ to ϕ = 0.07φ0, the degeneracy breaks. One
of the states, shown in (b), is lifted up in energy. The other
two remain at the same energy as ϕ = 0, one of which is
shown in (c).

immediately enclosing a single triangle of high enough
generation. Now, by positioning the flux tube in a given
triangle, the energy of the edge-like state localized on
sites enclosing that particular triangle increases as we
pump flux through the tube (grouped into group I in
Sec. III A). The energy of the remaining degenerate
partners of that edge-like state does not change with
flux as they localize on sites which do not enclose the
flux-tube (grouped into group IV in Sec. III A). One
such instance of degeneracy breaking is shown in Fig.
6(b,c).

Now that we are able to break the degeneracy, we
can study the properties of a single edge-like state. An
edge-like state on SG-3, by definition, is highly localized
on the sites immediately enclosing a triangle of a given
generation (Fig. 7). Let us denote the set of such sites by
P. Notice that the sites in P, together with the bonds
with their respective nearest neighbors in P, form a ring
and hence they can be indexed linearly from 1 to NP ,
where NP is the total number of sites in P. Now, given
an edge-like state, |ψpm〉 =

∑
j ψ

m
j |rj〉, we construct a

state |ψm〉 =
∑

rj∈P ψ
m
j |rj〉. |ψm〉 is easy to study due

to its one dimensional nature and can be considered a
good approximation for |ψpm〉 for large system sizes.

The exact expression of the edge-like states is gauge
dependent. So to study |ψm〉, we first transform to
a different gauge where the Hamiltonian, H, becomes
translationally invariant on the sites in P. The gauge

transformation is given by: c†j → e−iΘjc†j , where

Θ1 = 0, Θj =
∑n=j
n=2 θn−1,n − (j − 1)2πΦ/NPφ0 for

j ∈ {2, 3, . . . , NP}, where 2πΦ is the total flux threaded
through the area enclosed by the sites in P. Let us call
this the ‘translationally invariant’ gauge. Let the trans-
formed state be denoted by |ψ′m〉 =

∑
j ψ
′m
j |rj〉. We do

a Fourier transform, ψmκ =
∑
j e
i2πκj/NPψ′mj , to go into

the angular momentum basis. We find that, for a given

= 0.05 E=-0.0187 = 0.08 E=-0.015 = 0.2 E=-0.0

= 0.23 E=0.0037 = 0.3 E=0.0124 = 0.43 E=0.0285

14

12

10

8

6

4

2

0

log10( )

FIG. 7. Localization of a single edge-like state at different
values of ϕ. The colorbar shows log10(ρj). The values of ϕ
in the plots are given in units of φ0 and the values of the ϕs
for this figure are chosen as such to remain significantly away
from the avoided crossing points. We see that the weight
of the eigenstate on sites not in P (defined in Sec. IV) is
at least 3 orders of magnitude less than that of the sites in
P. ϕ = 0.2φ0 is a special case where the edge-like state is
completely localized on the sites in P.

m, ψmκ has two sharp peaks at κ and NP/2 + κ, (one
peak being significantly greater than the other) for some
value of κ = κ0 (Fig. 8), as long as we are sufficiently
away from an avoided crossing. The peaks change from
κ0 → κ0 +1 and NP/2+κ0 → NP/2+κ0 +1 as the flux,
ϕ/φ0, is changed from 0 to 1 (Fig. 8 (a)). Moreover, we
also find that the position of the peaks changes linearly
as we change m (Fig. 8 (b)). These features are reminis-
cent of eigenstates of a particle on an NP -polygon with
a flux threaded through it, or in other words, eigenstates
of the discretized angular momentum operator [19]. In
fact, these properties are captured by approximating,

|ψ′m〉 ≈
∣∣∣ψ̃m〉 = ψmκ0

|κ0〉+ψmκ0+NP/2
|κ0 +NP/2〉, where

|κ0〉 and |κ0 +NP/2〉 are eigenstates of the discretized
angular momentum operator with eigenvalues κ0 and

κ0 + NP/2 respectively.
∣∣∣ψ̃m〉 also captures the chiral

nature of the edge-like states as shown in Fig. 9.

For a given magnetic field parameterized by φ, there
are some special values of the flux ϕ for which an
edge-like state can be completely localized on the sites
in P (for example, ϕ = 0.2φ0 in Fig. 7). For such values
of ϕ, the edge-like state exactly becomes an eigenstate
of the discretized angular momentum operator in the
‘translationally invariant’ gauge. This shows that the
flux through the flux-tube can also be used as a tuning
parameter to completely localize an edge-like state on
a ring and host exact eigenstates of the angular mo-
mentum operator on SG-3. The details of the condition
which must be satisfied to generate such an edge-like
state is given in appendix B.
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FIG. 8. The variation in Fourier amplitudes of edge-like
states, ψmκ vs κ, for different values of ϕ and different val-
ues of m. In this case, N = 37 and NP = 96. Row (a) shows
ψmκ vs κ for a single edge-like state (m = 10). As ϕ/φ0 is var-
ied from 0 to 1, the peaks at κ = 24 and NP/2 + κ = 72 shift
by one unit to κ = 25 and NP/2+κ = 73. Row (b) shows ψmκ
vs κ for different edge-like states which are primarily localized
on the sites in P. The insets in both (a) and (b) show how
strongly the states are localized on the sites in P. The states
whose Fourier components are shown are marked with red on
the instantaneous spectra. In both (a) and (b), the values of
ψmκ have been normalized such that

∑
κ |ψ

m
κ |2 = 1.

V. LOCAL HALL CONDUCTIVITY AND ITS
ROBUSTNESS TO DISORDER

In this section, we study local contributions to the Hall
conductivity, following the approach of [20]. Specifically,
we look at the Hall response of the system when the
system is subjected to a step-function electric potential.
To do this, we consider a horizontal cross-section at some
y = y0 and raise the potential of the system below this
cross-section by −V0. Such a potential can be treated in
a time dependent gauge, A(t) = (0,−A(t)δ(y − y0), 0),
where A(t) = V0t. The time dependent Hamiltonian
then becomes H(t) = eiA(t)ϑ(y0)He−iA(t)ϑ(y0), where
ϑ(y0) =

∑
j θ(yj − y0) |rj〉 〈rj |. Now, working in the

adiabatic limit, we look at the transverse current
across a vertical cross-section at some x = x0. For a
non-interacting finite system in the above mentioned
setting, it has been shown that the site-resolved Hall-
conductivity, σxy(r), can be expressed as a local Chern
marker in the adiabatic limit [20]. We highlight here the
main ideas leading to this result in the context of our
system. The details of the calculation can be found in
Ref. [20] and references therein.
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FIG. 9. Time evolution under the action of (a) the approxi-
mate time evolution operator and (b) the exact time evolution
operator, projected onto a given energy window (Emin, Emax).
The initial state is localized on a site in P. The exact time evo-
lution operator, projected onto the energy window, is given by
U(t) =

∑
Emin<En<Emax

exp(−iEnt) |n〉 〈n|, where |n〉 is the
set of single particle eigenstates of the Hamiltonian H, with
energy En. The approximate time evolution operator is given

by Ũ(t) =
∑
Emin<Ẽn<Emax

exp
(
−iẼnt

)
|ñ〉 〈ñ|. |ñ〉 =

∣∣∣ψ̃n〉
for edge-like states localized primarily on P, where ψ̃n is the
approximation of the state using its first largest two Fourier
components as mentioned in Sec. IV, and |ñ〉 = |n〉 other-

wise. Ẽn = 〈ñ|H|ñ〉. Note that, at t = 0, both U and Ũ
act as a projection operator onto the set of states in the en-
ergy window. Comparing (a) and (b), we find that the chiral
nature of the edge-like states is well captured by the approx-
imate states mentioned in Sec. IV. For this calculation, we
have taken N = 37, NP = 96, Emin = −0.3 and Emax = 0.

Given that we are interested in the adiabatic limit,
we use the adiabatic Hamiltonian, K(t) = i[ṖI , PI ], to
generate the time-evolution. Here, PI is the instanta-
neous projection operator onto the occupied states de-
fined as PI =

∑
En<EF

|n(t)〉 〈n(t)|, where H(t) |n(t)〉 =

En |n(t)〉. With the adiabatic Hamiltonian, the instan-
taneous projection operator satisfies the von Neumann
equation

∂tPI(t) = −i[K,PI ]. (4)

Given the form of H(t), it is clear that PI =

eiV0tϑ(y0)Pe−iV0tϑ(y0), and hence K(t) = Ȧ(Pϑ(y0)Q +
Qϑ(y0)P ), where P = PI(t = 0) and Q = 1−P . The adi-
abatic transverse current operator, Jx(t), can be obtained
from the rate of change of the number of particles present
in one side of the vertical cross-section using the instanta-
neous von Neumann equation, as Jx(t) = i[K(t), ϑ(x0)],
where ϑ(x0) =

∑
j θ(xj − x0) |rj〉 〈rj |. The site-resolved

current operator can be defined as

JAx (rj , t) =
1

2
{δj , JAx (t)}, (5)

where δj = |rj〉 〈rj |. So, the site-resolved adiabatic cur-
rent, 〈JAx (rj , t)〉 = Trrj (PIJ

A
x (rj , t)), is then given by

〈JAx (rj , t)〉 = iȦTrrj (Pϑ(x0)Qϑ(y0)P ) + h.c.. (6)
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FIG. 10. (a-d) Site-resolved Hall conductivity, σxy, for the
Harper-Hofstadter model on SG-3 with N = 37, for EF =
0.03. The dashed horizontal line represents the cross-section
across which the potential difference is applied. The dashed
vertical line represents the cross-section across which the cur-
rent has been calculated. The sum over local Hall conduc-
tivity, C =

∑
r∈P 2πσxy(r), where P denotes the set of sites

which immediately enclose the cross-hair, are mentioned on
the plots up to four decimal places. (e) Variation of the local
sum of Hall conductivity, C, as a function of disorder strength
W for different positions R of the cross-hair as in (a-d), calcu-
lated for the Harper-Hofstadter model with onsite Anderson
disorder on SG-3 with N = 37, for EF = 0.03. Averaging has
been done with, Nw = 200, disorder realizations. The error
bars on the plot show the statistical standard deviation of C
over the disorder realizations.

Now, identifying Ȧ = −E, we get the expression for Hall
conductivity, σxy = 〈JAx (rj , t)〉/E, as

σxy(rj) = 2ImTrrj (Pϑ(x0)Qϑ(y0)P ). (7)

The local Chern marker is then defined as
C(rj) = 2πσxy(rj). This has been referred to as
the cross-hair marker in Ref. [20] due to the fact that
the horizontal line at y = y0 and x = x0 appear as

a cross-hair. An important thing to note here is that
the local Chern marker defined above is not unique for
a given system as the way to define the site-resolved
adiabatic current is not unique. The definition given in
Eq. (5) is one simple way to define such a local quantity.
Instead, the quantity which is physically relevant is the
sum of the local Chern marker over some given region.
This is because the sum of the local Chern marker over
a region can be expressed as the Hall conductivity which
derived from the total current leaking from that given
region. The current leaking from that given region is
defined as the rate of change of particles over the region
and does not have ambiguity in its definition as opposed
to the site-resolved adiabatic current.

Figure 10 (a-d) shows the adiabatic site-resolved Hall
conductivity calculated for our system. For the purpose
of comparing to the charge pumping picture, we have
kept the same Fermi energy for these computations as
that for the charge pumping computations. We find
that there are two significant local contributions to σxy,
one positive and one negative, as

∑
j σxy(rj) = 0 due

to the conservation of particle number over the entire
system. Fixing the cross-section (y = y0) across which
the potential difference is applied, when we change
the cross-section (x = x0) across which the transverse
current is calculated, we find numerically that the
positive contributions to σxy come only from the sites
close to the position of the cross-hair. More specifically,
we find that, given a position of the cross-hair, the
positive contributions to σxy come only from the sites
which enclose the cross-hair as long as the cross-hair is
not inside one of the smallest triangles of the structure.
The negative contribution comes solely from the sites on
the outer-most triangle of SG-3. What this suggests is
that, as long as we are away from the smallest possible
triangles of the structure, the contribution to the
transverse current comes primarily from the sites which
immediately enclose the cross-hair, or in other terms,
from the edge-like states which are localized on the sites
enclosing the triangle containing the cross-hair. This
shows the correspondence between the local contribution
to the Hall conductivity and the local nature of the
transverse charge transport in this system mentioned in
Sec. III B.

To see the quantized nature of the charge transport,
we look at the sum of the local Chern marker over the
sites in the proximity of the cross-hair. More specifically,
we look at

C =
∑
rj∈P

2πσxy(rj), (8)

where P denotes the set of sites which immediately
enclose the smallest triangle containing the cross-hair.
We consider this quantity as it is physically relevant
and it tells about the net charge leaking from the region
containing the sites in P. This can be expressed as
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the change in the projector over the occupied states,
traced over the given region when the Hamiltonian is
taken in a cycle [20–22]. Hence, this quantity would be
quantized if the change in the projector has support
only in the region we trace over. In this system, we
find that the value of C is closely quantized to 1, as
mentioned in the plots in Fig. 10 (a-d), suggesting again
that significant contribution to the radial current comes
from the edge-like states localized on sites in P.

To see the topological nature of the charge transport,
we perturb the Hamiltonian slightly by adding small on-
site disorder. The new disordered Hamiltonian is then
given by

Hdis = H +
∑
j

εjc
†
jcj , (9)

where εj is a random number with a uniform distribution
over the interval [−W/2,W/2]. For a given Fermi energy,
we compute σxy(rj) for various disorder realizations of
the same disorder strength W . We find that, for W 6= 0,
the contribution to σxy now not only comes from the
sites in P, but also spreads over to few other sites in
the proximity of P. This spread increases initially as we
increase W until the states become Anderson localized
and σxy(rj) goes to zero. To quantify this spread and
study the robustness to disorder, we then look at how C,
averaged over several disorder realizations, changes as a
function of disorder strength W . The result is shown in
Fig. 10 (e).

We find that up to W ≈ 0.2, the value of C is pretty
well quantized and robust to disorder. As we keep in-
creasing W , the average value of C starts decreasing and
the standard deviation, shown as error bars in Fig. 10
(e), starts increasing. The initial decrease in the aver-
age value of C is a consequence of the increase of the
contribution to σxy coming from the sites not present
in P. The standard deviation can be considered as an
indicator of the amount of variation of the contribution
to σxy is coming from the sites not present in P, which
are found to be random in nature. This spread can be
understood by the fact that in the presence of weak dis-
order, the edge-like states start to lose their property of
being primarily localized on the sites in P. It is natural
to ask if there is a better quantization at higher W , by
redefining C to take into account the contributions of a
few additional layers of sites apart form those in P to
σxy. However, for this structure, there is no natural way
to determine how to select sites to define a layer of sites
and how many additional layers of sites to take into ac-
count. Also, because of the non-uniformity in the spread
of the edge-like states to the nearby sites in the presence
of weak random disorder, it is not clear how to determine
a length scale by quantifying their loss of localization.

VI. SUMMARY AND OUTLOOK

In this article, we have studied the adiabatic charge
pumping and transport of non-interacting fermions on
self-similar structures generated from the Sierpinski
gasket. We consider the Harper-Hofstadter Hamiltonian
on SG-3 and SG-4, with an additional flux tube to
adiabatically pump the charge. Since the systems are
non-interacting and we are interested in the case where
the pump works in the adiabatic limit, we study their
respective instantaneous eigen-spectra. For SG-3, we
find that, for a given position of the flux tube, all
edge-like states throughout the instantaneous spectrum,
which are localized on sites enclosing the flux-tube,
undergo spectral flow. This is qualitatively different
from the spectral flow in the case of translationally
invariant non-interacting systems where spectral flow is
observed across the band gaps. Changing the position of
the flux tube results in a change of the set of edge-like
states undergoing spectral flow. We have found similar
results for SG-4 which we have not shown here.

We find that the local nature of the adiabatic charge
transport is also dependent on the position of the
flux-tube. The transport happens between the sites
hosting an edge-like state enclosing the flux-tube and
the outermost sites of SG-3, which also host an edge-like
state. However, the net charge transported is quantized,
irrespective of the position of the flux-tube. We show
that the quantization of the adiabatic charge and hence
the topological character of the system, can be under-
stood from the spectral flow occurring near the Fermi
energy. Specifically, the adiabatic charge transported
is non-trivially quantized if at least one pair of edge-
like states, localized significantly far from each other,
undergo opposite spectral flow crossing the Fermi energy.

We also study the local Hall conductivity by explicitly
computing the local transverse current when the system
is subjected to a local step potential. We find that the
local contributions to the Hall conductivity only comes
from the sites which host the edge-like states enclosing
the cross-hair, thus establishing a correspondence with
the spectral flow of the edge-like states. We find that
the total local contribution to the Hall conductivity
is quantized and is robust to weak Anderson disorder.
Upon increasing the disorder strength, the contribution
to the local Hall conductivity does not remain highly
localized anymore, before finally going to zero at high
disorder strengths.

We use the flux in the flux-tube as a tuning parameter
to isolate a single edge-like state from its degenerate
group of states. We find that the edge-like states can
be approximated by a sum of a few eigenstates of the
discretized angular momentum operator. Our results
suggest that instead of treating them to be analogous to
the topological edge states in translationally invariant



10

non-interacting systems, some of their properties can
be understood from a perspective of a particle on a
tight-binding polygonal chain with a non-zero flux.

In conclusion, we have explained the microscopic ori-
gin of the topological character and the quantization of
the Hall conductivity in self-similar structures, gener-
ated from the Sierpinski gasket, using the perspective of
spectral flow and adiabatic charge pumping. We expect
our results to generalize to a wider variety of self-similar
structures and finite systems embedded in two dimen-
sions, given that the systems are able to support eigen-
states which are localized on sites which form loops in the
graph of the Hamiltonian. More specifically, if a finite
system, embedded in two dimensions, is able to support
at least two different sets of eigenstates, localized on two
different loops such that one loop completely encloses the
other and are spatially separated from each other, then
we expect the system to show spectral flow when the flux
through the inner loop is varied adiabatically. And as a
result, we expect such systems to show quantized Hall re-
sponse. It is still unclear what kind of self-similar struc-
tures or finite systems in general, would support such
states localized on loops. Also, among self-similar struc-
tures, every structure has an unique fundamental self-
similar repeating unit which is iteratively used to gen-
erate the structure of higher generations. The relation
between the structure of such fundamental self-similar
repeating unit and the ability of the system to support
localized states on loops is not known yet. These can be
some potential directions for future work in this area.
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Appendix A: Adiabatic charge transport in finite
systems in terms of instantaneous projectors

We consider a finite non-interacting system, S, with
a Hamiltonian, H(ϕ(t)), where ϕ(t) is a time depen-
dent parameter. We assume that the Hamiltonian has
no other explicit time dependence and from now on, in
this section, we suppress the time dependence of the pa-
rameter. The instantaneous eigenstates can be obtained
from the eigenvalue equation

H(ϕ) |n(ϕ)〉 = En(ϕ) |n(ϕ)〉 . (A1)

We assume that there is a time t = T after which the
Hamiltonian returns back to itself, up to a gauge trans-
formation. We now consider a subsystem, B, of the sys-
tem. The rest of the system is denoted by S−B. We want

to quantify the net charge, Q, leaking out of the subsys-
tem over a time period when the system is adiabatically
evolved in time. Q is given by

Q =

∫ T

0

〈J〉 dt, (A2)

where J is the current operator and 〈〉 is the expecta-
tion value of the operator in the many-body ground state
wavefunction at time t. In the adiabatic limit, each single
particle eigenstate of the Hamiltonian H(ϕ(t)) evolves as

|n(ϕ(t))〉 = eiθn(t)eiγn(t) |n(ϕ(0))〉 , (A3)

where θn(t) = −(1/~)
∫ t

0
En(ϕ(t′))dt′ is the dynamical

phase and γn(t) =
∫ t

0
i 〈n(ϕ(t′))|ṅ(ϕ(t′))〉 dt′ is the

geometrical phase. So the many-body time-evolved state
in the adiabatic limit, |Ω(t)〉, is the Slater determinant
of the adiabatically time-evolved occupied single particle
states.

The current operator can be identified from the change
of the total number operator over subsystem, B, which is
given by the von Neumann equation

∂ 〈nB〉
∂t

= −i 〈[nB, H(ϕ)]〉 , (A4)

where nB =
∑
b∈B |rb〉 〈rb| is the total number opera-

tor over B. Then we identify the current operator as
J = −i[nB, H(ϕ)]. In the case of adiabatic evolution,
the time-evolution can be generated by the adiabatic
Hamiltonian, K(t) = i[ṖI , PI ], instead of H [20]. Here
PI =

∑
n(ϕ) ∈ occ |n(ϕ)〉 〈n(ϕ)| is the instantaneous pro-

jector onto the set of occupied single particle states. The
derivation of the adiabatic Hamiltonian, K, can be found
in appendix A of Ref. [20]. So, the adiabatic current op-
erator is given by

JA = −i[nB,K(t)]

= (nBṖIPI + PI ṖInB − nBPI ṖI − ṖIPInB).
(A5)

The expectation value of the adiabatic current opera-
tor in the many-body ground state then becomes〈

JA
〉

= 〈Ω(t)|JA|Ω(t)〉 = Tr(PIJ
A)

= Tr(PInBṖIPI) + Tr(P 2
I ṖInB)

− Tr(PInBPI ṖI)− Tr(PI ṖIPInB)

= Tr(nBṖIPI) + Tr(PI ṖInB)

− Tr(nBPI ṖIPI)− Tr(PI ṖIPInB),

(A6)

where the last equality has been obtained by using the
cyclic property of the trace and the fact that P 2

I = PI .

Now we use the identity PI ṖIPI = 0, and we get〈
JA
〉

= Tr(nBṖIPI) + Tr(PI ṖInB)

= Tr(nBṖIPI) + Tr(nBPI ṖI)

= Tr(nBṖ 2
I ) = TrB(ṖI),

(A7)
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where TrB(..) is the trace over degrees of freedom in sub-
system B. So the net charge leaking form B can be ex-
pressed as

Q =

∫ T

0

〈
JA
〉
dt =

∫ T

0

TrB(∂tPI)dt

= TrB(PI(T )− PI(0)).

(A8)

From Eq. (A8) we see that, in the adiabatic limit, the
net charge leaking from the subsystem can be expressed
as the change in the instantaneous projector onto the
occupied states over the pumping cycle, traced over
the degrees of freedom of the subsystem. Now, as the
parameter is assumed to get back to its initial value
at time T , the Hamiltonian returns back to itself, up
to a gauge transformation. So, the set of projectors
onto the eigenstates of the Hamiltonian at t = 0,
{|n(ϕ(0))〉 〈n(ϕ(0))|}, is the same as the set of projectors
onto the eigenstates at t = T , {|n(ϕ(T ))〉 〈n(ϕ(T ))|}. So,
if there is no spectral flow due to the change in ϕ in the
instantaneous spectra of the Hamiltonian, PI(T ) = PI(0)
and there is no adiabatic charge transport as a result.
Clearly, to get a non-zero adiabatic charge transport
from the region B, there must be spectral flow in the
instantaneous spectra of the system.

Now let us consider a scenario where PI(T ) 6= PI(0).
Let Ni be the set of eigenstates which are occupied at
t = 0 but not at t = T , Nf be the set of eigenstates
which are occupied at t = T but not at t = 0, and O
be the set of eigenstates which remain occupied both at
t = 0 and t = T . As we have assumed that the system is
particle conserving, the number of states in Ni and Nf
are the same, denoted by N . So, PI(0) =

∑
n∈Ni

|n〉 〈n|+∑
o∈O |o〉 〈o| and PI(T ) =

∑
m∈Nf

|m〉 〈m|+
∑
o∈O |o〉 〈o|.

So, we get

Q = TrB(PI(T )− PI(0))

= TrB(
∑
m∈Nf

|m〉 〈m| −
∑
n∈Ni

|n〉 〈n|)

=
∑
m∈Nf

TrB(|m〉 〈m|)−
∑
n∈Ni

TrB(|n〉 〈n|).

(A9)

If a state |n〉 is completely localized in B, then
TrB(|n〉 〈n|) = 1, and if it is completely localized in
S − B, then TrB(|n〉 〈n|) = 0. So, if all states in Nf
and Ni are completely localized either in B or in S − B,
then

∑
m∈Nf

TrB(|m〉 〈m|) and
∑
n∈Ni

TrB(|n〉 〈n|)
would be integers, giving rise to a quantized adiabatic
charge Q. Now, if all states in Ni and Nf are com-
pletely localized in S − B, then

∑
m∈Nf

TrB(|m〉 〈m|) =∑
n∈Ni

TrB(|n〉 〈n|) = 0 and Q = 0. Also, if all states
in Ni and Nf are completely localized in B, then∑
m∈Nf

TrB(|m〉 〈m|) =
∑
n∈Ni

TrB(|n〉 〈n|) = N and

Q = 0. A non-trivial quantized contribution to the
adiabatic charge transport is obtained when a pair of

states, |m〉 ∈ Nf and |n〉 ∈ Ni, are localized in such a
way that one of them is completely localized in B and
the other is completely localized in S − B.

Appendix B: Condition for an edge-like state to be
completely localized on the sites immediately

enclosing a triangle of a given generation of SG-3

We start with the Harper-Hofstadter Hamiltonian on
SG-3, given by

Ĥ =
∑
〈jk〉

Hjkc
†
jck, (B1)

where Hjk = −e−iθjk , when the sites labeled by the in-
dices j and k are nearest neighbors and 0 otherwise. θjk
is the same as defined in Eq. (1) of the main text. Let
H denote the Hamiltonian matrix whose elements are
Hij . Consider a triangle of a given generation of SG-
3. We put a flux tube, carrying flux 2πϕ, through this
triangle. Let us denote the set of all sites immediately
enclosing the triangle to be P, and the set containing the
rest of the sites to be Q. Now consider an edge-like state
|ψ〉 =

∑
j ψj |rj〉. By breaking into sectors of P and Q,

the Hamiltonian can be represented in the matrix form
as follows

H =

[
HP HPQ
HQP HQ

]
, (B2)

where HPjk
= Hjk, ∀j, k ∈ P; HPQjk

= Hjk, ∀j ∈
P, k ∈ Q; HQPjk

= Hjk, ∀j ∈ Q, k ∈ P; and HQjk
=

Hjk, ∀j, k ∈ Q. Similarly the state |ψ〉 can be expressed
as

|ψ〉 =
∣∣ψP〉+

∣∣ψQ〉 , (B3)

where
∣∣ψP〉 =

∑
p∈P ψp |rp〉 and

∣∣ψQ〉 =
∑
q∈Q ψq |rq〉.

In the vector form, let ΨP = [ψp1 ψp2 ....ψpNp
]
T ∀{pi} ∈ P

and ΨQ = [ψq1 ψq2 ....ψqNq
]
T ∀{qi} ∈ Q be the represen-

tations for
∣∣ψP〉 and

∣∣ψQ〉 respectively.

If the state is completely localized on sites in P, then
ΨQ = 0. Now, given that Ψ = [ΨP ΨQ]T is an eigenstate
of H, we get that

HΨ =

[
HP HPQ
HQP HQ

] [
ΨP

0

]
=

[
HPΨP

HQPΨP

]
= Em

[
ΨP

0

]
.

(B4)
This implies that ΨP must be an eigenstate of HP and
HQPΨP = 0. ΨP can be analytically determined. To
do that, we first point out that the sites in P, together
with the bonds with their respective nearest neighbors
in P, form a ring. They can be indexed linearly from
1 to NP , where NP is the total number of sites in P.
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So ΨP can be written as ΨP = [ψ1 ψ2...ψp...ψNp
]
T

. We

do a gauge transformation given by c†j → c′
†
j = e−iΘjc†j ,

where Θ1 = 0, Θj =
∑j
n=2 θn−1,n− (j−1)2πΦ/NPφ0 for

j ∈ {2, 3, . . . , NP}, where 2πΦ is the total flux threaded
through the area enclosed by the sites in P. Under this

transformation, ΨP → Ψ′
P

and HP → H ′P , where H ′P is
a Hermitian circulant matrix given by

H ′P =


0 t 0 · · · 0 t∗

t∗ 0 t · · · 0 0
0 t∗ 0 t · · · 0
...

...
...

. . .
...

...
t 0 0 · · · t∗ 0

 , (B5)

and t = e−i2πΦ/NPφ0 . The eigenvectors of H ′P are
given by ψ(κ) = [ ωκ ω2κ ω3κ . . . ωpκ . . . ωNPκ]T ∀κ ∈
{0, 1, 2, . . . , NP − 1}, where ω = ei2π/NP . So, Ψ′

P
must

be equal to ψ(κ) for some κ ∈ {0, 1, 2, . . . , NP−1}. Now,
ΨP can be obtained by inverting the gauge transform and
so we get

ΨP(κ) = [ψ1(κ) ψ2(κ)....ψNp
(κ)]

T
, (B6)

ψp(κ) = eiΘpωpκ = eiΘpei2πpκ/NP . (B7)

Given the analytical form of ΨP , we can plug Eq. (B6)
into the equation, HQPΨP = 0, and get∑

p∈P
HQPq,p

ψp = 0, ∀q ∈ Q. (B8)

Notice that every site q ∈ Q either has exactly two con-
secutive nearest neighbors in P or zero nearest neighbors
in P. For the sites in Q which have zero nearest neigh-
bors in P, HQPq,p

= 0 ∀p ∈ P and Eq. (B8) is trivially
satisfied. For the rest of the sites q0 ∈ Q, let us say sites
p0 ∈ P and p0 +1 ∈ P are its nearest neighbors. Then we
have HQPq0,p0

ψp0 +HQPq0,p0+1
ψp0+1 = 0, which implies

e−iθq0,p0 eiΘp0ωp0κ + e−iθq0,p0+1eiΘp0+1ω(p0+1)κ = 0.
(B9)

Simplifying Eq. (B9), we get the following condition

1 + ωκei(Θp0+1−Θp0
)e−i(θq0,p0+1−θq0,p0

) = 0. (B10)

From the choice of {Θj}, we get Θp0+1 − Θp0 =
θp0,p0+1−2πΦ/NPφ0. Also, θq0,p0 +θp0,p0+1−θq0,p0+1 =
θq0,p0 + θp0,p0+1 + θp0+1,q0 = −2πφ/φ0, which is nothing
but the flux through the triangle whose vertices are sites
q0, p0 and p0 + 1. Plugging this in Eq. (B10), we get

1 + ωκe−i2πΦ/φ0NP e−i2πφ/φ0 = 0 (B11)

=⇒ i2πκ

NP
− i2πΦ

NPφ0
− i2πφ

φ0
= (2n+ 1)iπ (B12)

=⇒ κ− Φ

φ0
−NP

φ

φ0
=

(2n+ 1)

2
NP , (B13)

where n ∈ Z. We can express the total flux though the
area enclosed by the P sites as the sum of the flux due
to the magnetic field and the flux through the flux tube,
2πΦ/φ0 = 2πφ∆/φ0 + 2πϕ/φ0, where ∆ is the ratio of
the area of the region enclosed by the P sites and the
area of the triangle whose vertices are the sites q0, p0

and p0 + 1. Plugging this into Eq. (B13), we get

κ =
(2n+ 1)

2
NP + (∆ +NP)

φ

φ0
+

ϕ

φ0
. (B14)

For SG-3, we notice that NP = 3z, where z is the
number of sites on one side of the triangle enclosed by
the P sites, and z is always an even number. ∆ is a
natural number as it can be expressed in terms of z as,
∆ = z2 + 2z − 2. Therefore, we must have

(∆ +NP)
φ

φ0
+

ϕ

φ0
= Z (B15)

κ =
(2n+ 1)

2
NP + Z, (B16)

where Z is an integer. From Eqs. (B15) and (B16),
we conclude that the state labeled by κ is completely
localized on the sites in P if we choose ϕ such that Eq.
(B15) is fulfilled for the value of Z that produces the
right κ in Eq. (B16). The resulting state is an eigenstate
of the angular momentum operator with eigenvalue κ.
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