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A solution of the Dirac equation in a strong laser field presenting a nonspreading wave packet in the rest
frame of the electron is derived. It consists of a generalization of the self-accelerating free electron wave packet
[Kaminer et al. Nature Phys. 11, 261 (2015)] to the case with the background of a strong laser field. Built upon
the notion of nonspreading for an extended relativistic wavepacket, the concept of Born rigidity for accelerated
motion in relativity is the key ingredient of the solution. At its core, the solution comes from the connection
between the self-accelerated free electron wave packet and the eigenstate of a Dirac electron in a constant and
homogeneous gravitational field via the equivalence principle. The solution is an essential step towards the
realization of the laser-driven relativistic collider [Meuren et al. PRL 114, 143201 (2015)], where the large
spreading of a common Gaussian wave packet during the excursion in a strong laser field strongly limits the
expectable yields.

Introduction. Recent advances in ultrastrong laser technol-
ogy [1–3] provide bright prospects for laser-driven particle
acceleration techniques. Especially successful are laser-driven
plasma-based accelerators [4], which raised hopes to develop
further the technique to compete with conventional electron-
positron colliders [5, 6], reducing the scale of the accelerating
device. Even more dramatic scale change promises the idea of
the laser-driven coherent microscopic collider [7–10], where
the electron and positron generation, acceleration, and colli-
sion are realized within a single stage in a microscopic scale,
providing high luminosity due to the coherently controlled
electron-positron recollision. The bottleneck of this idea is
the large spreading of a single electron wave packet in the
rest frame of the electron during the excursion in the laser
field within one laser period, which significantly restrains the
luminosity of the collision. Thus, the covet is the overriding
of the wavepacket spreading for the electron motion in the
continuum. Nonspreading free electron wave packets via inter-
ference of different momentum components in the wavepacket,
so-called particle Airy beams, are known for the Schrödinger
equation [11, 12], which generalize the similar idea for optical
beams [13–17]. However, Airy beams are not normalizable,
i.e., span the whole space. Because of the infinite extension
of such wavepackets in space, they are not applicable for a
laser-driven collider, as the luminosity of the collider should
be quenched.

In the nonspreading wavepacket, the distance between two
points remains constant during the motion. While the latter
has a well-defined meaning in nonrelativistic mechanics, in the
relativistic case, surprises arise, particularly involving Bell’s
paradox [18]. In this Gedankenexperiment two points con-
nected by a thread move with a constant acceleration keeping
a constant distance between them in the Lab-frame, however,
the thread between the points is broken because of the con-
tracted length of the thread in the Lab-frame [19]. Then,
how do the two points have to move to avoid breaking the
thread connecting them? This question is resolved by the Born
rigidity concept [20], defining the notion of a rigid body in a
relativistic setting: The wordlines of the rigid body points have
to be equidistant curves in spacetime. Or in more simple terms,
the space distance between two infinitesimally close points
measured simultaneously in the co-moving inertial frame (rest
frame) should be constant. In particular this will be the case,
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and the thread will not break in Bell’s paradox, if the points
move with different constant accelerations along hyperbolic
trajectories [21]. In the Lab-frame the space distance between
the infinitesimally close points will decrease, fitting to the
Lorentz contraction, while the distance between them in the
rest frame will remain constant. Note that for the luminosity
of the laser-driven collider, namely the rest frame size of the
electron and positron wave packets matters at the recollision.

Although seemingly unrelated, generating nonspreading
wavepackets in relativistic quantum mechanics shares a com-
mon thread with the resolution of Bell’s paradox through the
concept of Born rigidity and hyperbolic motion. In both cases,
the motion of different points of the objects is crucial, whether
it is the motion of the points of the rigid body or the dynam-
ics of interference fringes of the electron wavepacket along
hyperbolic trajectories in the case of quantum mechanics.

In this Letter, inspired by the geometrical concept of Born
rigidity, we use the Covariant Relativistic Dynamical Inver-
sion (CRDI) technique [22] to demonstrate the existence of
nonspreading wavepackets in a laser field fulfilling the Born
rigidity requirements. These wavepackets in the local rest
frame of the electron feature interference fringes with a con-
stant distance between them due to the fringes’ dynamics along
the hyperbolic trajectories [23]. Employing the CRDI tech-
nique, we develop a procedure to transform the wavepacket
in the laser field to the local rest frame of the electron, where
it evolves into a free electron wavepacket. To impose non-
spreading property on the wavepacket fringes, we invoke the
equivalence principle, which tells us that the hyperbolic tra-
jectories, i.e., trajectories corresponding to a motion with
constant acceleration are similar to those in a constant grav-
itational field. The latter allows us the construction of the
nonspreading free electron wavepacket via mimicking locally
the exact solution of the Dirac equation for the electron in a
constant and homogeneous gravitational field [24]. We have
identified the finite lifetime of the nonspreading wavepacket
because of the leaking from the Rindler space and proved that
it is sufficient to allow recollision in a laser-driven collider.

Born’s rigidity Our main aim is to create relativistic non-
spreading wavepackets in a sense that the distance between
the wavepacket’s fringes remains constant with time in the
electron’s local rest frame. The Born rigidity concept tells
us that this aim will be realized if the dynamics of fringes
of the wavepacket manifests hyperbolic trajectories along
the so-called Rindler coordinates [21]: X = x, Y = y, Z =
1
g (cosh(gt) − 1) + z cosh(gt), T = 1

g sinh(gt) + z sinh(gt), with
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the coordinates (T, X,Y,Z) and (t, x, y, z) in the Lab- and co-
moving frames, respectively. When the system of the points,
moving with a constant proper acceleration g is rigid [i.e.,
dx2 + dy2 + dz2 = const in the co-moving rest frame measured
in time coincidence dt = 0], in the Lab-frame they will repre-
sent a family of hyperbolic trajectories with a constant interval
ds2 = dXµdXµ = dt2(1 + gz)2 − (dx2 + dy2 + dz2) = const.
Thus, the family of the hyperbolic trajectories given by Rindler
coordinates represents rigid dynamics.

Quantum dynamics of an accelerating electron. As pre-
viously mentioned, the nonspreading wavepacket is closely
related to the confined Dirac solution of Greiner [24] for the
electron in a constant gravitational field and, due to the equiv-
alence principle, can be deduced from it.In the chiral repre-
sentation [25], the eigenspinor of the Greiner’s solution for a
spin-up electron reads:

ψR =
2
√

2NeπΩ/2

iπ
eiγ5π/4


KiΩ+1/2(mu)

0
KiΩ−1/2(mu)

0

 e−iΩη, (1)

where Kν(x) is a Bessel function, N is a normalization con-
stant, m is the electron mass, γ5 = iγ0γ1γ2γ3, and Ω the
eigenenergy. (η, u) are defined as the comoving coordinates
of an inertial observer momentarily at rest with respect to the
electron. Hence, using the Rindler coordinates we have η ≡ gt
and u ≡ z + 1/g =

√
(Z + 1/g)2 − T 2. The spinor (1) can be

cast in the following form, see Eq. (13) in Sec. B:

ψR =
i
√

2N
π

e−
γ0γ3

2 w
∫ ∞

−∞

db


e−

iΩ+b
2

0
e−

iΩ−b
2

0

 e−im(T cosh b−Z sinh b) (2)

with the momentum parameterized by the rapidity b as p =
m sinh b and w = tanh−1(T/Z). The wavefunction of Eq. (1)
is an eigenstate and is confined in the coordinate u. Note that
only for gravitational fields can an accelerated electron be
described as a superposition of plane waves. This is a direct
consequence of the equivalence principle. In fact, only gravity
induced acceleration can be transformed away by a coordinate
transformation in the immediate vicinity of the particle.

The confined solution for the eigenstate ψR to the free Dirac
equation with respect to the accelerated frame (η, u) of Eq. (2)
can be mimicked by a superposition ψ of the Dirac solutions
for a free electron with respect to the Lab-frame (T,Z) (see
Sec. B):

ψR = e−
γ0γ3

2 tanh−1( T
Z )ψ, (3)

where the free wavepacket ψ should have a momentum chirp
via the phase φ(b) = −αb, with α = Ω, according to Eq. (2).
When additionally we use the momentum distribution in the
free wavepacket h(p) = e−aEp , with the constant a > 0 char-
acterizing the momentum spread of the wavepacket, we get
the following dispersionless free spinorial wavepacket (here-
inafter, overbar stands for the correspondingly dimensionless
parameters):

ψ(T, X) = N


Fiα−1/2(ζ̄)

0
Fiα+1/2(ζ̄)

0

 , (4)

where ζ̄ = i
√

(ā + iT̄ )2 + Z̄2 and Fiα±1/2(ζ̄) =

2
(

iā−T̄−Z̄
iā−T̄+Z̄

)±1/4+iα/2
K±1/2+iα(ζ̄). While the wavepacket

(4) is discussed already in Ref. [23], the emphasis here is its
direct relation to the nonspreading concept.

Nonspreading wave packet in a strong laser field. Our aim
is to construct a solution of the Dirac equation in a laser field
in the form of a wavepacket and to show, using the CRDI tech-
nique, that it represents a nonspreading spinor in the local rest
frame of the electron. We construct the desired wavepacket
from the Volkov solutions ψp(T, X) for an electron in a plane
wave laser field eAµ = (0, ḟ1(ξ), ḟ2(ξ), 0):

ψL(T, X) =
1

(2π)1/2

∫ ∞

−∞

dp
2Ep

f (p)ψp(T, X) (5)

where

ψp(T, X) =
(
1 +

n/ ∧ A/
nµpµ

)
ue−i(EpT−pZ−Φ), (6)

with nµ = (1, 0, 0, 1), pµ = (Ep, 0, 0,−p), Ep =
√

m2 + p2,
A/ = γµeAµ, n/ ∧ A/ = (n/A/ − A/n/)/2, u is the leftmost col-

umn of the boost matrix B =
√

Ep+m
2Ep

(
1 + γ0γ

3 p
Ep+m

)
, Φ =

− 1
2ω(Ep−p)

∫ ξ

0 [ ḟ1(ϕ)2 + ḟ2(ϕ)2]dϕ, and the laser field phase
ξ = ω(T − Z). For the superposition coefficients in Eq. (5) we
use those which yield the free wavepacket ψ, see Eqs. (2)-(3).
After performing the change of variables p = m sinh b

ψL =

∫ ∞

−∞

dbN f (b)


e−b/2

e
b
2 [ ḟ1(ξ) + i ḟ2(ξ)]/m

eb/2

0


× e−im(T cosh b−Z sinh b)−iebΦ (7)

the closed expression for the integral in (7) is

ψL(T, X) = N


Fiα−1/2(ζ̄′)

Fiα+1/2(ζ̄′)[ ḟ1(ξ) + i ḟ2(ξ)]/m
Fiα+1/2(ζ̄′)

0

 , (8)

where ζ̄′ = i
√

(ā + iT̄ ′)2 + Z̄′2, Z′ = Z −Φ, T ′ = T +Φ and
Fiα±1/2(ζ̄′) = 2

(
iā−T̄ ′−Z̄′
iā−T̄ ′+Z̄′

)±1/4+iα/2
K±1/2+iα(ζ̄′).

Let us transform the spinorial wavepacket (8) to the rest
frame, which is defined as the space-time dependent frame in
which the spatial components of the electron’s four-current
vanish at the given space-time point, and demonstrate its non-
spreading property. In the free-electron case, such Lorentz
transformation is the matrix e−γ

0γ3w/2 on the left of the spinor
(2). An equivalent transformation is now needed for the case
in which the electron is interacting with a plane wave field.
In order to construct the desired Lorentz transformation, we
make use of the CRDI technique. In the Hestenes formulation
(see, for instance, section 3 of Ref. [27]), the spinor (6) can be
written as

Ψ = e
n/∧A/

nµ pµ Be−γ2γ1(EpT−pZ−Φ). (9)

As discussed in [22] the matrix e
n/∧A/

nµ pµ ≡ R is, in fact, a Lorentz
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transformation. In the chiral representation it is given by

R =


1 0 0 0

( ḟ1(ξ)+i ḟ2(ξ))
Ep−p 1 0 0

0 0 1 − ( ḟ1(ξ)−i ḟ2(ξ))
Ep−p

0 0 0 1

 . (10)

However, the Lorentz transformation (10) is valid only for the
wavefunction (9) but not (8). Moreover, it does not account
for the transformation to the Rindler (accelerated) frame. In
order to encompass both transformations, we start with the
following ansatz

R̄ = e−
γ0γ3η′

2


1 0 0 0

−d∗ω( ḟ1(ξ) + i ḟ2(ξ)) 1 0 0
0 0 1 dω( ḟ1(ξ) − i ḟ2(ξ))
0 0 0 1


(11)

where d∗ and η′ are free functions to be found by the require-
ments that the resulting spinor is of the same form as Eq. (2)
and that the electron’s current vanishes. These requirements
are fulfilled by the following functions

d∗ =

√
a + i (cT ′ + Z′)
a + i (cT ′ − Z′)

Kiα− 1
2

(
κζ̄′

)
2mωKiα+ 1

2

(
κζ̄′

)
and

η′ =
1
2

ln
(
q

K1/2−iα(κζ̄′∗)K1/2+iα(κζ̄′)
K1/2−iα(κζ̄′)K1/2+iα(κζ̄′∗)

)
,

q =

√
a2 + (cT ′ + Z′)2

a2 + (−cT ′ + Z′)2

with superscript ∗ standing for complex conjugation. Applying
R̄ to (5), R̄ψL, leads to the following spinor describing the
electron in its rest frame:

R̄ψL ≡ ψ̄R = Ne−
γ0γ3

2 η′


Fiα−1/2(ζ̄′)

0
Fiα+1/2(ζ̄′)

0

 . (12)

The final step of the transformation consists of the following
coordinate transformation Z′ = Z − Φ, T ′ = T + Φ.

One now needs to prove that the constructed wave function
ψ̄R obeys the Dirac equation in the plane wave field given by
A/. In order to do so one must do the following: First construct
the vierbein eαµ =

1
4 Tr [R̄−1γαR̄γµ], eµα = 1

4 Tr [R̄−1γµR̄γα],
which transform the γ-matrices in the lab frame to the new
γ-matrices γ̃α = eαµγ

µ, γ̃α = eµαγµ. After the transformation
the wavepacket ψ̄R satisfies the following Dirac equation

iγ̃µ∇µψ̄R − γ̃µeAµψ̄R − mψ̄R = 0,

where ∇µ = ∂/∂Xµ + Ωµ, Xµ = (T, X,Y,Z), and describes
the electron in its rest frame. The matrix Ωµ is the spinor
connection and is given by 2Ωµ = Ωi jµσ

i j, 2σi j = γiγ j and
Ωi

jµ = −eνje
i
σeσa ∂µea

ν . The wavepacket in the rest frame will
be nonspreading when the spinor of Eq. (5) is represented in
exactly the same form as the free spinor of Eq. (13). This
is achieved by the consecutive application of the coordinate

transformation Z′ = Z − Φ, T ′ = T + Φ. With the change
of vierbein e′αµ =

∂X′α
∂Xµ , e′µα = ∂Xµ

∂X′α , and with the new gamma-
matrices γ′α = e′αµ γ̃

µ, γ′α = e′µα γ̃µ, the transformed spinor
(12) satisfies the Dirac equation in the new frame

iγ′µ∇′µψ̄R − γ̃µeAµ(ξ′)ψ̄R − mψ̄R = 0

with ∇′µ = ∂/∂X′µ +Ωµ. Note also that eAµ(ξ′) = eAµ(ξ(ξ′))
since ξ′ = ξ + 2ωΦ(ξ). The variable ξ(ξ′) is then given by
inverting the coordinate transformation.

Thus, the constructed wavepacket of the electron in a laser
field in the form of Eq. (5) [or Eq. (8)] coincides, up to a
boost, see Eq. (12), with the free self-accelerating nonspread-
ing wavepacket [cf. Eq. (4)] in the local rest frame of the
electron at each (Z′,T ′). Note that the exact Lorentz transfor-
mation of the electron Dirac wave function in a laser field to
the electron rest frame is essentially facilitated by application
of the CRDI technique [22, 28].

There is an important deviation of the nonspreading wave
packet Eq. (12) from the accelerating electron solution Eq. (1).
While in the latter a = 0, the former has a finite size of the
wavepacket a , 0 which has essential implications. To discuss
this, consider the spinor (12) in the lab frame (hereinafter we
drop the primes in order to simplify the notation)

ψ = e
γ0γ3

2 ηψ̄R = N


Fiα+1/2(ζ̄)

0
Fiα−1/2(ζ̄)

0

 , (13)

The impact of the wave packet size a is given by the prefactor
in Fiα±1/2(ζ̄), which we analyze next.

The spacetime profile of the electron wavepacket is pre-
sented in Fig. 1. The panels (a,b) show the distribution in
the Lab-frame coordinates (T,Z), while (c,d) in the acceler-
ated rest frame with Rindler coordinates (η, u). In the Lab-
frame, the wavepacket is separated into two parts: inside the
light-cone with normal spreading, and outside the light-cone

Figure 1. Spacetime profile of the electron density for the free elec-
tron modulated wavepacket of Eq. (13): (a,b) in the Lab-frame; (c,d)
in the accelerated frame (i.e., in Rindler coordinates); (a,c) α = 30
and ā = 0.005; (b,d) α = 30 and ā = 2. Note that the Rindler coordi-
nates only cover the region outside the light-cone to the right.
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Figure 2. (a) The asymmetry ratioA = (|ψ̄R|
2 − |ψ|2|)/(|ψ̄R|

2 + |ψ|2|)
vs the wavepacket chirping parameter α and the size parameter ā for
T = 1 fs; (b) The wavepacket size δū vs η for α = 40 and ā = 10−6.

(defined as Region I in Ref. [24]) representing the nonspread-
ing wavepacket. The latter shows interference fringes, each
lobe corresponding to a hyperbolic trajectory. Such a fea-
ture is entirely due to the chirping parameter α. From the
rest frame perspective [Fig. 1(c,d)] the wavepacket is non-
spreading (the width of the wavepacket at each instant of the
Rindler’s time η remains constant), while in the Lab-frame the
width of the wavepacket is contracting with time T according
to the Lorentz-transformation.

There is a significant effect stemming from the value of
the wavepacket size parameter a, cf. Panels (a,c) with (b,d)
in Fig. 1. During evolution, the nonspreading part of the
wavepacket is gradually leaking out into the normal one. The
parameter a controls the balance between the nonspreading
and normal parts of the wavepacket, see section C, and deter-
mines the lifetime of the nonspreading part of the wavepacket.
Such leaking is responsible for washing out the interference
fringes: the smaller the value of a, the slower is the interfer-
ence fringes extinction [Fig. 1]. There is no extinction in
the case of the accelerating electron solution of Eq. (1) with
a = 0. We can estimate the lifetime of the nonspreading wave
packet using asymptotic expressions of the wavefunctions at
η ≫ 1, see section C: |ψ|2 ≈ exp[−2 (eηāū)1/2 − πα

2 ]/
√

2ū,
|ψR|

2 ≈ exp[−2ū+ πΩ
2 ]/
√

2ū. Both asymptotic expansions will
coincide, if eηā ∼ ū, or Z̄− T̄ ≳ ā. Taking into account that the
equation for the rightmost hyperbolic trajectory (Z̄0 ≈ α) as a
function of time is Z̄(T̄ ) ≈

√
α2 + T̄ 2, we have an estimate for

the lifetime of the nonspreading wavepacket:

Tl ≲ (α2 − ā2)/(2ām), (14)

which indicates that large α and small ā are beneficial for the
extension of the lifetime. For instance, Tl ≲ 1 fs when using
α = 30 and ā = 0.001.

We also analyze the balance of the nonspreading and normal
parts of the wavepacket introducing the asymmetry parameter
viaA = (|ψ̄R|

2 − |ψ|2|)/(|ψ̄R|
2 + |ψ|2|), calculating densities of

these parts via Eqs. (2), (13), see section D for a definition.
The example of the dependence of A on the parameters α
and ā is shown in Fig. 2(a) for T = 1 fs. The wavepacket is
nonspreading if |ψ|2 ≈ |ψ̄R|

2|, i.e. atA → 0, while atA → 1,
the nonspreading wave packet is fully extinguished |ψ|2 → 0.
A is very sensitive to ā. Smaller ā is preferred for A → 0,
however, the larger α allows larger ā at a givenA [Fig. 2(a)].

We numerically evaluated the wavepacket spatial size via
the accelerated frame spinor, see Sec. D, i.e., considering
only the parts outside the light-cone. The standard deviation
δū =

√
⟨ū2⟩ − ⟨ū⟩2 is calculated with ā = 10−6 and α = 40

[Fig. 2(b)]. With the rightmost hyperbolic trajectory the trans-

formation between the time in the accelerated frame and in
the Lab-frame is then T̄ = α sinh η. As seen in Fig. 2(b), the
wavepacket spreading δū stays constant up to η ≈ 11 which
corresponds to the Lab-time T ≈ 2 fs.

Considering that the fringes of the self-accelerating part of
the wavepacket must last for at least one period of the laser
field, let us estimate the maximum value for the parameter ā.
For a full cycle of the laser field in the electron’s rest frame,
one has ω(T −Z) = 2π. The latter combined with the condition
|Z̄ − T̄ | ≳ ā, we have a ≲ λ′, where λ′ is the laser wavelength
in the electron rest frame.

We consider applications of the nonspreading relativistic
wavepackets to a laser-driven collider [10]. Here electrons and
positrons are created from vacuum by high-energy gamma-
photons counterpropagating an ultrastrong laser field. They
are accelerated by the laser field and collide within a cycle
of the field. The rest frame of the created pairs depends on
the γ-photon energy (Ω0) and the laser strong field parameter
(a0 ≡ eE0/(mω), with the laser field amplitude E0). We esti-
mated F that at Ω0 ∼ 1 GeV and a0 = 102 (the laser intensity
of 1022 W/cm2), the rest frame of the pair moves with γ ≈ 30.
The laser period in this frame T ′ = TL/γ ∼ 3 × 10−2 fs (with
the laser period TL in the Lab-frame) which is less than the
wavepacket leaking time Tl ∼ 1 fs (for α = 30 and ā = 0.001),
i.e., the recollision time is short enough to maintain the non-
spreading character of the wavepacket. The next point is how
to create the nonspreading wavepacket (see Sec. F). For
the latter the specially tailored momentum chirping of the
wavepacket given by the phase φ(p) is essential. This chirp-
ing induces a spatial shift of each momentum component in
the laser field δx(p) = ∂φ(p)/∂p. The created wavepacket
of the electron (positron) will be chirped if the particle with
the corresponding momentum value is created with the corre-
sponding spatial delay δx(p). The created particle momentum
in the Lab-frame is determined either by the laser field inten-
sity, or by the γ-photon energy. Tailoring specifically the laser
intensity in space according to the function δx(p), one can
achieve chirping of the created wavepackets of the electron
and positron. Another possibility is to use a chirped γ-photon
beam. The approach based on the Dirac equation is applica-
ble here because radiation reaction is negligible, as shown in
Sec. F, for the typical parameters of the laser-driven collider.

Conclusion. We have shown the existence of nonspreading
relativistic wavepackets in a laser field, which in the local
rest frame of the electron is similar to a self-accelerating non-
spreading free wavepacket. We have established that there is a
finite lifetime for the self-accelerating wavepacket and found
that the wavepacket chirping and extension parameters impose
strict restrictions on the lifetime duration. The nonspreading
feature of the relativistic wave packet represents the essen-
tial property to permit an efficient laser-driven high-energy
collider.

Moreover, the nonspreading free electron wavepacket is
obtained via mimicking the confined Dirac eigenstate in a con-
stant gravitational field. This idea based on the equivalence
principle can be further developed, constructing different free
electron wavepackets emulating electron bound states in a
gravitational field of various configurations. This would pro-
vide a new avenue in laboratory astrophysics/cosmology: to
investigate particle quantum dynamics in gravitational fields
via the dynamics of their physical counterpart with specially
engineered free electron wavepackets [29–33].
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Appendix A: Construction of a family of rigid relativistic coordinate systems

In what follows, greek indices run from 0 to 3 while latin indices run from 1 to 3. In line with the concept of Born rigidity,
here we show how to construct a rigid reference system. Consider a particle in arbitrary motion relative to an inertial system I;
the particle’s coordinates with respect to I are Xα = (cT, X,Y,Z) where c is the speed of light in vacuum. The particle’s time
track may be described by the equations Xα = f α(τ), τ being the proper time of the particle. Consider now another reference
system R attached to the particle which is uniformly accelerated with respect to I; the axis of R should always be parallel to
that of I, the particle being always situated at its origin. Let the coordinates following the particle in its motion relative to R be
xα = (ct, x, y, z). At any moment there exists an inertial coordinate system I′, momentarily at rest with respect to the particle,
whose coordinate axes coincide with those of R. Hence, we have x′i = xi, x′0 = 0 and τ = t. The transformation connecting the
coordinates Xα with xα is

Xα = f α(t) + xieαi (t), (A1)

where eαν (t) is an orthonormal frame for an accelerated observer that obeys the following equation

deνµ
dct
= Ωνβe

β
µ,

where Ωνβ = uνu̇β − uνu̇β and uµ = ḟµ(t) = d fµ(t)/dct. Differentiation of Xα gives dXα = (uα + xiėαi (t))cdt + dxieαi (t). From the
following properties uαuα = 1, u̇βu̇β = −gigi and u̇βuβ = 0 we get

ds2 = c2dt2(1 + gixi/c2)2 − (dx2 + dy2 + dz2), (A2)

where gi(t) = eαi u̇α are functions of t only, being completely determined by the motion of the origin of the system of coordinates
xα relative to the system Xα. Considering the line element (A2) the corresponding system of reference is rigid since the distance
between two reference points (x, y, z) and (x + dx, y + dy, z + dz) is given by dσ2 = dx2 + dy2 + dz2. In fact, the space geometry
is even Euclidean; thus (x, y, z) are cartesian space coordinates.

Now consider that the origin O of the system xα is moving in the Z-axis direction of the Xα system. From Eqs. (A1) we have

X = x, Y = y, Z = c
∫ t

0
sinh(θ(t))dt + z cosh(θ(t)),

T =
∫ t

0
cosh(θ(t))dt +

z
c

sinh(θ(t)). (A3)

For the vector gi we get g = (0, 0, g(t)), g(t) = cdθ/dt. Hence, Eq. (A2) becomes

ds2 = c2dt2(1 + gz/c2)2 − (dx2 + dy2 + dz2). (A4)

In particular, if the motion of the origin O is hyperbolic, then θ(t) = gt/c thus making g a constant. The transformation equations
then reduce to

X = x, Y = y, Z =
c2

g
(cosh(gt/c) − 1) + z cosh(gt/c),

T =
c
g

sinh(gt/c) +
z
c

sinh(gt/c). (A5)

Let us examine if the reference system R corresponding to the coordinates xα will appear as rigid with respect to the observer A
in the inertial frame I. By elimination of the variable t from Eqs. (A5) we obtain

Z =
c2

g

(√
(1 + gz/c2)2 + g2T 2/c2 − 1

)
, X = x, Y = y.

The velocity of the reference points relative to I at time T is thus

v
c
=

dZ
cdT

=
gT

c
√

(1 + gz/c2)2 + g2T 2/c2
= tanh(gt/c). (A6)

Since the velocity v of the frame R from the point of view of A also depends on z, R will not appear as rigid with respect to I. In
fact, the difference between two reference points (x, y, z) and (x, y, z + dz) measured by A is found to be

dZ =
(1 + gz/c2)dz√

(1 + gz/c2)2 + g2T 2/c2
=

dz
cosh(gt/c)

=
√

1 − v2/c2dz.
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Hence, from A’s perspective each part of the accelerated frame R undergo a Lorentz contraction.
Going back to the motion of the particle in the accelerated frame R from the point of view of A, consider the velocity v for the

particle located permanently at position z, that is, it is at rest with respect to R. By definition, the proper time of the particle can
be calculated from Eq. (A4) as

cdτ =
√

c2dt2(1 + gz/c2)2 − dx2 − dy2 − dz2 (A7)

= cdt(1 + gz/c2), (A8)

τ = (1 + gz/c2)
∫ t

0
dt = (1 + gz/c2)t, (A9)

given that dx/dt = dy/dt = dz/dt = 0.

Appendix B: Construction of the free Dirac spinor

1. Exact solution of the Dirac equation for an electron in a frame moving with constant four-acceleration.

Here we rewrite the spinor solution for an electron in a homogeneous and constant gravitational field as an integral in order to
demonstrated its relation with the self-acceleration spinor. The concept described here holds for any spatial dimension. Let us
first describe the case of a single spatial dimension as discussed in the previous section. In the Chiral representation, the Dirac
spinor for a spin-up electron in a reference frame undergoing constant four-acceleration is

ψR =
√

2N


H(1)

iΩ+1/2(imcu/ℏ)
0

H(1)
iΩ−1/2(imcu/ℏ)

0

 e−iΩη, (B1)

which by using the connection formula H(1)
ν (ix) = 2Kν(x)

πieiπν/2 and defining κ = mc/ℏ can be rewritten as

ψR =
2
√

2NeπΩ/2

iπ
eiγ5π/4


KiΩ+1/2(κu)

0
KiΩ−1/2(κu)

0

 e−iΩη (B2)

where Kν(x) is a Bessel function,N a normalization constant, Ω > 0 the electron’s kinetic energy, γ5 = γ
5 = iγ0γ1γ2γ3 and g the

constant four-acceleration proper length. The (η, u) are defined as the comoving coordinates of an inertial observer momentarily
at rest with respect to the electron. Hence, from Eqs. (A5) after shifting the origin we have η = gt/c, u = z + c2/g, Z = u cosh η
and cT = u sinh η. Let us massage Eq. (B2) a bit more to gain intuition on how to build it from a wavepacket. First, note that

Kν(x) =
1
2

∫ ∞

−∞

e−x cosh t+νtdt,

along with cosh(t) = i sinh(t − iπ/2). Combining both identities, (B2) becomes

ψR =

√
2N
iπ

∫ ∞

−∞

dte−iκu sinh t


e(iΩ+1/2)t

0
e(iΩ−1/2)t

0

 e−iΩη (B3)

Since Z = u cosh η, cT = u sinh η, by defining the momentum p = mc sinh b for b real and making the change of coordinates
t = η − b in (B3), we finally have

ψR =
i
√

2N
π

e−
γ0γ3

2 tanh−1( cT
Z )

∫ ∞

−∞


e−b/2

0
eb/2

0


× e−iκ(cT cosh b−Z sinh b)−iΩbdb. (B4)

The spinor (B4) is the desired result.
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2. The Dirac equation in the accelerated frame

Here we show how the spinor discussed in the previous section is connected with the self-accelerated spinor in the lab frame
by a Lorentz transformation. From the coordinate relations Z = u cosh η and cT = u sinh η we have

∂

∂cT
−

∂

∂Z
= eη

(
1
u
∂

∂η
−
∂

∂u

)
,

∂

∂cT
+

∂

∂Z
= e−η

(
1
u
∂

∂η
+
∂

∂u

)
,

leading to

0 =
[
−mc + iℏ

(
γ0 ∂

∂cT
+ γ3 ∂

∂Z

)]
ψ

=

[
−umc + iℏeηγ

0γ3
(
γ0 ∂

∂η
+ γ3u

∂

∂u

)]
ψ. (B5)

Eq. (B5) is exactly the Dirac equation in the lab frame. It can be transformed to the accelerated frame as follows

eγ
0γ3 η

2

[
−umc + iℏ

(
γ0 ∂

∂η
+ γ3

{
u
∂

∂u
+

1
2

})]
ψR = 0,

which can be rewritten in the more compact form[
−κu + i

(
γ0 ∂

∂η
+ γ3

{
u
∂

∂u
+

1
2

})]
ψR = 0, (B6)

with ψR = e−γ
0γ3 η

2ψ, where ψ is the solution of the free Dirac equation in the lab frame while ψR is the solution in the Rindler
(a.k.a accelerated) reference frame.

3. Constructing the superposition for a free particle

Equipped with the spinor (B4) and the relationship ψR = e−γ
0γ3 η

2ψ, here we will build the self-accelerating wavepacket in the
lab frame. In the Chiral representation, the Dirac spinor for a spin up electron in its rest frame with respect to a global inertial
frame is

ψ = h(0)


1
0
1
0

 e−
imc2
ℏ T (B7)

where h(0) is some momentum dependent envelop function. Let us apply a boost to a frame moving along the Z-axis with
momentum p

ψp = h(p)


mc−p+Ep

2
√

mc(mc+Ep)

0
mc+p+Ep

2
√

mc(mc+Ep)

0

 e−
i
ℏ (EpT−pZ) (B8)

with Ep =
√

m2c2 + p2. Now we build a wavepacket by integrating over p the spinor(B8)

ψ(t, z) =
∫ ∞

−∞

ch(p)dp
2Ep


mc−p+Ep

2
√

mc(mc+Ep)

0
mc+p+Ep

2
√

mc(mc+Ep)

0

 e−
i
ℏ (EpT−pZ) (B9)

in which cdp
2Ep

renders the integral Lorentz invariant.
Let us now choose the following envelop function

h(p) = Ne−
a
cℏ Ep , (B10)
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where N is a normalization constant and a > 0 is a constant with units of length. Upon making the variable substitution
p = mc sinh(b) and including the phase factor eiαb with α being a arbitrary real number in (B9) one ends up with the desired
superposition

ψ = N

∫ ∞

−∞

dbeibα


e−b/2

0
eb/2

0


× e−iκ(cosh(b)(cT−ia)−sinh(b)Z). (B11)

Due to the particular form of h(b), the b integration in (B11) can be performed exactly. In order to see this, first note that, for
a > 0 ∫ +∞

−∞

dteiy cosh(t)+iζ sinh(t)−νt = iπe
iνπ
2

(
y + ζ
y − ζ

) ν
2

H(1)
ν (x),∫ +∞

−∞

dteiy cosh(t)+iζ sinh(t)+νt = iπe
iνπ
2

(
y − ζ
y + ζ

) ν
2

H(1)
ν (x)

with x =
√

y2 − ζ2. Then defining

κ(ia − cT ) = y, ζ = κZ

x = κ
√

(ia − cT )2 − Z2,

leads to

ψ = N

∫ ∞

−∞

dbeibα


e−b/2

0
eb/2

0

 eiy cosh(b)+iζ sinh(b). (B12)

Before continuing, note that ix = iκ
√

(a + icT )2 + Z2 and H(1)
ν (ix) = 2Kν(x)

πi1+ν . Hence, by performing the b integration one gets

ψ = N


Fiα−1/2(x̄)

0
Fiα+1/2(x̄)

0

 , (B13)

where

ā = κa, Z̄ = κZ, T̄ = κcT,

ω̄ =
ω

cκ
, ξ̄ = ω̄(T̄ − Z̄), x̄ = κx,

Fiα±1/2(x̄) = 2
(

iā − T̄ − Z̄
iā − T̄ + Z̄

)±1/4+iα/2

K±1/2+iα(x̄).

Appendix C: Asymptotic expansions: wavepacket leaking

Let us begin with the spinor in the accelerated frame, which is related to (B13) in the same way as the spinor (B4) is related to
the one in the Lab. frame. We have

ψ = N


e
η
2 Giα−1/2(ζ̄)

0
e−

η
2 Giα+1/2(ζ̄)

0

 ,
Giα±1/2(ζ̄) =

(
eη (−ūeη + iā)

ū + iāeη

)± 1
4+

iα
2

K±1/2+iα(ζ̄),

ζ̄ =

√
ā2 + 2iāū sinh(η) + ū2. (C1)
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Now, for η ≫ 1 we have

ζ̄ ≈ eiπ/4
√

2āūeη/2, K±1/2+iα(ζ̄) ≈
√

π

2ζ̄
e−ζ̄ ,(

eη (−ūeη + iā)
ū + iāeη

)± 1
4+

iα
2

≈

(
iūeη

ā

)± 1
4+

iα
2

.

Thus

ψ†ψ ≈
e−2(eηāū)1/2− πα

2

√
2ū

. (C2)

The same estimation with the Rindler spinor (B1) leads to

ψ†RψR ≈
e−2ū+ πΩ

2

√
2ū

. (C3)

Both asymptotic expansions will coincide if the following condition holds

eηā
ū
∼ 1⇒

ā
|Z̄ − T̄ |

∼ 1⇒ Z̄ − T̄ ≳ ā. (C4)

Considering that the equation for the rightmost hyperbolic trajectory as a function of time is Z̄(T̄ ) ≈
√
α2 + T̄ 2 (because Z̄0 ≈ α

for such trajectory) we have

T ≲
ℏ

mc2

α2 − ā2

2ā
. (C5)

For instance

T ≲ 0.73 × 10−15s, for (ā, α) = (0.005, 30),

T ≲ 3.64 × 10−15s, for (ā, α) = (0.001, 30).

Appendix D: Wavepacket variance and norm

The wavepacket variance with respect to both the laboratory frame and the accelerated frame are defined as

δZ̄ =
√
⟨Z̄2⟩ − ⟨Z̄⟩2, ⟨Z̄n⟩ =

∫ +∞

−∞

dZ̄ Z̄nψ†ψ, (D1)

δū =
√
⟨ū2⟩ − ⟨ū⟩2, ⟨ūn⟩ =

∫ ∞

0
dū ūnψ†RψR, (D2)

while the wavepacket norm in both frames is

|ψ|2 =

∫ +∞

−∞

dZ̄ ψ†ψ, |ψR|
2 =

∫ ∞

0
dūψ†RψR. (D3)

For the spinor (B13) these integrals can be calculated exactly. The results are

⟨Z̄2⟩ = K1(2ā)
ā
(
4(α2 − T̄ 2) + 4πāLLL0(2ā)

(
α2 − T̄ 2

)
+ 1

)
2K0(2ā)

− 2πā2LLL−1(2ā)(T̄ − α)(α + T̄ ) +
πā(T̄ − α)(α + T̄ )

K0(2ā)
,

+ T̄ 2, (D4)

⟨Z̄⟩ = πα
(
āLLL−1(2ā) +

(2āLLL0(2ā)K1(2ā) − 1)
2K0(2ā)

)
, (D5)

where Kn(2ā) and LLL−n(2ā) are the Bessel and the modified Struve functions, respectively. One can extract the important result for
variance δZ̄2 = ⟨Z̄2⟩ − ⟨Z̄⟩2:

δZ̄(α)2 − δZ̄(0)2 = πα2
[
ā2LLL−1(2ā)(2 − πLLL−1(2ā))

−
π(1 − 2āLLL0(2ā)K1(2ā))2

4K0(2ā)2 +
ā(πLLL−1(2ā) − 1)

K0(2ā)

+
ā
(

2
π
− 2ā(πLLL−1(2ā) − 1)LLL0(2ā)

)
K1(2ā)

K0(2ā)

]
(D6)
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which is independent of time.

Appendix E: Decomposition of R̄ into boosts and rotations

In the simplified case with a = 0 and α = 0 it is straightforward to see the following relationship

R̄ = e−
η′γ0γ3

2 UB,

U = e
−θ

γ1γ3 ḟ1(ξ)√
ḟ1(ξ)2+ ḟ2(ξ)2

+γ2γ3 ḟ2(ξ)√
ḟ1(ξ)2+ ḟ2(ξ)2


,

B = e−w(V1γ
0γ1+V2γ

0γ2+V3γ
0γ3) (E1)

where

θ = tan−1


√

ḟ1(ξ)2 + ḟ2(ξ)2

2mc

 ,

w = tanh−1


√

ḟ1(ξ)2 + ḟ2(ξ)2

2mc

√
1 +

( √
ḟ1(ξ)2+ ḟ2(ξ)2

2mc

)2


= tanh−1(sin θ),

V1 =
ḟ1(ξ)√

ḟ1(ξ)2 + ḟ2(ξ)2
cos θ, V2 =

ḟ2(ξ)√
ḟ1(ξ)2 + ḟ2(ξ)2

cos θ,

V3 = sin θ.

Incidentally, the boost B leads to the following proper velocity

u
c
= B2γ0 = γ(1 + γ0γkβk)

γ = 1 +
ḟ1(ξ)2 + ḟ2(ξ)2

2m2c2 ,

β⃗ =

 ḟ1(ξ)

mc
(
1 + ḟ1(ξ)2+ ḟ2(ξ)2

2m2c2

) , ḟ2(ξ)

mc
(
1 + ḟ1(ξ)2+ ḟ2(ξ)2

2m2c2

) , ḟ1(ξ)2 + ḟ2(ξ)2

2m2c2
(
1 + ḟ1(ξ)2+ ḟ2(ξ)2

2m2c2

)
 .

This is expected since the solutions to the classical and quantum equations of motion for an electron in a laser field are, up to
the phase factor to the right of the matrix spinor (i.e., Ψ on the main text), the same.

Appendix F: Experimental feasibility

1. Creation of nonspreading wavepackets

Our findings have a direct implication for the experimental realization of a laser-driven collider. We assume to use the version
of a laser-driven collider based on the setup of a high-energy gamma-photon beam counterpropagating an ultrastrong laser field.
The electrons and positrons are created inside the laser field due to the nonlinear Breit-Wheeler process. They are accelerated
by the laser field within a cycle of the laser field, and collide, initiating a high-energy electron-positron collision reaction (see
Ref. [10] of the paper). Two questions should be addressed: can the nonspreading feature of the created electron and positron
wavepacket be designed and is the recollision time short enough to maintain the nonspreading character of the wavepacket?

To answer these questions, let us estimate the velocity (or the Lorentz γ-factor) of the average rest frame (RF) of the created
pair at the threshold of the process for the given gamma-photon energy Ω0 in the Lab-frame (LF), and the laser field strength a0.
Here a0 ≡ eE0/mω is the classical strong field parameter of the laser field, where the quasimomentum (momentum averaged
over the laser period) of the electron and positron is vanishing, q = 0, q0 = m∗ and where m∗ = m

√
(1 + a2

0/2) is the dressed
mass of the electron in a linearly polarized laser field. As the pair is created by absorbing one gamma-photon of the energy Ω′0



11

(in RF) and n counterpropagating laser photons with an energy Ω′0 (in RF), the energy-momentum conservation law in RF at
the threshold of the process yields: Ω′0 = nω′ = m∗. In an ultrastrong laser field a0 ≫ 1, the average number of laser photons
involved in the pair production process is n ∼ a3

0. We choose the gamma-photon energy in LF to fulfill the condition Ω0 > a3
0ω.

In this case the RF propagates along the gamma-photon and the RF’s γ-factor is determined from the Doppler-shifted momentum
conservation condition: Ω0/(2γ) = 2γnω ≈ ma0/

√
2. Thus, with the given a0, the RF’s γ of the most probable pair production is

determined from the condition

2
√

2a2
0γω/m = 1, (F1)

which will require the gamma-photon energy

Ω0 ≈
√

2mγa0. (F2)

Assuming an infrared laser field with ω/m = 10−6, a0 = 102 (the laser intensity of 1022 W/cm2), we have from Eqs. (F1)-(F2)
γ ≈ 30, and Ω0 ≈ 2 GeV.

The recollision of the created pair takes place after the excursion of the electron and positron during the period of the laser
field. As the RF moves along the gamma-photon, i.e., opposite to the laser wave propagation direction, in RF the laser frequency
is up-shifted ω′ = 2ωγ, and the recollision time in LF is T ′ = T/γ ≈ 3 × 10−17 s. From Eq. (14) of the revised manuscript the
leaking time of the nonspreading wavepacket is mT ′l = (α2 − a2)/(2a). In the case of the optimal parameters α = 30, a = 10−2,
T ′l = (λC/c)α2/(2a) ≈ 10−15 s. Thus, for the chosen parameters the recollision time in RF is much smaller than the leaking time
of the nonspreading wavepacket.

The next point is how to create the nonspreading wavepacket of Eq. (7) of the manuscript. The essential point of this
wavepacket is the specially tailored momentum chirping of the wavepacket given by the phase φ(p) = αb = α sinh−1(p/m). This
chirping induces a spatial shift of each momentum component in the laser field δx(p) = ∂φ(p)/∂p. The created wavepacket of the
electron and positron will be chirped if the particle with the corresponding momentum value is created with the corresponding
spatial delay δx(p). The particle in LF moves with the momentum p = mγ. From Eqs. (F1)-(F2), γ is determined either by
the laser field intensity a2

0, or by the gamma-photon energy. Tailoring specifically the laser intensity in space according to the
function δx(p), one can achieve chirping of the created wavepackets of the electron and positron. Another possibility is to use a
chirped gamma-photon beam, and in this way transfer the chirp from the gamma-photons to the created wavepackets of electrons
and positrons.

2. Role of radiation reaction

The approach based on the Dirac equation can be valid if the radiation reaction does not disturb much the electron dynamics.
We can formulate it as a restriction on the laser and electron parameters. The condition for negligible radiation reaction can
be formulated as the radiation energy loss (∆ε) being negligibly small compared with the electron energy (ε): ∆ε ≪ ε. In the
laser-driven collider (Refs. [8,10]) the electron acceleration takes place during the excursion in a half-cycle of the laser field. As
the radiation formation length is a0-times smaller than the electron trajectory period at a0 ≫ 1 (see e.g. Ref. [6]), the number of
the radiation formation lengths during one laser period is a0. Here, a0 = eE0/(mω) is the strong field parameter of the laser field,
with the laser field amplitude E0, and the frequency ω. As the probability for a photon emission on a formation length is of
the order of the fine-structure constant α f , ∆ε ∼ α f a0ωc, with the characteristic energy of the emitted photon ωc ∼ χε, where
the quantum strong field parameter χ ≡ E′/Ecr describes the photon recoil (see e.g. Ref. [6]). Here, E′ is the background field
strength in the rest frame of the electron, and Ecr is the Schwinger critical field. In the laser collider setup, one can estimate
χ ∼ 2γ0(ω/m)a0), when the gamma-photon with an energy mγ0 counterpropagates the laser field as in Ref. [10]. Thus, the
condition to neglect radiation reaction in the laser collider will read αa0χ ∼ 2α f a2

0γ0(ω/m) ≪ 1. For instance, in the case of
an infrared laser field ω/m ∼ 10−6, GeV gamma photon γ0 ∼ 103, and an ultrastrong laser field of the intensity of 1022 W/cm2

(a0 ∼ 102), this condition can be fulfilled ∆ε/ε ∼ 10−1. Thus, the approach based on the Dirac equation still can be valid for
typical parameters of a laser-driven collider.
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