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The ringdown (RD) phase of gravitational waves is of prime interest for testing general relativity
(GR). The modelling of the linear quasi-normal modes (QNMs) within the Kerr spectrum — or
with agnostic parameterized deviations to that GR spectrum — has become ordinary; however,
specific attention has recently emerged to calibrate the effects of nonlinear perturbations for the
predominant quadrupolar l = 2, m = 2 mode. In this paper, we test the performance of a few
nonlinear toy models and of the nonlinear inspiral-merger-ringdown (IMR) model IMRPhenomD
for faithfully representing the RD regime and we compare them with the results obtained using
linear solutions as sums of QNM tones. Using several quasi-circular, non-precessing numerical
waveforms, we fit the dominant l = 2, m = 2 mode of the strain, and we assess the results in
terms of both the Bayes factor and the inferred posterior distributions for the mass and spin of the
final black hole (BH). We find that the nonlinear models can be comparable or preferred over the
linear QNM-only solutions when the analysis is performed from the peak of the strain, especially
at high signal-to-noise ratios consistent with third-generation observatories. Since the calibration
of the tones’ relative amplitudes and phases in high-overtone models to the progenitor parameters
is still missing, or even not achievable, we consider the use of non-linear models more pertinent for
performing confident tests of general relativity based on the RD regime starting from early times.

I. INTRODUCTION

Gravitational waves (GW) provide an excellent arena
to study gravity on its strongest regime. Since the break-
through observation of the first event GW150914 [1], the
GW field itself has experienced an unprecedented growth,
as a result of the early-on unexpected but nowadays
confirmed high number of GW events observed. Cur-
rently, the number of confirmed GW events from compact
binary mergers has risen significantly, summing up to
about 90 in the last completed observing run (O3) [2–7]
of the LIGO-Virgo-KAGRA (LVK) Collaboration [8–10].
While these observations have already allowed us to set
extraordinary constraints on the general theory of grav-
ity (see, e.g., [11–14]), the near-future prospects are even
more promising, with about 200 new events anticipated
by the end of the current LVK O4 run [15]. The number
of observed binary black hole (BBH) mergers is dominat-
ing the LVK event catalogue. A typical BBH GW event
is described by three different regimes: the inspiral, the
merger and the RD. For the optimized search and charac-
terization of the signals, the IMR gravitational waveform
templates are used. IMR models are calibrated to nu-
merical relativity (NR) solutions and provide us with the
most accurate representation of the full waveform. For
BBH mergers, current IMR waveform approximants are
normally split into three different families: the IMRPhe-
nom [16], SEOBNR [17], TEOB [18] and NRSurrogates
(for a detailed description of the models see [19–22] and
the references therein).

The study of RD regime has drawn some attention
in the last recent years. The RD describes the post-
merger phase, in which the final, perturbed BH relaxes
rapidly towards its stationary Kerr configuration, a phase
which is associated with a characteristic late train of radi-
ation [23–27]. Linear perturbation theory provides a sim-
ple description of this late radiation regime in the form
of a countably infinite sum of damped sinusoids. Each
damped sinusoid — or mode (lmn) — is at most de-
scribed by four parameters, namely its frequency, damp-
ing time, amplitude and phase. The family of frequen-
cies and damping times is known as the quasi-normal-
mode (QNM) spectrum [23–25] and, by virtue of the
BH no-hair theorem, is uniquely determined by the fi-
nal BH mass and spin [28–30]. The set of amplitudes
and phases is determined by the progenitor parameters
and the initial orbital conditions [31–37]. The BH no-
hair theorem is tested through two common scenarios:
namely, by performing an IMR consistency test [38] and
through BH spectroscopy [39]. BH spectroscopy typically
targets the independent estimation of the spectrum of at
least two separate RD modes — although GR deviations
can be also measured with a single mode if one consid-
ers information from the progenitor BHs [13, 14, 40]. So
far, several works from different groups dispute the suc-
cessful/unsuccessful multiple-mode testing of the theo-
rem with the loud-RD events GW150914 [13, 41–50] and
GW190521 [13, 51–55]. In coming years, robust test-
ing of the no-hair theorem [56] through BH spectroscopy
may be achieved with loud events at LVK design sensi-
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tivity (see [57, 58]) and become more precise at the LIGO
A# sensitivity [59], reaching even the percent accuracy
with third-generation gravitational wave interferometers
such as the Einstein Telescope (ET) [60], Cosmic Ex-
plorer (CE) [61] and LISA [62], thanks to the expected
and promising gain in signal-to-noise ratios (SNRs).

One of the major debates among the BH ringdown
community pertains to the suitability of linear pertur-
bation theory for describing the whole RD regime [41–
43, 45, 63–69]. On the one hand, some previous works ad-
vocate that the results of linear perturbation theory can
be applied from the peak of the gravitational strain on-
wards, which implies that the non-linear effects observed
at the merger regime become quickly irrelevant [66, 70].
This is assessed by calibrating to NR data the RD models
with a large number of QNM tones — typically N = 7
overtones in addition to the fundamental mode — to ob-
tain an accurate recovery of the BH parameters, while
fixing its QNM spectrum to GR. On the other hand,
such claims have been disputed by other works by ob-
serving that a high instability of high-overtone models
can arise due to i) a likely overfitting of the data and ii)
neglecting the yet unmodelled non-linear contributions
on the dominant lm = 22 mode [64, 67, 71, 72]. In par-
ticular, even the linear-order contributions arising from
the branch cut1, such as the prompt response or the late
tail effects [73, 74], are neglected by ringdown models
solely based on QNMs. Moreover, [68, 75] have found
clear evidences of quadratic contributions in higher har-
monics of the RD (specifically, quadratic contributions
to the lm = 44 mode sourced by the first-order 22-mode
perturbations), which provide more accurate and more
stable models than the linear models for these modes.
Separately, similar conclusions are obtained by studying
the shear at the horizon in head-on BH collisions [72, 76].
Unfortunately, an analogous but conclusive analysis for
the quadrupolar and dominant 22 mode in quasi-circular
mergers is still absent.

In this work we have tested the performance of lin-
ear and non-linear RD models, by fitting the post-peak
regime of NR waveforms from the SXS and the (associ-
ated) Ext-CCE NR catalogues [77]. The SXS NR wave-
forms are extracted at finite radii and then extrapolated
to future null infinity. The Ext-CCE waveforms use the
Cauchy characteristic extraction procedure, thus reduc-
ing significantly the gauge dependence of the waveforms
obtained at null infinity. We consider the following RD
models to fit the data: i) and ii) two RD models described
by linear perturbation theory with a variable number of

1 The QNMs of Kerr don’t form a complete basis even at linear
order. The time-domain Green’s function might be split into
three different terms, namely, the quasinormal mode solution,
the branch cut and a high frequency response. In particular, the
prompt emission is originated from the branch cut solution and
it is expected to be important at times around the peak of the
emission (see [73] for a detailed review).

tones, with or without degrees of freedom allowing for re-
stricted deviations from the GR QNM spectrum; iii) the
RD sector of the non-linear IMRPhenomDmodel; and iv)
a non-linear RD toy model that uses the linear solution
but modifies it slightly to add a non-linear qualitative
behaviour at early times. Those models are described in
Sec. II. In Sec. III and Sec. IV we introduce the Bayesian
framework and other statistical tools used to perform pa-
rameter inference and to assess the physical reliability of
the models. In Sec. V, we perform Bayesian parame-
ter inference on a set of zero-noise-realization NR signal
injections for each of the models described in Sec. II. Fi-
nally we conclude about the accuracy and suitability of
each model at describing the RD regime in Sec. VI.

II. RD MODELS

A. QNM overtone models

At late enough times, the RD regime can be mod-
elled via the Teukolsky equation [78], which describes lin-
ear perturbations off a Kerr background spacetime, and
hence tells us how GWs propagate as s = −2 gravita-
tional perturbations. This equation is typically solved
by applying outgoing boundary conditions at null infin-
ity and infalling boundary conditions at the BH hori-
zon. The Teukolsky equation then becomes an eigen-
value problem whose solution is the countably infinite
set of the complex QNMs of the final (Kerr) BH. In
a time evolution, these modes take the form of expo-
nentially damped sinusoids. Their complex frequencies
ωlmn = wlmn − ι/τlmn, corresponding to poles of the
Green function [23–25], are solely determined by the rem-
nant BH’s mass Mf and spin af , in the absence of a
BH charge. Here, Re[ωlmn] = wlmn are the so-called
oscillation frequencies and −Im[ωlmn] = 1/τlmn are the
damping rates (inverse of the damping times). These
modes are labelled by three integers l, m, and n. Here
l = 2, 3, . . . and m = −l,−l + 1, . . . , l − 1, l denote
the two angular indices of the spheroidal harmonics de-
composition. The complex strain at future null infinity
h = h+ − i h× (where h+ and h× denote the two polar-
ization components measured in the detector frame) of
the gravitational radiation is accordingly written as:

h(t, θ, ϕ) =
∑
l,m

hlm(t) −2Ylm(θ, ϕ; af ) , (1)

where −2Ylm(θ, ϕ; af ) are the spin-weighted spheroidal
harmonics of spin weight s = −2, which depend upon
the polar angle θ, the azimuthal angle ϕ, and the final
spin af . The third index, n = 0, 1, 2, . . . , labels the tones,
in order of decreasing damping times τlmn for any given
(l,m) harmonic. This convention sets the n = 0 (funda-
mental) mode as the dominant one at late times while
the n ≥ 1 mode (overtones) are shorter-lived. In ad-
dition, there are two branches of QNMs for each (l,m)
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harmonic, respectively with positive and negative wlmn

values [79]. The counter-rotating modes, with wlmn < 0,
are nevertheless, expected to have very small relative am-
plitudes in the dominant harmonics sourced by a quasi-
circular merger [32, 80, 81], and we shall not consider
them further in this paper.

Methods to calculate numerical values of QNM fre-
quencies are present in the literature [79, 82–88] for vari-
ous situations, building upon Leaver’s continued fraction
method [23] or spectral decompositions [87, 88]. In our
work, we mainly use the open-source qnm Python pack-
age [86] to compute the required Kerr QNM frequencies
as functions of the remnant’s mass and spin. Alternative
open-source algorithms to compute the Kerr spectrum
are also available in [82, 89–91].

In this work, we focus on the dominant (l = 2,m = 2)
spheroidal mode of the strain, h22(t), both in terms of
the NR data we are considering and of the models used
to describe it. Note that the mode we select from NR
simulations is in fact the (l = 2,m = 2) mode in a spher-
ical harmonics decomposition, meaning that it includes
some contributions from higher spheroidal harmonics: in
aligned-spins cases like we consider, there is some mode
mixing with (l ≥ 3,m = 2) harmonics. These contribu-
tions are however expected to be negligible at all times
due to the combination of much smaller amplitudes of
these higher modes and small mixing coefficients, so that
the spherical (2, 2) mode considered is a close approxi-
mation to the spheroidal one [66, 81, 92].

The decomposition of h22(t) into the (l = 2,m = 2)
QNMs up to a given number N ≥ 0 of overtones defines
the linear overtone model for the RD:

OMN (t) =

N∑
n=0

An e
−ι (t−tr)ω22n , (2)

where tr is a reference time, usually chosen as a suffi-
ciently late point for the system to reside in the linear
regime [36, 37, 65, 93–96], and An = An e

ιφn is the com-
plex amplitude of the (l = 2,m = 2, n) tone at t = tr.
These N + 1 complex amplitudes, plus the final dimen-
sionless mass and spin mf , af which parametrize the
QNM frequencies ω22n(mf , af ), define the 2N + 4 real-
valued free parameters of the model.

This model provides a priori a good description of the
RD once sufficiently into the linear regime, and while
asymptotic late-time non-QNM linear tail contributions
are still negligible2. This model has been argued to be

2 Such a tail contribution, with a non-oscillatory power-law decay,
is indeed expected as an additional solution to the Teukolsky
equation since QNMs do not form a complete solution basis [73,
97]. Its amplitude is nevertheless small enough that this term
only appears at very late times and is typically not visible within
the post-merger time range of quasi-circular NR simulations such
as the ones we consider [64, 73]. Such tail effects have only
been observed very recently in eccentric mergers from NR, where
they were expected to be enhanced compared to quasi-circular
cases [98].

potentially applicable early on in the RD, up to the peak
of the strain’s amplitude [66], for a sufficiently large N .
We shall however also consider several alternative models
including nonlinear terms, which may better capture the
behaviour of the strain close to merger.

B. Phenomenological nonlinear toy models

The first model with deviations to the linearized GR
sum of QNMs that we consider, is based on the param-
eterized QNM models popular in spectroscopic studies,
which allow for deviations of the QNMs to the Kerr spec-
trum. To avoid the very large parameter space and re-
duce the possible overfittings of models with multiple
overtones that can each independently deviate from GR,
we consider the restricted case where only the highest
tone of the model is modified. This defines the ‘highest-
tone perturbation models’ HTPM:

HTPMN (t) ≡ OMN−1(t) +

AN e−ι (t−tr)w22N (1+αN ) e−(t−tr)/(τ22N (1+βN )) , (3)

where αN and βN are respectively the oscillation fre-
quency and damping time perturbation parameters.
Their values measure the deviations of the highest in-
cluded tone from the Kerr spectrum, and the QNM solu-
tion from GR would be recovered for αN = βN = 0.
HTPM1 corresponds to the most widely used QNM
model in overtone-based spectroscopy (e.g. [13, 14, 41,
43, 47]), including the 220 and 221 modes with possi-
ble frequency and damping times deviations to the Kerr
values for the first overtone. HTPM≥2 is a restricted
extension of this model to higher numbers of overtones,
where only the last tone is allowed to deviate from the GR
spectrum; while HTPM0 is of very limited interest due to
the full degeneracy between the free final mass and spin
and the deviation parameters on the complex frequency
of the only mode present (n = 0). Note that HTPMN

depends in total on 2N + 6 real-valued free parameters
(i.e., the same number as OMN+1): the final mass and
spin (Mf , af ); the perturbation parameters αN and βN ;
and the complex amplitudes of the N +1 tones included.
The other phenomenological toy model considered in

this work amounts to a sum of QNMs with a nonlinear
transformation of the time coordinate. The time param-
eter is shifted by an exponentially decaying term, so that
the model can exhibit this nonlinear modification at early
times close to merger (where it leads to a slower varia-
tion of the phase and amplitude of the waveform), while
asymptotically recovering the linear model at later times3

3 Since the prompt response is expected to be higher close to the
peak of the emission, the TCTM model is designed to account
for this excess, although its fundamental form remains unknown.
The TCTM may as well be interpreted as phenomenologically
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We define the corresponding ‘time coordinate transfor-
mation models’ TCTM as follows:

TCTMN (t) ≡ OMN

(
t+Ae−t/τ

)
, (4)

where A and τ are two constant parameters to be deter-
mined. Like in the HTPM case above, TCTMN depends
on 2N+6 real-valued free parameters: the final mass and
spin; A; τ ; and the N + 1 complex tone amplitudes.
We also considered several additional phenomenolog-

ical toy models, introduced in [102] for the descrip-
tion of the decaying deformations of the final horizon
formed in a merger. These models corresponds to over-
tone models modified e.g. by the addition of a non-
oscillatory exponential decaying component (under the
form OMN (t)+B exp[−(t−tr)/τ̃ ]), or of a power-law de-
caying term with or without oscillations (OMN (t)+C(t−
t1)

−γ exp[ι ω(t− tr)], or the same form with ω set to 0).
These models are designed to recover the steep decay fea-
tured by the deformations of the common horizon shortly
after its formation, in addition to the late-time QNM os-
cillations. Hence, these models were not expected to be
necessarily also well-suited to the description of ringdown
waveforms at null infinity, which rather have a slower
change of amplitude near the merger than further into the
RD regime. Indeed, the preliminary comparative tests of
the various models discussed in this section (see below in
Sec. IIID) indicated a poor performance for these addi-
tional models for the description of waveform ringdowns,
and we did not consider them further for the present
work.

C. IMR model

One can also use full inspiral-merger-ringdown wave-
form models to describe the GW ringdown, by selecting
only the post-merger part of these models. They are
built upon non-linear ansätze, calibrated to NR wave-
forms, which depend solely on the progenitors’ parame-
ters. In general, they will require fewer input parame-
ters than the overtone models — especially compared to
those including a large number of overtones Nmax. In this
work, we use the nonprecessing “IMRPhenomD” wave-
form model. This model is calibrated to mass ratios up to
q = 1/18 and initial effective spins up to 0.98 [103], and is
well sufficient to cover the non-precessing, 22 mode–only
waveforms we consider in this work4.

accounting for post-merger GWs from a BH of time-dependent
mass and spin due to the absorption of the infalling radiation [99–
101].

4 We have also tested two other waveform approximants for com-
parison, namely IMRPhenomPv2 and SEOBNRv4, in the case
of analyses starting at the strain amplitude peak (t0 = 0), and
found similar or better performances than IMRPhenomD. We
chose IMRPhenomD in part because of the fact that more state-

We generate the IMRPhenomD using the PyCBC [105]
time-domain approximant. We truncate the waveform
at t = 0, aligning it with the peak of the strain for
the 22 mode. This alignment corresponds to a fre-
quency fmin ∼ 170 Hz. We use a sampling rate δt =
1/2048 s, appropriate to resolve the high-frequency RD
regime. We select only the 22 mode. The inclination
angle is fixed to zero so that the complex strain is just
h+− ih× = h22(t)−2Y22(θ, ϕ). Note that we are compar-
ing the IMRPhenomD model with NR waveforms, hence,
we must translate the IMR output to geometric units
with G = c = M = 1, which implies that the final mass
referred in this work represents the fraction of energy ra-
diated Mf/M = 1. With this setup, we are left with
4 free parameters in the model: mass ratio, χz

1, χ
z
2, and

phase, where χz
1, χ

z
2 denote the z component of the initial

dimensionless spin of the progenitor BHs. Finally, the fi-
nal mass Mf and final spin af are obtained from fits to
NR in terms of the progenitor parameters [106, 107].

III. MODEL COMPARISON

A. Mismatch analyses

While the bulk of our analysis is based on a full Monte-
Carlo sampling parameter estimation for each model,
we first performed a least-mean-squares fit-based pre-
liminary comparison and selection among the models at
hand. The modelling quality can be assessed in this case
using the mismatch M. This quantity commonly used
in GW astronomy to quantify the similarity between the
model and data [65, 93, 95] is defined as:

M = 1− ⟨hNR|hm⟩√
⟨hNR|hNR⟩⟨hm|hm⟩

(5)

where we compare between our model for the strain
22 mode, hm(t), and the corresponding numerical data,
hNR(t), with:

⟨f |g⟩ = Re

∫ tf

t0

f∗(t)g(t) dt . (6)

The limits of the integral t0 and tf mark the fit starting
and ending time, respectively. M varies between 0 and
1, with higher mismatches meaning that the model de-
viates more from data. We can thus compare models by
computing the mismatch of each of them (with the best-
fit parameter values) to the data. A lower value of that
mismatch is associated with a more faithful modelling —
without, at this stage, accounting for possibly different
numbers of free parameters.

of-the-art approximants were usually calibrated to a much larger
number of NR waveforms [104], and thus potentially exhibit ar-
tificial advantages in the model comparison.
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B. Bayesian framework

Apart from mismatches, another quantity of common
use for comparing the fitting performance of different
GW models is the Bayes factor. As opposed to the
mismatch, the Bayes factor directly quantifies the rel-
ative evidence in favour of a model versus another given
the data, and this comparison already includes an im-
plicit penalty cost for additional parameters and poten-
tial overfitting, through the prior and parameter space
volume. It applies within a Bayesian parameter inference
framework for each model M , where the posterior prob-

ability distribution of the parameters θ⃗ associated with
the model, given the data d (here d = hNR), is given by:

p(θ⃗ | d,M ) =
p(θ⃗ |M ) p(d | θ⃗,M )

p(d |M )
. (7)

Above, p(θ⃗ |M ) is the prior probability of the parame-

ters θ⃗ , p(d | θ⃗,M ) is the likelihood function which rep-
resents the conditional probability of observing d given

the model M with parameters θ⃗, and Z ≡ p(d |M ) =∫
p(d | θ⃗,M ) p(θ⃗ |M ) dθ⃗ is the evidence associated with

model M .
Two possible models MA and MB for the description

of a given dataset d can then be compared by comput-
ing their relative Bayes factor, i.e., the ratio of evidence
between them:

BAB =
p (d | MA)

p (d | MB)
. (8)

As per usual practice, and for convenience, we will be
using the logarithmic Bayes factor log10 BAB , as well as
the logarithmic evidence for any given model log10 Z (the
difference of logarithmic evidences between two mod-
els providing directly the logarithmic Bayes factor be-
tween them). Note that we use the base-10 log here.
BAB > 1 (log10 BAB > 0) would support model MA

over model MB , and vice versa; although a signifi-
cant claim of preference of MA over MB would require
log10 BAB ≳ 1 [108].

C. Bias analyses

Typically, both the best-fit mismatch and Bayes factor
(with respect to a reference model) for each model are
only used to assess the fitting quality, without account-
ing for the physical accuracy of the values obtained for
the model parameters. This accuracy can be measured
separately via the combined recovery bias ϵ on the final
mass Mf and dimensionless final spin af [67, 93]:

ϵ =

√√√√(Mfit
f −M true

f

M

)2

+
(
afitf − atruef

)2
, (9)

where the final masses are normalized by the initial total
mass M from the NR simulation. The true parameters
M true

f and atruef correspond to the values from the NR
simulation, that are estimated from the mass and spin
quasi-local definitions on the apparent horizon [67, 77,
109, 110]. The uncertainties of these final mass and spin
local estimates from NR are typically in the order of 10−5

to 10−4 [67].

D. Preliminary tests

As a preliminary step to rapidly select relevant models
and assess general trends, we fitted various models, with
a range of numbers of tones, to the h22 ringdown strain
mode from the BBH:0305 binary BH simulation from the
SXS catalogue [77]. The ringdown phase of the signal was
selected by starting the analysis at the peak of the corre-
sponding amplitude |h22| (which we use to define t = 0),
i.e., by setting t0 = 0; up to the end of the available data
(tf/M ∼ 150). For the sake of stability and efficiency of
the fits, we followed the same algorithm as in [67, 89] to
obtain the best-fit parameters for each model. The two
to four parameters of a given model which are not tone
amplitudes and phases (that is, for instance, {Mf , af}
for overtones models, and {Mf , af , A, τ} for the HTPM
models) are distributed on an adaptative grid. For each
value of those parameters on the grid, the best-fit value
for the remaining parameters of the model, i.e. the tone
complex amplitudes, on which the model depends lin-
early, is obtained through the analytic minimization of
the sum of squared residuals for a linear model. The
mismatch between the corresponding best-fit waveform
and the NR waveform is computed for each grid point,
and the optimal value for the ‘nonlinear’ parameters on
the grid such as Mf and af is then determined as the
value minimizing the mismatch. Note that minimizing
over the mismatch or over the sum of squared residuals,
for any given set of parameters, gives equivalent results
in the limit of small mismatches (or residuals).
In Fig. 1, we show the mismatch M (left panel) and

final mass/spin bias ϵ (right panel) of these best-fit solu-
tions for the OM and the alternative TCTM and HTPM
models, at various numbers of overtones. For each value
of N = 1 . . . 7 on the x axis, we show the results for the
OMN , TCTMN−1 and HTPMN−1 models (plus OM0 for
N = 0), for direct comparison of models which have the
same number of free parameters, i.e. 2N + 4. We also
considered the IMRPhenomD model, which has 4 param-
eters like the OM0; we represent its mismatch and bias
as a reference magenta horizontal dashed line and shaded
area on each panel. The estimated numerical error on the
mismatch and bias parameter are also shown as dark gray
horizontal lines and shaded areas.

These comparison plots show that the TCTM (at any
N) and the HTPM (from HTPM1 onwards) provide a
comparable or (in most cases) better description in terms
of mismatch to the ringdown 22 mode of SXS:BBH:0305,
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Figure 1. In the left panel, we show the evolution with N ∈ {0, . . . , 7} of the mismatch M between the NR waveform and
the best-fit OMN , TCTMN−1 and HTPMN−1 models. For a given N (along vertical lines on the figure), these models have
the same number (2N + 4) of free parameters and can thus be directly compared. The NR ringdown waveform considered
here corresponds to the BBH:0305 simulation from the SXS catalog, selecting the 22 mode and starting at its amplitude peak
(t = 0). In the right panel, the evolution with N ∈ {0, . . . , 7} of the bias parameter ϵ is presented for the same models. The
magenta dashed line and shaded area in each panel mark the optimal mismatch and bias obtained for the IMRPhenomD model,
which has 4 free parameters like the OM0 (N = 0) model. The dark grey dashed line and shaded area at the bottom of each
panel delimit the mismatch and ϵ values that are lower than the estimated NR errors, i.e., the maximum of the mismatches
max (Mres ,Mextr ) and the total discrepancy δϵr on the dimensionless radiated energy and angular momentum, obtained from
comparing the two highest available resolutions and from comparing the two best extrapolation orders for the 22 mode of the
NR waveform (see Sect.III-B of [67]). Note that the minimum grid resolution used for the recovery of Mf/M and af for the
OM, HTPM and TCTM models was |δMf |/M, |δaf | = 3.2 · 10−6 for both parameters, and hence has a negligible impact on
the ϵ values obtained.

than the OMs for the same number of free parameters.
On the other hand, these two classes of models typically
recover more poorly the parameters of the final BH than
the corresponding overtone model, with the notable ex-
ception of TCTM1 and TCTM2 (compared to OM2,3);
while like for the overtone models the bias does decrease
in most cases when more tones are included in the model.
Finally, the 4-parameter IMRPhenom model provides a
description of the NR data of a quality comparable to
the 8-parameter OM2 and HTPM1 models (and better
than the 6-parameter TCTM0), with a much lower bias
on the final mass and spin. On the other hand, the other
phenomenological RD models, not shown here, that we
considered in this preliminary study (e.g. adding a non-
oscillatory damped power-law or exponential term to a
sum of QNM overtones) were typically performing much
more poorly in both mismatch and bias than the models
shown, and are consequently not considered further in
this work.

We shall now focus on the models with low or moder-
ate numbers of parameters which showed comparable or
better performance than the first few overtone models,
i.e., OM0...4, TCTM0...2, HTPM1,2, and IMRPhenomD,
for a more thorough comparison in a Bayesian inference
approach using nested sampling [111].

IV. PARAMETER ESTIMATION

For GW detectors, the frequency-domain likelihood
function under stationary Gaussian noise is defined from
the noise-weighted frequency-domain inner product (·, ·)
as follows [112]:

p(d | θ⃗,M ) = exp

[
−1

2

(
d(f)−m(θ⃗, f), d(f)−m(θ⃗, f)

)]
,

(10)

where m(θ⃗, f) denotes the strain 22 mode from model

M with particular parameters θ⃗, evaluated at frequency
f , and d is the sum of the GW strain and the noise re-
alization [113] for the 22 mode. The inner product (·, ·)
itself is defined from the one-sided power spectral density
Sn(f) of the detector’s noise, as:

(x, y) = 4× Re

∫ ∞

0

x∗(f) y(f)
Sn(f)

df . (11)

In our case, the parameter estimation is performed on
time-domain data, with the NR ringdown 22-mode strain
as our data set d(t), considered as being injected in a
zero-noise realization. We moreover consider here a flat
noise spectrum within the relevant frequency range, i.e.,
that the noise sensitivity curve can be approximated by
its value at the frequency of the (220) mode [83], Sn(f) ≈
Sn(f220) = cst. This assumption allows us to directly re-
late this constant noise amplitude to the optimal ρ of the
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data, with ρ2 = (d(f), d(f)) = 2 ⟨d(t) | d(t)⟩/Sn(f220),
and to convert more generally via Parseval’s theorem the
noise-weighted frequency-domain inner product (·, ·) of
Eq. (11) into the time-domain scalar product of Eq. (6):

(x(f), y(f)) = 2
⟨x(t) | y(t)⟩
Sn(f220)

= ρ2
⟨x(t) | y(t)⟩
⟨d(t) | d(t)⟩ . (12)

The likelihood expression, Eq. (10), can thus be re-
expressed in time domain as:

p(d | θ⃗,M ) = exp

[
−ρ2

⟨d(t)−m(θ⃗, t) | d(t)−m(θ⃗, t)⟩
2 ⟨d(t) | d(t)⟩

]
.

(13)
We can therefore directly set the optimal ρ in our param-
eter estimations through the likelihood function, which
for a given data d is equivalent to setting the constant
noise amplitude within this approximation.

To perform parameter estimation and both obtain pos-
terior distributions and calculate the models’ Bayesian
evidences, we use the dynamical nested sampling method
from the dynesty Python package [114]. One particular
feature of this method is that it estimates the evidence
and the posterior simultaneously. Throughout our tests,
we used 2000 n-live points and a stopping criterion of
∆(lnZ) = 0.1 for the nested samplings.

V. RESULTS

We start our initial inference analysis on the
GW150914-like simulation, SXS:BBH:0305, employing
the parameter estimation framework this waveform into
white Gaussian noise, simulating an event observed by
third-generation (3G) observatories with a signal-to-noise
ratio of ρ = 100. SXS:BBH:0305 is consistent with a sig-
nal with masssratio q = m1/m2 = 1.22, effective dimen-
sionless spin χeff = (χ1m1 + χ2m2) / (m1 +m2) = 0.01.
Our Bayesian inference is performed using four RD mod-
els described in Section II. Further details on the vari-
ous prior choices for each RD model and their impact
on the obtained posterior distributions are provided in
Section A.

A. Bayes factor analysis for t0 = 0

We initiate our PE analysis at t0 = 0, i.e., consis-
tent with the peak of the strain. We first estimate the
values of the evidence Z for each of the models consid-
ered here. The results of these runs are shown in Ta-
ble I. We can deduce from the results that the IMRPhe-
nomD model yields the highest value for log10 Z, sug-
gesting a better fit to the NR data compared to the other
models. Moreover, among the non-linear models exam-
ined in this study, the second and third highest-ranking
models in log evidence are the non-linear TCTM mod-
els. Specifically, the TCTM2 yields a log Bayes value of

log10 B ∼ 3, indicating that it is approximately O(103)
times larger than the log evidence for the overtone so-
lutions OM2 and OM3. Notably, the TCTM2 achieves
this superior performance while having the same num-
ber of parameters as the latter. We also observe that,
among the linear solutions, the log10 Z saturates at OM2

and it provides a slightly lower value for OM3. We veri-
fied that the log10 Z value consistently decreases for OM4

and OM5 thus, showing that the optimal performance of
the OM models occurs at OM2. This is compatible with
the overtone-models results of [64] and — in the comple-
mentary context of deformations of the final horizon —
of [72]. Finally, the non-GR model HTPM1 provides sim-
ilar log10 Z as OM2. To ensure the robustness of these re-
sults and rule out potential influences from varying prior
choices, we have examined and confirmed that adjusting
priors does not qualitatively alter these findings. The
results shown for different prior choices is shown in Ap-
pendix A. Therefore, and from the Bayes factors’ point
of view, the nonlinear models are preferred for the wave-
form SXS:BBH:0305. In the fourth column of the same
table, we show the mass/spin recovery bias ϵ as defined
in Eq. (9) for the ten models considered. The true val-
ues M true

f , atruef are obtained from the NR metadata files

while the Mfit
f , afitf correspond to the maximum likeli-

hood values obtained after sampling the likelihood dis-
tribution of Eq. (13). The biases on the final mass and
the final spin for the OM models improve gradually from
OM0 to OM3, and it starts to degrade for OM4 (consis-
tently with the overtone-models analyses of [64]). Notice
that this last result qualitatively differs from the analysis
we have done based on the value of evidence Z. This is
expected since the computation of the evidence provides
an extra penalty factor to the increasing of the prior vol-
ume, which in this case is sourced by the large number of
free parameters of the high-Nmax OM models. Regarding
the non-linear models, we observe that the best model
in terms of ϵ is TCTM2 with ϵ = 0.0045. Moreover,
we obtain that for the nonlinear IMRPhenomD model
ϵIMRPhenomD < ϵOM3 while the evidence Z for the IMR-
PhenomD is larger.

B. Mass and spin posterior distributions for t0 = 0

We study the marginalised posterior distribution of
remnant properties for each of the models considered in
this work. Notice here that the posterior distribution
of IMRPhenomD are originally q, χ1z, χ2z, which are
parameters of the progenitor BHs. Thus, these are con-
verted to the final state parameters using NR fits to the
final BH state [105–107].

In Fig. 2, we show the final mass and final spin pos-
terior distributions for the models OM0−3 and IMRPhe-
nomD (in magenta). The “+” symbols, represent the
maximum likelihood values for each of the models con-
sidered, and that correspond to the values of ϵ shown
in the fourth column of Table I. Notice that the pos-
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Model Parameters log10 Z ϵ

OM0 4 -188.435 0.311261
OM1 6 -31.9132 0.087670
OM2 8 -17.0332 0.027019
OM3 10 -17.1311 0.011475
OM4 12 -17.7541 0.032821

TCTM0 6 -33.2123 0.216384
TCTM1 8 -14.4255 0.024559
TCTM2 10 -14.2678 0.004472
HTPM1 8 -17.1984 0.236650
HTPM2 10 -17.3353 0.096609

IMRPhenomD 4 -9.57672 0.014981

Table I. The table contains log10 evidences and remnant
properties recovery biases of 11 models considered, they are
sampled with dynesty package for GW150914 like simulation
waveform SXS:BBH:0305 from SXS. The number of free pa-
rameters of different models are also given, which are mass,
spin and (2 + 2×Nmax) complex amplitudes.

terior distributions on the final mass and the final spin
are consistent with the true parameters for the models
with OMn≥2, while it shows large offsets for the models
OMn=0,1. Moreover, it is noteworthy that the 90% cred-
ible contours increase slightly with the overtone index,
from n = 0 to n = 3. The broadening of the posterior
contours might be sourced by the observed correlations
among the tones (see the Appendix B of [65]), which be-
come specially relevant for tones with n ≳ 1. Therefore,
the precision at which one can measure the final mass
and final spin for signals at ρ = 100 using OMs reaches
a maximum for n = 2 and it slightly degrades for n > 2.
Alternatively, notice that the IMRPhenomD model pro-
vides i) lower values for the bias ϵ than the best OM
solution, and ii) tighter mass and spin contours than all
the other models considered. Therefore, we observe that
the IMRPhenomD model provides a more accurate de-
scription of the signal than the OM models if; either one
uses the Bayesian evidence as a ranking criterion or from
testing the consistency of the posterior distributions with
respect to the true parameters at t0.

In Fig. 3, we show then the posterior distributions of
the final mass and the final spin for the models OM2,
TCTM1, HTPM1 and IMRPhenomD for the same wave-
form at ρ = 100. We compare the inferred posterior
distributions of the optimal linear model OM2 with all
the other nonlinear models. Notice that the 90% credible
contours of the nonlinear IMRPhenomD model still pro-
vide tighter constraints on the remnant parameters and
a lower value for for the bias ϵ. It is noteworthy that
IMRPhenomD is characterized by only four parameters,
distinguishing itself from all the other models under con-
sideration, each of which involves eight parameters. An-
other interesting observation is that even though TCTM1

has better Bayes evidence compared to the correspond-
ing OM2 (i.e. having the same number of parameters),
both its posterior distributions and its values for the ϵ
are still compatible to each other. Notably, the model

True Mass = 0.952

0.
90

1.
05

1.
20

Final Mass

0.
56

0.
64

0.
72

0.
80

0.
88

F
in

al
S

p
in

0.
56

0.
64

0.
72

0.
80

0.
88

Final Spin

True Spin = 0.692

IMRPhenomD

OM0

OM1

OM2

OM3

Figure 2. We show the comparison of final mass and spin pos-
terior distribution for the sampling of OM0−3 and IMRPhe-
nomD for waveform SXS:BBH:0305. Each contour represents
a 90% credible region on the mass-spin 2D plane for given
model. The black dashed lines note the “true” final mass and
spin. The “+” signs denote the maximum likelihood values
for each of the models considered. We assume the injection ρ
to be 100 for all the cases, in order to see the clear compar-
ison. Notice that the 2D marginalised distributions for OM2

and OM3 are practically overlapping, thus showing the OM3

no significant performance gain.

exhibiting the least favorable performance is HTPM1,
displaying a significant bias (approximately 0.2) in rela-
tion to the true values. This bias arises from the model’s
flexibility in deviating from GR and from the mismod-
elling of the early time features by the GR-only OM1

model, resulting in a looser and biased constraint on the
remnant mass and spin values. Significantly, the model
HTPM1 is presently employed for conducting GR tests in
the analysis of ongoing events observed by the LVK col-
laboration thus, the use of this model might be limited
to low ρ scenarios, in which the statistical errors domi-
nate the systematic ones. To this aim, in Fig. 4 we have
quantified impact of the systematic errors with respect
to the statistical ones. In particular, we have estimated
the ratio between ϵ –systematic error – with respect to
the statistical one σϵ estimated at the 90% percentile
and in terms of the SNR ρ. We note that the applicabil-
ity of HPTM1 appears to approach its limit around RD
ρ ≈ 30. At this point, the influence of systematic errors
begins to overtake the statistical uncertainties in the in-
ference of mass and spin values (combined in the variable
ϵ). Yet, the prevailing statistical uncertainty evident in
present events, driven by the noise sensitivity of observa-
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Figure 3. We show the comparison of final mass and spin pos-
terior distribution for the sampling of OM2, TCTM1, HTPM1

and IMRPhenomD for waveform SXS:BBH:0305. Each con-
tour represents a 90% credible region on the mass-spin 2D
plane for given model. The black dashed lines note the “true”
final mass and spin. The “+” symbols, represent the maxi-
mum likelihood estimated for each of the models considered
in this work. We assume the injection to be 100 for all the
cases, in order to see the clear comparison.

tories, notably outweighs the parameter biases identified
in this study. However, as demonstrated in our study,
the accurate determination of the final mass and spin
becomes predominantly influenced by systematic errors
for current OM models when confronted with the antici-
pated high-ρ scenarios characteristic of third-generation
observatories. An analogous analysis for the waveform
Ext-CCE:BBH:0002 is presented in Appendix B.

C. Dependence on the starting time t0

Usually, there is a trade-off in truncating the waveform
at different starting times. On the one hand, performing
BH spectroscopy at late times RD leads to large statisti-
cal uncertainties due to the rapid decay of the SNR5. On
the other hand, starting the spectroscopic analysis close
to the peak amplitude of the strain, results in a biased

5 The SNR ρ scales inversely with the parameter uncertainty σλ

as ρ ∼ 1/σλ. As a rule of thumb, ρ(t0 = 0)/ρ(t0/M = 10) ∼
e−1 = 0.37, which implies that the posterior distributions on the
physical parameters at t0/M = 10 are about e times larger than
the ones obtained at t0 = 0.

Figure 4. The plot illustrates the ratio of the expected bias or
systematic error ϵ to its 90% credible interval statistical error
σϵ for each of the models examined in this study. The black
dashed line, denoted by ϵ/σϵ ≳ 1, signifies the point at which
systematic error begins to dominate over statistical error. No-
tably, the model HTPM1 crosses this threshold at RD ρ ≈ 30,
a region that may soon be reachable by current observatories
or upcoming ones such as A#. The orange dashed line corre-
sponds to the RD ρ value of the first event, GW150914.

estimation of the parameters. This bias stems from the
absence of modes in the OMs and potentially ignoring
the nonlinear effects [68, 75, 115].
Here, we vary the fit starting time by truncating the

waveform at different t0/M , and we analyse the results in
terms of the Bayes factor. We repeat the analysis for a set
of starting times t0/M = −5,−2.5, 0, 2.5, . . . , 20, where
negative t0/M include part of the waveform slightly be-
fore merger. The runs have been performed for the mod-
els OM2, OM3, TCTM1, HTPM1 and IMRPhenomD
with reference (t0 = 0) SNR6 ρt0=0 = 100. In Fig. 5
we show the log10 Bayes factors for each model with re-
spect to the OM3 model via Eq. (8). We have found that
the two nonlinear models considered in this work, IM-
RPhenomD and TCTM1, provide positive Bayes factors
over OM3, while the linear models OM2 and HTPM1

provide negative Bayes factors around the merger (for
negative and low t0/M values). In particular, the Bayes
evidence values we have obtained strongly support the
IMRPhenomD model over OMs at early starting times
(including before the waveform amplitude peak) and up
to t0/M = 15. This suggests that the nonlinear perturba-
tions or even the prompt response effects could still dom-
inate a short time after the merger. However, OM2 con-
sistently exhibits a comparable performance compared

6 Note that the actual SNR also relies on the choice of fit starting
time t0. Truncating and fitting the waveform from the peak can
result in larger ρ compared to fitting with only the later time of
data. In order to make sure we consider the same event, we fix
ρ = 100 at t0 = 0 and let the other t0 ̸= 0 SNR ρ scaled with
respect to the truncated waveform length.
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to all other models starting from t0 = 15 onward, as the
truncated waveform transitions into the linear regime.
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Figure 5. We show the evolution of log10 B with respect to
OM3 for 4 different models, OM2, TCTM1, HTPM1 and IM-
RPhenomD (as well as the reference OM3 at log10 B = 0 by
construction), for a range of starting times −5 ≤ t0/M ≤ 20,
including times slightly before the amplitude peak (t0/M =
−5,−2.5); at an assumed SNR ρ = 100.

D. Can we observe the high-overtone amplitudes?

The confidence statistical observation of a tone solely
from the RD regime, requires that the inferred value of
its amplitude must be incompatible with zero, at least,
within a given confidence level per tone amplitude Cn.
Here, we use the one-sided 90% confidence value C90%

n to
assert the confident observation7 of a tone at a given
SNR ρ for the NR waveform SXS:BBH:0305 [32]. In
particular, we study the dependence of the magnitude
An/C

90%
n for a set of SNRs injections with a network

SNR ρ ∈ [10, 100], where An provides the real valued
amplitude of the tones. An approximated observation
of a tone would correspond to An/C

90%
n ∼ 1. To esti-

mate C90%
n we use the framework described in Sec. IV,

where we also use the best fitting values of the ampli-
tudes and phases obtained at t0. In Fig. 6 we show the
quantity An/C

90%
n in terms of the SNR ρ for two of the

OMs considered in this work; Nmax = 2 (top panel) and
Nmax = 3 (top panel). The dashed vertical orange line

7 The posterior amplitudes, denoted as An and obtained from run-
ning PE are typically constrained to be positive based on our
chosen priors. This imposes a stringent requirement on the lower
limit, specifically, that C90%

n must be greater than zero. In this
context, the one-sided C90%

n is determined by assuming a Gaus-
sian symmetry around the peak value, making it approximately
equivalent to the upper bound of the 90% confidence interval.

Figure 6. Ratio An/C
90%
n of each tone’s best-fit amplitude

An to its 90% confidence interval, in terms of the simu-
lated SNR for the GW150914-like waveform SXS:BBH:0305.
The top panel represents An/C

90%
n for the OM2 i.e. with

Nmax = 2, and in the bottom panel we show the same results
but for Nmax = 3. We take as a reference for observabil-
ity An/C

90%
n ∼ 1. The vertical orange dashed line provides

the post-peak SNR of GW150914, corresponding to a starting
time t0 = 0.

corresponds to the post-peak SNR of GW150914 [41, 43].
Notice that for each tone amplitude, the SNR required
to cross one is larger as the n index increases. This is be-
cause as n increases the corresponding damping time of
each tone τn decreases, thus carrying out a lower per-tone
ρ. Specifically, ρn=1(A0/C

90%
0 = 1) > ρn=1(A1/C

90%
1 =

1) > ρn=2(A2/C
90%
2 = 1) > ρn=3(A3/C

90%
3 = 1). More-

over, notice that ρ ∼ 30 – A2/C
90%
2 = 1 – is required for

the full and confident observation of the Nmax = 2 model
while ρ ∼ 80 – A3/C

90%
3 = 1– is expected if Nmax = 3.

A RD with ρ ∼ 30 might be observed in the LIGO A#
while for ρ ∼ 80 is expected to occur only for 3G ob-
servatories as ET and CE [59, 61]. However, a signifi-
cant concern with the high-order overtone models lies in
the pronounced variation of tone amplitude when alter-
ing the number of tones, denoted as Nmax in the mod-
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els [65, 93]. For instance, the amplitude ratio between the
amplitudes obtained from the fits to the NR data and for
the Nmax = 2, 3 models varies as ANmax=3

n /ANmax=2
n =

{1.04, 1.50, 3} for the tones n = 0, 1, 2 respectively, from
the fits to the NR data. The substantial variability, on
the order of O(2 − 3), in the amplitude values for tones
n = 1, 2 poses a challenge in determining whether these
values represent the system faithfully or are influenced
by other fitting systematics, such as the absence of tones
or the presence of nonlinearities. Conversely, the value of
the fundamental tone amplitude A0 remains almost con-
stant regardless the number of tones considered in this
example. These amplitude variation results are consis-
tent with, e.g., [64, 67, 116].

E. Analysis on different NR waveforms

To assess the robustness of our findings, we conduct pa-
rameter estimation using a distinct set of NR waveforms
sourced from the SXS catalog. These waveforms, namely
SXS:BBH:0150, SXS:BBH:0300, and SXS:BBH:1221,
cover a spectrum of mass ratios spanning 1, 3, 8.5 and
effective spins of 0.2, 0, 0. We also append waveform Ext-
CCE:0002 from the Ext-CCE catalog to the list, with the
detailed discussion presented in Appendix B. Notice that
these waveforms, as well as SXS:BBH:0305 considered so
far, were not used to calibrate IMRPhenomD [103], thus
are not biasing our model comparison. In Table II we
show the log10 Bayes evidence and biases ϵ for a selected
set of models, i.e., IMRPhenomD, OM2, OM3, TCTM1

and HTPM1 for all NR waveform truncated at a starting
time t0 = 0.
We observe that IMRPhenomD consistently provides

Bayes factors of approximately ∼ 10 over OMs at ρ =
100, which denotes a clear preference for the nonlinear
IMRPhenomD model compared to linear RD models. In
addition, the nonlinear model TCTM1 emerges as the
second best solution based on the Bayes evidences, show-
ing a considerable advantage over the OMs. In particular,
notice that we don’t observe significant differences on the
values of log10 Z for the OM2 and OM3, indicating that
OM2 provides a sufficiently accurate solution at t0 = 0,
consistent with the results observed for SXS:BBH:0305.
While the non-GR model HTPM1 offers log evidence val-
ues similar to those of the OM models.

Regarding the bias analysis, we have found that the
IMRPhenomD model recovers the minimum value for ϵ,
for the waveforms SXS:BBH:0150, SXS:BBH:0300, and
SXS:BBH:1221. TCTM1 appears as the second best
model with comparable/better epsilon values comparing
to the OM2 and OM3. And HTPM1 generally performs
the poorest in recovering the true final parameters as
expected, which is similar as the case we have seen for
SXS:BBH:0305 analysis. Therefore, for the five different
NR waveforms tested here, we consistently observe the
compelling preference for the nonlinear models compared
to the OM models and non-GR model.

VI. CONCLUSIONS

In this work we have tested the performance of sev-
eral RD models by fitting them to the 22 mode of NR
waveforms. The models we have used to fit the NR
data are divided into four categories: i) The non-linear
RD regime of the IMRPhenomD approximant — which
has been widely used in GW data analysis, ii) the RD
model as described by linear QNMs — dubbed here
as OM, iii) a family of non-linear RD toy models, the
TCTMs, which expand upon the linear models by in-
cluding further qualitative non-linear contributions, and
iv) the HTPM models, which are linear but allow for
deviations of the QNM spectrum from GR. Our results
are obtained on NR waveforms of different nature: four
extracted at finite radii and extrapolated to null infinity
— labelled as SXS:BBH:# — and one extracted through
the Cauchy characteristic procedure, thus, with lower ex-
pected errors that the extrapolated ones, and labelled as
Ext-CCE:BBH:0002. We first analyse the performance
of the models at fitting the 22 mode of the waveform
SXS:BBH:0305, at a starting time t0/M = 0 (correspond-
ing to the peak of amplitude of the 22 mode). We obtain
the minimum mismatch M and the bias ϵ on the recov-
ered physical parameters of the remnant BH for all the
models consideredand over a range of maximum number
of tones included in the models. We observe that the non-
linear TCTMmodels provide in general a lower mismatch
than the overtone ones, even for Nmax = 7 — while the
IMRPhenomD post-peak model has a match to the data
comparable to the 8-parameter Nmax = 2 OM model de-
spite relying on only 4 free parameters. Regarding the
final mass and spin recovery, we find that the non-linear
models IMRPhenomD and TCTMs both show a similar
accuracy to the OMs up to Nmax ∼ 3, while the OM solu-
tion outperforms them at Nmax ≳ 3. Next, we have also
performed injections of the NR waveform SXS:BBH:0305
in zero-realization white Gaussian noise at SNR ρ = 100
and at different starting times t0/M ∈ [−5, 20], simu-
lating the expected SNRs of the third-generation gravi-
tational wave observatories such as the Cosmic Explorer
and Einstein Telescope. We first note that the non-linear
model IMRPhenomD provides tighter constraints on the
final mass and spin parameters at t0 = 0 than the OM,
even for Nmax = 3. In particular, Nmax = 2 and 3 pro-
vide compatible but broader mass and spin contours with
IMRPhenomD albeit with a significantly lower Bayes ev-
idence, while the Nmax = 0, 1 OM models are more bi-
ased, which is consistent with the results shown in [43].
Remarkably, there is currently no amplitude and phase
overtone model calibrated to the BBH progenitor masses
and spins for Nmax > 1 [32, 36, 116], which contributes
to the broader Nmax = 2, 3 OM constraints. If such a
model were to be developed, the additional uncertainty
introduced by the calibration process might be expected
to further broaden the amplitude and phase uncertain-
ties, potentially compromising the accuracy compared to
the IMRPhenomD model.
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Catalog Waveform q χ1,z χ2,z IMRPhenomD OM2 OM3 TCTM1 HTPM1

Main BBH:0150 1 0.2 0.2 (-8.215,
0.0080)

(-19.916,
0.0283)

(-22.449,
0.0095)

(-14.771,
0.0119)

(-19.314,
0.2059)

BBH:0305 1.221 0.33 -0.44 (-9.558,
0.0150)

(-17.032,
0.0270)

(-17.121,
0.0115)

(-14.447,
0.0246)

(-17.208,
0.2367)

BBH:1221 3 0 0 (-7.988,
0.0074)

(-16.652,
0.0494)

(-18.539,
0.0456)

(-15.071,
0.0503)

(-15.944,
0.2531)

BBH:0300 8.5 0 0 (-6.207,
0.0092)

(-17.000,
0.1209)

(-18.583,
0.0851)

(-15.456,
0.0323)

(-15.647,
0.3011)

Ext-CCE BBH:0002 1 0.2 0.2 (-44.57,
0.0238)

(-80.87,
0.0282)

(-81.44,
0.0238)

(-77.01,
0.0592)

(-79.67,
0.1880)

Table II. The table contains (log10 Z, ϵ) calculated for models IMRPhenomD, OM2, OM3, TCTM1 and HTPM1. They are
sampled with dynesty package for binary BH merger waveform from both the main and Ext-CCE catalog in SXS. The setup
properties of two initial BH including the mass ratios and two dimensionless spins are also given. Notice here that the OM2

always provides a similar/slightly better evidence than OM3, which is consistent with the results obtained for SXS:BBH:0305.

Moreover, we have computed the log10 Bayes factor
of the OM, HTPM, IMRPhenomD and TCTM models
with respect to OM3 (i.e., OM with Nmax = 3). We
have found that in terms of the Bayes factor, at t0 = 0,
the IMRPhenomD is the preferred model, the second best
ranked model being the TCTM1: log10 BIMRPhenomD

OM3
∼ 8

and log10 BIMRPhenomD
TCTM1

∼ 5, showing a decisive (in the
vocabulary of [108]) evidence towards the IMRPhenomD
model. The preference for the nonlinear IMRPhenomD
model remains consistent until t0/M ∼ 15, at which point
the OM2 exhibits a comparable evidence. It is also im-
portant to note that the non-linear TCTM1 model con-
sistently offers superior fits to the data compared to the
OMmodels at negative/early starting times. However, as
anticipated, this difference also diminishes at late fitting
starting times. Next, we have estimated the SNR re-
quired for observing confidently a tone amplitude for the
OM models, with Nmax = 1, 2, 3. First, we have obtained
that, at 90% credible level, the ratio of bias to statistical
uncertainty ϵ/σ90%

ϵ exceeds one for the models OM1 and
HTPM1 when ρ ∼ 30. This implies that analyses of the
RD of upcoming loud GW events might be soon domi-
nated by the systematic errors if those models are used.
For the nonlinear and the OMn≥2 models, we show that
the systematic errors remain subdominant up to ρ ∼ 150.
Additionally, we observe that achieving a full observa-
tion and/or characterization of all the amplitude param-
eters of the linear models OMn=2,3 would require a SNR
ρ ∼ 30, 80 respectively. However, the strong variability of
their amplitudes pose reasonable doubts on the physical
reliability of the models as compared to the full non-
linear solutions, which simply depend on the well-known
progenitor parameters. Finally, we carried out parameter
estimation with the same set of models on four additional
waveforms from the SXS catalog, including one example
from its Ext-CCE extension. We observe again the com-
pelling preference for the nonlinear models compared to
the OM and non-GR (HTPM) models regarding the evi-
dence as well as (in the case of the IMRPhenomD model)
the recovery bias, showing the robustness of the trends
observed in our more detailed SXS:BBH:0305 analysis.

In summary, we have performed ringdown PE on five
independent NR simulations over a range of mass ratios
and aligned, anti-aligned or vanishing spins. Our find-
ings indicate that IMR-based nonlinear models such as
the IMRPhenomD model, yield higher Bayes factors than
the QNM-only models, especially in high-SNR scenarios.
This implies a higher accuracy than QNM models in fit-
ting NR ringdown waveforms up to early times. More-
over, the IMRPhenomD model results in tighter posterior
distributions for the black hole final mass and spin. Addi-
tionally, we observe that the accuracy of the OM models
saturates at Nmax = 2. The loss in accuracy at Nmax > 2
could be induced by the expected non-linearities affect-
ing the early post-peak phase which, at the same time,
may be causing the observed large instabilities on the
amplitudes of the tones with n > 1 [64, 65, 67, 117].
For our toy nonlinear model TCTM1, we observe similar
posterior distributions than for the OM models, together
with a better Bayes factor at early times — intermediate
between that of OM models and that of the IMRPhe-
nomD model. Tests with other NR calibrated models
as the IMRPhenomPv2 and SEOBNRv4 approximants
provided the same qualitative results. An extensive ex-
ploration of other approximants and of further NR wave-
forms of the same and other catalogues will be provided
elsewhere.
Hence, we conclude that the utilization of nonlin-

ear models and, especially, well-established IMR mod-
els which are calibrated to the progenitor parameters, is
more pertinent when inferring physical parameters from
a RD signal. This is particularly relevant when the anal-
ysis commences at the peak of the strain and is applicable
to SNR ratios consistent with third-generation observa-
tories such as ET and CE.
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Appendix A: Robustness tests of prior choices

Model Parameter Prior

OM0 Remnant mass (0.5, 1.3)
Remnant spin (0, 0.99)
Amplitudes (0, 2)

Phases (0, 2π)
OM1∼2 Remnant mass (0.5, 1.3)

Remnant spin (0, 0.99)
Amplitudes (0, 10)

Phases (0, 2π)
OM3∼4 Remnant mass (0.5, 1.1)

Remnant spin (0, 0.99)
Amplitudes (0, 10)

Phases (0, 2π)
TCTMn Remnant mass (0.5, 1.3)

Remnant spin (0, 0.99)
Amplitudes (0, 2)

Phases (0, 2π)
log10 A (-5, 5)

τ (0, 100)
HTPMn Remnant mass (0.5, 1.3)

Remnant spin (0, 0.99)
Amplitudes (0, 2)

Phases (0, 2π)
α (-0.5, 1)
β (-0.5, 1)

IMRPhenomD Mass ratio (1,8)
Initial spin 1 (-0.99, 0.99)
Initial spin 2 (-0.99, 0.99)

Phases (0, 2π)

Table III. The table provides an overview of the priors used
for all the models we consider in the paper. Note that we
use a log-flat prior for A in TCTM as its order of magni-
tude is not known a priori ; while all other parameters are
uniformly distributed. Note that we use different priors for
the amplitudes in different OM. The reasoning behind is that
we observe broader, more loosely constrained posteriors in
the higher overtones’ amplitudes, hence the prior ranges need
to be extended accordingly. While for the remnant mass, a
tighter choice of priors on higher overtone models will rule
out the local minimum and thus represent a more physical
analysis on OM.

In parameter estimation, the choice of prior range is
always a crucial factor. In fact, even if the posterior dis-
tributions are rather similar, the Bayes evidence can still
be different for different prior assumptions. As shown
in Table III, in our case, since we want to compare be-
tween the IMRPhenomD and OMs, the priors already
differ in the first place that one is a IMR model that re-
quires initial properties of the binary, while the another
is only a RD model. For IMRPhenomD, the mass ratio
of (1, 8) prior range + (-0.99, 0.99) spins priors would
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Figure 7. We show the log10 B between IMRPhenomD and
OM2 for 3 different prior ranges and for 5 different waveform.
In this plot, the “Prior1”, “Prior2”, “Prior3” are used to de-
note different ranges for the final mass prior of, (0.5, 1.3), (0.7,
1.2) and (0.8, 1.1), respectively. To examine the robustness of
the choice of prior ranges, we compare the vertical 3 values in
each column of the plot as they are computed on samplings
of different waveform. Comparing the values within a column
and for the three columns of the plot, we do not observe sig-
nificant differences. This suggests that the choices made on
the priors, do not significantly influence the relative perfor-
mance of the RD models.

lead to a different prior range on the remnant mass after
conversion. The new prior range is ∼ (0.85, 1) for the
final mass, which is much different from the typical prior
range we use for overtone model, i.e. (0.5, 1.3).

To examine the robustness of our tests on different
prior assumptions, we also perform the same sampling
for OM2 with 2 new different priors on particularly the fi-
nal mass. They are (0.7, 1.2) and (0.8, 1.1), respectively.
In Fig. 7, the two new priors are denoted as “Prior2”
and “Prior3” with the “Prior1” being (0.5, 1.3). In this
plot, we show the log10 B between IMRPhenomD and
OM2 for 3 different prior ranges and for 5 different wave-
form. To examine the robustness of the choice of prior
ranges, we compare the vertical 3 values in each column
of the plot as they are computed on samplings of the
same waveform. We find that the largest difference in
the log10 Bayes evidence we observe is in SXS:BBH:0305,
which has a log10 B ∼ 1 for one of the new prior sampling
comparing to the typical prior sampling. However, this
change is rather little compared to the absolute values
of the Bayes factors, which have log10 B > 7 for all the
priors. Moreover, we don’t see any clear trend in the
improvement/reduction of Bayes factors when the prior
range shrinks, i.e., from “Prior1” to “Prior3”. There-
fore, the difference we observe are also possibly subject
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Figure 8. We show the comparison of final mass and spin
posterior distribution for the sampling of OM0−3 and IMR-
PhenomD for waveform Ext-CCE:BBH:0002 as a cross check.
Each contour represents a 90% credible region on the mass-
spin 2D plane for given model. The black dashed lines note
the “true” final mass and spin. The “+” symbols denote the
maximum likelihood values for each of the models considered.
We assume the injection ρ to be 100 for all the cases, in order
to see the clear comparison.

to the statistical errors of the samplings. Not to mention
in other tests, the difference between the Bayes evidence
are even smaller. Therefore, we conclude that the prior
choice of our test is robust.

Appendix B: Posteriors of Ext-CCE waveform

As another cross-check, we also present our bias anal-
ysis for the Cauchy characteristic Ext-CCE waveform
from the additional SXS catalog particularly in terms of
the mass/spin posterior distribution comparison of dif-
ferent models. The specific waveform we test is Ext-
CCE:BBH:0002, which has true final dimensionless mass
and spin mf , af given as [0.946, 0.746]

In Fig. 8, we show firstly the comparison of final
mass and spin posterior distribution for the sampling
of OM0−3 and IMRPhenomD. In the main text, we see
that the posterior distributions improvement in succes-
sive OMs. Similarly, we also see here that the poste-
rior distributions on the remnant mass and spin for OM
improves significantly from OM0 to OM1, but then con-
verges at OM3. In particular, the epsilons values esti-
mated for OM2 and OM3 are comparable, as the max-
imum likelihood values for both models almost overlap.
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Figure 9. We show the comparison of final mass and spin pos-
terior distribution for the sampling of OM2, TCTM1, HTPM1

and IMRPhenomD for waveform Ext-CCE:BBH:0002. Each
contour represents a 90% credible region on the mass-spin 2D
plane for given model. The “+” symbols denote the maxi-
mum likelihood values for each of the models considered here.
The black dashed lines note the “true” final mass and spin.

The IMRPhenomD model here also shows a comparable
parameter estimation performance to the OM2,3 mod-
els. IMRPhenomD gives a more faithful recovery for the
final mass, while it performs slightly worse in terms of
the final spin as we can see from the 1D marginalized
distribution. Therefore, the results obtained for the Ext-
CCE:BBH:0002 waveform is consistent with the results
obtained for SXS:BBH:0305 presented in the main text.

In Fig. 9, we show then the comparison of final mass
and spin posterior distribution for the sampling of OM2,
TCTM1, HTPM1 and IMRPhenomD assuming ρ = 100.
Again, this is test about different types of models. We
can see from the 90% credible contours that the nonlin-
ear IMRPhenomD model performs the best in both the
recovery accuracy and precision with only 4 free param-
eters. While for all the other models we have 8 parame-
ters. While unlike the conclusion in the main text, here
the another nonlinear model, TCTM1 has much worse
posterior distributions comparing to the corresponding
OM2 (i.e. having the same number of parameters). The
model with the worst performance here is still HTPM1

as it considers the deviation to GR, which leads then to a
looser/biased constraint on the remnant mass and spin.


	Linear vs. nonlinear modelling of black hole ringdowns
	Abstract
	Introduction
	RD models
	QNM overtone models
	Phenomenological nonlinear toy models
	IMR model

	Model comparison
	Mismatch analyses
	Bayesian framework
	Bias analyses
	Preliminary tests

	Parameter estimation
	Results
	Bayes factor analysis for t0=0
	Mass and spin posterior distributions for t0=0
	Dependence on the starting time t0
	Can we observe the high-overtone amplitudes?
	Analysis on different NR waveforms

	Conclusions
	Acknowledgments
	References
	Robustness tests of prior choices
	Posteriors of Ext-CCE waveform


