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Abstract. We match scattering amplitudes in point particle effective field theory (EFT) and

general relativity to extract low frequency dynamical tidal responses of rotating (Kerr) black

holes to all orders in spin. In the conservative sector, we study local worldline couplings that

correspond to the time-derivative expansion of the black hole tidal response function. These

are dynamical (frequency-dependent) generalizations of the static Love numbers. We identify

and extract couplings of three types of subleading local worldline operators: the curvature time

derivative terms, the spin - curvature time derivative couplings, and quadrupole - octupole mixing

operators that arise due to the violation of spherical symmetry. The first two subleading cou-

plings are non-zero and exhibit a classical renormalization group running; we explicitly present

their scheme-independent beta functions. The conservative mixing terms, however, vanish as a

consequence of vanishing static Love numbers. In the non-conservative sector, we match the dis-

sipation numbers at next-to-leading and next-to-next-to leading orders in frequency. In passing,

we identify terms in the general relativity absorption probabilities that originate from tails and

short-scale logarithmic corrections to the lowest order dissipation contributions.
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1 Introduction

The growing list of gravitational wave (GW) events observed by the LIGO-Virgo-KAGRA col-

laboration has sparked a new era in the study of strongly gravitating compact objects [1–8].

Parameter inference from this data requires accurate waveform templates, which must include,

in particular, tidal effects [9, 10]. These effects are most prominent for neutron stars, whose

static tidal deformations allow one to test their equation of state [9, 11, 12]. These practical

applications motivated further theoretical studies of tidal deformations of compact bodies, es-

pecially black holes (BHs). In Newtonian theory, leading order tidal deformations of celestial

bodies are captured by static Love numbers [13, 14], which depend only on the internal structure

of the body. The post-Newtonian generalization of Love numbers in the case of static metric

was done in [15–17]. Further generalizations to the case of spin and dynamical perturbations

were made in [18–26] where certain conceptual issues were encountered, such as difficulties in the

source-response split of the tidal moments, the presence of frame dragging, concerns about the

coordinate dependence of the results, and the presence of logarithmic non-localities.

A conceptually clean definition of static Love numbers and more general tidal deformations

can be given within the point particle worldline effective field theory (EFT), also known as

non-relativistic perturbative general relativity (GR) [27–35]. In this approach, in the first ap-

proximation, a compact object is described as a point particle on a worldline. The true finite-size

effects related to the internal structure are captured by local worldline couplings that start at

quadratic order in curvature, e.g. for a spherically-symmetric background we have

Sfinite−size = cEMR4

∫
dτ EµνE

µν + cBMR4

∫
dτ BµνB

µν , (1.1)

where R and M are the radius and the mass of a compact body, τ is proper time, while Eµν and

Bµν are electric and magnetic parts of the Weyl tensor. Performing linear static response calcula-

tions [36–38] one can see that the Wilson coefficients cE,B in (1.1) reproduce the classic definition

of static Love numbers in the Newtonian limit, whereby defining the Love numbers in full GR.

This definition of conservative tidal responses as worldline couplings is free of difficulties related

to the non-linear structure of GR, the presence of spin1, and gauge invariance issues. In partic-

ular, in order to include spin, one has to promote the Love numbers to spin-dependent tensors

in order to account for the breaking of the spherical symmetry by the underlying gravitational

background [23, 24, 33, 38]. Importantly, the non-analytic (logarithmic) corrections to the static

Love numbers can readily be interpreted within the definition (1.1) as a familiar renormalization

group running of Wilson coefficients.2 Within the EFT framework, it has been shown that the

static Love numbers of Scwarzschild and Kerr black holes vanish identically in four dimensional

general relativity [25, 36–38, 74, 75]3, which implies a fine-tuning from the EFT perspective [72]4.

1Note that the spin effects were included in the EFT in [39–71].
2The Love numbers of BHs in four dimensional GR do not run as a result of the fine-tuning hidden symmetry [36,

72–74]. They run, however, in higher dimensions [36].
3Love numbers have also been studied in the context of BHs in higher dimensions [36, 75–79], supergravity

solutions [80], and black string systems [79]. Non-linear static tidal Love numbers were studied in [81].
4Proposals for a hidden symmetry resolution of this paradox have been made in [73, 76, 82, 83].
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The time-dependent tides can also be consistently defined in the EFT. One can also introduce

time-dependent (dynamical) Love numbers as EFT couplings in front of operators like [31, 35]

cĖMR6

∫
dτ uσ∇σEµνu

ρ∇ρE
µν = cĖMR6

∫
dτ Ėij Ėij , (1.2)

where in the last equality we have switched to the local comoving frame. In analogy to static Love

numbers, the Wilson coefficient cĖ captures the leading order frequency-dependent conservative

response to external perturbations. If the compact body carries spin, cĖ should be promoted to a

tensor. In addition, the breaking of spherical symmetry generates new local worldline couplings,

e.g. [12, 33, 38, 84]

MR5

∫
dτ λij,klE

ijĖkl , MR5

∫
dτ (ν)ij,kl,mB

ij∇⟨kElm⟩ (1.3)

where λij,kl and νij,kl,m are spin-dependent tensors.5 The first term in Eq. (1.3) describes the

leading order interaction between the spin and the curvature time derivative, while the last one

captures the spin-induced quadrupole-octupole mixing.

As far as the non-conservative effects are concerned, the worldline EFT elegantly takes them

into account by means of introducing internal worldline degrees of freedom that couple to “bulk”

gravitational fields. The leading order effects of these couplings, such as the horizon absorption,

superradiance, tidal torquing, heating, etc. have been extensively studied in the literature [23–25,

28, 33, 38, 85–88]. In terms of the BH tidal response function, these effects may be parametrized

by the so-called dissipation numbers, introduced by analogy with the Love numbers, but capturing

the non-conservative part of the response. In this paper we will focus on their generalizations

beyond the leading order.

The conservative effects associated with operators (1.2) and (1.3) are formally suppressed in

the PN regime compared to the leading order (LO) static deformations, and therefore have not

yet been extensively studied in the literature.6 The non-conservative tidal effects also remain

largely unexplored beyond the LO. There are strong reasons to consider these next-to-leading

order (NLO) and next-to-next-to leading order (NNLO) tidal effects both in the conservative

and dissipative sectors. In general, calculations of subleading effects put the LO results on firm

ground. This is especially relevant for BHs, for which LO conservative tidal effects are absent

for all multipoles, and hence the genuine finite-size tidal effects appear for the first time at NLO

(for Kerr) and NNLO (for Schwarzschild) in the low frequency expansion. Since the vanishing

of static (LO) Love numbers has recently attracted some attention in the context of hidden

symmetries, it is worth noticing that the non-vanishing of NLO tidal couplings may provide

important information about breaking mechanisms for these hidden symmetries. The higher order

dynamical tidal effects could also shed light on the dispersive representation of BH tidal response

function and its relation with the vanishing static Love numbers for 4D BHs [30, 31, 35, 94]. 7

5The symbol ⟨...⟩ in Eq. (1.3) denotes symmetrization over relevant indices and consequent subtraction of traces.
6It is worth mentioning that Ref. [84] was the first one to show that the operators (1.2) are not zero for

Schwarzschild black holes. Ref. [38] showed, for the first time, that the first operator in (1.3) (the dynamical Love

number) is not zero for Kerr black holes. See also [20, 22, 89–93].
7In addition to this, there is significant motivation to study dynamical responses even in the context of Newtonian
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With these motivations in mind, in this work, we systematically study the frequency-dependent

corrections to the tidal response function of rotating (Kerr) black holes perturbatively in GMω

(with ω being the frequency of the external source8, and G is the Newton’s constant), analogous

to the post-Minkowskian (PM) expansion, up to next-to-next-to leading order (NNLO). We

accomplish this by matching various EFT observables produced by tidal operators to known

analytic GR results. Specifically, we match the phase shifts due to scattering of gravitational

waves off Kerr black holes in the EFT and full general relativity. This on-shell matching method

allows us to avoid gauge and coordinate dependence issues as the amplitudes are manifestly gauge

invariant objects. For analytical expressions of the scattering phase shifts in GR, we use the black

hole perturbation theory (BHPT) methods of Mano, Suzuki, and Takasugi (MST) for the analytic

solution of the Teukolsky master equation [100–104]9. One important result of our calculations is

that the NLO and NNLO tidal worldline couplings of Kerr BHs do not vanish and also exhibit a

renormalization group running behavior, which is expected on the basis of Wilsonian naturalness

and power counting [36, 73, 74]. Thus, the fine tuning of the worldline EFT for Kerr BHs takes

place for static couplings only. As far as the quadrupole-octupole mixing local couplings are

concerned, we will show that they vanish identically as a consequence of the vanishing of static

Love numbers.

There are important technical and conceptual challenges what we have resolved in our study.

First of all, we take into account the BH spin formally to all orders in its value. To that end,

we use the most general expansion of the BH response function that is consistent with axial

symmetry and parity, and decompose the unknown response tensors over a finite basis of master

tensors. We then separate the conservative and dissipative parts by studying the behavior of the

response under time reversal symmetry that includes spin flip [33, 38, 88]. The second important

problem is the isolation of tidal contribution in the BHPT scattering expressions. This difficulty

is overcome with the application of the near-far factorization arguments presented in [75], which

we extend here to NLO and NNLO. The third important aspect is the tail effect [29, 108, 109] due

to the wave scattering off the Newtonian potential before or after scattering off the tidal moments.

If unaccounted for, the tail effect would obscure the matching of the dissipative numbers beyond

LO. Using the EFT, we explicitly calculate tail corrections to BH absorption and identify them

in the BHPT result. Finally, we systematically study the mentioned above quadrupole-octupole

mixing effect on the conservative and dissipative parts of the tidal response.

This paper is structured as follows. In Sec. 2, we first explicitly construct the most general

building blocks for the investigation of the tidal response of compact rotating objects. We then

define all tidal response coefficients and discuss the wave scattering framework that will be used in

this work. In Sec. 3, we provide a brief overview of the MST method. We also briefly present the

near-far factorization arguments that allow for the extraction of the phase shift from dynamical

tidal effects in BHPT. In Sec. 4, we match the EFT amplitude calculations with the BHPT

fluid bodies. For example, it can provide us with a microscopic understanding of Love numbers in terms of the

fluid’s fundamental f -mode [14, 95]. In astrophysics, dynamical tides govern the evolution of an oscillating star

which then backreact to the orbital motion [84, 96], even with resonances [97–99].
8In a particular case of an inspiraling binary, this would be the orbital frequency of the satellite body.
9Note that similar in spirit matching calculations were recently performed by [88] in worldline theory and

[105–107] in an on-shell-amplitudes approach.
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phase shifts. This includes explicit matching of the static tidal Love numbers and the LO+NLO

dissipation numbers in Sec. 4.1 and Sec. 4.2, respectively. In Sec. 4.3 we focus on the tail effects

on the tidal response. Sec. 4.4 and Sec. 4.5 focus on the RG running of dynamical Love numbers

and dissipation numbers. We present the explicit scheme-independent beta functions for relevant

local couplings there. In Sec. 5, we match the quadrupole-octupole mixing terms in the tidal

response for rotating black holes. Sec. 6 presents a discussion of the finite, scheme-dependent

parts of the conservative couplings. Finally, in Sec. 7, we summarize the main results and discuss

the future directions. Supplementary material is collected in two appendices. App. A contains

details of our tetrad choice and its relationship to that of Ref. [33]. In Appendix B we set up

conventions for the plane waves, spherical states, and the transformations between them.

2 Tidal Effects in Worldline Effective Field Thoery

When the relevant length scales are much larger than the size of a BH (more generally, any

compact body), its dynamics can be described by a worldline EFT, which can be thought of as

an expansion around the point particle approximation. In this approach, one typically writes

down a universal point particle action and then perturbatively adds non-minimal coupling terms,

consisting of higher powers or higher derivatives of the relevant fields to include finite size effects,

e.g. spin-induced multipole moments and tidal effects. In this work, we will restrict ourselves to

the tidal effects induced by linear external perturbations, which may subsequently be compared

with results obtained via BHPT. These correspond to the quadratic curvature terms in the

effective worldline action. In the worldline EFT finite size effects are taken into account by

approximating the matter distribution inside the compact object via multipolar expansion. In

the following, we will briefly go over this approach, starting with the simple case of a Schwarzschild

BHs.

2.1 Spherically Symmetric Compact Objects

In the case of spherical compact objects, the starting point for the action is simply that of a

structure-less point particle, moving along a path that maximizes proper time given by [27–35]

Sp.p = −M
∫
dτ = −M

∫
dσ

√
−dz

µ

dσ

dzν

dσ
gµν , (2.1)

where M is the mass of the body, and τ is proper time. zµ(σ) is the worldline with σ as a

suitable parameter. p.p stands for point particle. Going forward, we will not explicitly write the

dependence of the worldline coordinates zµ on σ, and use an overdot to denote derivatives w.r.t

proper-time, so that the 4-velocity uµ = żµ.

As mentioned earlier, finite size effects may be included perturbatively via effective operators

that consist of appropriate derivatives and powers of of the metric tensor gµν . Due to general

covariance, we cannot add terms with arbitrary dependence on derivatives of the metric, but only

those consisting of the curvature tensors and their covariant derivatives. Furthermore, there is

no need to add terms made up of Ricci tensors as they can be eliminated via a field redefinition.

Thus, at leading order in finite size effects, we can write [110, 111]

S = Sp.p +

∫
dτ Jµνρσ

Q Cµνρσ, (2.2)
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where Cµνρσ is the Weyl tensor and Jµνρσ
Q is an arbitrary tensor representing a generic quadrupole

moment. The intuition for this effective action comes from studying finite size effects in Newtonian

gravity, where the leading order term arises from the quadrupolar deformation of a body [14].

Extending the intuition further, we may write Jµνρσ
Q in different forms, built of different tensors

to include various finite size effects. For example, in the spinning case, we can build the tensor

Jµνρσ
Q out of the spin tensor Sµν , and the 4-velocity uµ, to include the effect of spin-induced

quadrupolar deformation. More generally, tidal deformation due to external gravitational fields

can also be included by writing Jµνρσ
Q in terms of the curvature tensors in the equations of motion.

To make the parity transformation property manifest, it is convenient to first split up the finite

size effective action into electric and magnetic parts as [51, 112]

S = Sp.p +

∫
dτ
(
Qµν

E Eµν +Qµν
B Bµν

)
, (2.3)

where Eµν = Cµρνσuρuσ and Bµν = (1/2)ϵγ⟨µ
αβCαβ|ν⟩δu

γuδ are the electric and magnetic parts of

the Weyl tensor, also referred to as the quadrupolar electric and magnetic tidal fields. By taking

spatial derivatives on the quadrupolar electric and magnetic tidal fields, one can straightforwardly

generalize the definition to higher order multipole moments [51].

The influence of finite size effects on the dynamics can then be easily obtained by varying

the above action and substituting suitable ansatz for the quadrupole moments. In this work, we

will focus on the case where the ansatz for the multipole moments is linear in the tidal fields,

thus neglecting spin induced multipole moments or any non-linear effects. We can more generally

extend the above action to include other multipole moments as

S = Sp.p +

∞∑
ℓ=2

∫
dτ(QµL

E EµL +QµL
B BµL), (2.4)

where we are using the notation µL = µ1µ2...µℓ with multipole index ℓ. Noting that under parity

transformation

EµL → (−1)ℓEµL , BµL → (−1)ℓ+1BµL , (2.5)

thus the linear perturbations of different parities will not mix in this context. According to the

linear response theory, we can write a general ansatz as

QµL
E = −M(GM)4

∞∑
n=0

(−1)n(GM)nλEωn

dnEµL

dτn
, (E ↔ B) (2.6)

which is an expansion about the adiabatic limit of static tides. By explicitly looking at the

time-reversal symmetry, one immediately see that time-reversal even terms capture the conser-

vative effects, e.g. tidal Love numbers, while time-reversal odd terms contribute to dissipation,

e.g. horizon absorption. Transforming into the frequency domain, the above parametrization

makes manifest that GMω ≪ 1 is dimensionless power counting parameter. Since the multipole

moments and the tidal fields are orthogonal to the 4-velocity, It is convenient to express them in

an orthogonal tetrad eµI=0,1,2,3, and identify eµ0 = uµ. In this way, we can replace the covariant

indices µL with purely spatial indices iL.
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From Response Function to Love Numbers and Dissipation Numbers

The time-reversal even part of the response function Eq. (2.6) can also be written as the higher

dimensional operator in the worldline EFT. For example, in the case of static tides, one can get

the effective action

S = Sp.p −
1

2

∫
dτM(GM)4λEEiLE

iL + (E ↔ B) , (2.7)

so the conservative tidal response is fully captured by local contact terms on the worldline EFT.

λE/B can then be identified with the Schwarzschild static tidal Love numbers that are known

to be zero [15–17, 19, 36, 37]. Furthermore, the next-to-next-to-leading order (NNLO) term in

Eq. (2.6), i.e. (GMω)2 order term, is also invariant under time reversal symmetry, and therefore

can be absorbed into the action via the local contact terms of the form

S = Sp.p +
1

2

∫
dτM(GM)6λEω2ĖiLĖ

iL + (E ↔ B). (2.8)

λ
E/B
ω2 will be referred to as dynamical tidal Love numbers for Schwarzschild BH.

The time-reversal odd terms, e.g. the next-to-leading order (NLO) term in Eq. (2.6)

QiL
E

∣∣∣
NLO

=M(GM)5λEω Ė
iL . (E ↔ B). (2.9)

cannot be absorbed into the local contact term on the worldline. We can re-write it in a non-local

way as (see Ref. [74] for details)

S = Sp.p − i
1

2
M(GM)5λEω

∫
dω

2π
|ω|EiL(ω)E

∗iL(ω), (2.10)

which reflects that the imaginary part of the effective action gives rise to non-conservative ef-

fects such as absorption. The coefficient λEω will be called a LO tidal dissipation number for

Schwarzschild BH in what follows.

2.2 Rotating Compact Objects

The worldline EFT construction is conceptually similar in the spinning case, except for two critical

distinctions. First, the EFT cannot be built solely upon a structure-less point particle. Instead, it

is necessary to incorporate spin-dependent interactions, which lead to the pole-dipole Mathisson-

Papapetrou-Dixon (MPD) equations of motion [113–117]. These equations form the universal

segment of the action for a body with spin. Second, the presence of spin not only modifies tidal

effects but also introduces another kind of finite size effects: spin-induced multipole moments.

As noted in previous studies [54, 59, 61], these two effects can be explicitly distinguished, as spin-

induced multipole moments are linear in curvature, while tidal finite-size effects are quadratic in

curvature. In this paper, our focus will be strictly on the tidal effects.

Building Blocks and SO(3) Representation

In the spinning case, instead of simple proportionality relations as Qij
E ∼ λEωE

ij , we expect tensor

relations of the form Qij
E ∼ (λEω )

ij
klE

kl, where the unknown tensors in the tidal response (say

λEω ) can only have a non-trivial structure owing to the spin of the particle.
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To parametrize the kind of tensors entering the tidal response in the spinning case, let us

briefly revisit the algebraic structure of spins. In the rest frame of the central compact object, we

find it beneficial to use the spin tensor Sij , the Pauli-Lubanski spin vector si = (1/2)ϵijkSjk, and

the identity tensor δij as our building blocks. The spin magnitude is defined as J ≡ χGM2 ≡√
(1/2)SijSij , where χ is the dimensionless spin parameter. For sub-extremal Kerr BHs, we

must require χ ≤ 1. In principle, one can now build up the effective action by combining these

tensorial building blocks into scalar quantities. For convenience, we further introduce the unit

spin tensor Ŝij ≡ Sij/J , Ŝ
ijŜij = 2 and the unit spin vector ŝi ≡ si/J , ŝiŝi = 1.

Naively, one could make infinitely many combinations of building blocks {Ŝij , ŝi, δij}, to get

tensors of the form (λEω )
ij
kl. However, it turns out that only a finite number of them are linearly

independent because of the identities

Ŝij ŝj = 0 ,

Ŝi
kŜ

j
l = −δilδjk + δijδkl − δklŝ

iŝj + δilŝ
j ŝk + δjkŝ

iŝl − δij ŝkŝl .
(2.11)

Since the spin breaks the SO(3) symmetry into a smaller SO(2) subgroup consisting of rotations

about the spin-axis, it is convenient to organize our basis set of tensors based on the number of

spin vectors and tensors used to construct them. We start from the Kronecker delta tensors with

no spins and therefore respecting SO(3) invariance. Then we gradually break the SO(3) symmetry

by adding additional spin vectors and tensors such that they still have axial invariance. Finally,

we symmetrize and remove the traces as required for the response tensors. Specifically, in the

quadrupolar case with ℓ = 2, we are able to define the following five linearly independent basis

tensors: {
δ
⟨i
⟨kδ

j⟩
l⟩ , Ŝ

⟨i
⟨kδ

j⟩
l⟩ , ŝ

⟨iŝ⟨kδ
j⟩
l⟩ , Ŝ

⟨i
⟨kŝ

j⟩ŝl⟩, ŝ
⟨iŝ⟨kŝ

j⟩ŝl⟩

}
, (2.12)

where ⟨i, j⟩ denotes the symmetrization and trace-removal of contained indices. Intuitively, the

above base tensors can be distinguished by how many spin tensors (vectors) they have. Further-

more, according to the SO(3) representation theory, we explicitly show in App. B that the above

tensors can be re-rewritten into the operator form

δ
⟨i
⟨kδ

j⟩
l⟩ ≡ I, Ŝ⟨i

⟨kδ
j⟩
l⟩ ≡ i

2
Jz, ŝ

⟨iŝ⟨kδ
j⟩
l⟩ ≡ −1

6
(J2

z − 4 I),

Ŝ⟨i
⟨kŝ

j⟩ŝl⟩ ≡ − i

6
(J3

z − 4Jz), ŝ
⟨iŝ⟨kŝ

j⟩ŝl⟩ ≡
1

6
(J2

z − 4 I)(J2
z − I). (2.13)

where Jz and I are respectively the (z-component) angular momentum operator and identity

operator in rank-2 STF tensor space. The above equation not only makes the spin structure

manifest, but also makes it easy to transform between tensor basis and spherical basis. This

also makes it convenient later to switch scattering amplitudes from plane-wave basis to spherical

basis.

Tensorial Response Function

In this paper, our focus is on the dynamical tidal response of Kerr BHs. As a first step, we write

down the following leading interactions in the quadrupolar and octupolar sectors,

S = S(0) +

∫
dτ
[
QE

ijE
ij +QB

ijB
ij +QE

ijkE
ijk +QB

ijkB
ijk
]
, (2.14)
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where we use S(0) for the spinning point particle effective action. Note again that we write the

above action for a choice of tetrads that corresponds to a locally-flat comoving inertial frame.

This basis is different from the one used in Ref. [33], and we discuss the technical differences

w.r.t. this references in App. A. As a next step, we parametrize the electric and magnetic tidally

induced multipole moments in the most general way as [88]

QE
ij = −M

[
(GM)4(λE)ijklE

kl − (GM)5(λEω )ijkl
D

Dτ
Ekl + (GM)6(λEω2)ijkl

D2

Dτ2
Ekl

+ (GM)5(νE)ij⟨klŝm⟩B
klm + · · ·

]
,

QB
ij = −M

[
(GM)4(λB)ijklB

kl − (GM)5(λBω )ijkl
D

Dτ
Bkl + (GM)6(λEω2)ijkl

D2

Dτ2
Bkl

+ (GM)5(νB)ij⟨klŝm⟩E
klm + · · ·

]
,

QB
ijk = −M

[
(GM)5ŝ⟨k(ξ

B)ij⟩lmE
lm + · · ·

]
,

QE
ijk = −M

[
(GM)5ŝ⟨k(ξ

E)ij⟩lmB
lm + · · ·

]
,

(2.15)

where we have promoted all the coefficients in Eq. (2.6) into tensors. Expanding these tensors

over the master tensors from Eq. (2.13), we get

(λE/B)ijkl = Λ
E/B
ŝ0

δ
⟨i
⟨kδ

j⟩
l⟩ +H

E/B
ŝ1

Ŝ⟨i
⟨kδ

j⟩
l⟩ + Λ

E/B
ŝ2

ŝ⟨iŝ⟨kδ
j⟩
l⟩ +H

E/B
ŝ3

ŝ⟨iŝ⟨kŜ
j⟩
l⟩ + Λ

E/B
ŝ4

ŝ⟨iŝ⟨kŝ
j⟩ŝl⟩ ,

(2.16)

(λE/B
ω )ijkl = H

E/B
ŝ0,ω

δ
⟨i
⟨kδ

j⟩
l⟩ + Λ

E/B
ŝ1,ω

Ŝ⟨i
⟨kδ

j⟩
l⟩ +H

E/B
ŝ2,ω

ŝ⟨iŝ⟨kδ
j⟩
l⟩ + Λ

E/B
ŝ3,ω

ŝ⟨iŝ⟨kŜ
j⟩
l⟩ +H

E/B
ŝ4,ω

ŝ⟨iŝ⟨kŝ
j⟩ŝl⟩ ,

(2.17)

(λ
E/B
ω2 )ijkl = Λ

E/B
ŝ0,ω2δ

⟨i
⟨kδ

j⟩
l⟩ +H

E/B
ŝ1,ω2Ŝ

⟨i
⟨kδ

j⟩
l⟩ + Λ

E/B
ŝ2,ω2 ŝ

⟨iŝ⟨kδ
j⟩
l⟩ +H

E/B
ŝ3,ω2 ŝ

⟨iŝ⟨kŜ
j⟩
l⟩ + Λ

E/B
ŝ4,ω2 ŝ

⟨iŝ⟨kŝ
j⟩ŝl⟩ .

(2.18)

In this expression, all the ΛE/B terms correspond to the conservative tidal deformations, whereas

all the HE/B terms account for the tidal dissipation. This follows from their behavior under

time reversal transformations. Additionally, the above ansatz for the tidal response obeys parity

invariance, which explains the absence of some other possible combinations one can add to the

response :

• Time-reversal transformation property: In our parametrization of the response func-

tion, operators D/Dτ , Ŝij and ŝi are odd under time-reversal transformations. Thus, all

terms with pre-coefficients HE/B break the time-reversal symmetry and thus correspond to

tidal dissipation 10. Similar to the discussion in the Schwarzschild case, these coefficients

cannot be absorbed into local contact terms on the worldline. However, terms proportional

to ΛE/B are time-reversal even and hence contribute to the conservative tidal deforma-

tions. Furthermore, for the external perturbations, the electric tidal field EiL is even under

time-reversal transformation while the magnetic tidal field BiL is odd. Note that it is the

10In astrophysical context, this is sometimes known as tidal heating.
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behavior under time-reversal of the combination QE
iL
EiL (QB

iL
BiL) that dictates whether a

given term in the response is conservative or dissipative.

• Parity transformation property: The linear tidal response of Kerr BHs is parity invari-

ant 11. Therefore, to maintain parity invariance, the induced electric quadrupole moment

QE
ij should contain contributions from Bklm, but not from Bij , and vice versa. As a re-

sult, we incorporate the free tensors (νE/B)ijkl and (ξE/B)ijkl to encapsulate these mixing

effects. We can further decompose these tensors into our spin building blocks, enabling us

to consistently track time-reversal properties

(νE/B)ijkl = Λ̃
E/B
ŝ0

δ
⟨i
⟨kδ

j⟩
l⟩ + H̃

E/B
ŝ1

Ŝ⟨i
⟨kδ

j⟩
l⟩ + Λ̃

E/B
ŝ2

ŝ⟨iŝ⟨kδ
j⟩
l⟩

+ H̃
E/B
ŝ3

Ŝ⟨i
⟨kŝ

j⟩ŝl⟩ + Λ̃E
s4 ŝ

⟨iŝ⟨kŝ
j⟩ŝl⟩ ,

(2.19)

(ξE/B)ijkl = Λ′E/B
ŝ0

δ
⟨i
⟨kδ

j⟩
l⟩ +H ′E/B

ŝ1
Ŝ⟨i

⟨kδ
j⟩
l⟩ + Λ′E/B

ŝ2
ŝ⟨iŝ⟨kδ

j⟩
l⟩

+H ′E/B
ŝ3

Ŝ⟨i
⟨kŝ

j⟩ŝl⟩ + Λ′E
s4 ŝ

⟨iŝ⟨kŝ
j⟩ŝl⟩ .

(2.20)

Similar to the previous analysis, Λ̃E/B,Λ′E/Bs capture the conservative tidal response while

all H̃E/B, H ′E/Bs describe the dissipative tidal response.

2.3 Dynamical Tidal Love Numbers, Dissipation Numbers and Mixing Coefficients

Having established the symmetry properties of the tensorial tidal response function, let us now

clarify some of the terminologies used.

Static Tidal Love Numbers and Dynamical Tidal Love Numbers

Following previous literature, e.g. [38], we refer to the following coefficients as static tidal Love

numbers (TLNs)

Static tidal Love numbers : Λ
E/B
ŝ0

, Λ
E/B
ŝ2

, Λ
E/B
ŝ4

. (2.21)

As shown in [25, 38, 75], all static Love numbers of Kerr BHs vanish to all orders in the value of

the BH spin. In this paper, we generalize the conservative tidal response to the dynamical region

where we have introduced 5 more parameters. We will refer to them as the dynamical tidal Love

numbers (DTLNs),

Dynamical tidal Love numbers : Λ
E/B
ŝ1,ω

, Λ
E/B
ŝ3,ω

, Λ
E/B
ŝ0,ω2 , Λ

E/B
ŝ2,ω2 , Λ

E/B
ŝ4,ω2 . (2.22)

We show in Sec. 4 that all the dynamical tidal Love numbers exhibit the RG running behav-

ior, similar to Love numbers in higher dimensions, e.g. [36, 37]. Furthermore, similar to the

11In the case of Kerr BHs, both the background metric and the boundary conditions at the event horizon,

which we will consider during our scattering studies, respect parity invariance. Therefore, we anticipate that

tidal response will also respect parity invariance. However, from the perspective of EFT, there is no fundamental

principle mandating parity invariance, see discussions in [118] about the finite size effects from parity violating

constituents.
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Schwarzschild case, all the static tidal Love numbers and DTLNs can be absorbed into the world-

line effective action via local contact terms as

S = S(0) −
1

2

∫
dτM(GM)4

[
ΛE
ŝ0E

ijEij + ΛE
ŝ2E

ijEkj ŝiŝ
k + ΛE

s4E
ijEklŝiŝj ŝ

kŝl
]

+
1

2

∫
dτM(GM)5

[
ΛE
ŝ1,ωŜikĖ

k
jE

ij + ΛE
ŝ3,ωŜikŝj ŝlĖ

klEij
]

+
1

2

∫
dτM(GM)6

[
ΛE
ŝ0,ω2Ė

ijĖij + ΛE
ŝ2,ω2Ė

ijĖkj ŝiŝ
k + ΛE

s4,ω2Ė
ijĖklsisjs

ksl
]

+ (E ↔ B) .

(2.23)

Note that this expression is missing the quadrupole-octupole mixing terms. They will be discussed

shortly.

Tidal Dissipation Numbers

Similar to the Schwarzschild case, we call the following coefficients as leading order Kerr tidal

dissipation numbers (TDNs)

LO tidal dissipation numbers : H
E/B
ŝ1

, H
E/B
ŝ3

. (2.24)

These two numbers have been computed before with various methods [25, 33, 85, 86, 88, 119–122].

In this work, we have extended the tidal response to (GMω)2 order, so we need to introduce 5

more parameters to capture the tidal dissipations. Here, we call the following three next-to-leading

order (NLO) tidal dissipation numbers

NLO tidal dissipation numbers : H
E/B
ŝ0,ω

, H
E/B
ŝ2,ω

, H
E/B
ŝ4,ω

. (2.25)

These numbers were first matched in [88] that helped resolve the mismatch of horizon flux between

Refs. [123] and [103] in the extremal-mass-ratio limit. In Sec. 4, we will show that these three

NLO tidal dissipation numbers exhibit divergent behavior near the extremal limit, which gives

large spin corrections that modify the superradiance condition. Furthermore, we also need the

following next-to-next-to-leading order (NNLO) tidal dissipation numbers

NNLO tidal dissipation numbers : H
E/B
ŝ1,ω2 , H

E/B
ŝ3,ω2 . (2.26)

In Sec. 4, we will show that all the NNLO tidal dissipation numbers also exhibit the RG running

behavior that comes from the ultraviolet (UV) divergence in the EFT 2-loop corrections with

two mass insertions. Note that the origin of the RG running here is different from that of the

dynamical Love numbers.

Mixing Coefficients

Consistent with the parity transformation property discussed previously, we introduced the free

tensors (νE/B)ijkl and (ξE/B)ijkl to capture the mixing effects. Here, we denote that the following

6 coefficients as conservative tidal mixing numbers (CTMNs)
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conservative tidal mixing numbers : Λ̃
E/B
ŝ0

, Λ̃
E/B
ŝ2

, Λ̃
E/B
ŝ4

, Λ′E/B
ŝ0

, Λ′E/B
ŝ2

, Λ′E/B
ŝ4

.

(2.27)

These effect of the corresponding operators can be reproduced with the following effective action,

Smixing =− 1

2

[
M(GM)5

∫
dτEij ŝ

mBklm(NB)ij,kl −M(GM)5
∫
dτBij ŝ

mEklm(NB)ij,kl

]
,

(2.28)

with

(NE)ij,kl = (νE)(ij,kl) + (ξB)(kl,ij) ,

(NB)(ij,kl) = (νB)(ij,kl) + (ξE)(kl,ij) ,
(2.29)

where time-reversal invariance dictates that only the symmetric (under ij ↔ kl) parts of the

tensors (νE)ij,kl, (ξE)ij,kl should contribute.

The other 4 coefficients will be referred to as dissipative tidal mixing numbers (DTMNs)

dissipative tidal mixing numbers : H̃
E/B
ŝ1

, H̃
E/B
ŝ3

, H ′E/B
ŝ1

, H ′E/B
ŝ3

. (2.30)

The first matching of these dissipative tidal mixing numbers was performed in [88]. They originate

from the perturbative expansion of spheroidal harmonics in terms of spherical harmonics. Here

in Sec. 5, we present a more straightforward way to match these coefficients in both conservative

and dissipative sectors in terms of amplitudes.

2.4 Wave Scattering off Compact Objects

We have completed the discussion of the various free coefficients in the dynamical tidal response

for rotating (axi-symmetric, parity-preserving) compact objects. In the remaining part of the

paper, we explicitly fix these coefficients by matching the scattering amplitudes obtained in the

EFT with the scattering phases obtained from BHPT. Before we go into the detailed discussion

of the matching procedure, let us first set up the formalism to study the wave scatterings off

compact objects. In the worldline EFT language, this corresponds to the following scattering

process

worldline + particle A → worldline + particle A, (2.31)

where we use the double solid line to denote the worldline and the yellow wavy lines for gravitons

(2.32)

We choose the worldline to be static, which is motivated by the assumption that the BH mass

M is much larger than the energy of the incoming massless particle ω. This also naturally leads
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to the power counter parameter GMω ≪ 1 which we have been using in the parametrization of

dynamical tidal response and will be later used as an expansion parameter in the BHPT solution.

The scattering matrix now is defined as

out⟨k′, h′|k, h⟩in ≡ ⟨k′, h′|S|k, h⟩ , (2.33)

where h is the helicity of the particle, and the normalization of the bulk particle state is

⟨k, h|k′, h′⟩ = 2|k| × (2π)3δ3(k − k′)δhh′ in four dimensional spacetime. The on-shell constraint

for massless fields is ω2 = k2. In what follows we will formally decompose S-matrix as S = 1+iT .

In the worldline theory, the time translation invariance dictates that scattering processes are con-

strained by energy conservation. Therefore, it is convenient to define the dimensionful scattering

amplitude M as

⟨k′, h′|iT |k, h⟩ ≡ (2π)δ(ω′ − ω)× iM(ω,k → k′, h→ h′) . (2.34)

The dimensionality of M(ω,k → k′, h → h′) is [energy]−1. In this paper, we find it more

convenient to calculate the scattering amplitude directly in the spherical basis. We define the

spherical wave state |ω, ℓ,m, h⟩ which describes the spherical wave with frequency ω, angular

quantum number ℓ, magnetic quantum number m and helicity h. The normalization of such

state is ⟨ω, ℓ,m, h|ω′, ℓ′,m′, h′⟩ = (2π)δ(ω−ω′)δℓℓ′δmm′δhh′ . Now, we can compute the scattering

amplitude in this basis

⟨ω′, ℓ′,m′, h′|iT |ω, ℓ,m, h⟩ = (2π)δ(ω′ − ω)× iA(ω, ℓ,m, h→ ω, ℓ′,m′, h′) , (2.35)

where the scattering matrix A is dimensionless. The relation between A and M is given by

A(ω, ℓ,m, h→ ω, ℓ′,m′, h′)

=

∫
d3k1d

3k2

(2π)6 × 4|k1||k2|
∑
h1,h2

⟨ω, ℓ′,m′, h′|k2, h2⟩M(ω,k1 → k2, h1 → h2)⟨k1, h1|ω, ℓ,m, h⟩ ,

(2.36)

where the transformation matrix [33] is given by

⟨ω, ℓ,m, h|k, h⟩ = (2π)2
√

2ℓ+ 1

2πω
δ(ω − |k|)δhh′Dℓ

mh(ϕ, θ, 0) , (2.37)

with Dℓ
mh(ϕ, θ, 0) the Wigner-D matrix. Here (θ, ϕ) denotes the orientation of k. In a diagonal

basis, one can easily relate the amplitude with the scattering phase shift as

iA = 1− ηℓm exp(2iδℓm) , (2.38)

where δℓm is the elastic scattering phase shift and 1 − η2ℓm is the absorption probability. For

gravitational perturbations, one can further write the polarization tensor into the spherical basis

as

ϵh=±2
ij (k) =

2∑
m=−2

⟨i, j|ℓ = 2,m⟩Dℓ=2
mh=±2(ϕ, θ, 0) . (2.39)

More detailed discussions are included in App. B.1.

Now, we are equipped with all the tools for studying the dynamical response on Kerr BHs. In

the following three sections, we shall first present the wave scattering phase shifts of Kerr BHs

from the analytic solution to the Teukolsky equation in Sec 3. Then, we will explicitly match the

various tidal response coefficients mentioned before in Sec. 4 and Sec. 5.
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3 Kerr Perturbations and Near-Far Factorization

As discussed in Sec. 2, various Love numbers and dissipation numbers are the unknown parameters

in the ansatz for the tidal response, relating tidal fields to induced multipole moments. Love

numbers may be further viewed as the Wilson coefficients in front of the quadratic-in-curvature

terms in the worldline EFT. Determining these coefficients requires the computation of physical

observables such as scattering amplitudes, which we then match with the corresponding results

from the ultraviolet (UV) theory. In this context, as far as linear tidal effects are concerned,

the UV theory is essentially linear BHPT. An important observation in this context is the so-

called near-far factorization in black hole scattering amplitudes [75] that can be used to extract

Love numbers, dissipation numbers, and their RG running without the interference from the

post-Minkowskian correction from non-linearities of GR. In Sec. 3.1, we briefly review the Mano,

Suzuki, and Takasugi (MST) method and discuss its factorization properties. This approach is

particularly useful since it yields an explicit Taylor expansion in GMω, just as the perturbative

EFT calculation. Subsequently, in Sec. 3.2, we present results for Kerr BHs for the quadrupolar

sector ℓ = 2.

3.1 Scattering of Test Fields by Black Holes and the Near-Far Factorization

The study of wave scattering off Kerr Black Holes (BHs) is a longstanding field of research with

foundational works by R. A.Matzner and others [124–128]. Recently, this area of research has

been revived thanks to novel insights from the S-Matrix theory, see e.g. [105, 106]. In this section,

we will outline some key components of this theory relevant for the matching of dynamical Love

numbers and dissipation numbers. A comprehensive discussion will be presented elsewhere [77].

We begin our analysis by considering a test field of a positive integer spin s propagating on

a Kerr BH background, and choose the ẑ direction to align with the BH spin. If the incoming

wave of the test spin-s field has an incident angle of (γ, ϕ0) with respect to the ẑ direction, we

can express the scattering differential cross section as follows

dσ

dΩ
= |fs(θ, ϕ)|2 + |gs(θ, ϕ)|2 , (3.1)

with the helicity conserving amplitude [77, 106, 129–131]

fs(θ, ϕ) =
π

iω

∞∑
ℓ=s

ℓ∑
m=−ℓ

−sS
m
ℓ (cos γ, aω)−sS

m
ℓ (cos θ, aω)eim(ϕ−ϕ0)(sηℓme

2isδℓm − 1)× 2 . (3.2)

Here, −sS
m
ℓ (cos θ, aω) is the spin-weighted spheroidal harmonics with orbital quantum number ℓ

and magnetic quantum number m. The tortoise coordinate of Kerr BH is defined as

dr∗
dr

≡ (r2 + a2)

∆
, ∆ ≡ (r − r+)(r − r−) (3.3)

where r+ and r− are outer and inner horizon respectively. By analyzing the Teukolsky master

variable [102, 104, 132]

ψ[−s] = e−iωt
∑
ℓm

eimϕ
−sS

m
ℓ (θ; aω)−sRℓm(r) , (3.4)
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with the following asymptotic behavior in the tortoise coordinate

−sRℓm(r) → B
(inc)
−sℓmr

−1e−iωr∗ +B
(refl)
−sℓmr

−1+2seiωr∗ , r∗ → +∞ , (3.5)

we can get the scattering phase shift

sηℓme
2isδℓm = (−1)ℓ+1Re(sC

m
ℓ (aω))

(2ω)2s
×
B

(refl)
−sℓm

B
(inc)
−sℓm

, (3.6)

where sC
m
ℓ (aω) is the Teukolsky-Starobinsky constant, sδℓm the elastic scattering phase shift

and 1− (sηℓm)2 the absorption probability. The helicity-reversing amplitude gs(θ, ϕ) vanishes for

spin-0, 1 field [77, 105], but it is non-vanishing for spin-2 field due to the imaginary part of spin-2

Teukolsky-Starobinsky constant [77, 106, 129–131]

g2(θ) =
π

iω

∞∑
ℓ=2

(−1)ℓ−2S
m
ℓ (cos γ, aω)−2S

m
ℓ (− cos θ, aω)×

(
(−1)ℓ+1+m 12iMω

16ω4

B
(refl)
−2ℓm

B
(inc)
−2ℓm

)
×2 . (3.7)

As the EFT is a low-frequency and long-wavelength expansion, its results have to be matched

to the relevant low-frequency observables in BHPT. A solution to the Teukolsky equation in this

context has been systematically developed through the matching of asymptotic expansions using

the MST method [100–102, 104]. The key idea in this method is that one can construct the near

zone solution based on the double-sided infinite series of hypergeometric function which converges

within r+ ≤ r <∞ and the far zone solution based on the double-sided infinite series of Coulomb

wave function which converges within r+ < r ≤ ∞. The two solutions can be matched in the

overlapping region. In order to ensure the convergence of solutions and the successful execution

of the matching procedure, an auxiliary non-integer parameter, ν, is introduced. This parameter,

often referred to as the “renormalized angular momentum,” is a fundamental necessity in the

matched asymptotic expansion method, as mentioned in previous mathematical studies [133].

Ultimately, this process yields the wave amplitude ratio as follows

B
(refl)
−sℓm

B
(inc)
−sℓm

= ω2s
1 + ieiπν

K−ν−1;−s

Kν;−s

1− ie−iπν sin(π(ν+s+iϵ))
sin(π(ν−s−iϵ))

K−ν−1;−s

Kν;−s︸ ︷︷ ︸
Near zone

×
Aν

−;−s

Aν
+;−s

eiϵ(2 log ϵ−(1−κ))

︸ ︷︷ ︸
Far zone

, (3.8)

which manifestly factorizes into two parts, which is a property introduced in [75] as the near-far

factorization. Here, ϵ = 2GMω, κ =
√
1− χ2. The explicit expression for the functions entering

this ratio can be found in [104]. By closely examining the low-frequency behavior, we find that

the near zone part scales as, schematically,

Near Zone ∼ (GMω)2ν+1(1 +GMω + (GMω)2 + · · · ) , (3.9)

which features a non-integer power of G for general ν, which we will shortly relate to the ana-

lytically continued angular momentum ℓ, while the far zone parts always feature only the integer

power of G except for the tail effect that appears as the logarithmic function ϵ log ϵ in the phase

shift [108, 109],

Far Zone ∼ (GMω) log(GMω) + (GMω) + (GMω)2 + (GMω)3 + · · · (3.10)
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With this formula, one can naturally separate the relativistic post-Minkowskian corrections, i.e.

loop diagrams in the EFT and the BH finite size effects simply by the power counting G without

ambiguity. Furthermore, we find it useful to parametrize the scattering phase shift as

sηℓme
2isδℓm = sηℓme

2isδNZ
ℓm × e2isδ

FZ
ℓm . (3.11)

where NZ stands for near zone and FZ stands for far zone. Based on the near-far factorization,

the near zone elastic phase shift can be written as

sδ
NZ
ℓm =

1

2
Arg

 1 + ieiπν
K−ν−1;−s

Kν;−s

1− ie−iπν sin(π(ν+s+iϵ))
sin(π(ν−s−iϵ))

K−ν−1;−s

Kν;−s

 , (3.12)

with far zone phase elastic shift

sδ
FZ
ℓm =

1

2
Arg

[
Aν

−;−s

Aν
+;−s

eiϵ(2 ln ϵ−(1−κ̃))

]
+
ℓ+ 1

2
π , (3.13)

and the absorption probability

1− sη
2
ℓm = 1−

∣∣∣∣∣ 1 + ieiπν
K−ν−1;−s

Kν;−s

1− ie−iπν sin(π(ν+s+iϵ))
sin(π(ν−s−iϵ))

K−ν−1;−s

Kν;−s

∣∣∣∣∣
2

, (3.14)

where we have used the non-trivial identity [100]

|Aν
−;−s/A

ν
+;−s|

22s|sCm
ℓ (aω)|−1

= 1 when ν ∈ R (3.15)

This identity has been numerically tested in the Schwarzschild gravitational scatterings in [77].

For the Kerr BH, this identity has been perturbatively tested order by order in (GMω) in [88].

Using the low-frequency expansion of the “renormalized angular momentum” ν = ℓ+O((GMω)2)

around a generic angular momentum ℓ, Ref. [75], presented an on-shell proof of the vanishing

of tidal Love numbers of Kerr BHs. Furthermore, that work also pointed out that the near

zone elastic and inelastic absorption probabilities receive logarithmic corrections due to the low-

frequency expansion of ν, i.e., schematically we have

(GMω)2ν+1
∣∣∣
ν=ℓ+O((GMω)2)+...

= (GMω)2ℓ+1(1 + (GMω)2 log(GMω) + · · · ) . (3.16)

Power counting in G, we notice that the near-far factorization presented in Eq. (3.8) holds for

the analytically continued ℓ ∈ C. As discussed in [77] and [75], the near-far factorization will

break down if one starts from the physical ℓ ∈ N because the near zone and far zone terms now

both scale as integer powers of G in the low frequency expansion. But this will not affect the

study the logarithmic pieces because they always come from the near zone piece. The apparent

factorization breakdown will affect the constant, scheme-dependent parts of the local worldline

couplings, which we discuss separately in Sec. 6. Note that the factorization breakdown does

not affect the matching of dissipation numbers. From Eq. (3.14), we see that the low-frequency

absorption terms originate entirely from the near zone piece.
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3.2 BHPT Phase Shifts

With the factorization mentioned above, we can successfully get the phase shift from tidal effects

(near zone) for gravitational perturbations ℓ = 2,m = 2 as (rs = 2GM)

2η22 = 1 +
2

225
(χ+ 3χ3)(rsω)

5

+
1

2025

{
18π

(
3χ3 + χ

)
− 36

(
3χ3 + χ

)
Im

(
H

(
2iχ√
1− χ2

− 3

))
+

+
[
6
(
9
√

1− χ2 + 1
)
χ2 + 117

√
1− χ2 − 97

]
χ2 + 9

(√
1− χ2 − 1

)}
(rsω)

6

+

{
− 214

23625
(χ+ 3χ3) log

(
2
√
1− χ2rsω

)
+

π

2025

[
− 36

(
3χ3 + χ

)
Im

(
H

(
2iχ√
1− χ2

− 3

))

+
(
6
(
9
√

1− χ2 + 1
)
χ2 + 117

√
1− χ2 − 97

)
χ2 + 9

(√
1− χ2 − 1

)]
+A22(χ)

}
(rsω)

7 ,

(3.17)

and

2δ22 =

[
2χ
(
3χ2 + 1

)
225

log
(
2
√

1− χ2rsω
)
+ B22(χ)

]
(rsω)

6

+

{
1

2025

[(
− 9− 97χ2 + 6χ4

)
log
(
2
√
1− χ2rsω

)
+ 18π(χ+ 3χ3) log

(
2
√

1− χ2rsω
)]

+ B22(χ)π + C22(χ)

}
(rsω)

7 .

(3.18)

In the two expressions provided, 1 − (2η22)
2 calculates the absorption probability for the ℓ =

2,m = 2 mode, while 2δ22 represents the elastic phase shift. We illustrate in Sec. 4 that the

orange terms in Eq. (3.17) are related to the tail effect brought about by the gravitational wave

scattering off the long-range Newtonian potential. Translating this into field theory terms, this

effect is equivalent to a 1-loop IR divergence of the leading order tidal scattering. The purple

logarithmic terms originate from the 2-loop UV divergences in the EFT loop diagrams during

the computation of BH absorption, leading to the RG running of dissipation numbers. As for

the green segment, the logarithmic pieces also correspond to UV divergences in the EFT loop

diagrams, but they contribute to the elastic scattering pieces. For the Schwarzschild case, simple

power counting in G reveals that the first logarithm will appear at G7, i.e., at the 6-loop order.

Kerr cases will be much more complicated and will be discussed in the next section.

Finally, there are also constant pieces A22(χ), B22(χ), and C22(χ) alongside the logarithmic

terms in the above equations. These constant pieces can be extracted analytically, but their

expressions are quite cumbersome and does not provide any insights into the structure of BH

scattering amplitudes. Therefore, we only present in this work their numerical estimates, given

in Sec. 6, along with fitting formulas that may be used for all practical applications.
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We also provide here the phase shift for the gravitational perturbations ℓ = 2,m = 1 case

2η21 = 1 +
1

900
(4χ− 3χ3)(rsω)

5 +
1

8100

{
9π
(
4− 3χ2

)
χ+ 18

(
3χ2 − 4

)
χ Im

(
H

(
iχ√
1− χ2

− 3

))

+
[(

39− 54
√
1− χ2

)
χ2 + 63

√
1− χ2 − 43

]
χ2 + 36

(√
1− χ2 − 1

)}
(rsω)

6

+

{
107(−4χ+ 3χ3)

94500
log
(
2
√
1− χ2rsω

)
+

π

8100

[
18
(
3χ2 − 4

)
χ Im

(
H

(
iχ√
1− χ2

− 3

))

+
((

39− 54
√

1− χ2
)
χ2 + 63

√
1− χ2 − 43

)
χ2 + 36

(√
1− χ2 − 1

)]
+A21(χ)

}
(rsω)

7 ,

(3.19)

and

2δ21 =

χ (4− 3χ2
)
log
(
2
√
1− χ2rsω

)
900

+ B21(χ)

 (rsω)
6

+

[
39χ4 − 43χ2 − 36

8100
log
(
2
√
1− χ2rsω

)
+

π

900

(
4− 3χ2

)
χ log

(
2
√
1− χ2rsω

)
+ B21(χ)π + C21(χ)

]
(rsω)

7 .

(3.20)

For ℓ = 2,m = 0 case, we have

2η20 = 1− 1

225

(
1− χ2

)2 (√
1− χ2 + 1

)
(rsω)

6 − 1

225
π(1− χ2)2(

√
1− χ2 + 1)(rsω)

7 , (3.21)

and

2δ20 =

−(1− χ2)2 log
(
2
√

1− χ2rsω
)

225
+ C20(χ)

 (rsω)
7 . (3.22)

Now, with the above BHPT result, we are prepared for the matching to the EFT amplitude

calculations to get the tidal response coefficients that we introduced in Sec. 2.3. One important

aspect to remember is that BHPT phase shift values are not in the spherical harmonic basis, but

rather in the spheroidal harmonic basis. This distinction becomes important when we consider

non-zero spin and frequencies. In Sec. 5, we shall explore the impact of the mixing of spherical and

spheroidal harmonics on conservative and dissipative tidal mixing numbers, crucial to accurately

determinate the horizon flux at the 4PN order [88]. We also show in Sec. 5 that our findings in

Sec. 4 are not affected by these mixing effects, therefore we can rely on spherical harmonics for

these calculations.

4 Matching EFT with BHPT

The advantage of the near-far factorization is that separates scattering contributions from the near

zone (tidal effect) and the far zone (background metric). We now use the worldline EFT outlined
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previously in Sec. 2 to better understand each term in the near zone scattering amplitudes of

the full theory. In Sec. 4.1, we briefly outline the procedure of calculating scattering amplitudes

in the worldline EFT and use it to match the static tidal Love numbers and LO dissipation

numbers, which appear in the ansatz in Eq. (2.15) and further explicitly defined in Eqs. (2.21)

and (2.24). In Sec. 4.2, we explicitly match the NLO dissipation numbers mentioned in Eq. (2.25)

and discuss their contribution in the case of near-extremal BHs and their effect on superradiance.

Then, in Sec. 4.3, we compute the one-loop correction to the leading order tidal scattering in the

worldline EFT, corresponding to the tail effect arising from the scattering of gravitational waves

off the background metric before or after scattering off the quadrupole moment. This yields an

un-physical IR divergence in the EFT which, obviously, does not appear in the full theory or

in any observables. This IR singularity, however, also generates a finite observable contribution

associated with Sommerfield enhancement which modifies the scattering amplitude at the next

order in GMω [28]. We also find that these contributions correspond to the orange terms in

BHPT, which disentangles them from genuine NLO dissipation numbers. In Sec. 4.4, we push

similar calculation in the EFT to 2-loops for dissipation which has a physical UV divergence and

leads to the RG running of the NNLO dissipation numbers corresponding to the logarithm in

the purple terms in BHPT. Finally in Sec. 4.5, we give an interpretation to the logarithms of the

green terms in BHPT. We argue that these logarithms arise from the RG flow of dynamical Love

numbers introduced in Eq. (2.22). A power counting analysis shows that the EFT diagram which

yields the corresponding UV divergence arises from non-linearities in GR via higher order loop

corrections (6-loop order in the Scwarzschild case) to the scattering off the background metric.

4.1 Static Love and LO Dissipation Numbers

As explained in Sec. 2, the leading order tidal effects are included in the tidal tensor (λE/B)ijkl,

in which the conservative effects are encoded in static tidal Love numbers Λŝ0 ,Λŝ2 and Λŝ4 while

dissipative effects are included in the LO dissipation numbers Hŝ1 and Hŝ3 . Equipped with the

BHPT scattering phase shift given in Sec. 3.2, we can get the explicit expressions for these two

sets of coefficients through comparison of the scattering phases between the EFT and BHPT.

Such a matching has been previously done in [38] in the off-shell way, and in [33, 75, 88] using

on-shell observables. Some of these known results will be reproduced below for completeness.

We consider now the scattering of gravitational waves off a Kerr black hole in the worldline

EFT and focus on the scattering phase due to the induced quadrupole moment Qij
E/B(τ). It

couples to the graviton through in the interaction term
∫
dτQij

EEij , (E ↔ B) in the action.

Classically, this process needs to be understood in a causal way: 1) external incoming waves

with four momenta (ω,kin) generate the induced quadrupole in accordance with the ansatz in

Eq. (2.15); 2) the quadrupole moment will radiate waves with four momenta (ω,kout). In the

field theory language, this process can be nicely described by using the retarded Green function

QE/B QE/B ≡ i⟨[QE/B
ij (τ)Q

E/B
kl (0)]⟩θ(τ) , (4.1)

which makes causality manifest. In the frequency domain, the retarded Green function is given

by the Fourier transform of Eq. (2.15). Then, from the effective action in Eq. (2.14), the LO
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scattering amplitude reads

iM(kin → kout, h→ h) = λE/B = −i ω4

4M2
pl

(λE)ij,klϵ
kl
h (kin)ϵ

∗ij
h (kout)M(GM)4+magnetic ,

(4.2)

where the yellow wavy lines represent gravitons. With the formulas in App. B, we can transform

the amplitude in the plane wave basis into the spherical wave basis with definite helicities as

iA(ω, ℓ = 2,m, h→ ℓ = 2,m, h) = −i ω5

40M2
plπ

M(GM)4

×
[
ΛE
ŝ0 +

1

2
imHE

ŝ1 +
1

6
(m2 − 4)

(
−ΛE

ŝ2 − imHE
ŝ3 + ΛE

ŝ4(m
2 − 1)

)]
+magnetic .

(4.3)

where we have used the operator form of the tidal response tensor λijkl = ⟨i, j|Λ|k, l⟩ with

Λ = Λŝ0 + i
1

2
Hŝ1Jz +

1

6
(J2

z − 4)[−Λŝ2 − iJzHŝ3 + Λŝ4(J
2
z − 1)] , (4.4)

given in App. B. By matching this expression to the BHPT phase shift in Sec. 3.2

iA(ω, ℓ = 2,m, h→ ℓ = 2,m, h) = 1− 2η2m exp(2i2δ2m) (4.5)

we can get the vanishing of Kerr Love numbers

Λ
E/B
ŝ0

= Λ
E/B
ŝ2

= Λ
E/B
ŝ4

= 0 , (4.6)

while the dissipation numbers are given by

H
E/B
ŝ1

= − 8

45
(χ+ 3χ3) , H

E/B
ŝ3

=
2

3
χ3 . (4.7)

It is important here also to mention that one can also get the above results from the near zone

approximation established by A.A.Starobinksy and D.N.Page in [85, 86, 119, 120].

4.2 NLO Dissipation Numbers: Large Spin Contribution and Shrinking Superra-

diance Parameter Space

In this section, we go beyond leading order Love and dissipation numbers and compute the NLO

dissipation numbers that appear in the scattering phase at O
(
(rsω)

6
)
. We first reproduce the

results of [88]. Then we discuss its relationship to the so-called superradiance factor recently

discussed in [25, 38] in the context of tidal responses. Very similar to the calculation in the
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previous section, we immediately get the scattering amplitude from Eq. (2.14) and (2.15)

iM(kin → kout, h→ h) = λ
E/B
ω =

ω5

4M2
pl

(λEω )
ij,klϵklh (kin)ϵ

∗ij
h (kout)M(GM)5 +magnetic .

(4.8)

Transforming this expression into the spherical basis states with definite helicity and using the

tidal response tensor (λω)
ij
kl = ⟨i, j|Λω|k, l⟩ with

Λω = Hŝ0,ω + i
1

2
Λŝ1,ωJz +

1

6
(J2

z − 4)[−Hŝ2,ω − iJzΛŝ3,ω +Hŝ4,ω(J
2
z − 1)] , (4.9)

we get

iA(ω, ℓ = 2,m, h→ ℓ = 2,m, h) =
ω6

40M2
plπ

M(GM)5

×
[
HE

ŝ0 +
1

2
imΛE

ŝ1 +
1

6
(m2 − 4)

(
−HE

ŝ2 − imΛE
ŝ3 +HE

ŝ4(m
2 − 1)

)]
+magnetic .

(4.10)

As we expected, the conservative response coefficient and the dissipation coefficient switches their

spin dependence due to the additional time derivatives which produces an additional factor of ω.

We will discuss the conservative part in detail in in Sec. 4.5. Now let us focus on the dissipative

part. After matching the EFT expression above to the BHPT phase shift, we get

H
E/B
ŝ0,ω

=
8

405

(
9 + 9κ+ 97χ2 + 117κχ2 − 6χ4 + 54κχ4 + 36χB2 + 108χ3B2

)
,

H
E/B
ŝ2,ω

= − 4

135

(
115χ2 + 135κχ2 + 5χ4 + 90κχ4 − 24χB1 + 18χ3B1 + 48χB2 + 144χ3B2

)
,

H
E/B
ŝ4,ω

=
4

135

(
20χ4 + 45κχ4 − 24χB1 + 18χ3B1 + 12χB2 + 36χ3B2

)
,

(4.11)

where κ =
√

1− χ2 and Bm = Im[ψ(0)(3 + imχ/κ)] (for m = 1, 2), ψ(0) is the polygamma

function. This expression agrees with [71]. In the Schwarzschild case, we have

H
E/B
ŝ0,ω

(χ = 0) =
16

45
. (4.12)

Interestingly, the polygamma function ψ(0)(3 + imχ/κ) goes to infinity as spin χ goes to ex-

tremality (χ→ 1), indicating a large spin contribution to the dissipation.

The superradiance effect [134] dictates the functional form of dissipation for Kerr BH in the

static limit. Specifically, the non-vanishing of H
E/B
ŝ1

, H
E/B
ŝ3

directly follows from frame-dragging

[25, 33, 38]. As shown in [25, 33, 38, 85, 86, 100, 119–121] using the near zone calculations, the
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low-frequency absorption probability can be written as

sΓℓm = 2(−P+)

(
(ℓ+ s)!(ℓ− s)!

(2ℓ)!(2ℓ+ 1)!

)2 (
2ω(r+ − r−)

)2ℓ+1
ℓ∏

j=1

(j2 + 4P 2
+) , (4.13)

with the superradiance factor P+

P+ =
am− 2Mr+ω

r+ − r−
=
mΩH − ω

4πTH
. (4.14)
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Figure 1: Comparison of LO and NLO supperadiance conditions, see Eq. (4.11). In this figure, we show

the example with ℓ = 2,m = 2. The colored region corresponds to the superradiance parameter space,

with solid lines showing the critical values, i.e. mΩH = ω at LO.

The appearance of the overall factormΩH−ω dictates a constraint on tidal response at leading

and next-to-leading order in the small spin limit. This is seen by relating the above expression

for absorption probability with the tidal response in the EFT to NLO as

2Γ22 = 1− 2η
2
22 = 2Re[iA(ω, ℓ = m = 2, h→ ℓ = m = 2, h)], (4.15)

=M(GM)4
ω5

20M2
plπ

[
HE

ŝ1 + (GMω)HE
ŝ0

]
+magnetic +O(ω7), (4.16)

where we have used Eqs. (4.3), (4.5) and (4.10). Now, taking the limit χ→ 0 in Eq. (4.13), where

we have ΩH → χ/(4GM), and expand until O(ω6) order we have

−128

225
(GMω)5

(
χ− 2(GMω)

)
+O(ω7) =M(GM)4

ω5

20M2
plπ

[
HE

ŝ1 + (GMω)HE
ŝ0

]
+magnetic +O(ω7) .

(4.17)

After using E/B duality, we arrive at the constraint

H
E/B
ŝ0,ω

= −2χH
E/B
ŝ1

, for χ→ 0 , (4.18)
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as desired. This is consistent with the small spin limit of expressions we obtained in Eqs. (4.7), (4.12).

When mΩH > ω, BHs lose energy to external perturbations, i.e. superradiance takes place. The

parameter space in the χ− (Mω) plane that corresponds to this regime of superradiance is pre-

sented by the blue shaded region in Fig. 1. This superradiance condition is based on the near

zone calculations. Consequently, it requires modification if one includes corrections from the far

zone iteratively [123, 135]. The NLO Kerr dissipation number Hŝ0,ω in Eq. (4.11) includes these

corrections and captures the modified superradiance condition by accounting for the large spin

correction. The modified superradiance parameter space is plotted as the orange region in Fig. 1.

We see that the parameter space for superradiance shrinks due to the large spin corrections com-

ing from the polygamma functions ψ(0)(3+imχ/κ) in Eq. (4.11). This is a particularly intriguing

observation as the polygamma function indicates a non-analytic behavior in the spin magnitude

χ and even exhibits a singular point for the extremal spin value (χ = 1). A similar pattern has

been noted in [106]. As discussed in Sec. 3, these non-analytic functions are derived from what we

refer to as the near zone part. Its derivation was formally carried out only for the sub-extremal

cases (0 ≤ χ < 1). In contrast, the far zone pieces that are comprised of power laws in χ and

κ =
√

1− χ2, exhibit only a branch point at χ = 1, except for the logarithmic tail effect. This

structure is suitable for an analytic continuation in χ to the super-extremal region χ ≫ 1. To

summarize, the near zone terms only make sense in the physical sub-extremal region while the

far zone terms can be formally extended into the extremal and super extremal region.

4.3 Tail Effects

In this section, we focus on the orange terms in Sec. 3.2. We show that these terms correspond to

the leading tail effect due to the scattering off the long-range Newtonian potential. Let’s consider

the following diagram (the 1-loop integration can be found in [29] and [50])

iM =

m

λE/B +

m

λE/B

= λE/B ×2(16πGmω2)

∫
dd−1q

(2π)d−1

1

q2
1

(ω + i0)2 − (q + k)2

= λE/B × 2(iGNmω)

[
−(ω + i0)2

πµ2
eγE
](d−4)/2

×
[

2

(d− 4)IR
− 11

6
+ · · ·

]

= λE/B × 2GMω

[
sign(ω)π + i

(
2

(d− 4)IR
+ log

ω2

πµ2
+ γE − 11

6

)]
,

(4.19)
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where k2 = ω2 and in the last expression we have performed an expansion around12 d = 4. We

now clearly see the IR divergences. As pointed out in [29, 50], the imaginary part of the above

1-loop integral will exponentiate into a universal pure phase out and can be dropped out in the

physical observable such as the cross sections σ ∼ |M|2. Indeed, we do not find the associated

logarithms in the BHPT phase shift13 since they are unphysical, but we do find the finite terms

obtained by multiplying the lower order amplitudes by the factor 2GMωπ, as the orange terms

in the BHPT phase shift. The leading tail effect thus nicely explains all the orange terms appear

in the BHPT reuslts in Sec. 3.2. Most importantly, this effect explains the presence of certain

odd-looking spin dependencies in the BHPT phase shift. For instance, the orange piece appearing

at NLO at (rsω)
6 is odd in spin, as opposed to all the other terms which are even in spin. Thus,

naively, it seems to transform differently from other terms at the same order under time-reversal

(χ → −χ, ω → −ω). But recognizing the orange term as due to the leading order tail effect, we

realize that that the actual dependence on frequency is (rsω)
5 × rs|ω| which makes the overall

result even under time-reversal.

4.4 RG Running of Dissipation Numbers at NNLO

In the next two sections, we explain all the logarithmic dependencies observed in the BHPT

results from Sec. 3.2. First, we will examine the logarithmic terms that appear in the absorption

probability 1 − (2ηℓm)2, highlighted in purple. Subsequently, in Sec. 4.5, we will discuss the

logarithmic terms in the elastic phase shift 2δℓm, marked in green.

We will start with the RG running of dissipation numbers. For simplicity, we will be using

the optical theorem and the fluctuation-dissipation theorem [28, 74, 136] to calculate absorption

probabilities. We have

2Γℓm(ω) = 1− 2η
2
ℓm = 2Re

 QQ
 =

∣∣∣∣∣ Q
∣∣∣∣∣
2

, ω > 0 . (4.20)

With this method, we can now compute the 2-loop corrections to the absorption as 14

∣∣∣∣∣ λE + λE

m

+ λE
m
m

+ λE
m
m

+ λE
m
m

∣∣∣∣∣
2

+ |magnetic|2

(4.21)

12In this expression, we have used the retarded propagator to make causality manifest. The i0-prescription here

tells the relative position between the physical sheet and the branch cut. When ω > 0, we choose the prescription

(−1)(d−4)/2 = e−iπ(d−4)/2. When ω < 0, we choose another prescription (−1)(d−4)/2 = eiπ(d−4)/2. To compare

with BHPT, we only need ω > 0 as the BHPT results we presented in Section 3.2 always assumes ω > 0.
13It is important to not confuse the logarithms in the green terms with the tail effect logarithm discussed here.

Although they seem to coincide at leading order in for spinning BHs, the logarithms in the green part do not

exponentiate.
14Here, λE is a short notation for the dissipation degrees of freedom HE

ŝ1 , H
E
ŝ3 in Eq. (2.24).
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As mentioned previously in [29], we notice that the third and fourth diagram in the above equation

λE
m
m

+ λE
m
m

∼ λE ×
∫

dd−1q

(2π)d−1

1

(ω + i0)2 − (k + q)2

×
∫

dd−1p

(2π)d−1

1

p2

1

(p+ q)2

(4.22)

only has a UV divergence, while the last diagram contains both UV and IR divergences,

λE
m
m

∼ λE ×
∫

dd−1q

(2π)d−1

1

q2
1

(ω + i0)2 − (k + q)2

×
∫

dd−1p

(2π)d−1

1

p2

1

(ω + i0)2 − (k + p+ q)2
.

(4.23)

Adding all these terms together, we get the final expression (the detailed calculation can be found

in [29])

Eq. (4.21) =

∣∣∣∣∣ λE
∣∣∣∣∣
2

×

(
1 + 2πGMωsign(ω)− 428(GMω)2

210

[
1

(d− 4)UV
+ γE + log

(
ω2

πµ2

)]

+ (GMω)2

[
4π2

3
+

634913

44100

])
+ |magnetic|2 .

(4.24)

Interestingly, we observe that the IR divergences cancel in the above equation. However, we do

encounter UV divergences, indicating that a renormalization is necessary. By the power counting

in (rsω), we can estimate that the UV divergence appears (rsω)
2 (2-loop) orders higher than the

leading dissipation effect. This suggests that the divergence can be absorbed into (λ
E/B
ω2 )ijkl, a

term we introduced in Eq. (2.15). As discussed in Sec. 2, (λE/B)ijkl and (λ
E/B
ω2 )ijkl share the

same symmetry properties, i.e. the spin-even part corresponds to conservative effects while the

spin-odd part corresponds to dissipation. Thus, if we further consider the following process∣∣∣∣∣ λEω2

∣∣∣∣∣
2

+

∣∣∣∣∣ λBω2

∣∣∣∣∣
2

= −M(GM)6
ω7

20πM2
pl

[
1

2
mHE

ŝ1,ω2 −
1

6
m(m2 − 4)HE

ŝ3,ω2

]
+ |magnetic|2 ,

(4.25)

after renormalizing the diverging piece, we can extract the RG running of NNLO dissipation

numbers Hŝ1,ω2 and Hŝ3,ω2 introduced in Eq. (2.26)

∂H
E/B
ŝ1,ω2

∂ logµ
=

428

105
Hŝ1 = −3424

4725
(χ+ 3χ3) ,

∂H
E/B
ŝ3,ω2

∂ logµ
=

428

105
H

E/B
ŝ3,ω2 =

856

315
χ3 . (4.26)
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Such RG running effects can also be extracted from BHPT (purple term at (rsω)
7) from Eq. (3.17)

and (3.19)

p(1 + BH → 0 + BH′)|(rsω)7 log(rsω)

=M(GM)6
ω7

20πM2
pl

[
1

2
m

(
3424

4725
(χ+ 3χ3)

)
+

1

6

(
856

315
χ3

)
m(m2 − 4)

]
log
(
2
√

1− χ2rsω
)
× 2 .

(4.27)

Introducing the renormalization scale µ, we can split the logarithm into two pieces,

log
(
2
√

1− χ2rsω
)
= log

(
2
√
1− χ2rsµ

)
︸ ︷︷ ︸

NNLO dissipation counter term

+ log

(
ω

µ

)
︸ ︷︷ ︸

loop divergence

. (4.28)

The first term is the counter term that produces the RG running of the dissipation numbers at

NNLO. The second term can be interpreted as a genuine logarithmic divergence from the loops.

Including the constant piece from BHPT Eqs. (3.17) and (3.19), we get

Hŝ1,ω2(µ) = −3424

4725
(χ+ 3χ3) log

(
4GM

√
1− χ2µ

)
+ 80A22(χ) ,

Hŝ3,ω2(µ) =
856

315
χ3 log

(
4GM

√
1− χ2µ

)
+ 80(2A21(χ)−A22(χ)) ,

(4.29)

The constant terms A22(χ) and A21(χ) are discussed Sec. 6. We show that their interpretation

is somewhat intricate due to the spherical-spheroidal mixing discussed in Sec. 5.2.

The RG equation is useful because it can sum large logarithms. In the worldline EFT context,

similar ideas were discussed in the gravitational radiation context in [29]. Here, we apply them to

the horizon absorption. Let us first choose a specific matching scale µ0. Intuitively, at the 2-loop

level, all the logarithmic divergences will come from the following diagrams (we only estimate

the diverging piece)

∣∣∣∣∣ λE + λE

m

+ λE
m
m

+ λE
m
m

+ λE
m
m

∣∣∣∣∣
2

∼

∣∣∣∣∣ λE
∣∣∣∣∣
2

×
[
−428

105
(GMω)2 log

(
ω

µ0

)] (4.30)
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1

2!

∣∣∣∣∣ λEω2 + λEω2

m

+ λEω2

m
m

+ λEω2

m
m

+ λEω2

m
m

∣∣∣∣∣
2

∼ 1

2!

∣∣∣∣∣ λEω2

∣∣∣∣∣
2

×
[
−428

105
(GMω)2 log

(
ω

µ0

)]

∼ 1

2!

∣∣∣∣∣ λE
∣∣∣∣∣
2

×
[
−428

105
(GMω)2 log

(
ω

µ0

)]2
· · · · · ·

(4.31)

In the above equation, 1/(2!) is the symmetry factor. One can iterate the above corrections

further to get

1

n!

∣∣∣∣∣ λEω2n + λEω2n

m

+ λEω2n

m
m

+ λEω2n

m
m

+ λEω2n

m
m

∣∣∣∣∣
2

∼ 1

n!

∣∣∣∣∣ λE
∣∣∣∣∣
2

×
[
−428

105
(GMω)2 log

(
ω

µ0

)]2n
(4.32)

Summing all these diagrams together, we get the leading logarithmic RG running behavior (log

from 2-loops) in the absorption probability

∼

∣∣∣∣∣ λE
∣∣∣∣∣
2

×
(
ω

µ0

)− 428
105

(GMω)2

. (4.33)

The above explicit resummation can also be written in a more general form of renormalized non-

local (NL) retarded Green’s function [29, 137] that accounts for the dissipations. We parametrize

the bare retarded Green function in terms of the renormalized (physical) Green function as

⟨QijQkl⟩NL
ret,Bare(ω) = Z(ω, µ)2⟨QijQkl⟩NL

ret (ω, µ) . (4.34)

where we have introduced the matching scale µ. By calculating the same diagram in Eq. (4.21)

with λE replaced by QE , we can get the renormalization constant in MS scheme as

ZMS = 1 +
107

105
(GMω)2 ×

[
1

(d− 4)UV
+ γE − log(4π)

]
, (4.35)

which absorbs the UV divergence in dimensional regularization. By requiring the physical ab-

sorption probability to be independent on the sliding scale µ, we get the β function
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d2Γℓm

d logµ
= 0 ⇒ d

d logµ
⟨QijQkl⟩NL

ret (ω, µ) = −428

105
(GMω)2⟨QijQkl⟩NL

ret (ω, µ) . (4.36)

The solution to this RG equation perfectly agrees the leading log (2-loop) resummation we see in

Eq. (4.33). For general compact objects, the same set of diagrams should generate RG running

in the conservative sector, which will be proportional to the tree-level Love number Wilson

coefficients, see Ref. [138] for an explicit calculation. However, for black holes they vanish due

to the vanishing of static Love numbers, and hence the RG running of their Love numbers will

appear only at the 6-loop order.

To summarize, the purple logarithmic terms in the BHPT phase shifts Eq. (3.17) and Eq. (3.19)

correspond to the RG running of the non-local retarded Green function at the 2-loop order.

4.5 RG Running of Dynamical Love Numbers

The BHPT results in Sec. 3.2 contain another type of logarithmic dependence in the elastic phase

shifts given in Eqs. (3.18), (3.20) and (3.22). In what follows, we will first match the RG running

of the appropriate beta function coefficients by comparing the logarithms and then discuss the

origin of the associated divergences.

As we have discussed in Sec. 3.1, the near-far factorization guarantees that the logarithmic

terms will only appear in the near zone part, except for those arising from the loop corrections to

the scattering off long-range Newtonian potential (tails). Thus, the matching of the logarithmic

piece for the conservative effect is similar to what we have done for the static tidal Love numbers

in Sec. 4.1. Consider now the same diagram as in Eq. (4.8), but focus on the conservative sector.

Matching to the BHPT elastic phase shift in Eq. (3.18), (3.20) and Eq. (3.22). We get the

following β functions

∂Λ
E/B
ŝ1,ω

∂ log(µ)
= −32

45
(χ+ 3χ3),

∂Λ
E/B
ŝ3,ω

∂ log(µ)
=

8

3
χ3 . (4.37)

Similarly, we can also consider the scattering phase shift contribution at (rsω)
7 order from the

diagram

λ
E/B
ω2 . (4.38)

With similar methods we developed in Sec. 4.1 and 4.2, we can get the RG running for Λŝ0,ω2 ,Λŝ2,ω2

and Λŝ4,ω2
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∂Λ
E/B
ŝ0,ω2

∂ logµ
=

32

405

(
9 + 97χ2 − 6χ4

)
,

∂Λ
E/B
ŝ2,ω2

∂ logµ
= −16

27

(
χ2 + 23

)
χ2 ,

Λ
E/B
ŝ4

∂ logµ
=

64

27
χ4 .

(4.39)

As an important check of our results, we can now take the Schwarzschild limit χ = 0, and get

∂Λ
E/B
ŝ0,ω2

∂ logµ
=

32

45
, (4.40)

which perfectly agrees with the off-shell graviton one-point function calculations of [84] upon

taking into account the difference in our conventions.

It is worth noting that the numerical value of the Wilson coefficient of the
∫
dτĖ2 operator

in Eq. (4.39) depends on the black hole spin. It is important to distinguish such implicit depen-

dencies of magnitudes of Wilson coefficients on spin from spin-dependent expressions generated

directly by relevant tensors, c.f. (2.12). One should keep this subtlety in mind when interpreting

the MST solution as a function of spin in the context of effective field theory.

The logarithmic running of dynamical Love numbers is generated by UV divergences of the GR

loops. For the sake of simplicity, let us focus on the Schwarzschild case. As explained in Sec. 2,

Eq. (2.23), the conservative effect can be represented as a local contact term on the worldline.

When expressed in the language of diagrams, this suggests that the RG running of Λ
E/B
ω2 can be

interpreted as the logarithmic dependence of the following diagram

Λ
E/B
ω2 . (4.41)

Unlike the logarithms discussed in the RG flow of the dissipation numbers, this logarithms cannot

be understood as loop corrections to the lower order tidal scatterings, since they vanish identically.

In the context of BHPT, we have rigorously verified that varying the boundary conditions at the

event horizon does not alter the RG running described by Eq. (4.37). Therefore, this logarithms

is insensitive to the lower order tidal coefficients. But we find that this can act as a counter term

for UV divergences in the scattering amplitude due to the gravitational non-linearities, e.g.

iM(kin → kout, h→ h) =

m
m
m
m
m
m
m

+ other diagrams at 6-loop order , (4.42)
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According to the RG running computed in Eq. (4.40), the coefficient in from the log from the

combination of all of such diagrams should be

iMEFT
6−loop|log(kin → kout, h→ h) = iπ

512

45
(GM)7ω6 log

(
ω

µ

)
cos4

(
θ

2

)
, (4.43)

where µ is the matching scale. We leave the explicit calculation of these 6-loop diagrams for

future work.

We would like to finish with an interesting observation that the RG running observed here is

universal in the sense that it comes from the non-linearity of GR. Thus, it should produce the

same RG running of dynamical Love numbers for all spherically symmetric compact object at

the G7 order. In [84], the authors also tried to calculate the dynamical response of a non-rotating

Neutron star, see their Eq. (15), but miss this universal relation. It would be interesting to

explore this generality further.

5 Quadrupole-Octupole Mixing

In this section, we shall study the Quadrupole-Octupole mixing effects in the tidal reponse func-

tion that originate from the breaking of the spherical symmetry by Kerr BHs. This is a particular

examples of the general phenomena of the spherical-spheroidal mixing.

5.1 Imposing Spheroidal Separability and Matching

As mentioned at the end of Sec. 3.2, the scattering phase shifts in BHPT are given in spheroidal

harmonic basis because the presence of spin breaks spherical symmetry. Thus, there will be

mixing terms in the scattering amplitude that transform the ℓ = 2 states to ℓ = 3 states and

vice-versa as we have discussed in Sec. 2.3. However, since the Teukolsky equation is separable in

the spheroidal basis, we need to impose the same spheroidal separability in the EFT. To do that,

we can construct a new basis using the relation between the spherical and spheroidal harmonics

at order aω = GMωχ = rsωχ/2 given by

−2S
m
ℓ (cos θ, aω) = −2Y

m
ℓ (cos θ) + (aω)

[
2
√

(ℓ+ 1)2 − 4
√

(ℓ+ 1)2 −m2

(ℓ+ 1)2
√

2(ℓ+ 1)− 1
√

2(ℓ+ 1) + 1
−2Y

m
ℓ+1(cos θ)

− 2
√
ℓ2 − 4

√
ℓ2 −m2

ℓ2
√
2ℓ− 1

√
2ℓ+ 1

−2Y
m
ℓ−1(cos θ)

]
+O

(
(aω)2

)
. (5.1)

Recall that the state |ω, ℓ,m, h⟩ has the angular wavefunction ∼ −hY
m
ℓ (cos θ), therefore we can

define a new orthogonal spheroidal basis as

|ω, ℓ,m, h⟩sp = |ω, ℓ,m, h⟩+ h

2
(aω)

[
2
√
(ℓ+ 1)2 − 4

√
(ℓ+ 1)2 −m2

(ℓ+ 1)2
√
2(ℓ+ 1)− 1

√
2(ℓ+ 1) + 1

|ω, ℓ+ 1,m, h⟩

− 2
√
ℓ2 − 4

√
ℓ2 −m2

ℓ2
√
2ℓ− 1

√
2ℓ+ 1

|ω, ℓ− 1,m, h⟩

]
+O

(
(aω)2

)
, (5.2)
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where we are using the subscript ‘sp’ to denote the new spheroidal basis states with definite

helicity. It turns out more convenient to work in the basis with definite parities. We can transform

the above equation into the parity basis using Eq. (B.24) in App. B.1 and get

|ω, ℓ,m, P ⟩sp = |ω, ℓ,m, P ⟩+ (aω)

[
2
√

(ℓ+ 1)2 − 4
√
(ℓ+ 1)2 −m2

(ℓ+ 1)2
√

2(ℓ+ 1)− 1
√
2(ℓ+ 1) + 1

|ω, ℓ+ 1,m, P ⟩

− 2
√
ℓ2 − 4

√
ℓ2 −m2

ℓ2
√
2ℓ− 1

√
2ℓ+ 1

|ω, ℓ− 1,m, P ⟩

]
+O

(
(aω)2

)
. (5.3)

In the worldline EFT, spheroidal separability can be imposed simply be demanding that the S-

matrix be diagonal in the spheroidal basis. Restricting to leading order mixing between quadrupo-

lar (ℓ = 2) and octupolar (ℓ = 3) sectors, this means that

sp⟨ω, 2,m, P |T |ω, 3,m′, P ′⟩sp = sp⟨ω, 3,m, P |T |ω, 2,m′, P ′⟩sp = 0, (5.4)

which implies

⟨ω, 2,m, P |T |ω, 3,m′, P ′⟩ = ⟨ω, 3,m, P |T |ω, 2,m′, P ′⟩ = (aω)
2
√
9−m2

9
√
7

⟨ω, 2,m, P |T |ω, 2,m′, P ′⟩ .

(5.5)

In the following, we will show that these relations can be used to fix the tidal mixing coefficients

in νE/B and ξE/B we introduced in Sec. 2.3. The tidal tensor (νE)ijkl relates the scattering

process from octupolar sector (ℓ = 3) to the quadrupolar sector (ℓ = 2). and thus responsible

for A(ω, ℓ = 3,m, P → ℓ = 2,m′, P ′). Similar to the discussions in Sec. 4.1, we introduce the

retarded Green function

QE
ij QB

klm ≡ i⟨[QE
ij(τ)Q

B
klm(0)]⟩θ(τ) . (5.6)

According to Eq. (2.15), in the frequency domain, the above retarded Green function is just

−M(GM)5(νE)ij⟨klŝm⟩. Then we can evaluate the following Feynman diagram

iM(kin → kout, h→ h′) =
QB

klm

QE
ij

= −iM(GM)5
ω4

4M2
pl

[
h

2
(νE)ijklŝmϵh(kl(kin)km)ϵ

∗h′
ij (kout)

]
.

(5.7)

We now switch to spherical basis states with definite parities

A(ω, ℓ = 3,m, P = +1 → ℓ = 2,m, P = +1) = −
√
9−m2(GMω)6

4G
√
7πM2

pl

{
Λ̃E
s0 + i

1

2
H̃E

s1m (5.8)

+
1

6
(m2 − 4)

[
− Λ̃E

s2 − iH̃E
s3 + Λ̃E

s4(m
2 − 1)

]}
.

(5.9)
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Imposing the constraints in Eq. (5.5) and comparing with A(ω, ℓ = 2,m, P = + → ℓ = 2,m, P )

derived from Eq. (4.3)

A(ω, ℓ = 2,m, P = +1 → ℓ = 2,m, P = +1) = − ω5

40M2
plπ

M(GM)4 ×

[
ΛE
ŝ0 +

1

2
imHE

ŝ1

+
1

6
(m2 − 4)

(
−ΛE

ŝ2 − imHE
ŝ3 + ΛE

ŝ4(m
2 − 1)

) ]
,

(5.10)

we immediately get the following relation

H̃E
s1/3

=
2

3
χHE

s1/3
, Λ̃E

s0/2/4
=

2

3
χΛE

s0/2/4
=⇒ (νE)ijkl =

2

3
χ(λE)ijkl. (5.11)

By comparing the above with the P = −1 scatterings, we can straightforwardly get

H̃B
s1/3

= −2

3
χHB

s1/3
, Λ̃B

s0/2/4
= −2

3
χΛB

s0/2/4
=⇒ (νB)ijkl = −2

3
χ(λB)ijkl. (5.12)

Similarly, we can also get the relation for (ξE/B)ijkl tensors

Λ′B/E

si
= Λ̃

E/B

si
, H ′B/E

si
= H̃

E/B

si
=⇒ (ξB/E)ijkl = (νE/B)ijkl. (5.13)

The same results have been previously obtained in a more classical manner in [88].

A comment is in order. We have found that the LO quadrupole-octupole mixing terms are

proportional to the static Love numbers. This can be thought of as a consistency condition

in the EFT. Since the static Love numbers of Kerr BHs vanish, the leading order conservative

quadrupole-octupole coupling vanishes as well.

5.2 Comments on Higher Order Mixings

At the end of Sec. 3, we have briefly mentioned that all the results in Sec. 4 can be derived within

spherical harmonics. This is because

sp⟨ω, 2,m, P |T |ω, 2,m′, P ′⟩sp = ⟨ω, 2,m, P |T |ω, 2,m′, P ′⟩

[
1 +

4(9−m2)

567

(
χ

2
rsω

)2]
(5.14)

+O[(rsω)
8],

where we have used the expansion for −2S
m
2 (cos θ, aω) to (aω)2 along with the relations in

Eq. (5.5). Thus, we see that the ℓ = 2 → 2 amplitude remains unchanged to NLO at (rsω)
6

regardless of whether we use the spherical or spheroidal basis. However, at (rsω)
7 order, the

constant pieces will be affected by the above corrections from spheroidal harmonics, but not the

logarithms. Thus, all the RG running discussions in Sec. 4 will not be affected.
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6 Constant Parts of RG Running Couplings

In this section, we discuss the constant pieces Aℓm(χ),Bℓm(χ) and Cℓm(χ) for ℓ = 2,m = 0, 1, 2

mentioned in Sec. 3 Eqs. (3.17)-(3.22). Unlike the logarithmic terms which can be nicely inter-

preted as the RG runnings of dissipation numbers and dynamical Love numbers in Sec. 4.4 and

Sec. 4.5, the physical meaning of these constant, scheme-dependent pieces is more uncertain. To

match these terms, we need to carry out the appropriate EFT multi-loop calculations and match

to the BHPT results in a given scheme. This goes beyond the scope of this paper. An alternative

would be to absorb the entire constant scattering contributions at a given order into the constant

part of wordline couplings. This would simply be a particular scheme choice. In this section

we try to follow this path, but find certain obstacles, mainly due to the mixing effects. With

these caveats in mind, we proceed to the discussion of our results. We stress that main goal

of this section is to estimate the constant, scheme-dependent parts of dynamical Love numbers

and NNLO dissipation numbers, and outline challenges that one should encounter in a rigorous

matching of these quantities.

We first list the analytic expression for Bℓm(x) extracted from the analytic BHPT results,

B22(χ) =
2

225

(
3χ2 + 1

)
χRe

(
ψ(0)

(
2iχ√
1− χ2

− 2

))
+

(
4γE
75

− 313543499

2939328000

)
χ3

+

(
4γE
225

− 70741499

653184000

)
χ− 107χζ(3)

630
,

(6.1)

B21(χ) =

7χ
(
4− 3χ2

)
Re

(
ψ(0)

(
iχ√
1−χ2

− 2

))
6300

+

(
28979207

734832000
− γE

150

)
χ3

+

(
2γE
225

− 70741499

1306368000

)
χ− 107

1260
χζ(3) ,

(6.2)

where the tail contribution has been removed by considering the time-reversal symmetry proper-

ties and the Sommerfeld enhancement factor [29]. We are yet to interpret the ζ(3) factor in the

above expressions. Moreover, we stress that the RG running of dynamical Love numbers implies

the breakdown of the near-far factorization for the constant pieces, which means the near zone

and far zone pieces for ℓ = 2 shall mix, and therefore the far zone pieces at high PM order should

be carefully taken into account. Thus, in general one needs to consider the full expansion of the

spheroidal harmonics in (aω) to (aω)6 order in the far zone part. We defer this task to future

work.

For the constant piece of Aℓm(χ) the analytic expression can be easily obtained [139], but

it appears cumbersome and will not be presented here. Instead, we will present a numerical

estimation in Fig. 2, which can be fit with a simple function

A22(χ) = 0.236χ+ 0.331χ3 , A21(χ) = 0.104χ− 0.068χ3 . (6.3)

This expression involves linear and cubic in spin terms which are consistent with the time-

reversal symmetry discussed in Sec. 2. Indeed, at (rsω)
7 order, the linear and cubic in spin terms
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Figure 2: Numerical estimation of A22 and A21 as functions of χ. Dotted lines are the numerical value

with blue curves showing the fitting result.
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(c) Fitting C20(χ)

Figure 3: Numerical estimation of C22, C21 and C20 as functions of χ. Dotted lines are the numerical

value with blue curves showing the fitting result.

correspond to dissipation. Finally, we also obtain the numerical results for Cℓm(χ) in Fig. 3,
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which can be fit as

C22(χ) = 1.389χ+ 0.309 , C21(χ) = 0.739χ+ 0.184(1− χ2) + 0.114 ,

C20(χ) = 0.183(1− χ2) + 0.116 .
(6.4)

Interestingly, we observe that for in the Schwarzschild limit χ = 0, C22, C21 and C20 basically give

the same number around 0.30, which is consistent with the emergence of the spherical symmetry

so that results for different m modes become degenerate. However, we find it particular confusing

to have the linear in spin term appear in C22(χ) and C21(χ). This term does not satisfy the time-

reversal symmetry expected from the conservative tidal effects at (rsω)
7 as we discussed in Sec. 2.

One possible origin of such term will be the higher order tail effects contaminating the constant

terms at this order. We leave a detailed study of this behavior for future work.

7 Conclusions and Outlook

In this study, for the first time, we have taken a deep look at how Kerr BHs respond to changes

in their gravitational environment at NLO and NNLO in frequency. We examined the dynamical

tidal response in the framework of the worldline EFT. By comparing the scattering amplitudes

in the EFT with phase shifts in BHPT, we have determined some key features of the black

holes tidal response at higher orders in frequency, and to all order in the value of the BH spin.

First of all, we reproduced the known results for the static tidal Love numbers, as well as LO

and NLO tidal dissipation numbers. We also identified the leading order tail effects in the tidal

response, using the explicit 1-loop calculation in the EFT. More interestingly, we scrutinized the

RG running pattern of NNLO tidal dissipation numbers and dynamical tidal Love numbers. For

dissipation numbers, we showed that the RG running can be understood as the UV divergence in

the 2-loop corrections to the leading order absorptive tidal scattering diagrams in the EFT. For

dynamical tidal Love numbers, we argue that the running should come from the UV divergence

of higher order loop diagrams in the EFT due to non-linearities of GR. We explicitly identified

the scheme-invariant beta functions of the NLO and NNLO local EFT couplings. Finally, we

discussed the quadrupole-octupole mixing effects in the context of the Kerr tidal response.

The worldline EFT is generic, and the tidal response coefficients, once fixed, may be used

for computing the dynamics of arbitrary compact objects. From a practical perspective, the

most relevant system is an inspiraling binary, whose dynamics are typically studied in the post-

Newtonian (PN) expansion. In the following, we summarize all the relevant coefficients for Kerr

BHs and show the related PN order relevant for GW waveform modeling. Then we discuss

possible future directions.

7.1 Summary of All Tidal Coefficients

In table 1, we show all the coefficients that are responsible for conservative tidal interactions

and the related PN order in the equation of motion (EoM). The RG running in the conservative

sectors start from the 6.5PN order.

In table 2, we list all the coefficients that contribute to the dissipative tidal interactions and

the related PN order in the energy flux as well as in the EoM through radiation reaction. The

RG running in the dissipative sectors starts to contribute at 5.5 PN order in the energy flux.
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Names Notation Explicit expression PN order in EoM

TLNs
ΛE
ŝ0 ,Λ

E
ŝ2 ,Λ

E
ŝ4 Eq. (4.6)

5

ΛB
ŝ0 ,Λ

B
ŝ2 ,Λ

B
ŝ4 6

DTLNs

ΛE
ŝ1,ω,Λ

E
ŝ3,ω Eq. (4.37)

6.5

ΛB
ŝ1,ω,Λ

B
ŝ3,ω 7.5

ΛE
ŝ0,ω2 ,Λ

E
ŝ2,ω2 ,Λ

E
ŝ4,ω2

Eq. (4.39)
8

ΛB
ŝ0,ω2 ,Λ

B
ŝ2,ω2 ,Λ

B
ŝ4,ω2 9

CTMNs
Λ̃
E/B
ŝ0

, Λ̃
E/B
ŝ2

, Λ̃
E/B
ŝ4

Eq. (5.11), Eq. (5.12)
6.5

Λ′E/B
ŝ0

,Λ′E/B
ŝ2

,Λ′E/B
ŝ4

Eq. (5.13)

Table 1: Summary of all conservative tidal response coefficients including static tidal Love numbers

(TLNs), “dynamical” tidal Love numbers (DTLNs) and conservative tidal mixing numbers (CTMNs). We

also estimated the relative PN order in which these coefficients will first appear in the (EoM) with general

spin orientation.

Names Notation Explicit expression PN order in Flux (EoM)

LO TDNs
HE

ŝ1 , H
E
ŝ3 Eq. (4.7)

2.5 (5)

HB
ŝ1 , H

B
ŝ3 3.5 (6)

NLO TDNs
HE

ŝ0,ω, H
E
ŝ2,ω, H

E
ŝ4,ω Eq. (4.11)

4 (6.5)

HB
ŝ0,ω, H

B
ŝ2,ω, H

B
ŝ4,ω 5 (7.5)

NNLO TDNs
HE

ŝ1,ω2 , H
E
ŝ3,ω2

Eq. (4.26)
5.5 (8)

HB
ŝ1,ω2 , H

B
ŝ3,ω2 6.5 (9)

DTMNs
H̃

E/B
ŝ0

, H̃
E/B
ŝ2

, H̃
E/B
ŝ4

Eq. (5.11), Eq. (5.12)
4 (6.5)

H ′E/B
ŝ0

, H ′E/B
ŝ2

, H ′E/B
ŝ4

Eq. (5.13)

Table 2: Summary of all dissipative tidal response coefficients including LO/NLO/NNLO tidal dissipation

numbers (TDNs) and dissipative tidal mixing numbers (DTMNs). We estimated the relative PN order

where these coefficients will first appear in the energy flux with general spin orientation. We also show

the PN order in which they enter the EoM through radiation-reaction in brackets.

7.2 Future Directions

The dynamical tidal response is of particular importance in studying the structure of scatterings

on Kerr BHs and the GW astrophysics. Our work can be extended in the following directions:

• Constraining tidal dissipation numbers from data: To better understand the nature

of compact objects, one needs to consistently include all finite size effects such as spin-

induced multipole moments, conservative tidal deformations and tidal dissipations [7]. Even

though the literature studying the extraction of spin-induced multipoles and the tidal Love

numbers from the current Gravitational-wave Transient Catalog (GWTC) catalog [4–7] is

vast, studies for constraining dissipation numbers are missing. Moreover, recently pointed
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out in Refs. [140–142], within the scenario of large bulk viscosity of the Neutron stars, the

tidal dissipations could give non-negligible contributions.

• Loop calculations and the analytic structure of scattering amplitudes in GR: In

Sec. 4.5, we pointed out that the RG running of dynamical Love numbers for Schwarzschild

black holes should originate from the 6-loop UV divergences in the bulk diagrams. It would

be interesting to carry out an explicit calculation of these diagrams. These calculations

can also help us better understand the near-far factorization and its apparent breakdown

discussed in Sec. 3, as well as the analytic structure of scattering amplitudes from the MST

solution to the Teukolsky equation.

• Extensions to the non-linear perturbations: With the recently growing interest of

the non-linearities in the Kerr BH perturbations [81, 143–145], it would be interesting to

explore the non-linear tidal response function of Kerr BHs.

• Extensions to arbitrary compact objects : While the worldline EFT framework pre-

sented here applies to most of compact objects of interest, the analytic GR results are

currently available only for black holes. Motivated by the current interest in searches for

exotic compact objects, it would be very interesting to extend the methods in the paper to

generic compact objects, along the lines in [146].
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A Worldline Action For Spinning Particles With Tidal Moments

In the main text, we briefly explained the inclusion of (tidally induced) multipole moments

and their respective couplings with the tidal fields. Here, we provide some additional details

regarding the worldline action for a spinning particle including tidal effects and our choice of

tetrad for describing the tidal response. We follow the presentation given in [88] for the inclusion

of tidally induced multipole moments.

A general worldline action for a spinning particle with tidally induced15 quadrupole and oc-

tupole degrees of freedom in worldline theory may be written in the implicit form

S =

∫
dτL(uµ = żµ,Ωµν = ϵA

µDϵ
Aν

Dτ
,QµL

E,B,
DQµL

E,B

Dτ
,Rµνρσ,∇λRµνρσ), (ℓ = 2, 3) (A.1)

=

∫
dτL(uµ,Ωµν , QµL

E,B,
DQµL

E,B

Dτ
) +

∫
dτQµν

E Eµν +

∫
dτQµνρ

B Bµνρ + (E ↔ B),

15In principle, this action may also be used for including spin-induced multipole moments.
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where ϵA
µ is a co-rotating orthonormal tetrad satisfying ϵA

µϵBν = gµν , ϵA
µϵBµ = ηAB, which

move and spins along with the particle. Varying the action with respect to the tetrad ϵA
µ(τ),

and the worldline zµ(τ), while respecting all constraints yields the well known pole-dipole MPD

equations of motion for momentum and spin, along with the contribution of tidal forces and

torques given by

DSµν

Dτ
= 2p[µuν] +

4

3
R[µ

λρσJλ
ν]τρσ +

2

3
∇λR[µ

τρσJλ
ν]τρσ +

1

6
∇[µRλτρσJ

ν]λτρσ. (A.2)

Dpµ
Dτ

= −1

2
Rµνρσu

νSρσ − 1

6
Jλνρσ∇µRλνρσ − 1

12
Jτλνρσ∇µ∇τRλνρσ. (A.3)

where pµ = (∂L/∂uµ)|Ωµν , Sµν = 1
2(∂L/∂Ω

µν) −
∑3

ℓ=2 ℓ[P
[µ
E µL−1Q

ν]µL−1

E + (E ↔ B)], with

PµL

E/B = (∂L/∂Q̇E/B
µL ), and16

Jµνρσ = −6
∂L

∂Rµνρσ
= −3u[µQ

ν][ρ
E uσ] +

3

2
Q

α⟨ρ
B ϵβα

µνu|β|uσ⟩R , (A.4)

Jλµνρσ = −12
∂L

∂∇λRµνρσ
= −6u⟨µQνρλ

E uσ⟩∇R + 3Q
α⟨ρλ
B ϵβα

µνu|β|uσ⟩∇R . (A.5)

To solve the equations of motion, we also need to impose a “spin supplementary condition” (SSC)

to ensure that Sµν it is a spatial tensor with the right number of degrees of freedom. Here, we

impose the “covariant” or Tulczyjew-Dixon SSC at the level of the equations of motion upon

the total physical spin angular momentum as Sµνpµ = 0. This enforces that the spin tensor is a

spatial antisymmetric tensor in the frame defined by pµ, with 3 degrees of freedom, as expected.

Similarly, we also need to place constraints on the quadrupole (octupole) moments, to render

them orthogonal to uµ , symmetric and trace-free as expected from the tidal fields with which

they couple. It is convenient to impose this by appropriately choosing the tidal response such

that Qµν
E uν or Qµν

E pν = 017.

For instance, consider a generic tidal response for the electric quadrupole moment Qµν
E to

next-to-leading order ignoring quadrupole-octupole mixing. Consistent with parity, we can write

Qµν
E = −M(GM)5

[
(λE)

µν,ρσEρσ − (GM)(λE,ω)
µν,ρσDEρσ

Dτ

]
. (A.6)

Here, we require λµν,ρσE to be symmetric and trace-free in µν and ρσ respectively, and also

orthogonal to uµ, thus curtailing undesired degrees of freedom. Given the space-like nature of the

multipole moments, it is convenient to rewrite the above response equation in a suitably chosen

orthonormal tetrad eI
µ, with eI=0

µ = uµ. Then, we can express both the multipole moments

and tidal fields as spatial STF tensors in the tetrad as Qij
E = Qµν

E eiµe
j
µ, Eij = Eµνe

i
µe

j
µ where

16We are using ⟨abcd⟩R (⟨abcd⟩∇R) to represent the symmetrization of indices according to the symmetries of

the Riemann tensor (covariant derivative of the Riemann tensor).
17Note that the difference between pµ and uµ becomes relevant only in the presence of external curvature.

However, in this work, since we restrict ourselves to linearly induced tides and comparisons with linear perturbation

theory, we can neglect the difference in the tidal response. For the same reason, we can treat the black hole as a

stationary object with fixed spin following a geodesic in the tidal response.
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i, j = 1, 2, 3. We can then rewrite Eq. (A.6) by contracting with eiµe
j
ν as

Qij
E = −M(GM)5

[
(λE)

ij,klEkl − (GM)(λE,ω)
ij,mnem

ρen
σD(Ekle

k
ρe

l
σ)

Dτ

]
,

= −M(GM)5

[
(λE)

ij,klEkl − (GM)(λE,ω)
ij,kl d(Ekl)

dτ
−

− (GM)(λE,ω)
ij,mlΩ̂m

kEkl − (GM)(λE,ω)
ij,knΩ̂n

lEkl

]
, (A.7)

where Ω̂ij ≡ eiµ(Dejµ/Dτ) is the angular velocity of the space-like vectors in the tetrad, measur-

ing their evolution along the worldline. The simplest choice is to let them be parallel transported

along the worldline so that Ω̂ij = 0, which is consistent with the orthonormality conditions on

the tetrad provided the black hole follows a geodesic. We can regard this choice of tetrad as a

comoving tetrad, corresponding to an inertial observer co-translating (but not corotating) along

the worldline. Then, we simply have

Qij
E = −M(GM)5

[
(λE)

ij,klEkl − (GM)(λE,ω)
ij,kl ∂(Ekl)

∂t

]
, (A.8)

where the ordinary proper-time derivative reduces to a simple partial time-derivative w.r.t coor-

dinate time measured by the observer at infinity. In BHPT, this coordinate time corresponds to

time measured at asymptotic infinity by an inertial stationary (w.r.t black hole) observer (e.g.,

the t coordinate in the Kerr metric in Boyer-Lindquist coordinates). In this work, we consistently

describe the tidal response and associated couplings in this comoving tetrad. In [33], the spatial

tetrad vectors are not parallel transported along the worldline, but instead identified with the

corotating tetrad. Thus, the covariant-time derivative does not reduce to a simple partial deriva-

tive in the response. The two choices are related by a spatial rotation about the rotation axis

ϵi
µ = Ri

j(τ)eµj , ϵ0
µ ≈ e0

µ = uµ. This does not affect any physical results or conclusions.

B Plane Wave, Sperical Wave and Operator Form of Response Tensors

B.1 Basis for single particle states

Plane wave basis - The physical graviton plane wave states |k, h⟩, with fixed momentum

k = (ω,k) and helicity h = ±2 are chosen to have the normalization and wavefunction

⟨k′, h′|k, h⟩ = 2|k|(2π)3δ(3)(k′ − k)δhh′ , ⟨0|hij(x)|k, h⟩ =
1

Mpl
exp(−ik · x)ϵhij(k), (B.1)

where ϵhij(k) is the purely spatial symmetric polarization tensor satisfying ϵii = 0 and ϵijkj = 0.

Finally, the completeness relation is given by∑
h

∫
d3k

(2π)3
|k, h⟩⟨k, h|

2|k|
= I (B.2)
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Spherical basis - We also define a different basis for single particle states, with fixed energy

ω, total angular momentum ℓ, and angular momentum along z-axis m, i.e., labeled as |ω, ℓ,m, h⟩
with normalization

⟨ω, ℓ,m, h|ω′, ℓ′,m′, h′⟩ = 2πδ(ω − ω′)δℓℓ′δmm′δhh′ . (B.3)

Note that although it is meaningless to define the helicity in the spherical basis, we still use the

label h = ±2 to indicate that they are a superposition of plane waves with definite helicity. The

completeness relation is then given by∫
dω

2π

∑
ℓ,m,h

|ω, ℓ,m, h⟩⟨ω, ℓ,m, h| = I . (B.4)

Transformation between plane wave states and spherical states - For simplicity, we first

consider a plane wave state with momentum along the ẑ-direction. i.e., |ωẑ, h⟩. Its wave function
is given by exp(−iωt+ kr cos(θ))ϵhij(k). First of all, it is important to notice the plane wave state

|ωẑ, h⟩ only has overlap with spherical state |ω, ℓ,m, h⟩ when m = h. This is because they are

both the eigenstate of ẑ-direction angular momentum Jz. Thus, we can expand it in spherical

basis simply as

|ωẑ, h = ±2⟩ =
∞∑
ℓ=2

Cℓ
h(ω)|ω, ℓ,m = h, h = ±2⟩, (B.5)

where the coefficients Cℓ
h(ω) will be fixed later by the normalization of the plane wave states.

Now, to obtain the expansion for momentum along arbitrary direction, we can simply multiply

with the following rotation operator with definition of Euler angle follow [147]

R(ϕ, θ, ψ) = exp(−iϕJz) exp(−iθJy) exp(−iψJz) . (B.6)

which rotates the vector ẑ into the direction k̂ = (θ, ϕ) in spherical-polar coordinates. Note that

the parameter ψ is of no consequence when acting on a vector that is already along ẑ-axis, or

more generally an eigenvector of Jz. Also, from now on, we use the short hand notation

R(k̂, 0) ≡ R(ϕ, θ, 0) (B.7)

for rotational matrix. Acting this operator upon the expansion in Eq. (B.5), we get

|k, h = ±2⟩ = R(k̂, 0)|ωẑ, h = ±2⟩ =
∞∑
ℓ=2

Cℓ
h(ω)R(k̂, 0)|ω, ℓ,m = h, h = ±2⟩. (B.8)

We find it useful to introduce the Wigner D-matrix as

⟨ℓ,m′|R(k̂, 0)|ℓ,m⟩ ≡ Dℓ
m′m(k̂, 0) . (B.9)

with

Dℓ
mh(k̂, 0) = (−1)m

√
4π

2ℓ+ 1
hYℓ,−m(k̂), (B.10)
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where hYℓm are the spin-weighted spherical harmonics. After using the completeness relation for

the spherical basis in Eq. (B.4), we can rewrite this as

|k, h⟩ =
∞∑
ℓ=2

ℓ∑
m=−ℓ

Cℓ
h(ω)D

ℓ
mh(k̂, 0)|ω, ℓ,m, h⟩, (B.11)

where we have used ⟨ω′, ℓ′,m′, h′|R(k̂, 0)|ω = |k⃗|, ℓ,m, h⟩ = 2πδ(ω − ω′)δhh′δℓℓ′D
ℓ
m′m(k̂, 0) which

follows from the invariance of the helicity label h and energy (or frequency ω) under rotations.

We can now fix the coefficients Cℓ
h(ω) by considering the normalization of plane waves in

Eq. (B.1) and get

Cℓ
h(|k|) = 2π

√
(2ℓ+ 1)

2π|k|
, (B.12)

which is consistent with [33]. Now, we can write down the final expression that relates plane

wave states and spherical wave states

|k, h⟩ =
∞∑
ℓ=2

ℓ∑
m=−ℓ

2π

√
(2ℓ+ 1)

2π|k|
Dℓ

mh(k̂, 0)||k|, l,m, h⟩. (B.13)

In principle, we are now set for writing amplitudes calculated for plane waves in spherical basis.

However, to simplify them further, we want to write the polarization tensors ϵhij(k) in terms of the

Wigner D-matrix as well. So, let us establish the conventions used for the polarization tensors,

and their relation to Wigner D-matrix.

Relating polarization tensors to Wigner-D matrix - Let’s now discussing the relation

between polarization tensors and the Wigner-D matrix. Before going to details, let’s first make

clear the following concept:

• Rank-ℓ STF tensors: symmetric trace-free (STF) tensor with L indices. For example, the

electric tidal field Eij is a rank-2 STF tensor. Furthermore, all the rank-L STF tensors form

a vector space with dimention 2ℓ + 1, and thus can be used as a vector space for SO(3)

representation. The transformation law between the spherical harmonics and tensorial

spherical harmoncis is given by

Yℓm = Yℓm
i1···iℓn

i1 · · ·niℓ , (B.14)

in which Y ℓm
i1···iℓ can be viewed as the base vector in rank-ℓ STF space.

Going back to the graviton polarization tensor, since it encodes the spin of gravitons, we can

define it as the eigenstate of ẑ-direction angular momentum operator as

Jz|rank−2ϵh=±2(ẑ) = hϵh(ẑ) , (B.15)

where

Jz|rank−2 = I ⊗ Jz + Jz ⊗ I . (B.16)
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The right hand needs to be evaluated in the fundamental representation. In component form, we

can write it as

Jz|rank−2
ij
kl = δikJz

j
l + Jz

i
kδ

j
ℓ . (B.17)

We can get a nicer formula by further symmetrizing (i, j) and (k, l) to get

Jz|rank−2
ij
kl =

1

2
(δikJz

j
l + δilJz

j
k + δjkJz

i
l + δjl Jz

i
k) . (B.18)

Since we know that in the spherical basis Jz|ℓ = 2,m = h = ±2⟩ = ±2|ℓ = 2,m = h = ±2⟩, then
we naturally have

ϵhij(z) = ⟨i, j|ℓ = 2,m = h = ±2⟩, (B.19)

where we have chosen the normalization such that

ϵ+2
ij (z) =

1
2

i
2 0

i
2 −1

2 0

0 0 0

 ∝ Y22
ij , ϵ−2

ij (z) =

 1
2 − i

2 0

− i
2 −1

2 0

0 0 0

 ∝ Y2−2
ij (B.20)

and ϵ∗ij(k̂)ϵij(k̂) = 1.

Now, given the polarization tensor for when the momentum is along ẑ, we can derive the

polarization tensor for arbitrary direction k̂

ϵhij(k) = ⟨i, j|R(ϕ, θ, 0)|ℓ = 2,m = h = ±2⟩

=
2∑

m=−2

Dℓ=2
mh (k̂, 0)⟨i, j|ℓ = 2,m⟩.

(B.21)

States with definite Parity - Sometimes, it is convenient instead to switch to spherical basis

states with definite parity. To that end, we define a parity operator P, which flips momentum

and helicity. It acts on plane wave states as

P|⃗k, h⟩ = | − k⃗,−h⟩, P2 = I. (B.22)

We can use Eq. (B.11) to identify its action on spherical basis states, which is

P|ω, ℓ,m, h⟩ = (−1)ℓ|ω, ℓ,m,−h⟩. (B.23)

Using this, we can easily define the parity even and odd states in the spherical basis as

|ω, ℓ,m, P = ±⟩ = 1√
2

(
|ω, ℓ,m, h = +2⟩ ± (−1)ℓ|ω, ℓ,m,−h = −2⟩

)
. (B.24)

B.2 Operator Form of Tidal Response Tensors

In Section 2, we have shown that the tidal response tensor can be nicely written as the operator

form. In this appendix, we are going to show part of the derivation.
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• zero spin: The simplest case would be the zeroth order in spin where

⟨i, j|Λŝ0 |k, l⟩ = Λŝ0δ
⟨i
⟨kδ

j⟩
l⟩ . (B.25)

In the abstract notation, this means that

Λŝ0 = Λŝ0I . (B.26)

• linear in spin: Now, we are moving to the linear in spin case

⟨i, j|Λŝ1 |k, l⟩ = Hŝ1Ŝ
⟨i
⟨kδ

j⟩
l⟩ . (B.27)

Recall that Ŝij ≡ ϵijkŝk, where ŝ is normal vector pointing along the spin of the particle in

the rest frame. Since we have oriented the spin to be along the ẑ-axis, we have ŝi = δi3.

By noting the following relation

Jz
i
j = −iϵijkŝk = −iŜi

j , (B.28)

we immediately see that

⟨i, j|Λŝ1 |k, l⟩ =
1

2
iHŝ1Jz|rank−2 (B.29)

In the abstract notation, we can write this as

Λŝ1 =
1

2
iHŝ1Jz (B.30)

• quadratic in spin: The quadratic in spin part of the response tensor is given as

⟨i, j|Λŝ2 |k, l⟩ = Λŝ2 ŝ
⟨iŝ⟨kδ

j⟩
l⟩ =

Λŝ2

2

(
(ŝ2)⟨i⟨k ⊗ Ij⟩l⟩ + I⟨i⟨k ⊗ (ŝ2)j⟩l⟩

)
, (B.31)

where we have defining ŝ2 ≡ ŝ⊗ ŝ. First of all, we notice the following relation

ŝiŝk = δik − JzijJz
j
k , (B.32)

which implies

J2
z |rank−2 = 2(I ⊗ I + Jz ⊗ Jz)− ŝ2 ⊗ I − I ⊗ ŝ2. (B.33)

To proceed further, we symmetrize and remove the traces over i, j and k, l to get

⟨i, j|J2
z |rank−2|k, l⟩ = 2⟨i, j|I|rank−2|k, l⟩+ 2J

⟨i
z⟨kJ

j⟩
zl⟩ − 2ŝ⟨iŝ⟨kδ

j⟩
l⟩ , (B.34)

and use the following relation

2J
⟨i
z⟨kJ

j⟩
zl⟩ = 2⟨i, j|I|rank−2|k, l⟩ − 4ŝ⟨iŝ⟨kδ

j⟩
l⟩ , (B.35)

which can be derived using the Eq. (B.28). Eventually, we arrive at

Λŝ2 = −1

6
Λŝ2(J

2
z − 4 I). (B.36)
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• cubic in spin: Consider now the cubic in spin interactions

⟨i, j|Λŝ3 |k, l⟩ = Hŝ3Ŝ
⟨i
⟨kŝ

j⟩ŝl⟩ . (B.37)

To simplify this expression, we first notice that

Ŝ ⊗ ŝ⊗ ŝ+ ŝ⊗ ŝ⊗ Ŝ

= iJz|rank−2 − i(Jz ⊗ (Jz)
2 + (Jz)

2 ⊗ Jz)
(B.38)

The last term can be simplified using the following relation:

J3
z |rank−2 = (Jz ⊗ I + I ⊗ Jz)

3 = J3
z ⊗ I + 3J2

z ⊗ Jz + 3Jz ⊗ J2
z + I ⊗ J3

z . (B.39)

We further notice that J3
z = Jz following from J · (ŝ⊗ ŝ) = 0, we get

Ŝ ⊗ ŝ⊗ ŝ+ ŝ⊗ ŝ⊗ Ŝ = − i

3
(Jz|3rank−2 − 4Jz|rank−2). (B.40)

Since Λŝ3 is STF in i, j and k, l, and thus we can simply symmetrize the indices and remove

the trace to get

Λŝ3 = − i

6
Hŝ3(J

3
z − 4Jz). (B.41)

• quartic in spin : Finally, the quartic-in-spin part of the response tensor is given by

⟨i, j|Λŝ4 |k, l⟩ = Λŝ4 ŝ
⟨iŝ⟨kŝ

j⟩ŝl⟩. (B.42)

To rewrite this, we once again start with the expression for the appropriate power of

Jz|rank−2, as

J4
z |rank−2 = 8I ⊗ I − 7 (ŝ2 ⊗ I + I ⊗ ŝ2) + 6 ŝ2 ⊗ ŝ2 + 8Jz ⊗ Jz. (B.43)

where we have used J3
z = Jz and J2

z = I − ŝ2. Now, using Eq. (B.35) and Eq. (B.36), we

finally arrive at

Λs4 =
1

6
Λŝ4(J

2
z − 4I)(J2

z − I) . (B.44)
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