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ABSTRACT

State-of-the-art searches for gravitational waves (GWs) in pulsar timing array (PTA) datasets model the signal as an isotropic,
Gaussian, and stationary process described by a power law. In practice, none of these properties are expected to hold for an incoherent
superposition of GWs generated by a cosmic ensemble of supermassive black hole binaries (SMBHBs). This stochastic signal is
usually referred to as the GW background (GWB) and is expected to be the primary signal in the PTA band. We performed a systematic
investigation of the performance of current search algorithms, using a simple power-law model to characterise GW signals in realistic
datasets. We used, as the baseline dataset, synthetic realisations of timing residuals mimicking the European PTA (EPTA) second
data release (DR2). Thus, we included in the dataset uneven time stamps, achromatic and chromatic red noise, and multi-frequency
observations. We then injected timing residuals from an ideal isotropic, Gaussian, single power-law stochastic process and from a
realistic population of SMBHBs, performing a methodical investigation of the recovered signal. We found that current search models
are efficient at recovering the GW signal, but several biases can be identified due to the signal-template mismatch, which we identified
via probability-probability (P–P) plots and quantified using Kolmogorov-Smirnov (KS) statistics. We discuss our findings in light of
the signal observed in the EPTA DR2 and corroborate its consistency with a SMBHB origin.
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1. Introduction

Recently, the pulsar timing array (PTA) community has an-
nounced the detection of a signal compatible with a gravita-
tional wave (GW) origin. The latest datasets from the European
PTA collaboration (EPTA, Antoniadis et al. 2023b), the Chinese
PTA collaboration (CPTA, Xu et al. 2023), the North American
Nanohertz Observatory for Gravitational Waves collaboration
(NANOGrav, Agazie et al. 2023), and the Parkes PTA collab-
oration (PPTA, Reardon et al. 2023) all show evidence of a red
noise process that is common among pulsars and shows corre-
lation properties expected for the long sought after stochastic
nano-Hertz (nHz) GW background (GWB, Hellings & Downs
1983).

Pulsar timing arrays are sensitive across the 10−9 − 10−7 Hz
frequency range, where the dominant signal is expected to be an
incoherent superposition of sinusoidal GWs emitted by a cosmic
population of supermassive black hole binaries (SMBHBs, Ra-
jagopal & Romani 1995; Jaffe & Backer 2003; Wyithe & Loeb
2003; Sesana et al. 2008; Rosado et al. 2015). Nonetheless, a
correlated low-frequency signal in PTA data can also arise from
GWs generated by early Universe phenomena, such as the non-
standard inflationary scenario breaking the slow-roll consistency
relations (e.g. Bartolo et al. 2007; Boyle & Buonanno 2008; Sorbo

2011), cosmic string networks (e.g. Damour & Vilenkin 2000),
primordial curvature perturbations (e.g. Tomita 1967; Matarrese
et al. 1993), turbulence arising in the aftermath of quantum chro-
modynamics (QCD) phase transitions (e.g. Kosowsky et al. 1992;
Hindmarsh et al. 2014), and cosmic domain walls (e.g. Hiramatsu
et al. 2014), or they might even originate from oscillations of
the Galactic potential in the presence of ultra-light dark-matter
(ULDM, Khmelnitsky & Rubakov 2014). Those scenarios in-
spired numerous studies aiming to test new physics in the early
Universe (e.g. Vagnozzi 2023; Madge et al. 2023; Guo et al.
2023; Kitajima et al. 2023; Ellis et al. 2023; Cai et al. 2023;
Figueroa et al. 2023; Franciolini et al. 2023) and have also been
scrutinised by the EPTA+InPTA and NANOGrav collaborations
in two comprehensive interpretation articles (Antoniadis et al.
2023a; Afzal et al. 2023). early Universe interpretations some-
times stress that the detected signal has a higher amplitude and
flatter slope than what is expected from an astrophysical popula-
tion of SMBHBs. This is an observation that has been challenged
by Antoniadis et al. (2023a), who showed that a signal with the
detected properties can naturally arise from a realistic ensemble
of SMBHBs.

Under the hypothesis that the signal has an astrophysical,
SMBHB origin, it is important to assess the performance of the
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state-of-the-art PTA GWB search and parameter estimation al-
gorithms as implemented in the PTA analysis suite enterprise
(Ellis et al. 2019) on realistic data. In fact, current pipelines
are searching for a stochastic GWB described as a Gaussian,
isotropic, and stationary process characterised by a power-law
Fourier spectrum, imprinting a correlated red signal in PTA
residuals. The peculiar feature that allows us to disentangle
those GW-induced delays from other noises is the inter-pulsar
spatial correlation, first derived by Hellings & Downs (1983).
Although pipelines searching for individual continuous GWs
(CGWs), anisotropy, and broken power-law spectra exist (Babak
& Sesana 2012; Ellis et al. 2012; Sampson et al. 2015; Taylor
et al. 2020), the evidence for a GW-signal claimed by the differ-
ent PTA collaborations is based on the aforementioned default
assumptions. Conversely, none of these statistical properties are
expected to hold for a signal produced by a cosmic ensemble
of SMBHBs. Environmental effects and small number statistics
are expected to produce spectra that significantly deviate from a
smooth single power law (Sesana et al. 2008; Ravi et al. 2014).
Furthermore, strong individual CGWs might produce extra power
at specific frequencies, also resulting in highly anisotropic and
non-Gaussian signals (Sesana et al. 2009; Ravi et al. 2012; Kelley
et al. 2018). Finally, the eccentricity of SMBHBs might break the
assumption of stationarity (Sesana 2013).

In a nutshell, there is a clear signal-template mismatch sit-
uation, where single power-law, Gaussian, isotropic, stationary
templates are used to search for a signal that is unlikely to satisfy
any of these hypotheses. Assessing the influence of this basic
fact on the reliability of the analysis outcome is of paramount
importance, especially in light of the recent PTA claims and of
the numerous subsequent interpretation papers that rely on these
results.

These issues were first investigated in Cornish & Samp-
son (2016), who demonstrated, using realistic GW models from
(Rosado et al. 2015), that the isotropy hypothesis has only a mild
effect on the detectability of the GW signal. Here we take a de-
cisive step forward by conducting a systematic investigation of
signal recovery on mock data designed to capture all the complex-
ity of real PTA datasets. We generate mock versions of the EPTA
DR2new dataset, described in Antoniadis et al. (2023e), includ-
ing uneven time-stamps, white noise, chromatic and achromatic
red noise, and multi-frequency observations (Antoniadis et al.
2023d). We then inject in our mock dataset two types of sig-
nals: (i) a Gaussian, isotropic, stationary GWB created with the
libstempo (Vallisneri 2020)1 function createGWB, and (ii) an
incoherent superposition of the residuals induced by a popula-
tion of circular GW-driven SMBHBs. In this latter case, residuals
from both the pulsar and Earth terms of each binary are added
one by one to the data. This results in a total GWB Fourier spec-
trum which on average is well fitted by a power-law function of
frequency, but is generally much more structured. In particular,
bright sources close to Earth can produce very pronounced peaks
in power, breaking signal Gaussianity and isotropy at higher fre-
quencies (Sesana et al. 2008). The rationale behind this choice is
to test for differences in the performance of the GWB detection
pipeline implemented in enterprise when (i) the injected sig-
nal matches the power-law template, and (ii) when there is a clear
mismatch between the injected signal and power-law template.

The paper is structured as follows. In Section 2 we describe
the simulated dataset, from the intrinsic pulsar noise to the real-
istic GWB modelling pipeline, and we present the signal recov-
ery model implemented in the enterprise package. Section 3

1 https://github.com/vallis/libstempo

presents the results of our simulations, which include two sets
of createGWB injections (a strong and a weak signal), and a
set of injections from a realistic SMBHB population. In Sec-
tion 4, we discuss in detail selected realisations of the realistic
injections, which help in understanding biases and issues that can
arise from the signal-template mismatch. As we were completing
this work, Bécsy et al. (2023) presented an independent, parallel
investigation that touches on several points examined here. We
subsequently discuss similarities and differences between the two
works, together with further developments and future directions
in Section 5.

2. Simulated data and analysis methods
The main goal of this work is to test our ability to recover a realis-
tic GWB signal in a simulated data set with our existing model. To
emulate the complexities of real data, we base all our simulations
on the second data release from the EPTA collaboration (Anto-
niadis et al. 2023b,e,d). In particular, we use the 25 best EPTA
pulsars, selected following (Speri et al. 2022). For these, we use
the latest estimates of pulsar intrinsic red noise (RN) and dis-
persion measure (DM) variations to generate different simulated
copies of the recently released DR2new dataset. DR2new is a re-
duced version of the entire second EPTA data release (DR2full),
which includes only the last 10.3 years of observations, collected
with the new generation wide-band backends.

In the following, we describe how we simulate PTA data
using libstempo tools, a python wrapper around the TEMPO2
pulsar timing software (Hobbs et al. 2006; Edwards et al. 2006),
and how we obtain realistic GW-induced residuals from state of
the art population of SMBHBs.

2.1. Timing model and pulsar noise properties

The timing models (TM) of the 25 pulsars are defined by the
corresponding parameter files from the EPTA DR2new. We use
libstempo to simulate times of arrival (ToAs) for a total obser-
vation time of 10.3 years, with a cadence defined by the obser-
vations, taken by the five European radio telescopes: the 100m
Effelsberg radio telescope in Germany, the Lovell telescope at
Jodrell Bank Observatory in the United Kingdom, the Nançay
radio telescope operated by the Nançay Radio Observatory in
France, the Sardinia Radio Telescope in Italy, and the Wester-
bork Synthesis Radio Telescope in the Netherlands. ToAs are
simulated at two different frequency bands: 1400 and 2200 MHz.
Having ToAs at different frequencies allows us to disentangle
pulsar intrinsic RN from DM variations. We assume that an ini-
tial fit of the TM, obtained with libstempo, reduces it to a linear
model where the coefficients are given by a design matrix. Fol-
lowing Van Haasteren et al. (2009), we analytically marginalise
the likelihood over the TM parameter errors described by that
linear model.

To make our simulations as close as possible to the real data,
we include stochastic noise in our datasets. Stochastic noise in
pulsar observations is customarily divided into three components:
white noise, achromatic, and chromatic red noise. We include
all three components in our simulations, following the analysis
performed in Antoniadis et al. (2023d), based on the optimisation
procedure outlined by Chalumeau et al. (2021).

To model white noise, we distribute ToAs around the values
predicted by the TM with a root-mean-square (rms) uncertainty
given by:

𝜎 =

√︃
EFAC2𝜎2

ToA + EQUAD2 , (1)
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where 𝜎ToA is the uncertainty value due to template-fitting errors
obtained in EPTA DR2, the EFAC factor takes into account the
ToA measurement errors. The EQUAD, added in quadrature,
accounts for any other white noise, such as stochastic profile
variations, and possible systematic errors. These parameters
are specific for each observing backend. In our simulations, we
defined EFAC and EQUAD parameters to be constant, setting
EFAC = 1.0 and EQUAD = 10−6, and identical for all pulsars.
The ToA uncertainties, 𝜎ToA, used in our simulated data sets
(see Table 1) are the maximum likelihood estimates obtained in
EPTA DR2 (Antoniadis et al. 2023c).

The single-pulsar stochastic achromatic and chromatic red
noises are time-correlated signals that can be modelled as a sta-
tionary Gaussian process with a power-law spectrum:

𝑆RN/DM ( 𝑓 ; 𝐴RN/DM, 𝛾RN/DM) =
𝐴2

RN/DM

12𝜋2

(
𝑓

𝑦𝑟−1

)𝛾RN/DM

𝑦𝑟3 ,

(2)
where RN and DM refer to achromatic and chromatic red noise
respectively. The achromatic red noise does not depend on the
observing radio frequency and is commonly used in single-pulsar
noise models to characterise the long-term variability of the pul-
sar spin. Conversely, chromatic red noise depends on the observ-
ing radio frequency and is due to dispersion measure (DM) vari-
ations. In fact, during its propagation, the pulsar radio emission
interacts with the ionised interstellar medium (IISM), the Solar
System interplanetary medium and the Earth’s ionosphere. These
interactions lead to frequency-dependent delays in the observed
signal:

ΔDM ∝ 𝜈−2DM , (3)
where 𝜈 is the radio observing frequency and DM is the path
integral of the free-electron density along the line of sight to
the pulsar. We take this effect into account in our timing model,
which considers the DM value at a reference epoch together with
its first and second derivatives. However, the inhomogeneous and
turbulent nature of the IISM also induces stochastic variations in
the DM value, which are modelled as chromatic red noise. DM
variations become more and more important on the decade-long
timescales of PTA data (see e.g. Keith et al. 2012).

We used the libstempo package to inject in each pulsar RN
and DM with spectra given by Eq. (2). In particular, for each
pulsar, we defined the values of 𝐴RN/DM and 𝛾RN/DM to be equal
to the recent maximum likelihood estimates from the EPTA DR2
(Antoniadis et al. 2023b). Those values were obtained from joint
analysis runs on the DR2new data set (Antoniadis et al. 2023c)
when an additional common red process was included alongside
individual pulsar noise terms. We report a complete summary of
the individual pulsar’s noise parameter values in Table 1.

As mentioned above, we simulate stochastic noise following
the results of the customised noise model analysis carried out in
Antoniadis et al. (2023d). Thus, for three pulsars J0030+0451,
J1455-3330 and J2322+2057, we simulate RN only. Five pulsars
J0900-3144, J1012+5307, J1022+1001, J1713+0747, and J1909-
3744 have both RN and DM variations, and for the remaining
seventeen we include DM variations only.

2.2. GWB induced residuals: createGWB vs realistic SMBHB
populations

Having addressed the system and pulsar-related properties of real
data, the only thing necessary to complete our data set is the GW

signal. Following Rosado et al. (2015), we generate the stochastic
GWB-induced signal from the incoherent superposition of indi-
vidual sinusoidal GW signals emitted by inspiralling SMBHBs.

2.2.1. Ideal signal with createGWB

As described in Phinney (2001), the characteristic strain of the
GW signal produced by a population of circular, GW-driven
SMBHBs is the integral of the energy emitted by each system
over the differential number density of sources per unit redshift
𝑧, and chirp masses M 2:

ℎ2
c ( 𝑓 ) =

4
𝜋 𝑓 2

∫ ∫ ∫
d𝑧 d𝑀1 d𝑞

d2𝑛

d𝑧dM
1

1 + 𝑧

d𝐸𝑔𝑤 (M)
dln 𝑓𝑟

, (4)

where d𝐸𝑔𝑤 (M)/dln 𝑓𝑟 is the energy spectrum emitted by each
source (binary). In the circular GW-driven approximation, we can
rewrite the emitted energy spectrum as a function of the binary
chirp mass and GW rest-frame frequency 𝑓𝑟 :

d𝐸𝑔𝑤 (M)
dln 𝑓𝑟

=
𝜋2/3

3
M5/3 𝑓 2/3

𝑟 . (5)

Here, 𝑓𝑟 is defined as 𝑓𝑟 = (1 + 𝑧) 𝑓 and is twice the binary
Keplerian rest-frame frequency. By inserting Eq. (5) into Eq. (4),
it is straightforward to show that

ℎc ( 𝑓 ) = 𝐴GWB

(
𝑓

1𝑦𝑟−1

)𝛼GWB

, (6)

where 𝐴GWB is a model-dependent amplitude of the signal at the
reference frequency 𝑓 = 1yr−1 and 𝛼GWB = −2/3. The corre-
sponding spectral density 𝑆GWB takes the form:

𝑆GWB ( 𝑓 ) =
ℎ2

c ( 𝑓 )
12𝜋2 𝑓 3 =

𝐴2
GWB

12𝜋2

(
𝑓

1𝑦𝑟−1

)−𝛾GWB

𝑦𝑟3 , (7)

with 𝛾GWB = 3−2𝛼GWB = 13/3. We note that the form of Eq. (7)
is very similar to that of the intrinsic RN spectra (Eq. (2)). In fact,
in a PTA dataset, a stochastic GWB appears as a red noise that is
common to all pulsars and induces a specific angular correlation
among pulsar pairs. This correlation is expected to follow, on
average, the Hellings & Downs (1983) overlap reduction function.
Other examples of red signals correlated over all pulsars are clock
and ephemeris errors, which produce, respectively, a monopole
and a dipole correlation in the pulsar residuals (Tiburzi et al.
2016).

Using libstempo, it is possible to inject a GWB signal into
a PTA dataset through the function createGWB. By default, this
function simulates the GW-induced delays in a PTA dataset as
a common RN, HD-correlated over pulsars and with a smooth
power-law shaped spectrum with index 𝛼 = 13/3 (Eq. (7)). The
only input parameter supplied is the amplitude of the GWB signal.
See discussion in Chamberlin et al. (2015) for more details.

2.2.2. Realistic signal from an SMBHB population

Eq. (4) models the characteristic strain of the GW signal as a
smooth continuous function of the frequency, as given by Eq. (5).
In reality, the expected astrophysical signal is the incoherent

2 The chirp mass is defined as M = (𝑀1𝑀2)3/5/(𝑀1 +𝑀2)1/5, where
𝑀2 < 𝑀1 are the masses of the two black holes forming the binary.
In the circular GW-driven approximation, at the quadrupolar order, the
signal depends only on this combination of the two masses.
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Pulsar 𝑑 [kpc] cadence [days] 𝜎ToA [𝜇𝑠] noise model log10𝐴RN 𝛾RN log10𝐴DM 𝛾DM
J0030+0451 1.1 1.1240 4.7321 RN -16.2802 0.3401 - -
J0613-0200 1.2 2.1498 2.3190 DM - - -12.1099 2.2955
J0751+1807 0.9 1.5237 2.5138 DM - - -11.5769 2.1921
J0900-3144 1.3 0.6809 4.6006 RN+DM -12.7817 0.9483 -11.8937 4.5107
J1012+5307 2.1 0.8983 3.1012 RN+DM -12.9283 1.4274 -12.6575 3.9428
J1022+1001 0.3 2.0854 3.3792 RN+DM -17.3298 6.2477 -11.4570 0.2273
J1024-0719 0.2 1.7813 4.5679 DM - - -11.9266 2.6198
J1455-3330 1.1 1.5463 11.6450 RN -13.1206 1.4706 - -
J1600-3053 0.7 1.4481 0.8195 DM - - -12.8008 5.7666
J1640+2224 0.9 2.4334 5.7051 DM - - -11.4996 0.3000
J1713+0747 0.8 0.9403 0.9645 RN+DM -15.0142 3.0124 -12.1243 1.6056
J1730-2304 1.3 3.2348 3.4269 DM - - -11.6328 1.5792
J1738+0333 1.5 5.0228 6.7555 DM - - -11.2123 1.5681
J1744-1134 2.2 2.4413 1.9787 DM - - -11.7996 0.7458
J1751-2857 1.5 12.3347 8.4155 DM - - -11.0296 1.0261
J1801-1417 0.6 9.7971 6.0490 DM - - -11.0496 2.2886
J1804-2717 1.1 5.8057 8.6381 DM - - -11.2871 0.0786
J1843-1113 1.3 5.1115 2.3503 DM - - -11.0364 2.3694
J1857+0943 0.6 3.2544 2.6596 DM - - -12.4013 4.6670
J1909-3744 1.3 1.6435 0.5931 RN+DM -16.8142 1.8981 -11.9277 1.6375
J1910+1256 2.3 8.1784 4.1336 DM - - -11.9094 3.4703
J1911+1347 1.8 4.6388 2.0747 DM - - -12.1507 3.1562
J1918-0642 1.0 3.3059 2.8809 DM - - -12.3077 4.1191
J2124-3358 0.5 2.3498 6.6360 DM - - -11.4152 0.6247
J2322+2057 0.6 5.5817 13.8094 RN -15.1459 0.4594 - -

Table 1: Values for the distance, timing, and noise parameters of the 25 best EPTA pulsars. The final four columns list the maximum
likelihood values obtained from the data set DR2new, using customised noise models when a common red noise is also included
in the recovery model (Antoniadis et al. 2023b). Thus, the missing RN and DM parameters refer to the fact that, according to the
customised noise model, there is no relevant evidence for the given process in the EPTA DR2new data set.

superposition of independent sinusoidal waves produced by an
ensemble of SMBHB systems. For this case, Eq. (4) takes the
form (Sesana et al. 2008)

ℎ2
𝑐 ( 𝑓 ) =

∫ ∞

0
d𝑧

∫ ∞

0
dM d3𝑁

d𝑧dMdln 𝑓𝑟
ℎ2 ( 𝑓𝑟 ) , (8)

where now d3𝑁/(d𝑧dMdln 𝑓𝑟 ) is the number of emitting systems
per unit redshift, mass and logarithmic frequency interval, and
the strain ℎ( 𝑓𝑟 ) is given by:

ℎ( 𝑓𝑟 ) =
√︁

2(𝑎2 + 𝑏2) (𝐺M)5/3 (𝜋 𝑓𝑟 )2/3

𝑐4𝑟
. (9)

Here, 𝑟 is the co-moving distance to the source and the functions
𝑎 = 1 + cos2𝜄 and 𝑏 = −2cos𝜄 define the relative strength of the
two strain polarisations as a function of the binary inclination
angle 𝜄 (see Rosado et al. 2015, for details).

Eq. (8) can be further manipulated by considering that the
signal comes from a finite collection of discrete sources, and
the spectrum is practically constructed in discrete frequency bins
Δ 𝑓 = 1/𝑇 , where 𝑇 = 10.3yr is the duration of the PTA experi-
ment. The characteristic strain can be thus written as

ℎ2
𝑐 ( 𝑓𝑖) =

∑︁
𝑗∈Δ 𝑓𝑖

ℎ2
𝑗
( 𝑓𝑟 ) 𝑓𝑟
Δ 𝑓𝑖

, (10)

where 𝑓𝑖 is the central frequency of the bin Δ 𝑓𝑖 , and the sum runs
over all the systems for which 𝑓𝑟/(1 + 𝑧) ∈ Δ 𝑓𝑖 .

To practically inject the signal from a cosmic population of
MBHBs in our PTA timing residual, we proceed as follows. The

list of emitting binaries is randomly sampled from the numerical
distribution d3𝑁/(d𝑧dMdln 𝑓𝑟 ), which is obtained from the em-
pirical, observation-based models described in Sesana (2013).
The starting point is the galaxy merger rate, expressed as:

d3𝑛𝑔

d𝑧d𝑀𝑔d𝑞𝑔
=

𝜙(𝑀𝑔, 𝑧)
𝑀𝑔ln10

F (𝑧, 𝑀𝑔, 𝑞𝑔)
𝜏(𝑧, 𝑀𝑔, 𝑞𝑔)

d𝑡𝑟
d𝑧

, (11)

where the subscript ’g’ stands for ’galaxy’. Here 𝜙(𝑀𝑔, 𝑧) and
F (𝑧, 𝑀𝑔, 𝑞𝑔) are the galaxy mass function and the galaxy dif-
ferential pair fraction function at redshift 𝑧. Those quantities can
be directly measured from observations, while the typical merger
time scale 𝜏(𝑧, 𝑀𝑔, 𝑞𝑔) can be inferred by detailed simulations
of galaxy mergers. The galaxy mass is then related to the SMBH
mass via scaling relations of the form:

log10𝑀BH = 𝛼 + 𝛽 log10𝑋 , (12)

where 𝑋 can be, depending on the model, the galaxy bulge mass,
or its mid-infrared luminosity or velocity dispersion. We refer
to Sesana (2013) for a list of those relations. Finally, SMBHs
grow their mass through accretion in galaxy mergers. It is, how-
ever, unclear whether accretion mostly occurs before or after the
SMBHB coalesces and, in the former case, whether accretion
occurs preferentially on either of the two SMBHs.

For this work, we model 𝜙(𝑀𝑔, 𝑧) from Muzzin et al. (2013),
F (𝑧, 𝑀𝑔, 𝑞𝑔) from de Ravel et al. (2009) and 𝜏(𝑧, 𝑀𝑔, 𝑞𝑔) from
Kitzbichler & White (2008). The SMBH mass is related to the
galaxy mass via the 𝑀 − 𝜎 relation given by Kormendy & Ho
(2013) and we assume that accretion occurs on the two black
holes prior to the final merger, with preferential accretion on the
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Fig. 1: Characteristic strain as a function of frequency for 100
different realisations of a GWB with nominal amplitude 2.4 ×
10−15. Each orange line corresponds to a different realisation
(SMBHB population). The solid black line is the mean of those
realisations, while the dashed black line highlights the nominal
𝑓 −2/3 spectrum. The sensitivity curve is derived in Collaboration
et al. (2023).

secondary hole (Farris et al. 2014). These choices result in a GWB
with nominal amplitude 𝐴GWB = 2.4 × 10−15 when computed
with Eq. (4) and expressed in the power-law form given by Eq.
(6); this value is consistent with the one inferred from the EPTA
DR2new analysis (Antoniadis et al. 2023b).

We use this observation-driven astrophysical model to numer-
ically construct the function d3𝑁/(d𝑧dMdln 𝑓𝑟 ). We then draw
100 Monte Carlo samples of this function in the appropriate mass,
redshift and frequency region of the parameter space. Each draw
results in ≈100K binaries, which we refer to as a universe reali-
sation. For each binary, we specify its chirp mass, redshift, and
GW-signal amplitude (Eq. (9)) in the observer frame, sky loca-
tion coordinates, inclination and polarisation angles. All binaries
are assumed to be circular.

Once the population of SMBHBs is defined, we construct the
overall GW signal by directly injecting in the time domain the
deterministic residulas imprinted by each individual system in
the PTA dataset. To this end, we developed a custom injection
pipeline, written partly in python (using libstempo functions)
and partly in fortran. The script allows the user to take idealised
pulsar timing models and produce ToAs for a given observing
time span, add to each pulsar specific source noise as described
in Section 2.1, and then add excess delays due to each of the
SMBHB in the specified population. We inject both pulsar and
Earth terms in the residuals, following the prescription of Babak
et al. (2016). Similar injection pipelines have been applied to
NANOGrav-like datasets in Bécsy et al. (2022) and Bécsy et al.
(2023).

We can visually verify how this GWB signal definition
method affects the spectra. The obtained characteristic strain am-
plitude for each of the 100 mock realisations of universe described
above can be computed in the frequency domain from Eq. (10),
and is shown in Fig. 1. As expected, the signal is much more struc-
tured than a plain 𝑓 −2/3 nominal power law computed through
Eq. (4), with prominent spikes associated with rare, massive and
(or) nearby sources. We note that the square-averaged signal sits

on the theoretical curve, but there is considerable variance among
different universe realisations.

2.3. Recovery model and analysis methods

To test the performance of current PTA GWB search and parame-
ter estimation pipelines, we perform a set of inference analyses by
using Bayes’ theorem on the realistic datasets defined in Section
2. We search for individual and common noise parameters esti-
mating model parameters characterised by their posterior proba-
bility distribution functions (PDFs), including those of RN, DM,
and common noise. We then carry out Bayes-factor (BF) eval-
uations between HD-correlated and common, uncorrelated RN
(CURN) models; and reconstruct the angular correlation from
the data.

We conducted an in-depth analysis of each dataset using
enterprise (Enhanced Numerical Toolbox Enabling a Robust
PulsaR Inference SuitE, Ellis et al. 2019), a pulsar timing analy-
sis package including functionalities for timing model evaluation,
pulsar noise analysis, and GW searches. For each simulated ar-
ray of pulsars we defined a noise model including: (i) EFAC
and EQUAD parameters fixed respectively at 1.0 and 1e-6 for all
pulsars, (ii) RN and DM variations according to the customised
noise model used in EPTA DR2new (see Table 1), (iii) a com-
mon red noise process. We set the number of coefficients (i.e. the
number of modes in the Fourier domain) for modelling the RN
and DM processes in each pulsar to be, respectively, 30 and 100.
We modelled DM variations as a Gaussian process.

Using this recovery model, we carried out Bayesian in-
ference of the model parameter space using the Markov
Chain Monte Carlo (MCMC) sampler included in enterprise:
PTMCMCSampler (Ellis & van Haasteren 2017). Since we fixed
the white noise parameters for each pulsar, the total number of
parameters for the sampling is 62: 60 from pulsar intrinsic noise
parameters and two parameters, log amplitude and slope, for the
common red noise.

To decrease computational costs, we employed the reweight-
ing method introduced in Hourihane et al. (2023). We first com-
puted approximate posteriors defining the common process as an
uncorrelated red noise. Thus, by temporarily ignoring the cross-
correlation terms, the covariance matrix becomes block-diagonal,
resulting in a much faster sampling. We then reweighted the ob-
tained chains of samples to get the exact posteriors (correspond-
ing to an HD-correlated common red process) via importance
sampling. Besides being much faster than a direct search for
an HD-correlated common signal, this method also provides an
accurate estimate of the Bayes factor between the HD and the
CURN models. In fact, the average of the weights computed for
all samples is equal to the ratio of the marginal likelihood (or evi-
dence) of the two considered models. While this method is math-
ematically exact, there are some limitations when the likelihood
changes significantly between the two models. For example, as
the GWB amplitude increases, the weights distribution becomes
broader and the sampling efficiency of the method decreases.
Hourihane et al. (2023) present a very detailed study of the limits
of this method and conclude that the Bayes factor estimate stays
robust up to 𝐵𝐹 > 106. See Hourihane et al. (2023) for a more
detailed description.

To test the limits imposed by the sensitivity of the dataset and
the consequences in the inference analysis, for some realisations
we repeated the parameter estimation runs considering different
numbers of Fourier components for the common process (see
Section 4.2 for more details). The results presented in Sec. 3.1
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Parameter Prior type Range
𝛾RN, 𝛾DM, 𝛾CURN Uniform [0, 7]

𝐴RN log-Uniform [10−18, 10−11]
𝐴DM log-Uniform [10−18, 10−8]
𝐴CURN log-Uniform [10−15.5, 10−13.5]

Table 2: Prior distributions for the Bayesian inference analyses.

and 3.2 are obtained considering only the first nine frequency
bins while searching for the common process.

We use uniform priors for the slope parameters and log-
uniform priors for the amplitudes of the noise components. The
prior ranges for the intrinsic noise and common process param-
eters are listed in Table 2.

For each simulated PTA dataset, we also computed the in-
duced angular correlation in the timing residuals between pulsar
pairs. We followed the method used for the frequentist analysis
in EPTA DR2new (Antoniadis et al. 2023b). We used the Optimal
Statistic (OS) framework developed by Anholm et al. (2009),
Demorest et al. (2012), and Chamberlin et al. (2015), with the
noise marginalisation described in Vigeland et al. (2018). We also
computed the mean correlation and variance in the correlation
recovery between different realisations of the same GWB signal,
and compared the results with the theoretical predictions from
Allen (2023). We followed the prescriptions in Allen & Romano
(2023) when computing the average over pulsar pairs.

3. Results

Using the framework described in the previous section, we gen-
erate three sets of 100 mock EPTA DR2new datasets, for a total of
300 simulations. In each of these 300 simulations, the individual
pulsar DM and RN are generated as a random realisation of a
stochastic process described by the power-law spectra of Eq. (2),
with amplitude and slope fixed to the ML value of the customised
noise analysis performed in Antoniadis et al. (2023d) as reported
in Table 1. The three sets of simulations differ for the injected
GW signal:

– LoudGWB_set. We use createGWB to inject a loud, stochastic
GWB with 𝐴GWB = 5×10−15. This signal is easily detectable
in the DR2new dataset and serves as a benchmark to test our
simulations and analysis pipeline.

– CreateGWB_set. We use again createGWB to inject a stochas-
tic GWB with 𝐴GWB = 2.4×10−15, consistent with the signal
observed in Antoniadis et al. (2023b). These simulations are
meant to test the pipeline in the regime of a relatively weak
signal that matches the template used in the likelihood eval-
uation.

– SMBHB_set. We inject individual residuals from an astro-
physically motivated SMBHB population producing a GWB
with a nominal average amplitude of 𝐴GWB = 2.4× 10−15. In
this case, however, the signal is very different from the tem-
plate used in the analysis pipeline, allowing us to investigate
limitations and biases due to a mismatch between the signal
present in the data and the model used in the analysis.

In Section 3.1 we discuss the performance of the pipeline
applied to the LoudGWB_set; we then move to the comparison
between the createGWB_set and the SMBHB_set in Section 3.2.
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Fig. 2: P–P plot for the GWB-amplitude recovery for the
LoudGWB_set of simulations. The dashed line refers to the in-
ference runs where all the intrinsic noise parameters are fixed in
a noise dictionary and the amplitude of the GWB is the only free
parameter. The solid line is the result of MCMC runs over all
62 noise parameters. The theoretical expectation for an unbiased
recovery and the predicted variance of one- and three- 𝜎 are
represented in different shades of blue.
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Fig. 3: log10BF distribution of HD vs CURN for the 100 realisa-
tions of the LoudGWB_set. The vertical lines show the median
(solid) and the 16th and 84th percentile (dashed) of the distribu-
tion.

3.1. The LoudGWB_set of simulations: A benchmark for
recovery convergence

As already mentioned, this set of simulations aims to define a
benchmark for recovery convergence. In fact, the injected high
GWB amplitude (𝐴GWB = 5× 10−15) is expected to be relatively
easy to recover and disentangle from pulsar noise.

Some useful tools to validate the performance of our model
are the cumulative distributions of the number of times the
injected value lies within a credible interval, the so-called
probability-probability (P–P) plots (see Cook et al. 2006; Talts
et al. 2020; Wilk & Gnanadesikan 1968, and others). These plots
show on the y axis the fraction of times in which the nominal value
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Fig. 4: HD correlation recovery for the LoudGWB_set. Each data
point corresponds to the average of the optimal correlation es-
timators in that bin over all realisations. The expected cosmic
variance is derived in Allen (2023).

(in our case, the injected 𝐴GWB, normalised at the frequency of
1/1𝑦𝑟) lies within the credible interval indicated on the x axis. In
the case of unbiased inference, the data points follow the diagonal
of the plot parameter space.

A P–P plot for the inferred amplitude of the recovered GWB
is shown in Fig. 2. The theoretical expectation and the predicted
variance (one-𝜎 and three-𝜎 levels) are shown in different shades
of blue. The dashed line is obtained from inference runs where
all the pulsar’s intrinsic noise parameters and the slope of the
GWB signal are fixed to the nominal injected values (Table 1,
𝛾GWB = 13/3). Thus, the only free parameter is the amplitude of
the GWB signal. In this case, the obtained distribution follows
the diagonal within the one-𝜎 variance and there is no evident
bias in the recovery of 𝐴GWB. This is expected since the GWB
signal is injected via the createGWB function, which simulates
a background with a spectrum very close to the nominal power
law. The solid line, instead, is obtained from the full analysis
sampling of all the 62 model parameters (the pulsars intrinsic
RN and DM variation parameters, see Table 1, and the two GWB
parameters). Although the recovered distribution is always within
the three-𝜎 expected interval, it systematically lies below the
diagonal. This may indicate a slightly biased recovery towards
lower amplitudes (and, consequently, higher 𝛾GWB) for the GWB
spectrum. Although not particularly worrying, the origin of this
potential bias is unknown and it might be due to leakage of power
across different noise components.

Thanks to the reweighting method, we can also show the dis-
tribution of the obtained log10BF for the HD-correlated model
versus CURN. The results are shown in Fig. 3. The median of
the distribution (vertical solid line) is at log10BF = 1.91, which
corresponds to a BF∼ 81. The spread of the distribution high-
lights the impact of the stochastic nature of the pulsar noise in
the signal recovery. The central 68% of the BF distribution spans
more than three orders of magnitude, and depending on the spe-
cific realisation of the noise, the data can either provide decisive
evidence of a GWB or an inconclusive result.

Finally, we compute the angular correlation induced in the
residuals of each pulsar pair for all realisations. For an array of
25 pulsars, there are 300 independent pairs. For each realisation,
we define ten angular separation bins of 30 pulsar pairs each, and
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Fig. 5: P–P plot for the recovery of 𝐴GWB from the SMHBH_set
(orange) and createGWB_set (green). The solid lines are obtained
from the log10𝐴GWB posteriors of the MCMC runs over all 62
noise parameters of the pulsars array. The dashed lines are ob-
tained by fixing all noise parameters in the recovery model; thus,
𝐴GWB is the only free parameter. The dotted lines are also from
posteriors obtained sampling only over 𝐴GWB, but in a dataset
where the realisations do not all have the same spectral amplitude.
Here, the injected background has an amplitude value extracted
from the prior distribution used in the recovery.

compute the mean and variance of the correlation. The calcula-
tion follows the prescriptions in Allen & Romano (2023), taking
into account the covariance between different pulsar pairs in the
same angular separation bin. We then compute the mean over the
whole LoudGWB_set as the average, in each angular separation
bin, of such optimised correlation estimators. We present the re-
sult in Fig. 4, where each data point is computed over 3000 pulsar
pairs: 30 for each realisation. For comparison, we also show the
cosmic variance limit derived in Allen (2023) (see their Eq. 4.8
and G11). The pulsar variance contribution to the expected vari-
ance of the HD recovery is minimised by the weighted-average
method described in Allen & Romano (2023); thus, in this case
the cosmic contribution is the only significant one to compare
our results with.

We note that the mean correlation estimated in each bin typ-
ically lies very close to the expected HD correlation. This is
expected for such a loud GWB signal (5 × 10−15). The only ex-
ception is the very last bin, which is difficult to constrain due
to the limited number of pulsar pairs available at wide angular
separation, forcing an averaging procedure over a wide bin.

3.2. Ideal vs real: Comparing the createGWB_set and the
SMBHB_set

Having assessed the performance of the analysis pipeline on a
loud, ideal signal, we now turn to the comparison of the signal
recovery for the createGWB_set and the SMBHB_set.

As in the previous section, we start by constructing the P–P
plot for the 𝐴GWB parameter, shown in Fig. 5. For both data sets,
the nominal value of 𝐴GWB for each realisation is 2.4× 10−15, at
the reference frequency of 1/1𝑦𝑟. In the SMBHB_set this value
corresponds to computing the GWB through Eq. (4) and express-
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Fig. 6: Combined posterior for log10𝐴GWB (left panel) and 𝛾GWB (right panel) parameter for the createGWB_set (green) and the
SMBHB_set (orange). The injected values, marked by the black vertical lines, are 𝐴GWB = 2.4 × 10−15 and 𝛾GWB = 13/3. The grey
posteriors in the background are the ones obtained from the individual realisations of the SMBHB_set.

Model 1 Model 2 KS stat. p-value
SMBHB_set diagonal 0.1707 0.5945
noise fixed

createGWB_set diagonal 0.0732 0.9999
noise fixed
SMBHB_set diagonal 0.3590 0.0125
full analysis

createGWB_set diagonal 0.1538 0.7523
full analysis
SMBHB_set createGWB_set 0.1463 0.7789
noise fixed noise fixed
SMBHB_set createGWB_set 0.2821 0.0897
full analysis full analysis

Table 3: KS statistic and correspondent p-values obtained from
comparisons between different distributions shown in Fig. 5.
With diagonal we refer to the theoretical prediction for unbi-
ased recoveries, which corresponds to the diagonal of the plot.
The other distributions analysed are the dashed and solid lines
of that P–P plot. The p-value in the second raw is almost perfect
(0.9999); this confirms the good fit between the 𝐴GWB recovery
for the createGWB_set when the other noise parameters are fixed.

ing it in the power-law form given by Eq. (6). The green lines
are for the createGWB_set, while the orange ones are for the
SMBHB_set. As in Fig. 2, the solid lines are computed using
the posterior distributions of the MCMC runs sampling over all
the 62 noise parameters of the array, while the dashed lines are
obtained by searching over 𝐴GWB keeping all other noise param-
eters fixed to the nominal value. When fixing all noise parame-
ters, the createGWB_set closely follows the diagonal, indicating
an unbiased recovery of the signal amplitude. Conversely, the
SMBHB_set tends to be consistently below the diagonal, also
crossing the three-𝜎 confidence interval in the upper-right cor-
ner. When sampling over all the noise parameters, this bias is
enhanced. As for the LoudGWB_set, the distribution for the cre-
ateGWB_set (solid green) is still within the three-𝜎 confidence
interval, although systematically below the diagonal. The situa-
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Fig. 7: Histograms of the log10BFHD
CURN obtained from the

reweighting analysis on the createGWB (green) and SMBHB_set
(orange). The solid vertical lines show the medians of the distribu-
tions, while the dashed ones refer to the 16th and 84th percentiles.
The black vertical line corresponds to the latest EPTA estimate
for DR2new: BFHD

CURN ∼ 60.

tion gets more extreme for the SMBHB_set (solid orange), which
is dramatically biased towards the lower amplitude of the GWB
spectra.

To quantify the distances between the different distri-
butions shown in Fig. 5, we used the scipy package
scipy.stats.kstest (Virtanen et al. 2020) to perform a se-
ries of non-parametric Kolmogorov-Smirnov tests (KS test). The
test returns the maximum difference between two distributions
and an estimate of the p-value under the null hypothesis that the
two distributions are identical. Results are summarised in Ta-
ble 3 and highlight the inconsistency of the signal recovery in the
SMBHB_set.

We note that in these analyses there is a difference between
the prior defined in the recovery model, log10𝐴GWB uniform in
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Fig. 8: Mean and variance of the angular correlation in the timing residuals of the createGWB_set (left panel) and for the SMBHB_set
(right panel). Each data point corresponds to the average of the optimal correlation estimators in that bin over all realisations. We
also show the expected cosmic variance derived in Allen (2023).

[−15.5,−13.5], and the one from which the injected values are
selected (basically a delta function centred in 𝐴GWB = 2.4 ×
10−15). Since the latter prior is much narrower and completely
included in the former, the statistical significance of the P–P
plots are unaffected. To test this statement, we generated a new
set of simulations where the pulsar’s intrinsic noises are the
same as for the other datasets and fixed, but now the GWB signal
amplitudes have values which are randomly chosen from the
uniform prior log10𝐴GWB: [−15.5,−13.5]. The results are shown
in Fig. 5 as dotted lines (green for the createGWB_set, orange for
the SMBHB_set). As expected, there is no significant discrepancy
between those lines and the dashed ones (same analysis on data
where the GWB signal is the same in all realisations).

Since we have 100 simulations, each with a different reali-
sation of population parameters but the same injected parame-
ters of the GWB signal, we can utilise Bayes’ theorem to ob-
tain the combined and better constrained posterior PDFs for
log10𝐴GWB and 𝛾GWB. In Fig. 6 we show the combined pos-
teriors for log10𝐴GWB and 𝛾GWB for both the createGWB_set
(green) and the SMBHB_set (orange). The posterior for the slope
parameter is better constrained than that for the amplitude. While
both parameters are compatible with the nominal injected value
within ∼ one-𝜎 for the createGWB_set, this is not the case for the
SMBHB_set. The orange posteriors are clearly biased towards
steeper spectra with lower amplitudes, consistent with what is
shown by the P–P plots.

Systematic biases in the signal recovery for the SMBHB_set
can be traced back to the ℎ𝑐 distribution of the individual reali-
sations shown by the orange lines in Fig. 1. These realisations lie
preferentially below the expected 𝑓 −2/3 line, featuring a steeper
spectrum. Only sporadically, loud individual sources result in ex-
cess power at specific frequencies. When this happens, a power-
law fit to the data can result in a flatter spectrum, above the 𝑓 −2/3

line. This is a general feature of realistic SMBHB populations
characterised by a sparse, high-mass tail of loud GW sources.
Although most signal realisations show a deficiency of power at
high frequency, the few which feature loud sources ensure that the
average signal amplitude sits on the expected 𝑓 −2/3 power law. It
follows that the typical realisation of a nominal 𝑓 −2/3 power-law
signal has in reality, a steeper spectrum. There is, therefore, a
mismatch between the theoretically smooth GWB signal used in

the recovery model and the real signal produced by a discrete
ensemble of SMBHBs, which can lead to systematic biases in
the signal recovery and erroneous interpretation of the results.

We note that, during our whole analysis, we fixed the refer-
ence frequency for the recovery of the GWB amplitude to 1/1𝑦𝑟.
Changing this frequency to a lower one would result in a weaker
dependence of 𝐴GWB upon 𝛾GWB, but the one-dimensional poste-
rior of the slope parameter remains unchanged. Reanalysing our
data sets with the reference frequency set at 1/10𝑦𝑟 shows that,
as expected, the average recovery is still biased to higher 𝛾GWB
values. In contrast, the 𝐴GWB recovery is now less affected by
the lack of power at higher frequencies, resulting in a combined
posterior that agrees very well with the nominal amplitude value
of the simulated GWB. The difference between the SMBHB_set
and the createGWB_set also becomes not statistically significant.
We refer to Sec. 2 of Antoniadis et al. (2023a) for further details
on this point.

In this paper, we focus on testing the recovery of the GWB
signal from PTA datasets. However, pulsar’s intrinsic noise pa-
rameters are also free parameters in our inference runs and, thus,
subject to possible biases in the recovery. We refer to Appendix
A for a brief discussion on the recovery of pulsar’s intrinsic RN
parameters.

From the parameter estimation analysis carried out on the
createGWB_set and on the SMBHB_set, we can build the distri-
bution of the BFs of HD vs CURN obtained with the reweighting
method in each realisation (see Sec. 2.3 for more details). Results
are shown in Fig. 7. The median of the log10𝐵𝐹 distribution for
the createGWB_set is ∼ 0.5, while for the SMBHB_set is ∼ 0.8.
The estimated BF for EPTA DR2new is ∼ 60 and is represented
in the plot by the black vertical line. We note that this value is
included in the 16th-84th percentile interval of the distribution
for the SMBHB_set.

Finally, we also plot the recovered angular correlation in
the timing residuals, following the procedure described in the
previous section. In Fig. 8 we compare the mean and variance
of the reconstructed correlation function to the HD curve and
its cosmic variance (Allen 2023). In both cases, not only the
different points are always compatible with the predicted HD
correlation, but also the computed mean in each angular bin is
typically included within the predicted cosmic variance.
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4. A close look at astrophysical variance: Notable
realisations of the SMBHB_set

So far, we focussed on the collective properties of the recov-
ered signal, highlighting possible systematic biases due to the
idealised model used in the analysis pipeline. It is also interest-
ing, however, to have a close look at the ’zoology’ of signals
arising from a realistic SMBHB population, to get an idea of
how specific features are reflected in the outcome of the analysis.
We focus here on four selected realisations of the SMBHB_set,
stressing that all of them are independent statistical realisations
of the same underlying astrophysical model.

4.1. Case1 and Case2: Different spectra resulting in similar
posteriors

The first two selected cases are characterised by the spectra shown
in the left panel of Fig. 9. While Case1 (brown line) has a flat,
smooth bump in the lowest frequency bins, Case2 (orange line) is
characterised by a jagged behaviour due to few loud sources. In
the right panel of Fig. 9 we show the GWB parameter posteriors
obtained for those two realisations. The recovery model is the one
described in Sec. 2.3. Although the two spectra are very different,
the inference runs produce very similar posteriors for the GWB
amplitude and slope. This can be qualitatively understood by
comparing the spectra to the sensitivity curve associated to the
considered PTA (blue curve in Fig. 9, left panel). In Case1, the
array is mostly sensitive to the last couple of frequency bins,
where the signal is flatter than the nominal 𝑓 −2/3 power law.
This leads to a posterior with a slight preference for small 𝛾 and
high 𝐴GWB. Conversely, in Case2, besides detecting the signal
at the lowest frequency bin, the inference pipeline picks some
correlated power due to the marginally detectable loud source at
𝑓 ≈ 1.5×10−8Hz. Since the built-in model is a single power law,
this extra high-frequency power also results in a posterior with a
slight preference for small 𝛾 and high 𝐴GWB.

It is also interesting to notice that the recovered GWB pa-
rameters for these two selected realisations are quite consistent
to the DR2new posteriors presented in Fig. 1 of Antoniadis et al.
(2023b). This just exemplifies that there is no conflict between
the signal observed in the latest PTA data and astrophysical ex-
pectations.

4.2. Case2 and Case3: Loud and louder sources.

To further demonstrate the impact of sparse, particularly massive
and (or) nearby SMBHBs on the GWB signal recovery, we se-
lected two realisations featuring some prominent loud sources.
Those are Case2, already introduced in the previous subsection,
and Case3. The characteristic strain frequency spectra of those
two realisations are presented in the top panel of Fig. 10. The
loud source at 𝑓 ≈ 2× 10−8 present in Case3 produces a peak in
the power that is marginally above the nominal sensitivity of the
simulated PTA, we can therefore expect a strong impact on the
recovered signal.

This is shown in the central and bottom panels of Fig. 10.
When modelling the signal with the nine lower Fourier compo-
nents (frequency bins) in the GWB search, the presence of this
peak biases the recovery towards low values of 𝛾GWB and high
amplitudes (red posterior in the central panel). If, instead, we
consider only the first four frequency bins, the bright source falls
outside the frequency domain of the model and, as expected, the
recovered posteriors are much closer to the nominal values for the
injected SMBHB population (red posterior in the bottom panel).

A similar effect, although to a lesser extent, is seen for Case2.
In this case, the loud source is less prominent, contributing only
marginally to the overall detected power. Still, by comparing the
orange posteriors in the central and bottom panels of Fig. 10, we
can see a significant shift of the posterior to the lower right when
restricting the model from nine to four frequency bins. The pos-
sible bias towards a flatter GWB spectrum due to a particularly
bright GW source has been recently discussed also in Bécsy et al.
(2023). Here we provided concrete examples of the effect on the
recovery of the GWB spectra when bright sources are involved.

4.3. Case4: A familiar HD correlation recovery

Finally, we present a fourth interesting realisation. In Case4 the
characteristic strain as a function of frequency does not present
any particularly pronounced peak (see the left panel in Fig. 11).
The interesting feature observed while analysing this PTA dataset
is the induced angular correlation in the residuals. In Fig. 11,
right panel, we show the results obtained with the OS pack-
ages (as described in Sec. 2.3) for this specific realisation (light
blue points), and compare them with the results obtained for the
EPTA DR2new dataset (red points). Each data point of the plot
represents the average correlation in a bin containing 30 pulsar
pairs. The averages over pulsar pairs are computed following the
prescriptions in Allen & Romano (2023).

The reconstructed angular correlation closely follows the HD
prediction. What caught our attention is the close resemblance
between the right panel of Fig. 11 and the results from the EPTA
DR2new dataset (see Fig. 6 of Antoniadis et al. 2023b). In both
plots, the considered pulsars are the same (EPTA best 25 pulsars)
and the correlation is computed following the same procedure.

The similarity in the reconstructed HD is also reflected in
the estimated BF for HD correlated common signal vs CURN.
Using the reweighting technique in the inference run, we obtain
BF≈ 62 for Case4, which is very consistent with the BF≈ 60
found in EPTA DR2new (Antoniadis et al. 2023b).

The BF (HD vs CURN) of those four notable cases are sum-
marised in Table 4 for completeness, and they give a flavour of the
role played by stochasticity in the estimate of signal significance
and parameters. For example, the spectra of Case1 and Case4
look very similar, with perhaps Case1 showing a bit more power
in the lowest frequency bins. Still, in this case, the result of the
analysis is inconclusive (BF= 1.179 for HD vs CURN), whereas
in Case4 there is strong evidence of an HD correlated process
(BF= 62.5). This is because, in these early stages of detection, the
output of the analysis is very sensitive to the specific realisation
of the noise processes and to the specific sky locations of the
loudest systems contributing to the GWB with respect to the best
pulsars in the array. The key role played by the stochastic realisa-
tion of the noise processes involved is also demonstrated by the
BF distributions shown in Fig. 7; even when we inject a nearly
ideal signal with createGWB, the distribution of Bayes factors
returned by the analysis spans several orders of magnitudes.

5. Discussion and conclusions
In this paper, we carried out an extensive investigation of the
performance of current PTA GW analyses on simulated PTA
datasets injected with different types of GW signals. Our simula-
tions included realistic levels of white noise, red noise, and DM
variations, that were gauged to create mock data equivalent to the
recently published EPTA DR2new. We injected in those data ei-
ther a stochastic, stationary, Gaussian GWB with a standard 𝑓 −2/3
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Fig. 9: Comparison between the two realisations denoted as Case1 and Case2. In the left panel we compare the characteristic spectra
with the the 𝑓 −2/3 trend, represented by the dashed black line. The sensitivity curve is the one presented in Collaboration et al. (2023).
Right panel: corner plot of the GWB parameter posteriors for Case1 (brown posterior) and 2 (orange posterior). The simulated GWB
amplitude is 2.4 × 10−15.

Case n. BFHD
CURN

1 1.179
2 12.358
3 70.133
4 62.503

Table 4: BF obtained from the reweighted nine-frequency bins
inference runs (Hourihane et al. 2023) for the four notable cases
analysed in Sec.4. The BF is computed for an HD-correlated
signal over a common uncorrelated red noise.

power-law spectrum (the createGWB_set of simulations) or the
incoherent superposition of sinusoidal signals from a cosmic
population of SMBHBs (the SMBHB_set of simulations), pay-
ing particular attention to possible limitations and biases arising
from the mismatch between the signal present in the data and the
model used for the inference. The injected signals were calibrated
on the results of Antoniadis et al. (2023b), where the amplitude
of the signal was estimated to be 𝐴GWB ≈ 2.4 × 10−15 for a
power-law spectrum with 𝛾GWB = −13/3.

We quantified the performance of the analysis model by con-
structing P–P plots for the amplitude of the recovered signal for
each set of simulations. The createGWB_set demonstrates that,
when the model matches with the injected signal, the outcome
of the analysis is reliable, although some mild bias can arise due
to the complex multi-dimensional nature of the parameter space
that needs to be searched over. In fact, when fixing all the pa-
rameters but the GWB amplitude, the estimate of this parameter
is unbiased; conversely, when performing a joint search on the
GWB and noise parameters (including RN and DM) the signal
amplitude is slightly biased towards lower amplitudes and steeper
spectra. Such bias has also been seen in simulations of individual
pulsar noise analysis (Antoniadis et al. 2023d), and although it
is still between the one- and two-𝜎 level (Fig 5, 6), it requires
further investigation.

In the case of the more realistic SMBHB_set, where there is a
mismatch between the injected signal and the simplified recovery
model, the bias is much more prominent and the recovered spectra
for the common noise tend to be steeper (higher 𝛾GWB) and with
lower amplitude than the injected signal (Fig 5, 6). This is due
to the nature of the SMBHB population, which features a large
number of weak sources with a tail of sparse, loud systems, as
discussed in Sec. 3.2. When one of these loud systems is present in
the SMBHB population, the recovered GWB spectra can appear
flatter (lower 𝛾GWB) and with a higher amplitude.

Using the reweighting method, we were also able to build
a distribution of BF from the different realisations of both the
createGWB_set and the SMBHB_set (see Fig. 7). We found no
significant difference between the two distributions, although the
SMBHB_set results on average in slightly higher BFs. We note
that in both sets, the log𝐵𝐹 distribution has a large scatter, with
one-𝜎 confidence interval spanning index covering the [0, 2]
interval. We also computed the induced angular correlation in
the timing residuals of the different datasets and showed that they
agree, within the predicted variance, with the HD correlation.

These results allow us to make several interesting considera-
tions. First, as already shown in Cornish & Sampson (2016) the
mismatch between the model and the data does not seem to affect
our ability to recover the GW signal. This is probably because
the detection significance is based on the intra-pulsar correlation
properties of the signal (i.e. the HD overlap reduction function)
which is a feature that emerges for any collection of GW signal,
regardless on its specific properties (e.g. stationarity, Gaussian-
ity, isotropy, spectral shape). Conversely, the reconstruction and
interpretation of the observed signal can be severely biased by the
use of a simplified GWB model. For example, while loud individ-
ual sources can cause a flattening of the spectrum which might
erroneously misinterpreted as environmental effects or high ec-
centricity, the lack of them might result in a steep inferred spec-
trum which can be (again erroneously) claimed to be inconsistent
with an astrophysical origin. Finally, the stochastic nature of the
noise has a major impact on the outcome of the analysis. Even
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Fig. 10: Notable realisations Case2 (orange) and Case3 (red). Top
panel: GWB spectra. The dashed black line represents the 𝑓 −2/3

trend. The sensitivity curve is the one presented in Collaboration
et al. (2023). The central and bottom panels show corner plots of
the GWB parameter posteriors inferred from the analysis using
nine (central panel) and four (bottom panel) frequency bins for
the GWB recovery.

for the createGWB_set, where we effectively always inject the
same signal, the analysis can either return a detection supported
by strong evidence or an inconclusive result, just depending on
different realisation of the stochastic process describing the noise.

Within this diverse and complex phenomenology, we high-
lighted also some notable realisations that exemplifies some of
the possible analysis outcomes. In particular, we highlighted that:
(i) little astrophysical information can be drawn from an infer-
ence run using a simple power-law GWB model, by showing that
very different GW signals can result in similar inferred GWB
parameters, (ii) the presence of loud sources can introduce a bias
in the recovery of the common process, (iii) some realisations
of our simulations result in a recovered HD correlation and BF
completely in line with what observed in EPTA DR2.

Finally, Bécsy et al. (2023) presented a similar set of sim-
ulations based on the NANOGrav 15yr dataset. They also use
astrophysically motivated SMBHB populations to generate the
GW signal and carry out a thorough analysis of a realistic dataset
including unevenly sampled data and pulsar red noise. They per-
form Bayesian inference from the data, computing HD vs CURN
Bayes factors and conclude that the simple GWB model imple-
mented in the current analysis is able to recover a realistic GW
signal, although they stress that loud sources might affect the
inference. Compared to their work, our investigation adds several
layers of sophistication. Our simulated data also include observa-
tions at two frequencies per epoch, allowing the inclusion of DM
as a further source of noise, which allows as to test the analysis
performance on a more complicated situation, closer to the real
data. We cast our results in terms of P–P plots, and we compute
combined posteriors of several realisations of the same dataset,
which allowed us to identify some interesting systematic biases
in the recovered signal. Finally, we carried out a systematic com-
parison on the analysis performed on realistic signal injections
vs an ideal GWB generated by the createGWB function, which
allowed us to identify potential difficulties due to the signal vs
template mismatch.

Now that evidence of a GW signal is emerging independently
from several PTA data, it is important to assessthe reliability of
our analysis methods, in order to maximise the astrophysical
potential of the PTA experiments. The present work, along with
Bécsy et al. (2023), represents an important first step in this
direction, which needs to be extended to include increasingly
realistic situations. For example, in this article, we did not
investigate complex signal spectra due to environmental effects
or binary eccentricity. Likewise, we used the exact same model
for noise injection and recovery. As shown in Antoniadis et al.
(2023a), the excess or mis-modelled noise in the data can be
absorbed within the common correlated signal in the analysis,
leading to further biases and interpretation issues. Finally,
including single sources along with a GWB in the recovery
model might significantly improve the quality of the inference,
especially when prominent peaks are present in the GW spectrum.

The main scripts used to analyse the data sets
here described can be found at https://github.com/
serevaltolina/PTAsim_fromSMBHBpop. The SMBHB_set is
also available on zenodo under the following Digital Object
Identifier: 10.5281/zenodo.10276364. In particular, for each
universe realisation we uploaded: the SMBHBs specifications,
the chain file obtained from the inference runs (while sampling
for each pulsar intrinsic noise parameters and a common uncor-
related red noise), each pulsar .par and .tim files.
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Fig. A.1: P–P plots for the recovery of pulsars J1455-3330 and
J1012+5307 RN parameters from the MCMC inference runs per-
formed on the createGWB (top panel) and SMBHB_set (bottom).
Dashed lines are for the power-law slope, while the solid lines
refer to the RN amplitude.

Appendix A: Intrinsic noise parameters recovery
While we focussed on testing the viability and robustness of the
recovery of the GWB signal, it is also interesting to briefly look at
the recovered values for the pulsar’s intrinsic RN when a common
signal is included in the model. In particular, we choose the
pulsars J1455-3330 and J1012+5307 (see Table 1 for the injected
noise). We used the posteriors obtained from the MCMC runs
over the createGWB and the SMBHB_set (see Sec. 3.2) to build
the P–P plots for the inferred RN amplitude and slope for those
two pulsars. The results are shown in Fig. A.1.

In this case there is no obvious distinction between the results
from the createGWB and the SMBHB_set. In fact, the intrinsic
pulsars RN is modelled in the same way in both of them and the
different GWB injected does not seem to affect the RN inference.
However, in both cases, the recovered distributions are slightly
biased. Even if they all lie in a range comparable with the three-𝜎
confidence interval, the distributions for log𝐴RN are constrained
below the diagonal, while the ones for 𝛾RN are always above.
This means that, for both pulsars, on average the recovered RN
has spectra biased towards lower amplitudes and higher slopes;
the same type of bias that we obtained for the GWB recovery.

Antoniadis et al. (2023d) carried out a similar test on the
RN recovery. In their Fig. 6, they show a P–P plot test on their
noise parameter estimation from simulated data containing pul-
sar intrinsic noise only. Interestingly, they observe a bias in the
opposite direction with respect to our results. Their conclusion
is that, when the spectral slope of RN is greater than ∼ 4, the
recovery is, on average, biased towards flatter spectra with higher
amplitudes. In our case, the spectral slope of the tested pulsars
was much lower than that threshold (about 1.4 for both pulsars,
see Table 1). This may be the at the root of the different results.
We defer a deeper investigation of those mild biases to future
studies.
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