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ABSTRACT

Aims. We investigate the impact of tidal torques and mass transfer on the population of double white dwarfs that will be observed
with LISA.
Methods. Our Galactic distribution of double white dwarfs is based on the combination of a cosmological simulation and a binary
population synthesis model. We use a semi-analytical model to evolve double white dwarf binaries considering ten different hypothe-
ses for the efficiency of tidal coupling and three hypotheses for the birth spins of white dwarfs. We then estimate the stochastic
foreground and the population of resolvable binaries for LISA for these different combinations.
Results. Our predicted double white dwarf binary distribution can differ substantially from the distribution expected if only grav-
itational waves (GWs) are considered. If white dwarfs spin slowly, then we predict an excess of systems around a few mHz, due
to binaries that outspiral after the onset of mass transfer. This excess of systems leads to differences in the confusion noise, which
are most pronounced for strong tidal coupling. In that case, we find a significantly higher number of resolvable binaries than in the
GW-only scenario. If instead white dwarfs spin rapidly and tidal coupling is weak, then we find no excess around a few mHz, and the
confusion noise due to double white dwarfs is very small. In that scenario, we also predict a subpopulation of outspiralling binaries
below 0.1 mHz. Using the Fisher matrix approximation, we estimate the uncertainty on the GW-frequency derivative of resolvable
systems. We estimate that, even for non-accreting systems, the mismodelling error due to neglect of effects other than GWs is larger
than the statistical uncertainty, and thus this neglect would lead to biased estimates for mass and distance.
Conclusions. Our results suggest that the population of double white dwarfs is likely to be different from what is expected in the
standard picture, which highlights the need for flexible tools in LISA data analysis. Because our semi-analytical model hinges upon
a simplistic approach to determining the stability of mass accretion it will be important to deepen our comprehension of stability in
mass-transferring double white dwarf binaries.
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1. Introduction

The Milky Way contains ∼ 107 double white dwarf (DWD) bi-
naries, which emit nearly monochromatic gravitational waves
(GWs) within the mHz band (Breivik et al. 2018; Nelemans
et al. 2001b; Ruiter et al. 2010; Lamberts et al. 2019). The
Laser Interferometer Space Antenna (LISA) (Amaro-Seoane
et al. 2017),which is scheduled for launch in 2035, will comple-
ment electromagnetic instruments with gravitational wave (GW)
detection, and will thus provide a unique opportunity to study
this largely unobserved population. Unresolvable DWDs are ex-
pected to produce stochastic noise that will exceed LISA’s in-
strumental noise in the ∼ 0.1 − 2 mHz range. Additionally, up
to tens of thousands of binaries are expected to be individu-
ally resolved. This makes the analysis of LISA data challeng-
ing. This challenge has spurred the development of Global Fit
pipelines (Littenberg & Cornish 2023), which are designed to
infer this persistent yet unknown signal present in the data. De-

tection and characterization of this population will help us un-
derstand the formation and evolution of white dwarfs (WDs),
which is one of the eight objectives of the LISA mission (Colpi
et al. 2024). Now that LISA has been adopted by the European
Space Agency, it is timely to construct the tools for the analy-
sis of LISA data and its astrophysical interpretation. Similarly
to the recent study of Scaringi et al. (2023), which highlighted
observational signatures of cataclysmic variables within LISA’s
confusion noise, our work anticipates distinct observational fea-
tures, attributable in our case to tidal effects in mass-exchanging
binaries.

The evolution of DWDs is characterised by various physical
processes that can significantly influence their behaviour and ob-
servational signatures. One of the key aspects is the effect of mat-
ter interactions, which becomes relevant early in the evolution
due to the smaller compactness of WDs compared to neutron
stars and black holes. Similar to binary stars, tidal torques work
to synchronise the rotation period of the WDs with the orbital
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period of the binary (Zahn 1977; Verbunt & Hut 1983). While
expressions for the intensity of these torques within DWDs have
been proposed (Campbell 1984), they are generally valid only
under the assumption of small asynchronicity, and the precise
intensity of these torques remains uncertain. As the separation
between the WDs decreases, the lighter WD may overflow its
Roche lobe, leading to mass transfer onto the heavier WD. This
scenario can result in one of two outcomes: if the mass transfer
is dynamically unstable, the binary may merge rapidly, poten-
tially triggering a Type Ia supernova (Webbink 1984; Woosley
& Weaver 1986; Fink et al. 2007, 2010; Guillochon et al. 2010;
Kromer et al. 2010; Maoz et al. 2014; Shen et al. 2018). If in-
stead the mass transfer is stable, then an AM CVn system can
be formed (Nather et al. 1981; Nelemans et al. 2001; Solheim
2010; Tutukov & Yungelson 2002). These stable interacting bi-
naries offer unique opportunities for multi-messenger observa-
tions (Nelemans et al. 2004; Shah & Nelemans 2014; Kupfer
et al. 2019, 2023).

Marsh et al. (2004) proposed a first semi-analytical model for
the evolution of DWDs including tidal torques and mass trans-
fer, in addition to GWs. This approach was extended in Gokhale
et al. (2007) to include the evolution of the lighter WD’s spin.
Finally, Kremer et al. (2015) proposed a variation of the previ-
ous models with a more refined treatment of mass transfer based
on ballistic accretion of particles (Sepinsky & Kalogera 2014).
Those works highlighted the effect of tidal torques on the evo-
lution of DWDs, and in particular that strong tides can help sta-
bilise the dynamics of mass transfer, preventing rapid mergers.
Note that in these analyses, the stability of mass transfer is de-
termined using a simple and thus potentially unrealistic criterion
based on the rate of mass lost by the donor.

Systems surviving mass transfer are predicted to outspiral,
i.e. they will have a negative orbital frequency derivative. This
distinctive signature can be used to identify the subpopulation of
mass transferring DWDs with LISA, as was proposed in Breivik
et al. (2018); Kremer et al. (2017); Biscoveanu et al. (2023); Yi
et al. (2023). In particular, in Biscoveanu et al. (2023), the au-
thors simulate a population of DWDs until the onset of mass
transfer using the COSMIC population synthesis code (Breivik
et al. 2020) and use the semi-analytical model to compute the
long-term evolution of DWDs. They explore three distinct as-
sumptions regarding the intensity of tidal coupling, and perform
a population analysis on these DWDs to demonstrate the poten-
tial of LISA observations to probe the intensity of tidal coupling
within these systems. They also investigate the impact of differ-
ent assumptions on the common envelope phase during the evo-
lution of DWDs progenitors, complementing the work of Kre-
mer et al. (2017). Those works shed light on the potential of
LISA to inform us about the outcomes of stellar evolution and
about the properties of DWDs. However, the tools currently used
to perform population analyses (Mandel et al. 2019) are not ap-
plicable to DWDs because the signals overlap and, therefore,
are not statistically independent. Moreover, it is necessary to ac-
count for the dependence of the contribution of DWDs to the
confusion noise on the properties of the population that we seek
to infer.

Alternatively, approaches to measure mass transfer effects in
individual binaries have been developed (Breivik et al. 2018; Yi
et al. 2023). For non-accreting systems, it has been suggested
that it would be possible to measure the chirp mass, and distin-
guish between WDs and black holes in Galactic binaries (Sesana
et al. 2020; Sberna et al. 2021), to measure tidal effects (Shah
et al. 2015), and possibly even to perform tests of general rela-
tivity (GR) (Littenberg & Yunes 2019).

In our study, we investigate for the first time the impact of
tidal effects within DWDs on the confusion noise that they pro-
duce and on the properties of resolvable sources. Starting from
a population of DWDs at formation predicted by the popula-
tion synthesis code of Lamberts et al. (2019), we use a semi-
analytical model, detailed in Sec. 2, similar to those of Marsh
et al. (2004); Sberna et al. (2021) to evolve the population until
today. We discuss the main features of the long-term evolution of
accreting systems in Sec. 3. In this semi-analytical model, tidal
torques depend on (i) the spin of the WDs and (ii) the tidal syn-
chronisation timescale. The latter measures the efficiency of tidal
coupling: the shorter the synchronisation timescale, the stronger
the tidal interaction. We introduce a universal parametrisation for
the tidal synchronisation timescale, which allows the intensity
of tidal torques to depend on a single parameter for all DWDs
(apart from the spin). We generate mock populations exploring a
total of thirty combinations of initial spin and tidal synchronisa-
tion timescale in Sec. 4 and, in Sec. 5, we estimate the confusion
noise due to DWDs along with the number of detectable bina-
ries, using the methodology of Karnesis et al. (2021); Timpano
et al. (2006); Crowder & Cornish (2007); Nissanke et al. (2012);
Lamberts et al. (2019).

We find significant impacts on the DWD population. In par-
ticular, if WDs are born slowly spinning and tidal effects are
strong, we anticipate a detectable excess of events around 1 mHz
due to accreting binaries that outspiral and accumulate around
that frequency. This excess affects both the confusion noise
and the resolvable binaries. The latter is in agreement with the
findings of Biscoveanu et al. (2023). Moreover, we estimate
how many resolvable systems have measurable GW-frequency
derivative. We find astrophysical effects in the evolution (i.e.
other than GW radiation) to be relevant for all systems with mea-
surable GW-frequency derivative, even for non-accreting sys-
tems. Thus, measuring properties of the binary without account-
ing for effects other than GW radiation will lead to biased esti-
mates. Finally, in Sec. 6, we assess the robustness of our con-
clusions against systematic effects by considering modifications
to our semi-analytical model. We find our results to be generally
robust, with the main uncertainty lying in the validity of the cri-
terion we employ to determine the stability of mass-exchanging
DWDs. We present our concluding remarks in Sec. 7 and give
some extra details on oscillatory behaviours in the evolution of
mass-exchanging DWDs in Appendix A.

2. Evolution of double white dwarf binaries

Our DWD population is based on the catalogue created by Lam-
berts et al. (2019). This model uses a zoom-in simulation of a
galaxy with properties similar to the Milky Way to provide a
metallicity-dependent star formation rate that naturally repro-
duces a thin and thick galactic disk as well as a bulge and a
halo (Wetzel et al. 2016). This is combined with the output of a
the binary population synthesis code BSE (Hurley et al. 2002)
with standard parameters. The population is evolved until the
formation of the DWD, and we only keep the systems that have
reached that stage by the present day. From this point on, we use
the semi-analytical described below to evolve the DWDs until
today. In comparison, Kremer et al. (2017); Biscoveanu et al.
(2023) evolve DWDs until the onset of mass transfer with a
population synthesis code and, from there, use a semi-analytical
model similar to ours to evolve the binaries for 10 Gyr. Our
model naturally produces combinations of WDs with different
core compositions (helium, carbon/oxygen or neon), which have
different evolutionary timescales and typical masses and sky lo-
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calisations. In the remainder of this paper, we consider the full
population of systems, but do not distinguish the different sub-
types of systems. In Sec. 6, we discuss the impact of the assump-
tions we make to model the evolution of DWDs. We use mi, ωi,
Ji and Ri (i = 1, 2) to represent respectively the masses, spins,
angular momenta and radii of the WDs, with m1 ≥ m2. We define
the mass ratio q = m2/m1 ≤ 1. We denote by Mt = m1 + m2 the
total mass of the binary, a its separation, ωo its orbital frequency
and Jo its orbital angular momentum. We assume all binaries to
be quasi-circular.

We begin by specifying our model for mass transfer. Using
RL for the Roche lobe radius of the lighter WD, we define the
Roche lobe overfill factor as

∆ = R2 − RL (1)

We assume that mass is exchanged when the lighter WD over-
flows its Roche lobe, i.e. when ∆ > 0. We use Eggleton’s ap-
proximation (Eggleton 1983) for RL, and following Marsh et al.
(2004), we take:

ṁ2 =

{
−Facc(m2,m1, a,R2)∆3, if ∆ > 0,
0 otherwise,

(2)

where Facc is defined in Eq. (10) of Marsh et al. (2004). We limit
the rate of mass accreted by the heavier binary to the Edding-
ton limit or below, using the approximation of Han & Webbink
(1999) for the latter:

ṁ1 = min(−ṁ2, ṁEdd,1) (3)

Therefore, part of the mass might be lost during mass transfer
episodes, i.e. we do not necessarily have Ṁt = 0.

The evolution of the binary is governed by the angular mo-
mentum balance equation. We assume that the system loses an-
gular momentum only via GWs and loss of matter:

J̇o + J̇1 + J̇2 = −J̇GW − J̇loss. (4)

The angular momentum of a WD is related to its spin through:

Ji = kimiRiωi, (5)

where ki is a numerical factor such that kimiR2
i is the moment

of inertia of the WD. We use the fit from Marsh et al. (2004):
ki = 0.1939(1.44885 − mi)0.1917. We assume that the angular mo-
menta of the WDs evolve due to mass transfer and tidal torques
as:

J̇i = jiṁi −
kimiR2

i

τs,i
(ωi − ωo). (6)

In the above equation τs,i is the tidal synchronisation timescale.
The smaller the timescale, the more efficient tidal torques are
in synchronising the spin of the WD with the orbital frequency.
While the heavier WD might be spun up through accretion from
the companion star that will form the lighter WD, the latter is ex-
pected to be slowly rotating at birth, and so its specific angular
momentum should contribute little to the evolution of the DWD.
Thus, for simplicity, we take j2 = 0. However, for completeness,
as described below, we consider the impact of the donor being
rapidly rotating at birth, and, in Sec. 6, we explore another pos-
sibility for j2. For the angular momentum of the more massive
WD we use the model of Verbunt & Rappaport (1988):

j1 =
√

Gm1Rh, , (7)

where Rh is the radius of the orbit of the matter around the ac-
creting WD. A fit for Rh is provided in Verbunt & Rappaport
(1988). This formula corresponds to direct impact accretion. Af-
ter some time, an accretion disk might form. This occurs when
the minimum radius reached by the stream, Rmin, exceeds the ra-
dius of the accretor. In this case, Rh is replaced by R1 in Eq. (7).
A fit to the minimum radius of the stream is given by Nelemans
et al. (2001a):

Rmin

a
= 0.04948 − 0.03815 log(q) + 0.04752 log2(q)

− 0.006973 log3(q). (8)

The evolution equation forωi is obtained by taking the derivative
of Eq. (5):

J̇i = kimiR2
iωi

(
λi

ṁi

mi
+
ω̇i

ωi

)
, (9)

with λi = 1 + 2 d log(Ri)
d log(mi)

+
d log(ki)
d log(mi)

, and equating it with Eq. (6),
which yields:

ω̇i =

 ji
kiR2

i

− λiωi

 ṁi

mi
−
ωi − ωo

τs
. (10)

Following Marsh et al. (2004), we limit the WD spin to the
break-up rate of the WD defined as:

ωi,K =

√
Gmi

R3
i

. (11)

If the WD spin reaches this value, then we enforce ωi = ωi,K and
ω̇i = ω̇i,K . The latter is achieved by changing the tidal synchro-
nisation timescale so that Eq. (10) yields the desired evolution
equation for ωi.

To obtain the evolution equation for the separation, we start
from Kepler’s law ωo =

√
Gm

a3/2 , so that the orbital angular momen-

tum can then be written Jo =
√

Ga
Mt

m1m2. Therefore:

J̇o

Jo
=

1
2

ȧ
a
+

ṁ1

m1
+

ṁ2

m2
−

1
2

Ṁt

Mt
. (12)

At Newtonian order:

J̇GW =
32
5

G3

c5

m1m2m
a4 Jo. (13)

Following van Haaften et al. (2012), we assume an isotropic re-
emission of the lost mass and take:

J̇loss = q
Ṁt

Mt
Jo. (14)

Finally, putting together Eqs. (4), (6), (12), (13), and (14), we
get:

ȧ
2a
= −

32
5

G3

c5

m1m2Mt

a4 −
ṁ1

m1

(
m1 j1
Jorb

+ 1
)
−

ṁ2

m2

+
k1m1R2

1

Jorbτs,1
(ω1 − ωo) +

k2m2R2
2

Jorbτs,2
(ω2 − ωo) +

(
1
2
− q

)
Ṁt

Mt
.

(15)
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We obtain the corresponding equation for the GW frequency at
which the binary emits, combining fGW =

ωo
π

with Eq. (15):

ḟGW

fGW
=

96
5

G3

c5

m1m2m
a4 +

3ṁ1

m1

(
m1 j1

Jo
+ 1

)
+

3ṁ2

m2

−
3k1m1R2

1

Joτs,1
(ω1 − ωo) −

3k2m2R2
2

Jorbτs,2
(ω2 − ωo) + (3q − 1)

Ṁt

Mt
.

(16)

Finally, we need to specify a mass-radius relation for WDs.
We take the commonly used model by Eggleton, defined in Eq.
(15) of Verbunt & Rappaport (1988). We note that for small mass
WDs (≲ 0.01M⊙) finite-entropy effects are expected to become
relevant (Deloye & Bildsten 2003). The systems we evolve do
not reach this regime, so we neglect such effects. Thus defined,
our model has two sets of unspecified parameters: the tidal syn-
chronisation timescale of WDs (τs,i) and the spin of WDs after
formation (ωi,0). Indeed, our population synthesis code predicts
the white dwarf masses and separation at the formation of the
binary, but not their spins.

As a general rule, Campbell (1984) found that the tidal syn-
chronisation timescale in a binary scales as:

τs,i ∝

(
mi

m−i

)2 (
a
Ri

)6

. (17)

where m−i is the mass of the other binary component. Thus, we
define a reference value τs,ref for the heavier WD in a reference
system with m1 = 0.6M⊙ and m2 = 0.25M⊙ at the moment it
overfills its Roche lobe, and use the scaling relation of Eq. (17) to
compute it at all times for any other WD in a binary. In particular,
the synchronisation timescale of the lighter WD in a binary is:

τs,2 = τs,1q4
(

R1

R2

)6

. (18)

This approach provides a universal representation of tidal
torques among DWDs, whose strength is captured by τs,ref . To
explore the impact of this parameter, we consider 10 values of
τs,ref log-uniformly distributed between 10−2 yr and 1016 yr. The
higher limit is motivated by the value of 1015 yr considered in
Marsh et al. (2004), Kremer et al. (2015) and Biscoveanu et al.
(2023), but, as we comment in Sec. 4, we find results to be the
same for τs,ref ≳ 108yr. There remains a large uncertainty re-
garding the spin of WDs. Observations with the Kepler telescope
have revealed a handful of slowly rotating WDs with rotation pe-
riods of hours to tens of hours (Hermes et al. 2017; Hernandez
et al. 2024). On the other hand, a few rapidly spinning WDs with
rotation periods below 40s have been observed in cataclysmic
variables (Ashley et al. 2020; Lopes de Oliveira et al. 2020;
Pelisoli et al. 2022), which suggests that WDs can reach high
spins through accretion. To bracket uncertainties, we consider
three prescriptions for the initial spins:

– ω1,0 = ω2,0 = 0,
– ω1,0 = ω2,0 = ωo,
– ω1,0 = 0.8ωK,1, ω2,0 = 0.8ωK,2,

where ωi,K is the break-up rate defined in Eq. (11). The first pre-
scription represents slowly spinning WDs, the second assumes
they are synchronised with the orbit since the formation of the
binary, and the third prescription mimics rapidly spinning WDs
(periods of ∼ 10 − 100s, in agreement with the observations of
rapidly rotating WDs). Although it might not be realistic to as-
sume that all WDs rotate rapidly at birth, exploring this scenario

Fig. 1. Evolution for a system with m1,0 = 0.80M⊙ and m2,0 = 0.29M⊙,
and τs,ref = 104 yr, ω1,0 = ω2,0 = 0. The black vertical line shows the
time the binary has to evolve between its formation and today. To show
its long-term trajectory, we extend the evolutionary simulation beyond
this timeframe.

Fig. 2. Break-up of the contributions to ḟGW from the different terms in
Eq. (16) for the system shown in Fig. 1, zoomed around the moment
mass transfer begins. We have combined the donor and accretor contri-
butions into a single term for the mass-transfer and for the tidal torque
term.

gives us insights into observable signatures of such type of sys-
tems. Alternatively, we could consider a scenario where only the
heavier WD is highly spinning, and the lighter has virtually zero
spin. It turns out that the evolution of a given binary is mostly
sensitive to the spin of the heavier WD, due to its much shorter
tidal synchronisation timescale [see Eq. (18)]. Thus, we expect
the results in such a scenario would be qualitatively similar to
the ones we obtain in the high-spin case, as we argue in Sec. 6.

3. Example of evolution

We compute the evolution of DWDs through numerical integra-
tion of Eqs. (2), (3), (10), and (15) with the odeint package of
scipy (Jones et al. 2001). For accreting systems, the evolution
can be very rapid, and the integration might fail. When this hap-
pens, we resume the integration with a higher time resolution and
keep increasing the resolution until the integration is successful.
For the last stage, we decrease the resolution, in order to speed
up the computation.

Typically, the separation of DWDs first shrinks due to GW
radiation, and, if the binary evolves for long enough, the separa-
tion becomes sufficiently small for the lighter WD to overfill its
Roche lobe, and mass transfer begins. The binary then undergoes
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a violent accretion episode that may cause a rapid merger (Shen
2015; Pakmor et al. 2022). If, instead, the binary survives this
episode, it starts outspiralling. Following previous works (Web-
bink 1984; Nomoto & Iben 1985; Marsh et al. 2004; Kremer
et al. 2017; Biscoveanu et al. 2023), we consider that a sys-
tem becomes unstable, triggering a rapid merger, if at any point
−ṁd > 10−2M⊙.yr−1.

We show in Figs. 1 and 2 the evolution of a DWD in our
catalogue that undergoes stable mass transfer. For that system,
τs,ref = 104 yr and ω1,0 = ω2,0 = 0. The initial masses are ma,0 =
0.80M⊙ and md,0 = 0.29M⊙ and the final masses m1, f = 1.03M⊙
and m2, f = 0.04M⊙. The vertical black line shows the time from
the formation of the binary until now. In the plots shown in this
section, we have evolved the systems for longer to show the
long-term evolution of accreting DWDs. Fig. 1 shows the main
features of the evolution of accreting systems: after the lighter
WD overfills its Roche lobe, the accretion rate increases rapidly
and, almost immediately, causes the distance between WDs to
increase (negative ḟGW), reducing the orbital frequency back to
a few mHz and leading to a drop-off in the accretion rate. The
binary then evolves slowly in an equilibrium configuration. This
equilibrium is characterised by ∆̇ = 0. Deriving Eq. (1), we have

∆̇ =
(
ζ2R2 − ζrL RL

) ṁ2

m2
− RL

ȧ
a
, (19)

with ζ2 =
d log(R2)
d log(m2) and ζrL =

d log(RL/a)
d log(m2) . Setting ∆̇ = 0 in the

above equation and using Eq. (15), we get the mass transfer rate
at equilibrium:

ṁ2,eq =

32
5

G3

c5
m1m2m

a4

1 − q − m2 j1
Jorb
+ 1

2
(
ζ2(R2/RL) − ζrL

) . (20)

From the upper panel of Fig. 1, we can see that the equilibrium
mass loss rate matches very well the actual rate. The small dis-
crepancy is due to our neglect of sub-dominant tidal terms. We
have verified that when we remove those terms from the evolu-
tion equation [Eq. (15)], the match is perfect. From the second
and fourth panels of Fig. 1, we can see that most of the change
in mass and frequency occurs at the very beginning of the mass
transfer phase, within a few thousand years, after which they
change little. The binary system loses mass only during this short
time window. Subsequently, ṁ2 drops by several orders of mag-
nitude, falling below the Eddington rate, such that Ṁt = 0. The
work of Yi et al. (2023) exploits the existence of such a simple
expression for the mass-transfer rate at equilibrium, which can
be written in terms of the instantaneous properties of the binary,
to obtain measurements of the individual masses for accreting
DWDs. In Appendix. A, we discuss a case occurring in specific
conditions, where the donor successively overfills and underfills
its Roche lobe, leading to very pronounced oscillations in the
evolution.

As shown in Fig. 2, the initial evolution is driven by GW
radiation and later by mass transfer. Tidal torques initially ac-
celerate the shrinking of the orbit. Once the WDs start exchang-
ing mass, the heavier WD is spun up, and ω1 > ωo. The tidal
torque on the heavier WD changes sign and helps to pull the
binary apart. Thus, strong enough tidal torques can prevent bina-
ries from getting too close and thus prevent them from merging
rapidly.

The evolution of binaries with initially wider separations,
such that they do not reach small enough separations for the
donor to overflow its Roche lobe, is very similar to the early

stages of the system shown in Fig. 1. The separation diminishes
slowly, accompanied by a slow increase in the GW frequency,
while the masses of the components remain unchanged. A note-
worthy exception to this scenario occurs when WDs are born
with large spins and tidal synchronisation is very efficient: the
binary can outspiral while far apart, without mass transfer. This
happens because, for highly spinning WDs, tidal torques give a
positive contribution to ȧ [see Eq. (15)] that can be large enough
to overcome GW radiation. We discuss the implications of this
in the next section.

4. Results for the population of DWDs

In this section we present the results for the whole DWD popula-
tion. We exclude systems where: the accretor exceeds the Chan-
drasekhar mass, or −ṁd > 10−2M⊙.yr−1, or the separation goes
below R1 + R2, as the latter is interpreted as a merger. We focus
on three combinations of tidal synchronisation timescales and
initial spins among the thirty considered in this work, and give
them the following labels:

1. “low spins, strong tides": ω1,0 = ω2,0 = 0, τs,ref = 102yr,
2. “low spins, weak tides": ω1,0 = ω2,0 = 0, τs,ref = 1012yr,
3. “high spins, strong tides": ω1,0 = 0.8ωK,1, ω2,0 =

0, 8ωK,2, τs,ref = 102yr.

Moreover, we denote by “GWs only" the case where DWDs
evolve solely through GW radiation. For the sake of limiting
computational power, we restrict ourselves to binaries with fGW, f
above 0.1mHz in the “GWs only" case.

In Fig. 3, we show the present-day derivative of the GW fre-
quency as a function of the final frequency itself in the “low
spins, strong tides" (in blue) and “low spins, weak tides" (in or-
ange) scenarios. In the upper and right panel we also plot the his-
tograms for the “GWs only" case. To make the figure more read-
able, we plot F( ḟGW, f ) = −sgn( ḟGW, f ) log10(| ḟGW, f /104yr−2|)−1

rather than ḟGW, f . The minus sign and the 104yr normalisation
are so that systems with positive (negative) ḟGW, f are shown as
positive (negative) for the other quantity, and the inversion is so
that it has the same monotonic behavior as ḟGW, f . We show with
dotted lines the contribution of accreting systems to the total his-
tograms. Those systems typically have ḟGW, f < 0. A handful of
those, at most a few tens, might have positive ḟGW, f because they
just started the accretion process, and did not have time to start
outspiralling, or because they are undergoing oscillations (see
Appendix. A).

In the fGW, f histogram (upper panel), we observe a bump due
to the accumulation of outspiralling accreting binaries around a
few mHz, with a peak at ∼ 1.3 mHz. This is not a natural limit
of the evolution, but rather a typical value around which DWDs
accumulate given the time they have to evolve. As described in
Sec. 3, the late evolution of systems that survive the violent ac-
cretion episode at the onset of mass transfer is very slow, leading
to the stacking of systems at a few mHz. Strong tidal torques help
stabilise the evolution and prevent rapid mergers. Therefore, we
observe that, although the bump is also observable for large val-
ues of τs,ref , it is more prominent for shorter tidal synchronisation
timescales: we find 10 times more systems at 1.3 mHz relative
to the “GWs only" scenario in the “low spins, strong tides" case
and 3 times more in the “low spins, weak tides" case. The lack of
events at high frequency compared to the “GWs only" scenario is
because binaries that reach high frequencies either merge rapidly
or outspiral. Therefore, this feature is very sensitive to our crite-
rion for the stability of mass transfer, and it is possible that this
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Fig. 3. Comparison of the populations in the ( fGW, f , F( ḟGW, f )) plane for the “low spins, strong tides" (in blue) and “low spins, weak tides" (in
orange) scenarios, where F( ḟGW, f )) = −sgn( ḟGW, f ) log10(| ḟGW, f /104yr−2|)−1. This quantity has the same sign and monotonic behavior as ḟGW, f .
Black lines in the upper and right panels show the result in the “GWs only" scenario. Accreting systems are typically those with ḟGW, f < 0. We
recall that we keep only DWDs that have fGW, f ≥ 0.1 mHz in the "GWs only" case, which explains why the distribution goes to 0 below this limit
and for small positive values of ḟGW, f .

Fig. 4. Same as Fig. 3, for the “low spins, strong tides" (in blue) and “high spins, strong tides" (in red) scenarios. For WDs formed with high spins,
tidal torques can cause the binary to outspiral even before the onset of mass transfer, explaining why some systems in red have fGW, f < 0.1 mHz.

is a failure of our model. Finally, we note that the low frequency
portion of the population (below 1mHz) is pushed to higher fre-

quencies due to tidal torques that accelerate the evolution of the
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systems (positive contribution to ḟGW, see Fig. 2), with a more
pronounced effect in the “low spins, strong tides" case.

Next, we compare the “low spins, strong tides" (in blue) and
“high spins, strong tides" (in red) scenarios on Fig. 4. In the lat-
ter scenario, the initial spins of the WDs are much larger than the
orbital frequency, and tidal torques give a large positive contri-
bution to ȧ even without mass transfer [see Eq. (15)]. Therefore,
tidal torques tend to slow down the evolution, and in some cases
they can even dominate over GW radiation, leading the binary to
outspiral. This is why, in that case, some systems are below 0.1
mHz, although the original population we evolve contains only
binaries that have fGW, f > 0.1 mHz in the “GWs only" case.
Some of the binaries below 0.1 mHz have positive frequency
derivative because GW radiation ended up taking over again,
causing them to inspiral. If a handful of DWDs were detected
at low-frequency (≲ 0.1 mHz) with negative ḟGW, f , it would sug-
gest that those are highly-spinning WDs and that tidal synchro-
nisation is efficient within the binary. However, as we show in
Sec. 5, it might not be trivial to detect confidently such a subpop-
ulation given the small values of | ḟGW, f | they have and the low
SNR of sources at low frequency. We stress that for this sub-
population to form, it is not necessary that all WDs have large
spin. Finally, the peak around a few mHz is less prominent in
the high-spins scenario than in the low-spins one because of the
slow-down of the evolution due to tidal torques: some systems
do not have time to start accreting, whereas they do in the low-
spins scenario.

As τs,ref increases, the subpopulation of low-frequency bina-
ries with negative ḟGW, f disappears, and the initial spin has no
impact. This can be seen in Fig. 5, where we show the num-
ber of accreting systems for each configuration, which is closely
related to the prominence of the peak around a few mHz. For
τs,ref ≳ 108yr, the initial spin frequency has little importance
because tidal torques become negligible. For smaller tidal syn-
chronisation timescales, the number of accreting systems in-
creases (decreases) for slowly spinning (highly spinning) WDs.
When ω1,0 = ω2,0 = ωo, tidal torques are initially zero, but as
the separation decreases, the orbital frequency increases and the
WD spins have to “catch up" with it. Therefore, they tend to
be smaller than ωo, and, before the onset of mass transfer, tidal
torques give a negative contribution to ȧ [see Eq. (15)], as in the
case ω1,0 = ω2,0 = 0. However, the absolute value of the con-
tribution of tidal torques is less significant (because ωo − ωi is
smaller), and some systems do not have time to start accreting
within the evolution time, explaining the slight decrease in the
number of accreting systems. This is a small effect, and our re-
sults support that the zero spin scenario is representative of the
case where WDs are formed with small spins. For weak tidal
coupling, τs,ref ≳ 108yr, we find ∼ 106 systems to be accreting,
which represents a little more than 1% of all DWDs in the cat-
alogue. As the tidal coupling becomes stronger, the number of
accreting systems increases to ∼ 4 × 106, i.e. ∼ 5% of all sys-
tems, for low spins, and goes down to ∼ 3 × 105, i.e. 0.4% of all
systems, for high spins.

5. Data analysis and predictions for LISA

Next, we want to estimate the implications of the different sce-
narios discussed above for LISA observations. The GW signal
emitted by DWDs is almost monochromatic, and takes the sim-
ple form

Fig. 5. The left y-axis denotes the absolute count of accreting systems
across all configurations under consideration, while the right y-axis in-
dicates the corresponding fraction relative to the initial catalogue. The
DWD catalogue used as a starting point contains 7740598 systems.

h+ = A0
1
2

(
1 + cos2(ι)

)
cos(ϕ0 + 2π fGW, f t + π ḟGW, f t2), (21)

h× = A0 cos(ι) sin(ϕ0 + 2π fGW, f t + π ḟGW, f t2), (22)

where A0 =
McG5/3

c3DL
(πMc fGW, f )2/3 gives the amplitude of the sig-

nal,Mc = m3
1m3

2/Mt is the chirp mass of the binary, DL the lu-
minosity distance, ι the inclination of the binary with respect to
the line of sight and ϕ0 the initial phase. We compute LISA’s
response to such GW signals following Cornish & Littenberg
(2007) to generate mock data, and the LISA data challenge soft-
ware (LISA Data Challenge working group 2022). The sky lo-
cation, which enters the LISA response, and the distance to the
source are provided in the catalogue. We draw the inclination an-
gle and the initial phase assuming isotropic orientation. We take
a flat distribution for the polarisation angle, which is a quantity
that enters the LISA response. We assume a 4 yr LISA mission
and take the SciRDv1 curve (LISA Science Study Team 2018)
for the instrumental noise.

The detection and characterisation of individual sources in
the LISA data is difficult (Littenberg & Cornish 2023; Strub et al.
2023; Zhang et al. 2021). The challenge can be attributed mostly
to the very high number of different types of sources, which is
expected to cause a high level of overlap between their measured
GW signatures in the LISA band. For that reason, there is signif-
icant effort focusing on the developing Global Fit data analysis
pipelines (Littenberg & Cornish 2023), which are based in al-
gorithms that can simultaneously infer the parameters of each
binary, as well as the actual number of binary signatures present
in the data streams. As expected, these analyses are complex and
often time and energy consuming. Thus, in order to characterise
the number of resolvable binaries and the remaining confusion
noise, we use a different approach.

Our analysis is based on the methodology presented in Kar-
nesis et al. (2021); Timpano et al. (2006); Crowder & Cornish
(2007); Nissanke et al. (2012); Lamberts et al. (2019), which
is based on an iterative procedure that classifies the sources as
resolvable based on SNR criteria. The process begins (k = 0)
with an initial estimate of the overall noise power spectral den-
sity S n,k, which is the sum of the instrumental component and
the confusion noise signal generated by the given population of
signals. The initial estimate of the noise can be performed using
different recipes, for example via a running median on the power
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Fig. 6. Left: Characteristic strain of the total noise power spectral density
( √

f S n( f )
)
, including the instrumental and the DWD confusion noise, in

different scenarios, indicated by colours, compared to the instrumental noise alone, in gray dashed lines. Right: Number of resolvable sources in
each of the considered scenarios. Hatches indicate how many of those are accreting. We find 56.2%, 18.4% and 50.1% of the resolvable systems
to be accreting in the “low spins, strong tides", “low spins, weak tides" and “high spins, strong tides" scenarios respectively, as indicated by the
boxed numbers.

spectral density of the data. Then, we iterate over the catalogue
of sources, and classify the ones with SNR above a given thresh-
old as resolvable. For our analysis we choose this threshold to
be equal to SNRthres = 7. The resolvable sources are subtracted
from the data, and a new iteration begins by re-estimating the
overall noise S n,k+1. The algorithm stops when no more sources
can be subtracted, which can either mean that all sources in the
catalogue are resolved, or that all the remaining sources are be-
low the given threshold.

This algorithm is useful because it yields results quickly,
without requiring a complete Bayesian trans-dimensional analy-
sis. At the same time, it employs different simplifying assump-
tions, such as perfect data sets (no noise transients of missing
data), minimal noise correlations, and perfect residuals (sources
are subtracted using their true properties, which ignores uncer-
tainties and possible correlations between the sources). Consid-
ering the above, this procedure can be seen as an optimistic upper
limit to the capabilities of a full Bayesian analysis on the LISA
data (Karnesis et al. 2021).

The outputs of this algorithm are summarised in Fig. 6. On
the left panel, we plot the characteristic strain of the total noise
power spectral density

( √
f S n( f )

)
, including both instrumen-

tal noise and the DWD confusion noise, in different scenarios,
and on the right panel we show the number of resolvable bina-
ries in each scenario. The hatched part of the histograms indi-
cates the contribution of accreting binaries to all resolvable bi-
naries. Overall, pronounced effects such as strong tides or high
spins manifest observable signatures. In the “low spins, strong
tides" case, the confusion noise is significantly different from
the “GWs only" case, and in particular is much higher between
1 and 3 mHz due to accreting systems. At 1.3 mHz (the peak
of accreting events), O(1%) of accreting systems are resolvable,
whereasO(10%) of non-accreting ones at the same frequency are
resolvable. This occurs because mass transfer decreases the mass
ratio, and thus also the chirp mass, which reduces the GW am-
plitude [see Eq. (22)]. As the frequency increases, this fraction
increases, and above 3 mHz, accreting systems are as likely to

be resolved as non-accreting ones: almost all DWDs above that
frequency are resolvable. Thus, accreting systems affect mostly
the confusion noise between 1 and 3 mHz. In total, ∼ 3% of ac-
creting binaries are resolvable, whereas ∼ 20% of non-accreting
binaries with fGW, f > 1.3 mHz are resolvable. In the “low spins,
strong tides" scenario, we also predict a larger number of re-
solvable systems, because tidal torques accelerate the evolution
of binaries, increasing the frequency at which LISA observes
non-accreting systems, and therefore their GW amplitude [see
Eq. (22)].

The “low spins, weak tides" case yields results very similar
to the “GWs only" case. The bump of systems around a few mHz
visible in Fig. 3 contributes to a slight increase of the confusion
noise in that frequency band, and the number of resolvable sys-
tems is slightly smaller than in “GWs only" scenario. The rea-
son is that tidal effects are less effective at increasing the GW
frequency and accreting systems mostly contribute to the con-
fusion noise, but much less than in the “low spins, weak tides"
case, due to the smaller number of systems. The “high spins,
strong tides", in turn, predicts a much weaker confusion noise:
the total noise differs only slightly from the instrumental noise.
Moreover, it yields a much lower number of resolvable bina-
ries: fewer sources are above 1 mHz, because of the slow-down
due to tidal torques, and so they have lower SNR than in the
previous scenarios. We stress that the assumption that WDs are
rapidly spinning at birth is most likely not astrophysically real-
istic at the level of the whole population, so this result should be
taken with caution. More relevant in that scenario, none of the
low-frequency systems with negative ḟGW, f are resolvable, leav-
ing for future detectors the possibility of identifying this putative
subpopulation.

Several science cases with DWDs rely on measuring fGW, f

and ḟGW, f for individual systems. In order to assess how many
events could be used for such studies, we use the Fisher ma-
trix (Vallisneri 2008) to estimate the measurement error ∆ ḟGW, f
(defined here as the standard deviation predicted by the Fisher
matrix) on the GW-frequency derivative for resolvable systems.
In Fig. 7, we show the fractional error on ḟGW, f , splitting be-
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Fig. 7. Left: Relative error on ḟGW, f computed with the Fisher matrix for resolvable systems with ḟGW, f > 0. Middle: Ratio between the measurement
error and the astrophysical contribution to the total GW-frequency derivative, f astro

GW, f , restricted to systems for which ḟGW, f > 0 and ∆ ḟGW, f / ḟGW, f <

1. Right : Same as the left panel for resolvable systems with ḟGW, f < 0. We consider quantities with fractional uncertainties less than 1 (i.e., to the
left of the vertical black dashed line) to be measurable.

tween accreting (left panel) and non-accreting (right panel) sys-
tems. We adopt the simple criterion |∆ ḟGW, f / ḟGW, f | < 1 to de-
cide on the measurability of ḟGW, f for a given system. In the left
panel, we observe that approximately half of the resolvable sys-
tems that are accreting have measurable GW-frequency deriva-
tive, ∼ 5000 systems for the cases with low spins and ∼ 1000
for the cases with high spin. However, proposed ways to mea-
sure the chirp mass and to perform tests of GR for such events
rely on the evolution of DWDs being mainly driven by GWs.
Even for non-accreting systems, ḟGW, f might receive significant
non-GW contributions, as we now argue. Following the nota-
tion introduced in Breivik et al. (2018); Kremer et al. (2017),
we split the GW-frequency derivative into a purely gravitational
(GR) and an astrophysical contribution as

ḟ GR
GW =

96
5

f 2
GW

πc5
(πGMc fGW)5/3 (23)

ḟ astro
GW = ḟGW − ḟ GR

GW. (24)

We might interpret ḟ astro
GW as a systematic error, and consider it as

relevant if it is larger than the statistical error. In the middle panel
of Fig. 7, we show the ratio between the statistical error and
ḟ astro
GW, f , restricting ourselves to systems with measurable positive

GW-frequency derivative. In all three scenarios, for most of the
considered systems |∆ ḟGW, f / ḟ astro

GW, f | < 1, indicating that neglect-
ing astrophysical effects would significantly bias the estimation
of chirp mass. This occurs because systems with measurable
GW-frequency derivative are in the high-frequency end of the
population, where tidal torques are stronger [see Fig. 2]. Within
our model, in the “low spins, strong tides" and “low spins, weak
tides" cases, we necessarily have ḟ astro

GW > 0 for the systems con-
sidered here, and the chirp mass measurement would be biased
to larger values [see Eq. (23)]. In the “high spins, strong tides"
case, we would instead underestimate the chirp mass. Regard-
ing accreting systems, we find that the GW-frequency deriva-
tive is measurable for approximately half of the systems, ∼ 5000
for the cases with strong tides and ∼ 1000 for the cases with

weak tides. Such systems could be used for the investigations
suggested in Breivik et al. (2018); Yi et al. (2023). We stress that
those approaches rely, at least to some extent, on the modelling
of astrophysical effects in DWDs, which therefore introduces a
possible source of systematic error. On the other hand, similar
approaches, e.g. establishing universal relations, could be used
to exploit the measurement of resolvable non-accreting systems.
Finally, the Fisher matrix approximation is not expected to hold
exactly for all the systems in the catalogue, possibly yielding
significant differences with full Bayesian analyses, but we ex-
pect our conclusions at the level of the population to hold.

6. Model systematics

Given the amount of uncertainty regarding the evolution of
DWDs, we test the robustness of our conclusions by consider-
ing different hypotheses in the modelling of DWDs evolution.
We do not explore here the impact of modifications to the initial
DWD population. Uncertainties in the star formation rate, stellar
evolution and binary interactions can strongly impact properties
of the population in terms of global numbers, orbital parameters,
masses and positions. This will affect their later evolution and
detectability by LISA (Amaro-Seoane et al. 2023).

First, we consider the approach of Gokhale et al. (2007). It
is very similar to our fiducial model presented in Sec. 2, except
that the specific angular momentum of the donor is not 0, but
j2 = R2ω

2
2, and the mass lost by the system is assumed to have

the same specific angular momentum as the accretor, so that
J̇loss = Ṁt j1. We find very similar results to our fiducial case.
Slightly fewer systems survive accretion, due to less angular mo-
mentum being lost by the binary (smaller J̇loss), but the main
difference is that the independency on the spins for large tidal
synchronisation timescales, observed on Fig. 5, no longer holds,
though the difference between different initial spin scenarios is
still small. This happens because the loss of angular momen-
tum by the donor helps stabilise the evolution. Mathematically,
the term ṁ2

m2
in Eq. (15) is now replaced by ṁ2

m2

(
m2 j2
Jorb
+ 1

)
, thus
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it gives a more important positive contribution to ȧ, pushing the
binary away, and preventing it from becoming unstable. Over-
all, our results confirm that the spin of the lighter WD and the
model used for its specific angular momentum play a small role,
unless j2 grows with the spin and the lighter WD is rapidly spin-
ning. Astrophysically, it is expected that the heavier WD could
be rapidly spinning, due to the accretion of from the companion
star before it forms the lighter WD, but it is less clear how the
latter would be spun-up. The difference in the scenario where
j2 = R2ω

2
2 and the lighter WD is rapidly spinning is however

small, with ∼ O(103) more systems surviving accretion in the
case of weak tides as compared to our fiducial model, and does
not affect the main findings of the paper.

Next, given the wide uncertainty on the mass retention effi-
ciency of WDs (Yaron et al. 2005; Bours et al. 2013; Wolf et al.
2013; Kato et al. 2017; Hillman et al. 2020), we revisit the hy-
pothesis that WDs can accrete up to Eddington rate, and limit the
maximum accretion rate of WDs to 0.1 and 0.01 of its Edding-
ton rate. In the first case, we obtain results practically identical
to the fiducial scenario. In the second case, the number of sys-
tems that survive accretion is slightly higher. This comes because
the amount of mass and angular momentum lost by the systems
increases, helping stabilise the evolution. The global picture re-
mains the same: once the donor overfills its Roche lobe, a violent
mass-transfer episode takes place, causing the binary either to
merge or to be pushed away, the mass-transfer rate decreases dra-
matically, and the evolution proceeds in the equilibrium regime
discussed in Sec. 3. The stacking of systems around a few mHz is
a consequence of the violent episode at the onset of mass transfer
and the slow subsequent evolution, and is therefore a robust pre-
diction independent of the details of the model, provided DWDs
can survive the violent mass-transfer episode.

Indeed, it has been suggested that all mass-exchanging
DWDs might merge (Shen 2015; Pakmor et al. 2022). To con-
sider the impact of this hypothesis, we remove all accreting sys-
tems from our catalogue, and evaluate the stochastic signal and
the resolvable binaries for this population. In this scenario, we
find no strong dependency on the efficiency of tidal synchroni-
sation. This is because, once we remove all accreting systems,
without distinguishing between those predicted to be stable and
those predicted to be unstable, the remaining population is very
similar for all values of τs,ref . For high-spin systems, the stochas-
tic signal we obtain is similar to the one shown in Fig. 6 for the
“high-spins, strong tides" case, and the number of resolvable sys-
tems is approximately the same as the number of resolvable non-
accreting systems in the “high-spins, strong tides" case, given by
the non-hatched part of the histogram. Note that this latter result
is not as trivial as it might seem at first glance. When chang-
ing the population, the noise due to the stochastic background
changes, changing the criterion within our algorithm to decide
if a source is resolvable or not. For the two other scenarios, the
number of resolvable systems is similar to the non-accreting por-
tion of the “low-spins, weak tides" and the stochastic signal is
very similar to the one in that scenario, with a slight decrease
around a few mHz, due to the absence of accreting systems.

7. Conclusions

In order to prepare for the analysis and astrophysical interpre-
tation of LISA data, it is crucial to bracket the astrophysical
predictions for the population of DWDs LISA will observe. In
this study, we investigate the influence of tidal torques and mass
transfer on the DWD population and their implications for the

confusion noise DWDs generate and the number of resolvable
binaries.

Starting from a mock catalogue of Galactic DWDs at their
formation, predicted by a population synthesis code, we evolve
these binaries to the present day using a semi-analytical model
that includes the leading order effect of GW radiation, but also
tidal torques and mass transfer within the binaries, as well as
angular momentum loss due to non-conservation of mass when
the accretion rate becomes too large. For binaries undergoing
mass exchange, we apply the same simplified criterion found in
the literature to determine their stability, which is based on a
limit value for the rate of mass lost by the donor. Systems failing
this criterion are assumed to merge rapidly and are removed from
the catalogue, while those passing it are observed to outspiral
and accumulate around a few mHz.

In this model, tidal torques depend on the spins of the WDs
and on the tidal synchronisation timescale. We define the value
of the latter for a reference system at the moment it overfills its
Roche lobe, and employ scaling relations based on the mass ratio
and separation of the binary to compute it for all systems at any
time, facilitating a universal representation of tidal torques. We
perform simulations using ten different values of this parameter
and explore the uncertainty regarding the spin of WDs at birth by
considering three scenarios: one where WDs are born with zero-
spin, one where they are already synchronised with the orbit, and
one where they are rapidly spinning. We find that the first two
cases yield similar results. After generating the mock population,
we split the contribution of GWs emitted by DWDs in LISA into
a stochastic signal, characterised by its power spectral density,
and resolvable binaries.

Our findings indicate that weak tidal torques (long
timescales) have minimal impact on the population, and incor-
porating tidal torques and mass transfer into the evolutionary
model results in only marginal adjustments compared to sce-
narios driven solely by GW radiation. Conversely, strong tidal
torques can stabilise the evolution and prevent rapid mergers.
For WDs born with low spins, we observe a significant accu-
mulation of binaries around a few mHz, which substantially im-
pacts the confusion noise in that frequency region compared to
scenarios with GWs alone. Additionally, there is a higher num-
ber of resolvable systems in this case. Conversely, for WDs born
with large spins, tidal torques tend to slow down the evolution
and can even overcome GW radiation, causing the binaries to
outspiral even before mass transfer begins. Consequently, the
confusion noise due to DWDs becomes almost negligible and
very few binaries are resolvable. It is important to note that this
latter scenario is likely not representative of the entire popula-
tion, and predictions for LISA based on it should be interpreted
cautiously. On the other hand, observing binaries at very low fre-
quencies (≲ 0.1 mHz) with negative frequency derivatives could
indicate the presence of a subpopulation of DWDs born with
large spins and strong tidal torques. However, due to the low
SNR of low-frequency DWDs, we estimate that LISA may not
have the sensitivity to detect such a subpopulation, leaving this
possibility for future detectors. In a nutshell, strong effects, i.e.
strong tides and/or high spins, yield observable signatures.

Using the Fisher matrix approximation, we estimate the
error on the GW-frequency derivative for resolvable systems.
Although the latter is limited, in principle, to the high SNR
regime (Vallisneri 2008), it allows us to estimate the parame-
ters errors of each binary without having to perform a full trans-
dimensional Bayesian analysis. We find ∼ 5000 and ∼ 1000
accreting systems to have measurable negative GW-frequency
derivative in the case of strong and weak tides, respectively.
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By combining with assumptions on the evolution of DWDs, it
should be possible to measure the mass of such systems (Breivik
et al. 2018; Yi et al. 2023). Regarding non-accreting systems,
we find ∼ 5000 and ∼ 1000 of them to have measurable posi-
tive GW-frequency derivative in the case of low and high natal
spins, respectively. However, for all of them, the systematic er-
ror resulting from neglecting astrophysical effects, due do tidal
torques in our model, is larger than the statistical error. This ren-
ders them unsuitable for chirp mass measurements and tests of
GR based on the joint measurement of the gravitational wave
frequency and its first derivative in DWDs, unless astrophysi-
cal information is incorporated into these measurements, e.g. by
means of universal relations.

We find our results to be robust to different assumptions re-
garding the evolution of DWDs. The main uncertainty resides in
the stability of mass-transferring binaries. in our study, systems
were labelled as unstable under mass transfer when the rate of
mass lost by the donor exceeded 10−2M⊙.yr−1. We expect our re-
sults to change monotonically with this mass-transfer rate limit:
a larger limit rate would lead to more stable accreting binaries
and vice versa. We encountered numerical challenges in solv-
ing for the evolution within this high-rate regime even within
our semi-analytical model, suggesting this is indeed an uncer-
tain regime. However, given the importance of mass transfer on
the population of DWDs, a deeper understanding of the stability
conditions is essential. The lack of systems at high frequencies
( fGW, f > 20mHz) is also a consequence of our simplistic treat-
ment: we remove all systems that exceed the limit mass-transfer
rate from the catalogue. A better categorisation and treatment
of unstable systems could modify this feature. Moreover, we re-
stricted ourselves to a single population of DWDs at formation
predicted by our population synthesis code. However, there are
also numerous uncertainties regarding star formation rate, stellar
evolution and binary interactions that would affect the observed
population of DWDs. Finally, we did not account for differences
in the composition of WDs. It would be interesting to assess how
modifications to the mass-radius relation (Hamada & Salpeter
1961; Suh & Mathews 2000; Panei et al. 2000; Karinkuzhi et al.
2024) would impact the observed population, creating perhaps
distinctive signatures that would allow identifying the type of
WDs within a binary. We leave these endeavours for future re-
search.

Our results complement the findings of Scaringi et al. (2023),
where the authors found that cataclysmic variables, formed of
a WD accreting from a main-sequence or sub-stellar star, lead
to measurable deviations in the confusion noise below 1 mHz.
Together, these studies highlight the need for flexible tools in
LISA data analysis, in order to account for all possibilities in the
widely unknown population of compact objects in the Galaxy.
Our exploration provides insights into potential parametrisations
of the DWD population for population analysis with LISA. We
suggest representing the population of resolvable DWDs as a
power-law contribution in frequency with positive ḟGW, f and
a Gaussian around a few mHz with negative ḟGW, f . For the
stochastic signal, a flexible function accommodating the various
possibilities demonstrated in our study would be suitable, pos-
sibly employing the linear interpolation scheme proposed with
variable number of knots proposed in Toubiana et al. (2023). In
order to gain informative power, it would be valuable to estab-
lish relationships between the properties of resolvable and non-
resolvable populations, a task we defer to future investigations.

Acknowledgements

We are thankful to V. Korol for her valuable suggestions dur-
ing the preparation of this work. We are also thankful to the
efforts of the LDC Working Group for the software availabil-
ity and help. N.Karnesis acknowledges the funding from the
European Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Skłodowska-Curie grant agreement
No 101065596. Astrid Lamberts is supported by the ANR
COSMERGE project, grant ANR-20-CE31-001 of the French
Agence Nationale de la Recherche. This work was supported
by the ‘Programme National des Hautes Energies’ (PNHE) of
CNRS/INSU co-funded by CEA and CNES.

Article number, page 11 of 13



A&A proofs: manuscript no. paper

Appendix A: Oscillations in the evolution

For certain combinations of WD masses and tidal synchroni-
sation timescale, we observe very pronounced oscillations in
the binary separation due to the donor successively overfilling
and “underfilling" its Roche lobe. A similar behaviour is dis-
cussed in Marsh et al. (2004); Gokhale et al. (2007); Kremer
et al. (2015). This oscillatory behaviour is illustrated in Fig. A.1,
where we show the evolution of ḟGW for the same system as
in Fig. 2, but taking a shorter tidal synchronisation timescale,
τs,ref = 102 yr. The explanation behind these oscillations is as
follows. After the donor first overfills its Roche lobe and mass
transfer starts, the distance between WDs increases, at a larger
rate than in the previous case, due to the larger negative (positive
for the separation) contribution of tidal terms (see upper panel of
Fig. A.1), the Roche lobe expands faster than the donor, which
no longer overfills its Roche lobe. GWs take over and bring the
system closer again, until the donor overfills its Roche lobe and
mass transfer resumes. This succession of events keeps on re-
peating until the donor is light enough and its radius expands
faster than the Roche lobe, so that mass transfer is not inter-
rupted. In total, this oscillatory stage would last a few tens of
Gyr, alternating oustpiralling regimes of ∼ 1 Gyr and inspiralling
regimes of ∼ 5 Gyr.

Fig. A.1. Same as Fig. 2, but with τs,ref = 102 yr, and we show in parallel
the evolution of the Roche lobe overflow.

If we consider an even shorter τs,ref , we no longer observe
these oscillations. The reason for this is as follows. Before the
onset of mass transfer, tidal torques are very efficient at synchro-
nising the WDs with the orbit, as can be seen in Fig. A.2. Then,
mass transfer starts, leading to an additional torque (first term
in Eq. (10)), which desynchronises the WDs (in this example,
mostly the accretor). The tidal torque then becomes very strong,
due to the small synchronisation timescale, and drives the binary
apart. Once the tidal term becomes sub-dominant, the donor is
light enough so that the Roche lobe does not expand faster than
its radius, preventing the oscillatory behaviour described above.
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