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When gravitational waves pass near a gravitating object, they are deflected, or lensed. If the object
is massive, such that the wavelength of the waves is small compared to its gravitational size, lensed
gravitational wave events can be identified when multiple signals are detected at different times.
However, when the wavelength is long, wave-optics diffraction effects will be important, and a lensed
event can be identified by looking for frequency-dependent modulations to the gravitational waveform,
without having to associate multiple signals. For current ground-based gravitational wave detectors
observing stellar-mass binary compact object mergers, wave-optics effects are important for lenses
with masses ≲ 1000M⊙. Therefore, minihalos below this mass range could potentially be identified
by lensing diffraction. The challenge with analyzing these events is that the frequency-dependent
lensing modulation, or the amplification factor, is prohibitively expensive to compute for Bayesian
parameter inference. In this work, we use a novel time-domain method to construct interpolators
of the amplification factor for the Navarro-Frenk-White (NFW), generalized singular isothermal
sphere (gSIS) and cored isothermal sphere (CIS) lens models. Using these interpolators, we perform
Bayesian inference on gravitational-wave signals lensed by minihalos injected in mock detector noise,
assuming current sensitivity of ground-based detectors. We find that we could potentially identify an
event when it is lensed by minihalos and extract the values of all lens parameters in addition to the
parameters of the GW source. All of the methods are implemented in glworia [1], the accompanying
open-source python package, and can be generalized to study lensed signals detected by current and
next-generation detectors.

I. INTRODUCTION

Gravitational lensing is a pivotal concept in our under-
standing of the Universe [2, 3]. Lensing occurs when a
massive celestial object, such as a galaxy or star, affects
the path of light, or (more comprehensively) any form of
radiation, such as electromagnetic (EM) waves or gravi-
tational waves (GWs). According to Einstein’s theory of
general relativity [4], the curvature of spacetime around
the massive object curves the path of the waves, leading
to a distorted perception of the source, or even to the
observation of multiple images of the same source.

The lensing of EM waves has been an integral aspect
of astrophysical and cosmological research. Through the
study of EM lensing, scientists have successfully discov-
ered exoplanets orbiting distant stars [5], observed distant
objects that would otherwise be too faint to detect [6, 7],
probed the nature of dark matter [8, 9], and measured
cosmological parameters [10].

The first GW event, GW150914, was detected by the
LIGO gravitational-wave detectors in 2015 [11]. The
radiation was produced by the merger of two distant
black holes (BHs), and it opened up an entirely new
way of observing and understanding the universe [12].
Since then, the LIGO and Virgo detectors have detected
around a hundred GW events, sourced by merging BHs
and neutron stars [13–15].

Similar to EM waves, GWs can also be lensed [16].
The detection of lensed GWs could lead to significant
advancements in fundamental physics, astrophysics, and
cosmology. Most typical GW events are transients, and

the lensing of these events can be used to perform cos-
mography [17–22]. GW lensing can potentially be used
to break the mass sheet degeneracy, which affects EM
lensing [23]. Tests of GR can be performed using GW bire-
fringence [24–26] or the GW propagation speed [27, 28].
If multiple images were observed, we could potentially
localize the host galaxy of the GW source [29, 30].

This paper is focused on exploring lensed GWs, with
special attention to wave optics effects. This refers to
the consideration of the wave-like behavior of the lensed
GWs, including diffraction and interference. These effects
become significant when the wavelength of the waves is
comparable to the gravitational length-scale GM/c2 of the
lensing substructure [31], where M is the (appropriately
defined) mass of the lens, G is Newton’s constant, and
c is the speed of light. Wave optics effects can lead to
frequency-dependent modifications in the GW amplitude,
which can reveal critical information about the lens.

The science case of GW lensing is even richer when we
consider wave-optics effects. While in the geometrical op-
tics limit a lensed waveform is degenerate with an unlensed
one with a trivial magnification and phase shift (unless
higher harmonics are included [32], or when the BBH
merger is eccentric or precessing [33]), wave-optics effects
are frequency-dependent, meaning that only a single signal
is required for a conclusive detection. Intermediate-mass
BHs could diffract GWs and leave an observable imprint
on detected signals [34, 35], while primordial BHs, massive
compact halo objects (MACHOs) and other substructures
could also be identified in a similar fashion [36–43]. The
structure of low-mass halo lenses could be probed when
lensed events are detected by ground-based [44–46] and
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space-based detectors [46–54]. Individual stars residing
in a galaxy could also introduce measurable GW lensing
effects [55–63].

The diffraction of GWs can be used to probe the abun-
dance of compact dark matter halos and their morphol-
ogy. Many theories of dark matter predict such objects:
ultralight bosonic field can produce solitonic cores and
compact axion structures [64, 65], self-interacting dark
matter theories predict the gravitothermal collapse of
subhalos [66, 67], and warm dark matter can form mas-
sive prompt cusps [68, 69]. While primordial BHs with
masses ≳ 20M⊙ are severely constrained by observations
of the cosmic microwave background [70], extended dark
matter objects in that range are subject to looser limits,
driven by lensing of EM sources [71–74]. GW lensing is
not yet competitive in this range [37], but future limits
from LIGO-Virgo-KAGRA [39] will likely be more strin-
gent than the limits from EM sources such as fast radio
bursts [75]. In the future, third-generation detectors will
improve current bounds by ∼ 4 orders of magnitude [76].

Lensed GWs have been actively searched [77–81] with
no conclusive discoveries. These searches work mostly
in the geometrical optics regime, where different GW
event triggers are compared against each other to uncover
lensed events with multiple images arriving at different
times [82–86]. Given a catalog of detected events, po-
tential subthreshold counterpart images are also being
looked for [87–89]. The rate of detecting strongly lensed
pairs of GW signals in the LIGO-Virgo-KAGRA detector
network running at design sensitivity has been forecast
to range from once to a few tens per year [90–93], with
a lower limit of 10−5yr−1 [94]. Lensing effects will also
affect parameter estimation of both individual events and
GW populations [95–99].

While most lensing studies have focused on the geomet-
rical optics regime, there has been active research on wave
optics effects in the past decades. Femtolensing of gamma
ray bursts with diffraction has been considered [100, 101],
but the finite size of the source [102] leads to poor con-
straints on the MACHO population [103]. Similar studies
have been undertaken for fast radio burst sources in the
geometrical optics limit [75, 104, 105] and with wave-
optics effects included [106–110], with the caveat that
these will be affected by scintillation. Pioneering work
on GW lensing with diffraction was also performed two
decades ago [31, 111].

Other than searches for multiple-image lensing in the
geometrical optics regime, searches for diffracted GW
events have also been undertaken, where a single signal
could lead to a conclusive detection of lensing [34, 112].
However, these studies assume point-mass lens profiles,
meaning that they are adequate for searching for GWs
lensed by PBHs or stars, but not for more diffuse lenses
like minihalos. The detection rate of GW signals diffracted
by small-mass halos depends significantly on the halo pro-
file, and could range from being close to zero to thousands
per year [46]. Nonetheless, analysis methods assuming
diffuse lens profiles will be needed in order to detect or

constrain the rates of these minihalo lensing events.
On the technical side, the field has recently made sig-

nificant progress in tackling the computational challenges
of computing the wave-optics effects of lensing for gen-
eral lens profiles. The computation of wave-optics effects
requires solving a highly-oscillatory Fresnel-Kirchhoff in-
tegral, with analytic solutions only for simple cases. A
number of numerical approaches have been used to solve
the integral, including a direct quadrature-type integra-
tion, transforming the problem into a series of contour
integrals [58, 113], and analytic continuation, i.e. Picard-
Lefschetz type methods [114–116]. Approximate methods
were also used to speed up calculations [48, 111].

While we can compute the wave-optics effects with
the methods mentioned above, efficiency is also impor-
tant. When a GW signal is detected, one has to perform
Bayesian parameter estimation (PE) to extract the value
of the lensing-related parameters from the data. For this
purpose, the lensed waveform model has to be evaluated
∼ O(107) times. For the point-mass lens case an analytic
solution to the amplification factor is known and can be
efficiently called, so PE can be performed [34, 61, 117].
However, for other lens models the numerical evaluation
of the amplification factor is prohibitively expensive for
PE. To the best of our knowledge, the only publicly avail-
able software package capable of performing PE for lens
models other than the point mass and SIS lenses is the
Gravelamps package [118], where the amplification factor
is computed by direct integration and interpolated over
the frequency and the impact parameter of the source.

In this work, we will focus on the detection of wave
optics effects in GWs lensed by minihalos and measured
by ground-based detectors. In the frequency band of
ground-based detectors, these effects are measurable for
lens masses of ∼ 1 − 1000M⊙. In this paper we intro-
duce glworia [1] (gravitational lensing in the wave optics
regime: interpolator for the amplification), a python pack-
age for computing the amplification factor for arbitrary
spherically-symmetric lens models with one lens parame-
ter l other than the (redshifted) mass of the lens MLz and
the (one-dimensional) impact parameter y of the source.1
The amplification factors are then interpolated in the
time domain, and PE can be performed for the lens mass,
impact parameter, and the lens parameter.

In Sec. II we review the mathematics behind computing
the lensing amplification factor. In Sec. III we explain
our numerical implementation of the contour integration
method and how we construct the interpolation table for
the amplification factor. In Sec. IV we perform Bayesian
parameter estimation on mock lensing signals injected into
LIGO detector noise. In Sec. V we discuss the implications
of our results and potential directions of future work.

1 In this work, we will call this a “one-parameter” lens model,
because MLz only affects the frequency scale of the computations
and y does not depend on the profile of the lens. We will also
refer to l (but not MLz) as the “lens parameter”.
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FIG. 1. A sketch of the source-lens-observer setup. The source
plane and lens planes are the planes perpendicular to the
optical axis at the source and at the lens, respectively. The
relevant angular diameter distances are DL (from the observer
to the lens), DS (from the observer to the source), and DLS

(from the lens to the source). The displacement vector from
the optical axis to the source in the source plane is η; ξ is the
coordinate vector in the lens plane. Figure adapted from [57].

II. PRELIMINARIES

A. The lensing integral

The following derivation follows closely Ref. [2]. In this
work, we will use geometric units such that c = G = 1.

While we will study gravitational-wave lensing with
wave-optics diffractive effects, it will still be useful to
inherit some terminology that is used in the geometrical-
optics regime. For example, while in the wave-optics limit
we might not see discrete images that are well resolved
in the sky or in the arrival time, we will still call the
critical points of the time delay function (arrival time)
the “images”. To further simplify notation, we will define
the “strong-lensing” regime to be the case when there
are multiple such images, i.e., there are additional critical
points other than the trivial minimum of the time delay,
and “weak-lensing” the case when there is only one image,
i.e., only the global minimum exists. Such a definition
might be different from other works in the literature,
especially in EM lensing.

The spacetime metric of an isolated, slowly moving,
noncompact matter distribution is given by (neglecting
the expansion of the Universe for now)

ds2 = (1 + 2U) c2dt2 − (1 − 2U) dx2, (1)

where U is the gravitational potential of the matter. On
a (future-directed) null curve, ds2 = 0. The quantity
n = 1 − 2U can be viewed as an effective refractive index
of the gravitational field. If a light pulse is emitted at t = 0
at the source, its arrival time at a stationary observer at

fixed spatial coordinates will be

t =
∫

(1 − 2U) dl.

= l − 2
∫
Udl, (2)

to first order in U , where l is the overall Euclidean length
of the light travel path. Now consider light pulses that
travel from the source to the observer in Fig. 1, defining
ξ to be the location of the lens in the lens plane and η
to be that of the source in the source plane, where both
are defined with respect to the optical axis, with both
planes perpendicular to the axis. We further define the
angular diameter distances DL between the lens and the
observer, DS between the source and the observer, and
DLS between the lens and the source. Assuming that
ξ = |ξ| and η = |η| are much smaller than DL and DS ,
the path length is

l ≈ DLS +DL + 1
2DLS

(ξ − η)2 + 1
2DL

ξ2. (3)

The potential U is linear in the mass distribution, so we
can derive a Green’s function to solve the integral in the
second term of Eq. (2). For a point mass, U = 4MG/rc2,
and the integral from the source S to the image position
I on the lens plane is∫ I

S

Udl = GM ln ξ

2DLS
, (4)

where we neglect higher-order terms. The integral from
the lens plane to the observer is analogous, and the total
integral is ∫

Udl = GM ln ξ

ξ0
+ const. , (5)

where ξ0 is an arbitrary constant which can be chosen as
convenient.

In fact, it is often convenient to use a length-scale ξ0
that is related to an appropriately defined mass of the
lens. For example, for a point mass lens with a redshifted
mass MLz, ξ0 can be chosen to be the radius of the critical
curve on the lens plane (to be discussed later), or the
Einstein radius θE :

ξ0 = θE ≡

√
4DLDLS

(1 + zL)DS
MLz. (6)

For a point mass lens, the Einstein radius θE is the radius
of the critical curve, where the magnification of the image
will be formally infinite if the image lies on it. In fact, we
can use the same definition, Eq. (6), for any lens model.
In this way, defining either one of MLz or ξ0 fixes the
other quantity. This implies that the definition of MLz

could be as arbitrary as that of ξ0, and it often is not the
same as other definitions of the mass of halos, e.g. the
virial mass.
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We will consider lenses with an extent L much smaller
than DL and DLS . In that case, the deflection of the
ray occurs mainly when it is close to the lens, so we can
assume that the light travel path consists of two straight
line segments with an abrupt change in direction on the
lens plane. Then, for a deflection angle α̂, if α̂L (the
perpendicular displacement of the ray when it is close to
the lens) is small compared to the length scale on which
U changes, the integral

∫
Udl can be performed over the

unperturbed ray. As the integral for the point-mass case is
a function of ξ, which can be seen as an impact parameter,
the integral only depends on the perpendicular distance of
the mass elements to the ray, but not on their distribution
along the direction parallel to the ray. Therefore, we can
project the mass distribution onto the lens plane before
integrating. This is called the thin-lens approximation.

Exploiting the linearity of U with respect to mass el-
ements and employing the thin-lens approximation, we
can use Eq. (5) to write

ψ̂(ξ) ≡ 2
∫
Udl

= 4
∫
d2ξ′Σ(ξ′) ln

(
|ξ − ξ′|
ξ0

)
+ const. (7)

for a general lens distribution, where Σ(ξ′) is the density
profile projected onto the 2D lens plane. A ray originating
from η on the source plane, passing through ξ on the lens
plane and arriving at the observer would correspond to a
light travel time

t = (1 + zL)ϕ(ξ,η) + const. , (8)

where ϕ(ξ,η) is the Fermat potential

ϕ(ξ,η) = DLDS

2DLS

(
ξ

DL
− η

DS

)2
− ψ̂(ξ), (9)

and we have included a factor of (1 + zL) to account for
cosmological redshift: see Ref. [2] for a detailed derivation.
It is convenient to define x = ξ/ξ0 and y = ηDL/ξ0DS ,
which are the angular positions of ξ and η with respect
to the optical axis in the sky according to the observer,
normalized by ξ0. Then, the arrival time of a ray at the
observer can be rewritten as

T (x,y)

≡ DSξ
2
0

DLDLS
(1 + zL)

(
1
2 |x − y|2 − ψ(x) + ϕm(y)

)
,

(10)

where ψ(x) ≡ ψ̂(ξ0x), and ϕm(y) is chosen such that the
minimum value of T (x,y) is zero.

In the eikonal approximation, the metric perturbation
corresponding to GWs can be written as

hµν = Φeµν , (11)

where eµν is the polarization tensor of the GW, whose
change is of the order U in our case and can be assumed

to be constant. Then, the problem reduces to finding the
scalar function Φ, which satisfies the Helmholz equation
in the frequency domain

(∇2 + ω2)Φ̃ = 4ω2U Φ̃. (12)

Now, the field at the location of the observer could
be solved by the Fresnel-Kirchhoff diffraction integral
(Eq. (15) below). Because the integral only works if the
wave travels freely beyond the integration surface, we need
to define a surface E′ parallel to the lens plane but closer
to the observer, and assume that the rays do not interact
with the lens anymore after passing through E′. Let the
perpendicular distance between E′ and the observer be
D′

L. Then, applying the eikonal approximation, the phase
of the rays at E′ is

S = ω(ϕ̃−D′
L) + α(η), (13)

where we used S = ω
∫
ndl, and α(η) is a constant that

does not depend on the location of the ray on the lens
plane. If DL −D′

L ≪ 1, the amplitude of the wave at E′

is approximately the same as that at E. This is because
the alteration of amplitude (i.e., magnification) of the
observed wave is attributed to the focusing of the waves
due to small-angle scattering. The effect of focusing
is only significant over a long distance (i.e., when the
waves are traveling from E′ to the observer), but it has a
negligible effect for the short journey from E to E′. Thus,
if the complex amplitude of the wave without the lens is
Ae−iα(η) (where α has been included in the definition to
simplify the calculations, without loss of generality), the
amplitude of the wave at E′ will be

ΦE′(ξ′) = DSA

DLS
eiω(ϕ̃−D′

L). (14)

Then, plugging this into the Kirchhoff integral,

Φ̃O = 1
4π

∫
E′
d2ξ′

[
ΦE′

∂

∂n

(
eiωD′

L

D′
L

)
− eiωD′

L

D′
L

∂

∂n
ΦE′

]
,

(15)
the lensing amplification factor F̃ = Φ̃O/A at the observer
is (including the effects of cosmological redshift now, see
Ref. [2] for details)

F̃ = (1 + zL) ω

2πi
DS

DLDLS

∫
E

d2ξeiωϕ̃(ξ,η) (16)

= w

2πi

∫
E

d2xeiwT , (17)

where we have defined the dimensionless angular fre-
quency

w = (1 + zL) DSξ
2
0

DLDLS
ω. (18)

In deriving Eq. (16) we have used the thin lens approxima-
tion, neglected the derivatives of slowly varying functions
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(i.e., we only keep the derivatives of the oscillatory compo-
nents with factors of eiωDL), and taken the limit E′ → E.

Hence, we have derived the effects of lensing on a grav-
itational waveform. If the unlensed frequency-domain
waveform strain in the detector is h̃, the lensed waveform
h̃L is

h̃L(f) = F̃ (f)h̃(f), (19)

with 2πf = ω and F̃ given by Eq. (17).

B. Time-domain integral

Assuming that the lens is spherically symmetric, the
integral in Eq. (17) can be transformed into a 1D integral
and evaluated numerically. However, the integral is highly
oscillatory, and it is nontrivial to compute when w is
large, e.g. w ≳ 103. An alternative strategy is to solve
the integral in the time domain. We start by Fourier
transforming the quantity F̃ /(iω),

Ĩ(τ) = 1
2π

∫
d2x

∫
dweiw(ϕ(x,y)−τ)

=
∫
d2xδ(T (x,y) − τ) (20)

=
∑

k

∮
γk

ds

|∇xT (x(τ, s),y)| , (21)

where δ is the Dirac delta function, ∇x is the gradient
operator with respect to the lens plane coordinates x, and
the summation in Eq. (21) is over all of the contours γk

of constant τ parameterized by s. Going from Eq. (20)
to Eq. (21) we have made use of the properties of delta
functions.

In this form, Eq. (21) has a conceptually simple in-
terpretation. For a “contour ribbon” bounded by two
contour lines at fixed T = τ and T = τ + dτ , the width of
such a ribbon at the parameterized point s is proportional
to 1/|∇T |. Thus, Ĩ(τ) can be viewed as the lens-plane
cross-sectional area of the rays that will arrive at the time
τ . Because each point on the lens plane should receive
approximately the same flux per unit area, if the source
were a pulse, Ĩ(τ) would then be proportional to the
power received at time τ . For a signal that is continuous
in time, e.g. h(τ), the response is the convolution of h(τ)
with Ĩ(τ), and the Fourier transform of the convolution
is the multiplication of the two components in the fre-
quency domain, as in Eq. (19). Note that Ĩ is the Fourier
transform of F̃ /(iω), and the factor iω can be under-
stood as the same factor that appears when applying the
Huygens-Fresnel principle.

In this work, we will solve the lensing integral in terms
of Eq. (21). We will discuss its numerical implementation
in Sec. III.

C. Geometrical optics limit

When w is large, the integral in Eq. (17) is dominated
by the stationary points of T (x,y), so we can use the
stationary phase approximation to obtain

Fgeom(f) =
∑

j

√
|µj |eiwT (xj ,y)−iπnj , (22)

where the summation is over all of the stationary points
(image positions) of T (x,y). The Morse indices nj take
the values 0, 1

2 , 1 for minima, maxima, and saddle points
of T , respectively. The magnification µj of an image is
given by

µ−1
j = det(HessxT (x,y)|x=xj

). (23)

For spherically symmetric lenses, this is explicitly given
by

µ−1
j =

(
1 − α(x)

x

)(
1 − dα(x)

dx

)
, (24)

where x = |x|, α(x) = ∇ψ(x), and α(x) = |α|.
It is evident from Eq. (24) that µj blows up when

α(x)/x = 1 or dα(x)/dx = 1. These are locations of
fold catastrophes. For spherically symmetric lenses, they
are circles in the lens plane and they are called “critical
curves”. If an image lies on a critical curve, the image
has an infinite magnification. The source position y and
image positions xj are related by the lens equation

∇xT (xj ,y) = xj − y − α(xj) = 0. (25)

Therefore, we can map the critical curves from the lens
plane back into the source plane to obtain the caustics
of the lens. For spherically symmetric lenses, these are
circles in the source plane with radius ycrit. For the lens
profiles considered in this work, when y < ycrit, there
will be either two or three images, depending on whether
the profile is cuspy, and when y > ycrit there will be
only one image. The case y = ycrit corresponds to a fold
catastrophe where two of the images merge into one at
infinite magnification.

D. Lens models

In this work, we will be using three classes of lens
models. For simplicity, we will only consider models with
a single parameter l (in addition to the redshifted lens
mass MLz and impact parameter y). These will include
the Navarro–Frenk–White (NFW) profile, the generalized
singular isothermal sphere (gSIS) profile, and the cored
isothermal sphere (CIS) profile. Wave-optics lensing by
the gSIS and CIS profiles have been studied in detail in
Refs. [43, 116].
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1. NFW profile

The density profile of an NFW lens is given by [119]

ρ(r) = ρ0

r/rs(1 + r/rs)2 , (26)

where rs is a scale radius that determines where the lens
transitions from an r−1 dependence to an r−3 depen-
dence, and ρ0 is a normalization constant. We define the
characteristic convergence

κ = ρsrs

Σcrit
, (27)

where Σcrit = DS/4πDLDLS . If we choose ξ0 = κ, the
lensing potential can be calculated to be [120]

ψ(x) =


κ

2

[(
ln x2

)2
−
(
arctanh

√
1 − x2

)2
]

if x ≤ 1,

κ

2

[(
ln x2

)2
+
(
arctan

√
x2 − 1

)2
]

if x > 1.

(28)

2. gSIS profile

The gSIS model is a generalization of the singular
isothermal sphere model (SIS), where the slope of the
profile is allowed to vary. The density profile for a gSIS
lens is given by

ρ(r) = ρ0

(rs

r

)k+1
, (29)

and the SIS profile is recovered by setting k = 1 and fixing
the constants appropriately. By choosing

ξ0 =
(

2βk

2 − k

ρ0rs

Σcrit

)1/k

rs, (30)

where βk =
√
πΓ(k/2)/Γ((k + 1)/2) and Γ is the gamma

function, the lensing potential is

ψ(x) = x2−k

2 − k
. (31)

When k > 1, the slope of the profile is steeper than the
SIS profile, i.e., matter is more concentrated. Analogous
to the point-mass lens model, there will always be two
images in this regime (a minimum and a saddle point in
the time delay function T ), with a cusp in the function
T at the center of the lens (which is different from the
point mass lens case, where there will be a pole). When
k < 1, the profile is broader than the SIS profile. There
are three images when the source is within the caustic
and one image when it is outside, similar to the NFW
and CIS cases.

3. CIS profile

The CIS model (also called the NIS, nonsingular isother-
mal sphere) is another modification of the SIS model,
where a core replaces the singular cusp at its center. The
density profile is given by [121]

ρ(r) = ρ0
r2

c

r2 + r2
c

, (32)

where rc is the characteristic radius of the core and ρ0 is
a normalization constant. Choosing the scale

ξ0 = 2πρ0r
2
c

Σcrit
, (33)

the lensing potential is

ψ(x) =
√
x2

c + x2 + xc log 2xc√
x2

c + x2 + xc

, (34)

where xc = rc/ξ0.

III. COMPUTING THE LENSING INTEGRAL

In Sec. II B we showed that the problem of computing
the effect of lensing on a GW signal is reduced to comput-
ing contour integrals on a set of contour lines of the time
delay function T (x,y), as in Eq. (21). For a fine enough
array in time τ [n], if the contour integral Ĩ[n] = Ĩ(τ [n])
is computed, the frequency domain amplification F (f)
can be obtained by an inverse discrete Fourier Transform
(IDFT),

F [n] = 2πif [n] IDFT
[
Ĩ[n]

]
, (35)

where f [n] is the corresponding discrete Fourier Transform
(DFT) frequency vector, and we have assumed that the
elements of τ [n] are uniformly spaced in time.

A. Time-domain integral

The computation of Ĩ[n] requires summing over the
contribution from disjoint contours corresponding to the
same time τ . For the lens models considered, depending
on the topology of the time delay function T (x,y) (i.e.,
the number of critical points) and the value of τ , we have
to either consider only one contour loop, or sum over two
of them. For the case of weak lensing (where there is only
one critical point image, corresponding a minimum) there
will always be only one contour loop for any τ .

For all cases considered, there will be at most a min-
imum, a saddle point, and a maximum of T (x,y). For
noncuspy profiles (those with a finite ρ(r) at r = 0), when
the impact parameter y < ycrit, there will be three im-
ages (a minimum, a saddle point, and a maximum), while
when y > ycrit there will only be one image (a minimum).
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FIG. 2. Contours of the time delay function T (x, y) and the time domain amplification factor Ĩ(t). Top left: the contours levels
of T (x, y). The blue, black and purple crosses label the minimum, saddle point and maximum image positions, respectively.
Contour lines with different colors correspond to the circles of the same color in the right panel, and each color corresponds to a
different segment of Ĩ(t) where a different interpolation table will be constructed: see Sec. III C. Bottom left: a cross-sectional
view of the top-left panel at x1 = 0 (the grey dashed line), with the cross-sectional value of T plotted and image positions
labeled. Right: The time domain amplification T (x, y), obtained by integrating over the contours shown in the top left panel.
Each circle corresponds to an integration over a contour of the same color shown in the top left panel. The black dashed line is
the summed contribution over all contours of that particular value of τ . The vertical dashed lines label Tsad and Tmax, the time
delays of the saddle point and maximum images.

However, when the profile is cuspy (e.g. for the gSIS lens,
or the SIS limit of the CIS lens) the maximum is replaced
by a cusp, so there will only be a minimum and saddle
point image for y < ycrit in this case.

In Fig. 2 we show the contour line topology for an
NFW lens in the strong lensing regime (three images).
Due to the spherical symmetry of the lens profile, we can
assume that the source position lies on the horizontal
axis, i.e., y = (y0, y1) = (y0, 0). Then, the images will
also lie on the horizontal axis, and we can solve for their
positions with Newton’s method, or any 1D root-finding
algorithm. The contour lines for any constant τ will pass
through the horizontal axis twice. As shown in the top
left panel of Fig. 2, all of the blue and purple contour
lines will pass through the line between the minimum
and maximum images once, and the other contours will
pass through the line extending from the saddle point
image to negative spatial infinity once, meaning that
we will be able to locate a point on any contour line
by using a 1D root-finding algorithm. Once a point is
located, we can trace out the corresponding contour line
by using the Runge-Kutta method while performing the
contour integral. The specifics of our implementation are
explained in Appendix A.

When Tmin < τ < Tsad or τ > Tmax, there is only one
contour loop (the blue loops for the former case, and
the green or red in the latter). However, if we follow

the evolution of the contour lines from low to high τ , at
τ = Tsad the contour lines break into two, and they merge
back together at τ = Tmax. Therefore, for Tsad < τ <
Tmax, we will have to sum over the two contour loops
when computing Ĩ(τ). As shown in the right panel of
Fig. 2, Ĩ is discontinuous at Tsad and Tmax. Between
Tsad and Tmax, we have to sum over the contributions of
the orange and purple contours to obtain the full Ĩ(τ),
the black dashed line. For the case of single-image weak
lensing, there will always be only one contour for every τ .

In Fig. 2, we do not use an array of τs that are uniformly
spaced. This is because Ĩ(τ) varies faster in the vicinity of
an image, so it is better to use a finer resolution in τ close
to the arrival time of the images. Before performing the
IDFT we will interpolate the results back onto a uniform
grid in τ .

B. Transforming to the frequency domain

To obtain the frequency-domain amplification F (w),
we Fourier transform the derivative of Ĩ(τ). As Ĩ(τ) is
computed on a discrete set of τ ’s, we will need to resort
to a numerical differentiation scheme if we want to work
with the derivative directly. However, as only the Fourier
transform of the derivative is required, we can instead
multiply by a factor of iw after transforming Ĩ(τ) to
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compensate for the derivative.
From Fig. 2 it is apparent that Ĩ(τ) does not tend to

the same limit as τ → ±∞. In fact, Ĩ = 0 for τ < 0, i.e.
before the signal has arrived (not shown in the figure),
and Ĩ → 1 for τ → ∞. The difference between the
two limits would cause spectral leakage in the Fourier
transform. A way to mitigate this effect is by using a
windowing function [56, 57], but we found that subtracting
a constant before Fourier transforming as implemented
in Ref. [122] gives more accurate results. Explicitly, we
perform the transformation

F (w) = iw IFT[Ĩ(τ)] + √
µmin, (36)

where µmin is the magnification of the minimum image,
and IFT denotes the inverse Fourier transform, which is
performed numerically as a discrete inverse Fourier trans-
form. In other implementations of the contour integration
method, e.g. in Refs. [43, 58, 113, 116], the discontinuities
attributed to the saddle point and maximum images are
also removed in a similar manner, but we find that we do
not need to do that to achieve satisfactory accuracy for
our purposes.

In practice, we would like to target a wide range of MLz

spanning orders of magnitude, and the unlensed GWs also
span orders of magnitude in frequency. Therefore, we will
also have to compute F (w) over orders of magnitude in w.
As the frequency bins of DFT results are in linear scale,
we will have to patch together multiple results at different
orders of magnitude to efficiently compute F (w) over the
required range. We will divide our frequency space into
four domains, in ascending order in w. We first define
Thigh to be the latest time of occurrence of a significant
feature (peaks or kinks) in Ĩ(τ). Explicitly,

Thigh =
{

max(Tsad, Tmax) for strong lensing,
maxτ Ĩ(τ) for weak lensing.

(37)

In the first domain, we take F (w) = 1, because F (w) → 1
and w → 0. In the second domain, we compute F (w) by
Fourier transforming Ĩ(τ) over N equally-spaced (interpo-
lated) sampling points with τ between 0 and 20Thigh. The
third domain is computed similarly to the second, but with
the higher bound of τ extended to min(2000Thigh, 1000).
In the fourth domain, we use the geometrical optics ap-
proximation to compute F (w), i.e., Eq. (22). Three tran-
sition frequencies w1, w2, w3 are required to define the
boundaries between the four domains in frequency space.
We use the lowest positive frequency within the DFT
frequency bins as w1, while we use w2 = 2.5/Thigh and
w3 = 250/Thigh or 50/Thigh for strong lensing and weak
lensing, respectively. We need to use a lower value of
w3 (i.e., transition to the geometrical optics limit earlier)
for weak lensing because the phase is not recovered as
accurately at high frequencies with our full wave-optics
calculations.

The above procedure works for any spherically symmet-
ric lens model with a single image (minimum) or three

images (minimum, saddle, maximum). However, if the
center of the profile is a cusp, e.g. for the gSIS lens, the
central image will be replaced by a nonsmooth kink. This
only requires a minor modification of the procedure above,
because the topology of the contour lines still follows that
shown in the top left panel of Fig. 2. While the root-
finding algorithm will not be able to identify the kink at
the center, we can simply specify by hand that there is
effectively an “image” at the origin and the contour lines
have morphologies similar to the case when the image
was smooth. On the other hand, we keep in mind that
we should not include the contribution of such an “im-
age” when computing the geometrical optics amplification,
because it is not a true image after all.

Using the above procedure, we can produce the fre-
quency domain amplification F (w) for the NFW, gSIS
and CIS lenses, both in the case of single-image weak
lensing and multiple-image strong lensing, and the result-
ing time domain and frequency domain amplifications are
plotted in Fig. 3. For the strong lensing case, we always
have to sum over two contour lines when we are in the
regime Tsad < τ < Tmax, where Tmax is either the arrival
time of the maximum image or the corresponding time
delay of the kink at the origin, if it exists. The frequency
domain amplification is oscillatory in the high-frequency
limit, because it corresponds to interference of multiple
images, which can also be seen in Eq. (22). The amplifica-
tion oscillates at intermediate frequencies but approaches
a constant at high w, corresponding to

√
|µmin|. It is

the intermediate oscillations due to the wave-optics ef-
fects that encode the information about the lens. If the
wavelength is short (hence the frequency is high) and
wave-optics effects are unimportant, the amplification is
constant, so the lensing effects will be completely degen-
erate with the luminosity distance. Hence, wave-optics
effects help us identify lensed events, even when there is
only a single image.

C. Time-domain interpolation

The computation of the frequency-domain integral takes
O(1) seconds on a GPU. While further optimizations
could improve the speed, this is still inadequate for per-
forming full Bayesian parameter estimation on detected
GW events. For the spherically symmetric lens models
considered in this work, we only have to consider three
parameters that are related to the lensing set up: the
redshifted lens mass MLz, the source position y = |y|,
and the additional parameter that characterizes the lens
profile, i.e., κ for NFW, k for gSIS, and xc for CIS (recall
that we call such a lens parameter collectively as l, where
l ∈ {κ, k, xc} depending on the lens model of concern).
The lens mass MLz only affects which frequency range
w = 8πMLzf to use, given a frequency f . Therefore, the
problem of computing amplification factors is essentially
a 2D problem in parameter space with an additional di-
mension in frequency, so the dimension is low enough that
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FIG. 3. Examples of amplification factors for the NFW (first two rows), gSIS (middle two rows) and CIS (bottom two rows)
lens models. The first row for each lens model corresponds to the strong lensing case with multiple images, while the second
row shows the weak lensing case with a single image. We show the time domain amplification Ĩ(τ) (left column) as well as the
magnitude (middle column) and phase (right column) of the frequency domain amplification F (w). Curves with different colors
in the left column correspond to different segments with a separate interpolation table (see Sec. III C), while the black dashed
lines for the strong lensing cases are the values of Ĩ(τ) summed over all contours at the same τ . The horizontal grey dashed lines
in the middle and right columns correspond to the transition frequencies where we patch together results in different frequency
domains, with the highest frequency domain using the geometrical optics results.

we can construct an interpolation table for rapidly calling
the results.

A challenge of building an interpolation table is that the
amplification factor is oscillatory in the frequency domain.

When performing parameter estimation, we might want
our prior range to span orders of magnitude in MLz, and
when MLz is large we will reach the high-w oscillatory
regime. This could require a lot of points in w when



10

constructing the interpolation table, which could become
a bottleneck in terms of speed and memory. However,
as shown in Figs. 2 and 3, the amplification in the time
domain is a piece-wise smooth and nonoscillatory function,
while the transition boundaries between the pieces are the
image time delays, which are easy to compute. Therefore,
we can build an interpolation table for Ĩ(τ), and we
can perform a (relatively computationally cheap) Fourier
transform to obtain F (w) every time we want to call the
amplification factor.

To avoid the nonsmooth features in Ĩ(τ), we divide
the function into different pieces with boundaries related
to the image time delays. These different segments are
plotted with different colors in Figs. 2 and 3. For the
multiple image strong-lensing case, they correspond to
sets of contour lines with the same topology around the
images, with additional segments divided at different
orders of magnitude for τ to adjust the resolution in time.
For example, the blue segment corresponds to contour
lines with Tmin < τ < Tsad enclosing the minimum image,
the orange and purple segments correspond to those with
Tsad < τ < Tmax, with the purple one corresponding
to the contours immediately surrounding the maximum
image, and the green and red contours correspond to the
contours with τ > Tmax surrounding all of the images,
approximately larger and larger circles as τ → ∞. We
transition from the green to the red segment to adjust
the resolution of the interpolation nodes in time as τ
increases. For the weak lensing case, while all of the
contours have the same morphology (they surround the
minimum image and become approximately circular as
τ → ∞ without ever breaking into multiple contours),
we still divide Ĩ(τ) into segments because there could
be a rather sharp peak at an intermediate time (see, e.g.
the second panel on the left column of Fig. 3), and we
also want to change the resolution of the interpolation
nodes when τ increases by orders of magnitude. To avoid
the potentially sharp peak, we divide between the blue
and orange segments at the location where Ĩ(τ) attains a
maximum value. This location in time is nontrivial and
has to be located numerically. We then divide between
the orange, green and red segments approximately by the
order of magnitude of τ .

An interpolation scheme works well because each seg-
ment and their boundaries (if defined appropriately) vary
smoothly with the lensing parameters l and y. The in-
terpolation will then proceed in two steps: interpolating
the values of the boundaries, and then interpolating Ĩ(τ)
itself for each segment.

The interpolation procedure is slightly different between
the strong-lensing and weak-lensing cases because of the
difference in contour line topology. Therefore, we have
to divide the 2D lensing parameter space into these two
regimes when constructing the interpolation table. Such
a division can naturally be imposed by considering the
caustic curves ycrit(l), which depend on the lens parameter
l. For y < ycrit we are in the strong lensing regime, and
for y > ycrit we are in the weak lensing one. The critical

regime y ≈ ycrit is pathological because the magnification
of the image(s) blows up to infinity. While this does
not happen in physical scenarios due to the spatially
finite nature of the source and diffraction effects, the
geometrical optics computations will be affected, so we
cannot transition to Eq. (22) in that limit. In principle,
we can include diffraction corrections to Eq. (22) in the
critical limit. However, given that the y ≈ ycrit region
does not take up a significant portion of parameter space,
we choose to defer the treatment of this region to future
work. In the current work, we will excise this region from
the parameter space by setting the prior probability to
zero in the region when performing parameter estimation.

In Fig. 4 we show the interpolation nodes in the 2D
parameter space of l and y for all three lens models con-
sidered. We excised the shaded region close to the caustic
ycrit(l), and divided the whole parameter space into a
strong lensing regime and a weak lensing regime. We use
double the resolution in each dimension for the strong
lensing case because the quantities to be interpolated tend
to vary more rapidly in that regime.

IV. BAYESIAN INFERENCE OF THE LENSING
PARAMETERS

Given an interpolation table for F (f) and a waveform
model for h̃(f), we can rapidly call the lensed waveform
h̃L(f), and we can use standard sampling techniques to
infer the properties of detected lensed GW events. In this
work we perform an injection-recovery analysis with the
Bilby Bayesian inference package.

To test the observability of lensing effects, we perform
injection runs for both the strong and weak lensing cases
for all three lens models. For the weak lensing cases,
we perform injections with different source positions y
to determine the critical value of y for which lensing is
observable. For the gSIS lens we also perform runs at the
SIS limit (k = 1) between the weak and strong lensing
regime.

For the NFW and CIS lenses, we perform one strong
lensing run. For the gSIS lens, we perform multiple runs
(y ∈ {1, 2, 3}) for the strong lensing case because the
strong lensing regime extends to arbitrary y as long as
k > 1. For the marginal k = 1 case corresponding to
injecting an SIS lens, we skip y = 1 because it coincides
with the caustic at ycrit = 1. We use y ∈ {1, 2, 3} for
the weak lensing case of all lenses to test the marginal
value of y for which lensing effects are detectable, even
when there is only a single image. For all runs, we use a
lens mass MLz = 100M⊙, a source luminosity distance
dL = 500Mpc, and a BBH with nonspinning progenitors
of equal mass 30 + 30M⊙ for simplicity, injected into
the LIGO Hanford and Livingston detector network at
O4 design sensitivity, with an unlensed network signal-
to-noise ratio (SNR) ∼ 30. We use the IMRPhenomXHM
waveform model [123] and include all intrinsic, extrinsic
and lensing parameters in our analysis. More details of
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FIG. 7. Parameter estimation results for the CIS lens for strong (top row, one panel) and weak (bottom row, three panels)
lensing. The injected values are marked by the grey lines.

the injection run settings can be found in Appendix C.
The results of all of the parameter estimation runs for

the NFW lens are shown in Fig. 5. While parameter
estimation is performed on all parameters, we only show
the corner plots of the lensing-related parameters for
simplicity. The full corner plots including the posterior
distribution of all other intrinsic and extrinsic parameters
of the GW source are available on the glworia GitHub
repository [1]. For the strong lensing case, all of the
lensing-related parameters can be constrained, although
there are degeneracies between them. In the weak lensing
case, for y = 1.0 the parameter posteriors are informative,
but for y ≥ 2.0 the posterior for y rails significantly at
the upper bound of y = 5.0. At a high y, the GWs are
minimally affected by lensing and the signal approaches
an unlensed signal, so a railing against the upper bound
signifies non-detection of lensing. Therefore, the posterior
of y should be used as a first check of whether we have
measured the effects of lensing. The results in Fig. 5
show that, at least for κ = 3.0, these effects cannot be
measured if y ≳ 2. For the cases with higher degeneracy,
y is often lower and MLz is often higher for samples with
a higher luminosity distance dL (not shown in the plots).
Such a degeneracy is expected because in the geometrical
optics approximation, the reduction in the magnification

has the same effect as a higher luminosity distance, and
can be compensated by a lower y and a higher MLz.

Similar trends can be observed in the parameter estima-
tion results for the gSIS and CIS lenses shown in Figs. 6
and 7 respectively. For the gSIS lens, in the strong lensing
limit the lensing effects can be measured up to y = 2.0,
but only for y = 1.0 in the weak lensing limit. For the
CIS lens, the effects can also only be measured for y = 1.0.
However, when interpreting these results, note that the
same impact parameter y could correspond to different
physical scales when comparing between different lens
models, or even when comparing between realizations of
the same lens model with different values of l.

While the posterior of y is useful for determining
whether or not lensing is measured, the physical proper-
ties of the lens are encoded in the lens mass and in the
lens parameter. Even if the posterior of y is informative,
it does not necessarily mean that the lens mass or lens
parameter will be well measured. For example, the slope
k of the gSIS lens is often poorly constrained (i.e., there
is significant railing at the lower or upper bounds) even
if y is well constrained. The mass MLz of the lens is rela-
tively better constrained in all cases across lens models,
although the posterior often has support over orders of
magnitudes in MLz.
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While the unlensed GW signal that we used has an
SNR of ∼ 30, the lensing effects could magnify the signal
and increase the SNR. For example, the strong lensing
results could have an SNR ≳ 70. In this regime, the Fisher
Information Matrix (FIM) can be used to estimate the
measurement uncertainties. Therefore, we can compare
the uncertainties in our PE results with the estimates
in, e.g., Ref. [43]. For example, we find that the strong
lensing result for the CIS lens (xc = 0.02, y = 0.3, top
panel of Fig. 7) agrees within a factor of a few with those
in Ref. [43].

Although we used an interpolation table to speed up
the evaluation of the lensing amplification factor, this
calculation is still the bottleneck in computational cost
when compared to the evaluation of the unlensed wave-
form. While performing the interpolation takes negligible
time, we need to use a very fine grid in time (with 216

points) to ensure that the FFT results are accurate in
the high-frequency regime. Broadly speaking, a single
likelihood evaluation of a lensed model is a few times
more expensive than an unlensed (IMRPhenomXHM) one.
Moreover, assuming that there is only one lens parameter
l (as is the case for all lens models in this work), the
lensed waveform model will contain three additional pa-
rameters (l,MLz, y), which increases the dimensionality
and hence the time it takes for the sampler to converge.
Overall, depending on whether the injected signal shows
prominent lensing features, using a lensed model could
introduce as high as an order of magnitude increase in
the sampling time.

V. DISCUSSION

In the previous section we have shown that, in princi-
ple, diffraction lensing effects can be measured by current
ground-based GW detectors, as long as the impact pa-
rameter y is small enough, even in the weak lensing limit
where there are no multiple images. The parameters
l ∈ {κ, k, xc} characterizing the lens could also be con-
strained, meaning that wave-optics lensing of GWs could
be a unique probe of the properties of minihalos.

Of course, whether we will observe these types of lens-
ing events depends on the abundance of minihalos in
the Universe and their properties (e.g., concentration).
The abundance of minihalos is closely related to the dis-
tribution of impact parameters y of lensing events, and
the distributions of the lens mass MLz and parameter l
also affect the probability of detecting measurable lensing
events. In fact, given an abundance of minihalos, we can
estimate the distribution of y, and from constraints on y
we can also constrain the abundance of minihalos. How-
ever, note that there is no guarantee that the parameter
ranges that are covered by our injection analysis or our
prior distribution would fully encapsulate the distribution
of the parameters in nature.

In this work, we estimate the marginally measurable
impact parameter to be around y ∼ 1 in the weak lensing

regime, at least for the lens models and values of the
lensing-related parameters we considered. With this infor-
mation, we can estimate the rate of detectable diffraction
lensing events given a population of lenses. To pinpoint
the marginal impact parameter for different lens models
spanning a larger range of impact parameters, more injec-
tion runs should be performed in the future. Our results
can also be used to calibrate Fisher information matrix
estimates, which are more scalable over multiple events
than full Bayesian parameter estimation. In principle, our
methods can be generalized to forecast the detectability
of diffractive lensing by space-based detectors, although
the accuracy of the amplification factor computation must
be improved and the interpolation table must be pushed
to higher impact parameters.

All of the parameter estimation results in this paper
are obtained assuming the sensitivity curve of the fourth
observing run (O4) of the LIGO detectors. Therefore
the parameter estimation accuracy can be expected to
improve as the detector sensitivity improves in the future,
or when next-generation detectors will come online.
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Appendix A: Implementation of the numerical
contour integration

The computation of the lensing amplification factor
requires performing a contour integral over constant time
delay contour lines. Given a point on one of these contour
lines, we can perform the integration by going in steps
tangential to this line, which is perpendicular to the
gradient ∇T . In our implementation, starting at a point
xinit on a contour at time delay T0, we use a fourth-
order Runge-Kutta method to trace the contour line by
moving perpendicular to ∇T , as shown in Algorithm 1.
In the algorithm, RK4(f(·),x, h) is the Runge-Kutta step
constructor for the function f(·) at x with step size h.

rockfish.jhu.edu
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We adaptively control the step size by the factor ρ. We
use a smaller ρ = ρc when the contour line curves more
acutely, but we make sure that ρ is never less than ρr,
the distance from the current point on the contour to the
origin, because the contour lines could be an arbitrarily
small circle around the origin for some T0. Otherwise,
we impose the bound ρmin < ρ < ρmax to avoid using
an overly small or large step. After the Runge-Kutta
proposal step xprop, we perform an additional adjustment
step xadj to reduce the deviation of the proposed point
from the contour line. We then evaluate the integrand at
the mid-point of the full step.

Algorithm 1: contour integration.
input : Initial point x0, step size h, ρmin, ρmax, time

delay function T (·)
Output : Numerical integration result u
T⊥(·)← Rotθ=π/2∇T (·)
u← 0
x← x0
while not yet traced whole contour do

ρr ← |x|
ρc ← |∇T (x)|/det(Hess(T )(x)) ; #Inverse of
contour curvature

ρ← max [min(ρmin, ρr), min(ρmax, ρr, ρc)]
∆xprop ← RK4(T⊥(·), x, ρh) ; #RK4 proposal
xprop ← x + ∆xprop
Tprop ← T (xprop)
∆xadj ← ∇T (xprop)

|∇T (xprop)|2 (Tprop − T0) ; #Adjust back

onto contour
xnew ← xprop + ∆xadj
∆x← (xnew − x)
xmid ← (xnew + x)/2
∆u← |∆x|/|∇T (xmid)| ; #Integrand
u← u + ∆u
x← xnew

end

Appendix B: Error analysis

In this appendix, we will estimate the errors of our algo-
rithm for computing and interpolating the amplification
factor F (w). First and foremost, we test our algorithm
against known analytical results for the SIS lens. The
amplification factor for an SIS lens can be analytically
written as a series expansion in w [49, 102, 116]. In Fig. 8

we compare our results obtained via contour integration
with those from the series expansion. We define a measure
of the error by ∆F/

√
|µmin|, the absolute error normal-

ized by the magnification of the minimum image. We
find that in both the strong lensing (y = 0.2) and weak
lensing (y = 2.0) regimes, the error as defined above does
not exceed 10−2.

The computation of F (w) makes use of a Runge-Kutta
scheme with step size h for performing a contour integra-
tion over values of τ with resolution related to the number
of points N used in time. The numerical error of compu-
tation will then depend on h and N . In Fig. 9 we show
the convergence of the numerical results when reducing h
and increasing N for both strong lensing and weak lens-
ing of an NFW lens. The results exhibit approximately
second-order convergence for both h and N .

Appendix C: Details of the injection runs

For all of the injection runs we use a redshifted lens mass
MLz = 100M⊙. We use the IMRPhenomXHM BBH merger
waveform model to generate the (unlensed) nonprecessing
and noneccentric gravitational waveforms. We use an
equal mass of m1 = m2 = 30M⊙ for both BH progeni-
tors, with zero spins (|χ1| = |χ2| = 0). For the extrinsic
parameters, we inject an inclination angle θjn = π/3,
polarization angle ψ = π/2, phase ϕ = π/2, geocentric
time tg = 1126259642.413, right ascension α = 1.375,
and declination δ = −1.2108. We use a sampling rate of
2048 Hz and a minimum frequency of fmin = 20 Hz, and
inject the signals into the two LIGO detectors, both as-
suming design sensitivity Gaussian noise. We use bilby’s
implementation of the dynesty sampler for nested sam-
pling. For all of the intrinsic and extrinsic parameters
of the waveform, we use the standard priors as imple-
mented in bilby. For the lensing-related parameters, we
use uniform priors with MLz ∈ (0.1, 2000), y ∈ (0.1, 5.0),
and κ ∈ (0.1, 10) for the NFW lens, k ∈ (0.1, 1.9) for the
gSIS lens, and xc ∈ (0, 1) for the CIS lens when sampling.
When plotting the results in the main text we reweight the
prior of MLz into a log-uniform prior. We use a uniform
prior for all lensing-related parameters when sampling
to make sure that the results will not be biased due to
strong degeneracies. All of the settings files and scripts for
submitting the runs are publicly available on the glworia
GitHub repository [1].
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