
Biogeosciences, 21, 1827–1846, 2024
https://doi.org/10.5194/bg-21-1827-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Technicalnote

Technical note: Flagging inconsistencies in flux tower data
Martin Jung1, Jacob Nelson1, Mirco Migliavacca2, Tarek El-Madany1, Dario Papale3,4, Markus Reichstein1,
Sophia Walther1, and Thomas Wutzler1

1Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena 07745, Germany
2European Commission, Joint Research Centre, Ispra, 21027, Italy
3Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Montelibretti (RM), 00010, Italy
4Fondazione CMCC – Centro Euro-Mediterraneo sui Cambiamenti Climatici, Viterbo, 01100, Italy

Correspondence: Martin Jung (mjung@bgc-jena.mpg.de)

Received: 13 July 2023 – Discussion started: 16 August 2023
Revised: 31 January 2024 – Accepted: 15 February 2024 – Published: 15 April 2024

Abstract. Global collections of synthesized flux tower data
such as FLUXNET have accelerated scientific progress be-
yond the eddy covariance community. However, remaining
data issues in FLUXNET data pose challenges for users, par-
ticularly for multi-site synthesis and modelling activities.

Here, we present complementary consistency flags (C2Fs)
for flux tower data, which rely on multiple indications of
inconsistency among variables, along with a methodology
to detect discontinuities in time series. The C2F relates to
carbon and energy fluxes, as well as to core meteorological
variables, and consists of the following: (1) flags for daily
data values, (2) flags for entire-site variables, and (3) flags at
time stamps that mark large discontinuities in the time series.
The flagging is primarily based on combining outlier scores
from a set of predefined relationships among variables. The
methodology to detect break points in the time series is based
on a non-parametric test for the difference in distributions of
model residuals.

Applying C2F to the FLUXNET 2015 dataset reveals the
following: (1) among the considered variables, gross primary
productivity and ecosystem respiration data were flagged
most frequently, in particular during rain pulses under dry
and hot conditions. This information is useful for modelling
and analysing ecohydrological responses. (2) There are ele-
vated flagging frequencies for radiation variables (shortwave,
photosynthetically active, and net). This information can im-
prove the interpretation and modelling of ecosystem fluxes
with respect to issues in the driver. (3) The majority of long-
term sites show temporal discontinuities in the time series
of latent energy, net ecosystem exchange, and radiation vari-
ables. This should be useful for carefully assessing the results

in terms of interannual variations in and trends of ecosystem
fluxes.

The C2F methodology is flexible for customizing and al-
lows for varying the desired strictness of consistency. We dis-
cuss the limitations of the approach that can present starting
points for future developments.

1 Introduction

The eddy covariance (EC) technique is widely used to as-
sess the carbon dioxide (CO2), water, energy, and other
GHG fluxes between the surface and the atmosphere. Em-
ployed across major biomes globally, it counts thousands
of stations distributed across all continents and often or-
ganized in regional networks (Baldocchi, 2020). Then, the
FLUXNET initiative organized global data collections and
synthesis datasets such as the Marconi collection (Falge et
al., 2005), the LaThuile dataset, and the FLUXNET2015 (Pa-
storello et al., 2020), which have become the backbone for
global ecosystem research (Baldocchi, 2020).

Flux tower measurements and associated data process-
ing are complex and often subject to site-specific concep-
tual, technical, and logistic challenges. Principal investiga-
tors (PIs) of EC sites voluntarily provide their data to re-
gional networks or directly to FLUXNET under a common
data policy and standard format. The data include half-hourly
or hourly biometeorological, environmental, and flux vari-
ables, all calculated and averaged by the PIs from the high-
frequency raw meteorological and EC data. Before submis-
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sion to the networks, the PIs generally apply a set of correc-
tions (e.g. coordinate rotation, time lag compensation, and
spectral corrections), specific quality checks and quality as-
sessment (QA/QC) procedures (Metzger et al., 2018; Vitale
et al., 2020), and site-specific data filters. This processing
applied by single groups is not strongly standardized. Thus,
there is a high level of heterogeneity among sites concerning
the completeness and effectiveness of applied quality con-
trol routines, the detailed metadata of instrumentation and
applied processing, and the availability of measured and re-
ported variables.

The FLUXNET community developed a series of stan-
dardized tools for (1) reviewing critical metadata for the
processing (e.g. site identifier, coordinates, reported time
zone, and instrumentation height), (2) flagging meteorolog-
ical data of questionable quality based on semi-automated
visual checks of the relationships among different radiation
variables (Pastorello et al., 2014), (3) filtering fluxes col-
lected in low-turbulence periods where the assumptions of
the technique are not met (the so-called u∗ filtering; Pa-
pale et al., 2006), (4) gap-filling of missing data (Reich-
stein et al., 2005; Papale et al., 2006), and (5) partitioning
of net ecosystem exchange (NEE) into ecosystem respira-
tion (RECO) and gross primary productivity (GPP) compo-
nents (Reichstein et al., 2005; Lasslop et al., 2010) and un-
certainty calculations (Pastorello et al., 2020). These tools
are also organized into a set of routines (ONEFlux – https:
//github.com/Fluxnet/oneflux, last access: 8 April 2024) that
have been used in the FLUXNET2015 collection and con-
tinental network releases (e.g. AmeriFlux FLUXNET prod-
uct, ICOS Level-2 data, Drought2018, and WarmWinter2020
collections). The routinely provided QC information for flux
tower data informs us primarily about the presence of an ac-
cepted measurement and the degree and quality of the gap-
filling estimate, while potential issues in the underlying mea-
surements may not be indicated.

Despite the effort to continuously develop and up-
date standardized and common post-processing routines for
FLUXNET, some measurement issues and inconsistencies
between variables are not easily detected – data quality also
relies on the initial procedures applied by the PIs. This in-
cludes, for example, potential discontinuities in the time
series due to undocumented changes in instrumentation or
processing, which have developed over the last years and
decades. To reduce the effect of differences in data treat-
ment and QC between sites, some of the more structured net-
works, such ICOS in Europe (Franz et al., 2018; Heiskanen
et al., 2022) and NEON in the USA (Schimel et al., 2007),
started to standardize the setup and methods (Franz et al.,
2018; Rebmann et al., 2018) and the processing (Sabbatini
et al., 2018) according to strict protocols, together with the
collection of full and detailed metadata. This facilitates cen-
tralized processing from the raw data and reprocessing with
more advanced methods as they become available (Vitale et
al., 2020), taking into consideration all the changes in the

measurement setup and ecosystem state. Developing stan-
dardized processing and QC that work robustly and reliably
for all cases is very challenging as ecosystems, land surface,
and (micro-)meteorological conditions can be very heteroge-
neous between sites. Thus, the standardized methods used are
not perfect, and site-specific issues can persist. For example,
the nighttime-based NEE partitioning method (Reichstein et
al., 2005) might give unreliable GPP and RECO results when
temperature is not the main driver of respiration.

The remaining issues and inconsistencies in FLUXNET
data pose limitations for synthesis studies, particularly for
process-based or machine-learning-based model calibration
and evaluation. The degree to which model–data mismatches
are due to model deficiencies or perhaps data issues, either
in the fluxes or in the meteorological data used as model in-
put, is typically hard to judge, especially by non-EC experts.
This can limit progress in improving the modelling for cer-
tain aspects. For example, from the perspective of machine-
learning-based flux modelling by the FLUXCOM approach
(Jung et al., 2019, 2020), some unanswered example ques-
tions on the contribution of potential flux tower data issues
include the following (Bodesheim et al., 2018; Tramontana
et al., 2016): (1) can we predict the interannual variability
of sensible heat flux much better than that of latent heat flux
due to differential observational uncertainties? (2) To what
extent is the low skill in predicting NEE interannual variabil-
ity at the FLUXNET site level due to temporal discontinuities
arising from changes in instrumentation and setup? (3) How
much of the issue in relation to model drought effects in GPP
is due to flux-partitioning problems? (4) Where is the opti-
mal trade-off between data quantity and data quality used for
training machine learning models? To progress on such ques-
tions, we need a complementary data consistency control that
is applicable across the network’s heterogeneous data condi-
tions and core flux tower variables, following objective prin-
ciples and allowing for varying the strictness of tolerated in-
consistency.

Here, we address this challenge of providing complemen-
tary consistency flags (C2Fs) for FLUXNET data. This com-
plements the quality control applied by PIs (or centralized
regional networks like ICOS and NEON) and ONEFLUX as
it is exclusively based on inconsistencies among measured
variables according to a set of well-defined criteria. The de-
gree of allowed inconsistency, a strictness parameter, has an
interpretable basis and can be varied by the user. The un-
derlying framework allows for extending and customizing
the methodology as better knowledge or experience becomes
available. Its objective principles facilitate full automatiza-
tion and thus integration into processing pipelines for, for ex-
ample, FLUXCOM or ONEFLUX. It delivers the following:
(1) flags for daily data points, as well as flags for entire-site
variables for ecosystem fluxes and core meteorological vari-
ables, and (2) times at which large discontinuities in the data
occur and may indicate issues due to changes in the instru-
mentation, setup, or footprint. C2F is primarily intended to
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assist in network-wide synthesis studies, e.g. for analysing
the robustness of results in relation to the inclusion of de-
tected data inconsistencies.

The specific objectives of this paper are to introduce
the C2F principles and methodology and to synthesize de-
tected flux tower data inconsistencies for the widely used
FLUXNET 2015 dataset. We illustrate and discuss the fact
that patterns of detected flux tower data inconsistencies seem
to be associated with issues which, while generally known in
the eddy covariance community, have not been flagged sys-
tematically yet. We provide a critical assessment of the C2F
methodology to assist potential users in interpreting the flags
and to guide potential future developments.

2 Materials and methods

2.1 FLUXNET dataset

The FLUXNET2015 dataset (Pastorello et al., 2020) is a col-
lection of half-hourly meteorological and flux data measured
at 212 sites and collected from multiple regional flux net-
works. The geographical location of the sites ranges from
a latitude of 37.5° S to 79° N and covers all the main plant
functional types. Compared to previous releases of flux ob-
servations, the FLUXNET2015 dataset includes several im-
provements, in particular to the data quality control protocols
and the data-processing pipeline (Pastorello et al., 2020).

The complementary data consistency checks described
here were developed and applied to daily data (temporal av-
erage) for the variables mentioned in Table 1. We keep only
daily data points that are based on at least 80 % of measured
data or that are gap-filled with high confidence (as defined
in Pastorello et al., 2020). The C2F was then applied to only
those data points.

2.2 Flagging inconsistencies among variables

The approach described here is based primarily on multiple
indications of inconsistency between variables for a given
site. Its final output is a Boolean flag for every daily data
point and target variable listed in Table 1, where TRUE indi-
cates an inconsistency. Additionally, it reports a Boolean flag
for entire-site variables, which is based mainly on between-
site inconsistencies in relationships.

C2F is rooted in defining consistency constraints among
variables (Fig. 1a) – these are the “brain” and determine
where to look for inconsistencies. A constraint refers to an
expected relationship of a target variable (e.g. SW_IN) with
other variables (e.g. PPFD_IN) based on expert knowledge.
We also use constraints where a target variable is mod-
elled from a set of predictor variables using machine learn-
ing. Outliers derived from constraints indicate data incon-
sistencies. We distinguish between hard and soft constraints
(Sect. 2.2.1) – flagging is enforced for outliers from a hard
constraint, while for soft constraints, multiple indications of

Figure 1. Simplified overview of the C2F approach. (a) Defini-
tion of consistency constraints with assignments to target variables
based on examples for radiation variables. (b) Flagging a target vari-
able based on its inconsistency score, which considers multiple indi-
cations of inconsistency from several constraints and based on out-
liers from single hard constraints. The grey background indicates
where a user can modify definitions and settings of C2F. Further
steps of the flagging procedure were omitted for clarity here and are
described in Sect. 2.2.4.

inconsistency are needed to cause flagging. The C2F pro-
cedure is based on three main consecutive steps (Fig. 1b):
(1) outlier scores are calculated for each pre-defined con-
straint (Sect. 2.2.2) – this is the “heart” of C2F as it quan-
tifies inconsistency; (2) all outlier scores available from dif-
ferent constraints for a target variable are combined to yield
an inconsistency score per target variable, which considers
multiple indications of inconsistency (Sect. 2.2.3); (3) flags
are derived based on thresholding the inconsistency score ac-
cording to a specified strictness parameter based on a consid-
eration of outliers from individual hard constraints and fur-
ther considerations (Sect. 2.2.4 and 2.2.5).

2.2.1 Constraints

We use primarily bivariate constraints, i.e. linear relation-
ships between two variables (e.g. SW_IN vs. PPFD_IN), and
machine learning constraints, i.e. where a target variable is
modelled from a set of independent predictor variables (Ta-
ble 1). These deliver predictions to calculate residuals from
the original data, which are then used to calculate outlier
scores (Sect. 2.2.2). The linear models are based on robust
regressions (RANSAC, random sample consensus; Fischler
and Bolles, 1981). For the machine learning constraints, the
predictions are based on a 3-fold cross-validation with ran-
dom forests (Breimann, 2001) – the target-variable-specific
predictors (Table 2) exclude variables that are already in-
volved in other constraints for the same target variable to
maximize independence among constraints. Soil moisture in-
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Table 1. List of FLUXNET 2015 variables used in C2F. Target variables refer to variables for which flags are derived. Ancillary variables
refer to additional variables used in C2F.

Acronym Name

Target variables GPP_NT Gross primary productivity estimated based on the nighttime flux-partitioning method
(Reichstein et al., 2005)

GPP_DT Gross primary productivity estimated based on the daytime flux-partitioning method
(Lasslop et al., 2010)

RECO_NT Ecosystem respiration estimated based on the nighttime flux-partitioning method
(Reichstein et al., 2005)

RECO_DT Ecosystem respiration estimated based on the daytime flux-partitioning method
(Lasslop et al., 2010)

NEE Net ecosystem exchange

LE Latent energy

H Sensible heat

NETRAD Net radiation

SW_IN Shortwave incoming radiation

PPFD_IN Photosynthetic photon flux density

TA Air temperature

VPD Vapour pressure deficit

Ancillary variables SW_IN_POT Potential shortwave incoming radiation

LW_OUT Longwave outgoing radiation

P Precipitation

SMI Set of soil moisture indicators including measured (top and bottom) soil moisture and derived
water balance indicators from P and LE (see Sect. S3 in the Supplement)

dicator variables were derived from measured precipitation
and evapotranspiration (Sect. S3) and added as predictors
to improve the predictability of fluxes under dry conditions.
Gaps in predictor variables were imputed with missForest
(Stekhoven and Bühlmann, 2011) to maximize data avail-
ability and applicability. Further implementation details are
given in Sects. S3 and S4.

Each constraint is assigned to one or several target
variables involved in the relationship. In the SW_IN vs.
PPFD_IN example, the constraint is assigned to PPFD_IN
and SW_IN because both are equally likely to be right or
wrong for an outlier point. Likewise, the constraint LE+H

vs. NETRAD is assigned to LE, H , and NETRAD. The con-
straint RECO_NIGHT vs. NEE_NIGHT is only assigned to
RECO_NIGHT since it indicates primarily issues of the un-
derlying flux-partitioning model rather than issues of mea-
sured NEE at night. Table S1 in the Supplement summarizes
the assignment of constraints to target variables used here,
while the methodology is flexible in adding, removing, or
modifying constraints.

We introduced the distinction between soft and hard con-
straints to acknowledge that outliers from soft constraints do

not always indicate data issues but could be explained other-
wise. For example, outliers in the NETRAD vs. SW_IN re-
lationship could also originate from sudden changes in the
albedo, e.g. due to snow, harvest, or disturbance. Broadly
speaking, hard constraints refer to physical relationships be-
tween variables where outliers reflect a problem in the data
with high confidence. Soft constraints refer to relationships
based on an underlying model where outliers could also oc-
cur due to violations of assumptions. For some of the soft
constraints, we know that, for certain conditions, the rela-
tionship is not valid (e.g. NETRAD vs. SW_IN for nega-
tive net radiation) such that we can exclude those data from
the beginning. Since flagging based on outliers from a soft
constraint would imply the risk of false-positive flagging,
we later combine multiple outlier indications from different
and independent constraints (e.g. SW_IN vs. PPFD_IN, NE-
TRAD vs. SW_IN) when calculating the inconsistency score
for a target variable (here SW_IN, Sect. 2.2.3). In contrast to
soft constraints, flagging is enforced for outlier data points
for at least one of the variables assigned to a hard constraint
(here SW_IN vs. PPFD_IN, Sect. 2.2.4) – this is where the
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distinction of hard vs. soft constraints matters for flagging in
C2F.

2.2.2 Outlier score for data points

Each constraint delivers a continuous outlier score, which
quantifies for each data point i its deviation from the ex-
pected conceptual relationship. The calculation considers all
daily data points available for a site in contrast to processing
by year or moving windows. The outlier score is based on
the residuals of the relationship for most constraints (Ri =

Y obs
i −Y

pred
i ). The predictions come from a robust linear re-

gression model for bivariate constraints and from a cross-
validated random forest model for machine-learning-based
constraints (see Sects. S3 and S4 for details). Specifically,
the outlier score measures the distance of a data point i to
the closest quartile (P25, P75) in units of interquartile range
(IQR). This corresponds to the widely used “boxplot rule”,
while we take heteroscedasticity of residuals into account by
estimating how the quartiles vary for every data point i de-
pending on the magnitude of Y

pred
i (Sect. S2).

Oi =max
(

Ri −P75i

2(P75i −P50i)
,

P25i −Ri

2(P50i −P25i)

)
(1)

The denominators refer to the interquartile range of the dis-
tribution of R, represented by two half distributions to ac-
count for asymmetric distributions (Schwertman et al., 2004)
– the IQR for each side is estimated by 2 times the distance
between the median and the first or third quartile.

This definition of the outlier score has several useful prop-
erties: (1) outlier scores from different constraints are inde-
pendent of units, are comparable, and are therefore combin-
able among different constraints, which is an important pre-
requisite to calculate the inconsistency score later. Accord-
ingly, this facilitates combining outlier scores from different
constraints with different empirical strengths of the relation-
ships because the outlier score for a constraint is relative to
the spread of the residuals. (2) Biases due to heteroscedastic-
ity are greatly reduced such that, for example, inconsistencies
in small fluxes can be detected. (3) Its continuous nature al-
lows us to consider different inconsistency strictness settings.
(4) Its link to the widely used boxplot rule makes it easy to
interpret and conceptually clear. The boxplot rule labels data
points as outliers if they are 1.5 units of interquartile range
(IQR) apart from the first or third quartiles; far outliers are
often labelled when the distance exceeds 3 times the IQR.
How many units of IQR (nIQR) should be chosen can be ap-
plication dependent – it is essentially a strictness parameter
that one might want to vary approximately between 1.5 and
3, corresponding to a gradient of “strict” consistency (retain-
ing fewer data) to “loose” consistency (retaining more data).
Thus, the parameter nIQR is the key consistency strictness
parameter and is applied when calculating the inconsistency
score (default value= 3 – can be varied by the user).

Figure 2 illustrates the outlier score for the machine learn-
ing constraint of GPP_NT for a dry site in the United
States (US-Wkg). The machine learning model was trained
with meteorological predictors and captures the flux pat-
terns very well in general. However, it does not, for exam-
ple, predict larger negative GPP values that are present in
the FLUXNET2015 data. The residuals show a clear pat-
tern of heteroscedasticity; i.e. residuals tend to be larger
when GPP is larger. By taking this heteroscedasticity into
account, we can identify the large negative GPP values in
FLUXNET2015 as outliers, even when allowing for loose
consistency with nIQR= 3. This is because the residuals are
large relative to the expected narrow distribution of residuals
for small GPP.

2.2.3 Inconsistency score of a data point

We first calculate the respective outlier scores for all con-
straints (Tables 2, S1). Then we combine them into an incon-
sistency score for each target variable, which takes multiple
indications of inconsistency into account. To do so, we sort
the vector of outlier scores assigned to a target variable for
each data point i in descending order and normalize them by
our consistency strictness parameter nIQR such that outliers
would be indicated with outlier scores > 1. The result we
denote as O∗i , where the first value, denoted [1], is from the
constraint with the largest outlier score; the second value cor-
responds to the second largest outlier score; and so on. The
inconsistency score (I ) is calculated when we have outlier
scores from at least two constraints and is undefined other-
wise:

Ii =

{
O∗i [2] if length of vector = 2
max

(
O∗i [2] ,2O∗i [3]

)
if length of vector > 2.

(2)

In most cases, the inconsistency score is the second largest
(normalized) outlier score from all available constraints for
a target variable and data point. Conceptually, this refers to
the situation where at least two constraints need to identify
a data point as an outlier. Taking the maximum of the sec-
ond largest, twice the third largest outlier score was cho-
sen heuristically because occasionally three constraints show
consistently elevated outlier scores, while the second largest
does not exceed 1. For example, considering the choice
of nIQR= 3, an inconsistent data point is flagged if two
constraints show residuals outside the fence for nIQR= 3
or if three constraints show residuals outside the fence for
nIQR= 1.5. If the inconsistency score is undefined, flagging
is still possible if a hard constraint indicates an outlier (see
Sect. 2.2.4).

The definition of the inconsistency score has several useful
properties: (1) its calculation deals with the existing problem
of heterogeneity in data availability (missing data) and as-
sociated gaps in the outlier scores because it can be readily
computed for when we have two, three, or four outlier scores
available per sample; i.e. not all constraints need to be avail-
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Table 2. Rationale for selected constraints. Median correlation refers to the median Pearson correlation coefficient calculated for each site
when executing the constraints, i.e. based on daily data and with outliers removed (see Sect. 2.4 for details).

Constraint Soft or hard Rationale Median correlation

SW_IN vs. PPFD_IN Hard Because this constraint is associated with a very tight physical link and
empirical relationship, it is classified as hard constraint.

0.998

NETRAD vs. SW_IN Soft Incoming solar radiation dominates the temporal variations of net
radiation at a daily resolution. Because net radiation includes
outgoing and longwave components that depend on other factors, these
constraints are classified as soft constraints. When solar radiation is
low, e.g. in wintertime conditions, net radiation can become negative,
and the relationship can become meaningless such that these
constraints are only evaluated for data points with positive net radiation.

0.955

NETRAD vs. Soft 0.961
PPFD_IN

NETRAD vs. LE+H Soft Net radiation is linked to the sum of latent and sensible heat fluxes
through the energy balance. Contributions by storage changes are ne-
glected for simplicity because their effect is usually small at a daily res-
olution, and corresponding data are not always available. The empirical
relationship is typically not on the 1 : 1 line due to the pervasive energy
balance closure gap problem. Due to the omission of storage changes,
we classified it as soft constraint.

0.955

GPP_NT vs.
GPP_DT

Hard As these pairs are relationships between alternatives from different
methods of the same quantity, they are classified as hard constraints.

0.966

RECO_NT vs.
RECO_DT

Hard 0.882

RECO_NT_NIGHT
vs. NEE_NIGHT

Hard 0.950

RECO_DT_NIGHT
vs. NEE_NIGHT

Hard 0.838

GPP_NT · sqrt(VPD) Soft This reflects a water use efficiency model based on optimality
considerations for stomatal conductance, which had been tested with
EC data. To reduce confounding effects by elevated evaporation, the
constraint is not evaluated for rainy days. Due to the assumptions of
the model, we classified it as soft constraint. For better independence
among constraints for the same target variable, only the minimum of
the outlier scores from both variants is assigned to LE.

0.888
vs. LE

GPP_DT · sqrt(VPD) Soft 0.880
vs. LE

NEE ustar
uncertainty

Soft Uncertainties due to friction velocity (u∗) filtering that are unusually
high can point to violations of assumptions underlying NEE measure-
ments by EC. Because u∗ uncertainty estimates also depend on gap-
filling methods, this is classified as soft constraint.

n/a

TA vs. TA ERA-5 Soft Because site-to-pixel relationships with ERA5 meteorological reanal-
ysis can be affected by the uncertainty of ERA5 and footprint mis-
matches, they are treated as soft constraints. They were included due
to lack of constraints for TA and VPD from tower measurements only.

0.991

VPD vs. Soft 0.911
VPD ERA-5

Machine learning Soft Predicting a flux tower variable based on other flux tower variables
includes uncertainties, e.g. due to missing predictors or quality issues
in the predictors. Therefore, these are classified as soft constraints.
Variable-specific predictor sets were chosen to increase independence
among constraints.

0.933–0.992

n/a – not applicable.
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Table 3. List of predictor variables used for different target variables. SMI stands for soil moisture indicator and denotes the set of measured
(top and bottom) soil moisture (if available) and derived indicators CWDt , tCWDC

t , and CWBt .

Target variable Predictors

SW_IN P , SW_IN_POT, LE, H , GPP_NT, RECO_NT, NEE, VPD, TA
PPFD_IN P , SW_IN_POT, LE, H , GPP_NT, GPP_DT, RECO_NT, RECO_DT, NEE, VPD, TA
NETRAD P , LW_OUT, SW_IN_POT, GPP_NT, GPP_DT, RECO_NT, RECO_DT, NEE, VPD, TA
TA PPFD_IN, P , LW_OUT, SW_IN_POT, LE, H , NETRAD, NEE, SW_IN, SMI
VPD PPFD_IN, P , LW_OUT, SW_IN_POT, LE, H , NETRAD, GPP_ NT, RECO_NT, NEE, SW_IN, SMI
LE PPFD_IN, P , LW_OUT, SW_IN_POT, VPD, TA, SW_IN, SMI
H PPFD_IN, P , LW_OUT, SW_IN_POT, VPD, TA, SW_IN, SMI
NEE PPFD_IN, P , LW_OUT, SW_IN_POT, NETRAD, VPD, TA, SW_IN, SMI
GPP_NT PPFD_IN, P , LW_OUT, SW_IN_POT, NETRAD, VPD, SW_IN, SMI
GPP_DT PPFD_IN, P , LW_OUT, SW_IN_POT, NETRAD, SMI
RECO_NT PPFD_IN, P , LW_OUT, SW_IN_POT, NETRAD, VPD, SW_IN, SMI
RECO_DT PPFD_IN, P , LW_OUT, SW_IN_POT, NETRAD, SMI

able all the time. (2) As it considers multiple indications of
inconsistency, it addresses the robustness problem. If there
is a real problem in the data, it should be evident from sev-
eral constraints. Individual soft constraints may indicate an
outlier due to violations of underlying assumptions (i.e. false
positives), while false-positive outlier indication for the same
data point by different constraints is very unlikely if the con-
straints are independent. (3) It also addresses the variable at-
tribution problem that we would have for most bivariate con-
straints when looking at a single constraint only. For exam-
ple, we cannot attribute an outlier indicated in the PPFD_IN
vs. SW_IN constraint to an issue in either of the variables.
Instead, the inconsistency scores for the two variables con-
sider all available constraints and thus provide an indication
as to which variable is more likely to show a data issue.

We will illustrate this by means of an example of deriving
the inconsistency score of SW_IN for a site in France (FR-
LBr, Fig. 3). Figure 3 shows the three constraints available
for SW_IN where the respective outlier scores scale with the
colour: the bivariate relationships with PPFD_IN and with
NETRAD, as well as the machine-learning-based constraint
for SW_IN. In the scatter plots, we see two major patterns of
inconsistency: (1) SW_IN scales differently with PPFD_IN
for a subset of the data, and (2) all three constraints indi-
cate an issue related to some values of zero for SW_IN. In
the time series plots for SW_IN, we see that the first pattern
of inconsistency between SW_IN and PPFD_IN occurs for a
long consecutive period in 1997 and that the second pattern
occurs in 2002, where SW_IN is constant at zero. The incon-
sistency score for SW_IN shows the latter issue accordingly
since it is present in multiple constraints, while it shows no
major issue for SW_IN in 1997, where there was an incon-
sistency with PPFD_IN only.

Table 4. Predefined dependencies for flag propagation. Arrows in-
dicate the direction of flag propagation.

NEE→ GPP_NT, GPP_DT, RECO_NT, RECO_DT
GPP_NT↔RECO_NT
GPP_DT↔RECO_DT
TA→GPP_NT, GPP_DT, RECO_NT, RECO_DT
SW_IN→GPP_DT, RECO_DT
VPD→GPP_DT, RECO_DT

2.2.4 Flagging data points

The first step of flagging data points for a target variable
is based on thresholding the corresponding inconsistency
score at > 1. Please note that this corresponds to the speci-
fied nIQR threshold, which was used to normalize the out-
lier scores for the computation of the inconsistency score
(Sect. 2.2.3). In the second step, we iterate the procedures
outlined below.

We propagate flagged data points to dependent variables
(e.g. SW_IN is used to calculate GPP_DT during flux parti-
tioning; see Table 4 for considered dependencies).

If two flagged data points are less than a few days apart
(default= 4 d), we additionally flag these data points in be-
tween. This is done because data issues often appear in se-
quence, e.g. due to instrumentation issues or moving-window
processing of the flux partitioning, while the inconsistency
score may not always exceed 1.

If hard constraints indicated an outlier data point but none
of the target variables assigned to this hard constraint were
flagged yet, we force flagging for at least one of the associ-
ated variables. Which variable(s) gets flagged is determined
by an attribution scheme that considers primarily the incon-
sistency scores of the variables associated with the hard con-
straint (Sect. S6). Forcing flagging for hard constraints (e.g.
PPFD_IN vs. SW_IN) is done because we assume that there
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Figure 2. Illustration of the derivation of the outlier score for a
constraint. This example is for the machine learning constraint for
GPP_NT for US-Wkg. Observed and predicted values are used to
calculate residuals and how the distribution of residuals varies with
the predicted value to account for heteroscedasticity. The outlier
score measures the distance of the residuals to the quartiles in units
of the interquartile range (nIQR). Please note that the colour scales
with the outlier score in all the panels.

must be a data issue in at least one variable involved if an out-
lier is identified by this constraint, according to our definition
of hard constraints (Sect. 2.2.1).

Turing back to our previous SW_IN example for the site
in France, we see that the flagging has correctly flagged the
PPFD_IN values in 1997 and flagged the SW_IN values in
2002 (Fig. 4). The SW_IN flag is propagated to GPP_DT,
which shows the same problem as SW_IN in 2002.

To further illustrate how multiple indications of incon-
sistency, as well as outliers from hard constraints, shape
the flagging of carbon fluxes, we look again at the dry site
from the US (Fig. 5). The flagged data points due to the
inconsistency score (red points) are dominated by negative

Figure 3. Illustration of the derivation of the inconsistency score
for a variable, here SW_IN for the site FR-LBr, based on outlier
scores of different constraints. The colour scales with the outlier or
inconsistency score in the same way across panels.

GPP_NT values. Many of those also correspond to outliers
of the GPP_NT vs. GPP_DT constraint (blue stripes). For
RECO_NT, we see that flagged values are dominated by out-
liers of the relationship between nighttime RECO_NT and
nighttime NEE (hard constraint, magenta stripes). These data
points occur predominately in the dry season, indicating is-
sues in the nighttime-based flux-partitioning method (Reich-
stein et al., 2005). These data points, often associated with
negative GPP_NT and elevated NEE, are often flagged in-
dependently for GPP_NT based on the inconsistency score.
The propagation ensures that flags are finally consistent and
identical for GPP_NT and RECO_NT, as well for GPP_DT
and RECO_DT. Please note that hardly any data were flagged
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Figure 4. Derived flags for SW_IN, PPFD_IN, NETRAD, and
GPP_DT for FR-LBr for a strict consistency setting (nIQR= 1.5)
and a loose consistency setting (nIQR= 3).

for NEE, indicating that data issues in GPP and RECO
are likely dominated by flux-partitioning uncertainties rather
than NEE measurement issues. The examples above illustrate
that we can diagnose which constraints have contributed to
or caused flagging by inspecting intermediate diagnostics of
C2F, which might be interesting for eddy covariance experts
to infer reasons for potential issues in the data.

2.2.5 Flagging entire variables

So far, we have aimed at flagging inconsistent data points for
a target variable within a site, given the information available
for that site. Now we aim to identify if an entire-site variable
time series, measured at one site, behaves unexpectedly and
should perhaps be flagged. If, for example, a variable were
to be in a wrong unit, the regression approaches used in the
within-site inconsistency detection will not catch it, while,
for example, the slope of the regression will emerge as un-
usual compared to the distribution of slopes from the same

Figure 5. Illustration for flagging GPP and RECO values from the
nighttime and the daytime partitioning method for US-Wkg. The
flagging is based on default values (nIQR= 3).

constraint available across sites. In a similar notion, if the re-
lationship between two variables for a constraint is unusually
weak for a site, the within-site processing will not catch this
because it looks only for outliers, given the distribution of
residuals within the site.

The constraints for flagging entire variables are based on
the following: (1) the performance of the relationship from
the machine learning constraints, (2) parameters of the lin-
ear model of the bivariate constraints in combination with its
performance (see Fig. 6 for an illustration), (3) the fraction of
flagged values for a variable from the within-site processing,
and (4) a metric related to the NEE u∗ uncertainty per site as
diagnosed by the within-site processing (only used for NEE;
see Sect. S5). Because we add the fraction of flagged values
per site as a between-site variable constraint, the number of
between-site constraints per variable is one more than for the
within-site processing (see Table S1). The above-mentioned
diagnostics are converted into outlier scores considering the
distribution across sites (see Sect. S7). The calculation of the
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Figure 6. Estimated regression lines for each site for some bivariate
constraints. Each line corresponds to a site, and colours correspond
to the derived outlier score for the specific constraint.

inconsistency score per site variable and following flagging
of site variables follows the methodology described for the
within-site processing, except that we do not apply the con-
secutiveness rule in the flagging procedure as it is meaning-
less here.

2.3 Identifying temporal discontinuities

Here, we aim to identify systematic changes in the distribu-
tion of flux tower data within a time series that could point
to data artefacts, e.g. due to instrumentation, setup, or data-
processing method changes. Temporal discontinuities are as-
sessed per target variable and site. In addition to removing
gaps, as described in Sect. 2.1, we also remove flagged data
points for the target variable. The basic principle is to move
from the beginning of a time series to the end. At each time
step, we assess the difference in the distribution between the
data before the current time step and the distribution after the
current time step. This yields a new time series of the test

statistic for the difference in distributions for which we seek
the maximum (Fig. 7). We use a non-parametric test for the
equality of two distributions (Eq. 3) based on their energy
distance (Szekely and Rizzo, 2004) – intuitively, energy dis-
tance can be understood as the amount of work necessary to
transform one distribution into the other.

T =
n1n2

n1+ n2

(
2

n1n2

n1∑
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n2∑
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−
1
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1

n1∑
i=1

n1∑
j=1

∣∣∣∣Xi −Xj

∣∣∣∣− 1
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n2∑
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n2∑
m=1

||Yl −Ym||

)
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In the above equation, n1 and n2 denote sample sizes for the
temporal segments X and Y , respectively, and | | denotes Eu-
clidean distance. The term in the brackets equals the energy
distance between the distributions of X and Y , which mea-
sures 2 times the mean distance among samples between X

and Y minus the mean distance among samples within X and
within Y .

The change in distribution is assessed based on residuals
of two machine learning models for the target variable and
site (see Sect. S8 for details). The first model uses meteoro-
logical conditions as input, while the second model uses only
seasonal information as input. The residuals of both mod-
els are normalized to account for heteroscedasticity. The test
statistic for the difference in distribution is calculated based
on distances in two-dimensional space, where the two dimen-
sions correspond to the time series of the normalized resid-
uals of the two models. The rationale for this approach is
discussed in Sect. 4.1.2.

The breakpoint detection is setup as a recursive partition-
ing where the time series is iteratively split into segments.
For example, we first run the breakpoint detection on the full
time series. Then the time series is split into two segments ac-
cording to where we found the largest difference in distribu-
tions. Then the breakpoint detection is run for both segments
again. This procedure continues until no sufficient data are
in the segments (default= 100 data points). For every split,
we calculate and store a break severity metric that is used to
calculate a corresponding outlier score (Sect. S8).

3 Results

3.1 Patterns of flagged data

Running the C2F algorithm across all sites in FLUXNET
2015, we find the most flagging for GPP and RECO, fol-
lowed by SW_IN, NETRAD, and LE, and comparatively few
rejections for H , NEE, TA, and VPD (Fig. 8). These differ-
ences in the fraction of flagged values do not entirely reflect
a gradient of data inconsistency but can also be influenced
by the number and quality of constraints available for the
different variables (for discussion, see Sect. 4.1.1). Increas-
ing the consistency strictness from more loose (nIQR= 3) to
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Figure 7. Illustration of the break point detection for CH-Dav.
Panel (a) shows the observed time series of daily LE and model pre-
dictions. Panel (b) shows the normalized residuals that are passed to
the breakpoint detection. Panel (c) shows the estimated test statis-
tic for the difference in distributions, which is maximized at the red
bar, which denotes the detected break.

more strict (nIQR= 1.5) can cause more than a doubling of
flagging. For GPP and RECO, the fraction of flagged data
exceeds 20 % for strict (nIQR= 1.5) consistency and is be-
low 10 % for loose (nIQR= 3) consistency across the full
data set, while there is a tendency toward slightly more fre-
quent flagging for the daytime-based estimates compared to
the nighttime-based estimates. There is substantial variabil-
ity in the fraction of flagged data between sites (Fig. 9, top
panel).

We take a closer look at GPP and RECO flagging in or-
der to better understand the pattern of frequent flagging. Fig-
ure 9 shows a systematic pattern of flagged GPP and RECO
values when temperatures are high and GPP is low for both
nighttime- and daytime-based partitioning. These conditions
correspond typically to very dry conditions, where the as-
sumptions of the NEE flux-partitioning methods are more
frequently violated: ecosystem respiration is less controlled
by temperature, and GPP is less limited by light. Visual in-
spection of the time series (e.g. Fig. 5) suggested particular
flux-partitioning issues during respiration rain pulses, where,
for example, GPP_NT is often systematically negative, while
NEE is elevated. We found a systematic pattern of strongly
elevated flagging frequency during and after rain when tem-
peratures are high (> 15 °C) and GPP is low (Fig. 9). This
illustrates methodological limitations of the flux-partitioning
methods in dealing with rapid changes in ecosystem re-

Figure 8. Summary of the fraction of flagged data for FLUXNET
2015 for loose (niqr= 3) and strict (niqr= 1.5) consistency.
Panel (a) shows the distribution across sites. Panel (b) shows the
fraction of flagged data points across the full FLUXNET 2015 data
set while not considering when an entire-site variable was flagged –
these data points are included in (c). Panel (d) shows the fraction of
sites for which an entire variable was flagged.

sponses due to the used moving-window approach to esti-
mate parameters during flux-partitioning processing. To ver-
ify that the systematic patterns found for flagged GPP and
RECO values under high temperatures and low GPP condi-
tions are not an artefact of the method, we compare them
with the patterns for LE and H , where we essentially see no
systematic patterns in the relative frequency of flagged val-
ues, along with a 1-order-of-magnitude-smaller fraction be-
ing flagged.

We assess whether the flagging of all the GPP or RECO
variables for the sites also follows a systematic pattern, and
we find that there is indeed some prevalence of flagging for
sites with low mean annual precipitation and with high mean
annual temperatures (Fig. 10). A similar pattern is not clearly
evident for other variables, except for the flagging for NE-
TRAD at very cold sites. The prevalence of flagging GPP
and RECO variables for very cold sites might be related to
issues caused by polar days and polar nights, i.e. when, dur-
ing the growing season, no or hardly any nighttime measure-
ments are available to constrain the respiration response to
temperature.

We now assess to what extent flagging might be system-
atic for extreme conditions recorded in the time series of
the sites. We chose to look at cold, normal, and hot con-
ditions because temperature extremes are a common topic
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Figure 9. Relative flagging frequency for nighttime and daytime
flux partitioning (GPP, RECO, a, b), latent energy (LE), and sen-
sible heat (H , e, f) as a function of daily temperature and relative
GPP. Panels (c) and (d) show flagging patterns for GPP and RECO
as a function of days since last major rainfall event, where only data
with daily temperatures > 15 °C were included. Crosses indicate
very rare occasions (< 0.05 % of data points in the bin).

of interest and because the temperature variable showed the
fewest data inconsistency issues. The boundaries for the tem-
perature extremes were chosen according to the boxplot rule
for the distribution of measured daily temperatures at each
site, with a threshold of 1.5 units of interquartile range in
terms of distance from the median. Overall, we see no evi-
dence that the C2F would be flagging a high fraction of data
points related to extreme temperatures (see y-axis values in
Fig. 11). However, for some variables, we see a larger frac-
tion of flagged values for extreme temperatures compared to
normal. Relatively more frequent flagging for GPP under hot
conditions likely reflects primarily real data issues related to
violations of flux partitioning under drought conditions, as
outlined above. NETRAD also shows elevated flagging rates
at high temperatures, and H shows elevated flagging rates
for cold temperatures, while the vast majority of data are still
retained. For TA, flagging rates are increased under cold and

Figure 10. Flagged site variables in mean temperature and precipi-
tation space. Each dot corresponds to a site.

Figure 11. Relative rejection frequency for cold, normal, and
hot temperatures corresponding to the loose-consistency criterion
(nIQR= 3). The stratification in temperature classes is based on the
boxplot rule applied separately for each site with nIQR= 1.5.

hot conditions compared to normal but are small on an ab-
solute level. Overall, we conclude that there are some indi-
cations of more frequent flagging under extreme conditions.
At the same time, the percentages still remain small, suggest-
ing that the C2F procedure is generally robust in relation to
and not very biased at extreme conditions. The slight ten-
dency toward elevated flagging percentages at extreme tem-
peratures might be related to limitations in estimating het-
eroscedasticity in very data-sparse conditions (for discus-
sion, see Sect. 4.1.1).

3.2 Patterns of large temporal discontinuities

Figure 12 illustrates for some sites that large discontinu-
ities in the time series are detected for ecosystem fluxes and
meteorological variables, which often coincide with docu-
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mented changes in instrumentation (BADMs) or changes in
the ecosystem. Changes in instrumentation can explain de-
tected discontinuities, e.g. at IT-SRo in 2007–2008 for NEE
and LE, at CH-Dav in 2005 for NEE and LE, at BE-Lon in
2007 and 2012 for NEE, at CA-TP1 in 2008 for NEE, at
NL-Loo in 2004 for NETRAD, at AU-Tum in 2008 for NE-
TRAD, and for IT-Col in 2005 for SW_IN. Changes in the
ecosystem have likely caused detected discontinuities at DE-
Tha for NEE in 2002 (thinning) and at FR-Pue for NEE in
2005 (thinning). No discontinuity was detected for the long
NEE time series at DE-Hai, indicating that the method is
quite robust in relation to (real) interannual variability caused
by weather. The reason for the many discontinuities of NEE
at BE-Lon is likely that it is a site with crop rotation, while
some detected discontinuities coincide with changes in in-
strumentation. Likewise, CA-TP1 is a growing forest plan-
tation established in 2002, with an associated strong trend
in ecosystem structure which could explain the detection in
2008, while this also coincides with changes in instrumen-
tation. Time series patterns suggest that detected discontinu-
ities at FI-Sod for H and at IT-BCi for TA are also likely due
to changes in instrumentation, while those were not reported
in the BADMs.

There are several instances where changes in instrumenta-
tion are not associated with the detection of a temporal dis-
continuity (e.g. FI-Sod in 2003), and there are likewise sev-
eral detected discontinuities, which we cannot associate with
documented changes in instrumentation or ecosystem prop-
erties. These considerations highlight the importance of cor-
rect and complete metadata on instrumentation and ecosys-
tem changes for interpreting time series of flux tower mea-
surements and detected discontinuities.

Across FLUXNET 2015, large discontinuities (nIQR > 3)
in LE are detected for about 25 % of sites; in NEE, SW_IN,
and NETRAD for about 20 % of sites; and in H and TA for
about 10 % of sites (Fig. 13). Considering very big disconti-
nuities (up to nIQR= 6 and larger), we see that the fraction
of affected sites levels off at about 15 % for LE, SW_IN, and
NETRAD, suggesting that changes in the instrumentations
of radiometers may be causing more frequent discontinuities
in the data than perhaps anticipated. We find that, for the ma-
jority of long-term sites, at least one big discontinuity was
detected for the radiation fluxes, LE, and NEE.

4 Discussion

4.1 Methodological considerations

The key objective of any data-screening approach is to dis-
tinguish between appropriate and inappropriate data, while
there is some arbitrariness and context dependence in the
definition of what is appropriate. We addressed this aspect
from a conceptual point of view by flagging data that are in-
consistent based on multiple expected relationships among

Figure 12. Illustration of detected breaks for some sites and
variables. Vertical black bars correspond to breaks exceeding
nIQR= 1.5 (strict); an additional change in colour corresponds to
bigger breaks (nIQR= 3, loose). Dates of changes in instrumenta-
tion recorded in BADMs are labelled as dotted cyan lines (sonic
anemometer), magenta triangles (gas analyser), and a white trian-
gle (measurement height). Other changes where only the year was
given are shown as text.

variables, where the strictness of the inconsistency defini-
tion can be varied by the user according to specific demands
and applications. The key question is on the effectiveness of
the C2F algorithm in flagging, ideally, all inappropriate data
while retaining, ideally, all appropriate data. The key chal-
lenges in assessing this are the lack of reference or validation
data for inappropriate data and that inappropriate data are ex-
pected to be rare cases. In the following, we discuss method-
ological aspects related to erroneously flagging appropriate
data (false positive) and erroneously not flagging inappropri-
ate data (false negative).
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Figure 13. Fraction of sites with at least one break detected for
different variables as a function of the applied outlier score thresh-
old (a) and as a function of record length (b) based on nIQR= 3.

4.1.1 Factors for potential false-positive and
false-negative flagging

C2F is fundamentally based on the distribution of residuals
from expected relationships among variables rather than on
the distribution of the target variable itself. The latter is a
common quality control procedure for identifying outliers,
e.g. based on the boxplot rule, but flags extreme values in the
tails of the distribution by construction and thus risks false-
positive and systematic flagging. Our choice of working with
residuals is preferable here because values in the tails of the
target variable distribution are retained as long as deviations
from expected relationships are not extreme. We showed that
C2F is effective in retaining data under extreme temperature
conditions (see Sect. 3.1).

Hence, it is relevant to assess whether detected incon-
sistencies, i.e. large deviations from expected relationships,
can also be real rather than pointing to data issues. We ad-
dressed this aspect by distinguishing between hard and soft
constraints (see Sect. 2.2.1), where, for soft constraints, large
deviations do not force flagging of values immediately. Most
soft constraints are related to ecosystem fluxes (Tables 2, S1)
because, for example, functional changes in the ecosystem
may change relationships between meteorological variables
with the fluxes, as well as relationships between different
fluxes. Flagging is only enforced when more than one soft
constraint indicates an inconsistency. It is important to con-
struct the different constraints to be independent from each
other as much as possible. This approach of considering mul-
tiple indications of inconsistency essentially tries to mini-
mize false positives and tries to avoid flagging data that ap-
pear to be unusual but might be real, while this obviously
comes with the risk of having more false negatives.

The consideration of heteroscedasticity of residuals has
been key in minimizing false positives and negatives. The
fact that the variability in residuals typically increases with
magnitude (Richardson et al., 2008) implies that we would
get many false negatives at low magnitude and many false
positives at high magnitude, leading to a severely biased

and systematic pattern of flagging if not accounting for het-
eroscedasticity (Fig. 2). In the estimation procedure of the
heteroscedasticity (Sect. S2), it was important to extrapolate
the distribution properties of the residuals to the tails of the
distribution of the target variable where they cannot be esti-
mated empirically in order to minimize false positives there.
This was not accounted for in previous methods based on
binning residuals based on magnitude (Vitale et al., 2020).
Some indications of elevated flagging frequencies under ex-
treme temperature conditions (Fig. 11) may indicate some
remaining uncertainties in accounting for heteroscedasticity,
which is particularly challenging at the tails of distributions
due to data scarcity.

The estimation of the outlier score is an adaptation of the
boxplot rule, accounting for potential asymmetries in the dis-
tributions. This is preferable over excluding a fixed percent-
age of data, which is sometimes done. By varying the nIQR
parameter, we can choose how strictly we apply C2F as this
determines how far into the tails of the distribution of resid-
uals a data point is allowed to fall. Increasing nIQR makes
C2F become more loose, leading to fewer flagged data over-
all, as well as fewer false positives but more false negatives.
Choosing the boxplot rule is common practice in identifying
outliers as it is simple and avoids making assumptions about
the underlying distribution. However, the expected probabil-
ity of a data point in the tails of the distribution is certainly
dependent on the specific properties of the distribution, in
particular the skewness and kurtosis, which are very hard to
estimate empirically in a robust way (Ritter, 2023). In addi-
tion, we did not account for sample size corrections of the
boxplot rule (Ritter, 2023; Schwertman et al., 2004) in the
current version since these are also sensitive to the assump-
tions of the underlying distribution. All these factors cause
some uncertainty for false positives and false negatives.

Being able to define meaningful constraints is a prereq-
uisite for C2F to work. For target variables where we have
fewer constraints, like here, e.g. for TA and NEE, more false
negatives must be expected. This means that C2F is less ef-
fective in detecting data issues for NEE and highlights the
importance of dedicated checks and corrections being ap-
plied to the calculation of fluxes, especially under challeng-
ing conditions of rain, stable atmospheric stratification, slop-
ing terrains, tall canopies, and appreciable storages. Practi-
cal issues due to the lack of data in evaluating a constraint
obviously increase the risk of false negatives. Likewise, is-
sues due to non-stationary behaviour of relationships due to,
for example, changes in instrumentation increase the risk of
false negatives because the overall distribution of residuals
will be wider and thus more forgiving. Running C2F within
segments identified by the detection of temporal discontinu-
ities could improve this aspect in the future. Overall, we can
expect that the more appropriate the flux tower data already
are before we apply C2F, the better and more precise C2F
will work in identifying remaining inconsistencies.
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4.1.2 Detection and interpretation of discontinuities in
the time series

Our detection of temporal discontinuities is based on model
residuals rather than on the raw data of the flux tower vari-
able. This is preferable because (1) the data typically show
very large seasonal variations that would propagate to the test
statistic, and (2) gap-filling of long gaps is not needed, which
is particularly challenging in this context because it would
require filling with realistic variability (including noise) to
avoid artefacts in the distribution of the data.

We chose to use residuals from two models jointly in
the estimation of the breaks: (1) a machine learning model
based on environmental conditions and (2) a machine learn-
ing model based only on the day of the year and potential
shortwave radiation that effectively performs a deseasonal-
ization. The advantage of the first model is that it accounts
for observed variations due to changes in environmental con-
ditions. However, we found that the machine learning model
was too flexible in some instances where the model predicted
an obvious artefact in the distribution of a target variable be-
cause there was a concomitant change in one of the predic-
tors. The latter can happen because the predictor variables
are also flux tower data, e.g. if two instruments are modified
at the same time or if the tower is moved or raised. This was
the reason for additionally including the deviations from sea-
sonality obtained from the second model. The residuals of
both models were normalized to account for heteroscedastic-
ity, which further minimizes differences in distributions due
to different proportions of different seasons when calculating
the test statistic.

Currently, discontinuities are flagged based on how un-
usual differences in distributions are using an outlier score
calculated from a distribution of break severities pooled
across all variables. While our definition for flagging tempo-
ral discontinuities is simple and allows for varying the thresh-
old, it is clear that it is not directly related to whether a de-
tected discontinuity is meaningful or relevant for a certain
application. Further, pooling the distribution of break sever-
ity across all variables rather than evaluating per variable has
the following advantages: (1) it allows for obtaining a larger
sample size to better characterize the distribution, in particu-
lar its tail, and (2) it shows better comparability among vari-
ables in terms of which variables are more affected by breaks.
At the same time, pooling across variables is not ideal from
the perspective of hunting artefacts due to instrumentation
changes since we expect more false positives for ecosystem
fluxes compared to meteorological variables due to the pos-
sibility of real disruptions in the ecosystem.

The breakpoint detection is based on assessing changes
in the distribution of residuals from machine learning mod-
els. This implies that any factors impacting the target vari-
able distribution that were not accounted for in the mod-
elling can elevate the test statistic. Beyond abrupt changes
in instrumentation that we would like to flag ideally, other

reasons for a change in the distribution of residuals can be
natural or anthropogenic-disturbances-like events (e.g. insect
outbreaks, fires, windthrows, harvest, thinning, crop rotation,
other management practices) that change ecosystem proper-
ties. Also, gradual changes in the distribution of residuals
could, in theory, cause the detection of a break, e.g. due to
strong trends in (1) ecosystem properties, e.g. due to suc-
cession or post-disturbance recovery; (2) environmental con-
ditions that are not modelled (e.g. CO2 fertilization); and
(3) target variables due to drifting sensors.

From our results applied to FLUXNET 2015, we have
some indications that the effect of trends does not cause a
large proportion of flagging discontinuities. While we expect
a trend in air temperatures in many long time series due to
global warming, we find that the air temperature variable is
among the variables that are least affected by detected dis-
continuities (see Sect. 3.2), probably because air temperature
is comparatively easy to measure.

Overall, our results further suggest that detected discon-
tinuities due to instrumentation artefacts seem to dominate
over natural, real changes. We see, for example, relatively
large differences in the frequencies of big discontinuities be-
tween radiation fluxes and temperature (Fig. 13) or between
LE and H . Such large differences would not be expected
if detected discontinuities were due to real environmental
changes. Instead, these differences in the frequency of de-
tected breaks among variables correspond to different lev-
els of complexity for measuring variables: while tempera-
ture sensors are robust, long lasting, and require little main-
tenance, radiation sensors are sensitive to levelling, deteri-
oration, or contamination and require more frequent main-
tenance and replacement. Sensible heat is measured by the
sonic anemometer directly, which typically runs for years
without major problems. For latent energy, the infrared gas
analyser is needed additionally, and this requires more fre-
quent calibrations, maintenance, and replacement.

Clearly, some of the detected discontinuities are due to real
changes, as illustrated for some examples (Fig. 12). This im-
plies that detected discontinuities require careful attention in
order to judge whether they are due to an artefact or a real
phenomenon, and it confirms the importance of complete
metadata and ancillary data as a crucial set of information
for the proper interpretation of the measurements.

4.2 Notes and recommendations for applications

4.2.1 Flagging inconsistent data

Adding or modifying constraints or the strictness parameter
nIQR for custom applications is straightforward. Since al-
most all computational costs are associated with calculating
intermediate diagnostics that are stored, it is straightforward
and fast to obtain new flagging results for modified consis-
tency strictness. This is particularly useful for assessing the
relevance of the data quality–quantity trade-off for the con-
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clusions of a specific application. If that is desired, we rec-
ommend recalculating the flags for nIQR, varying from 1.5
to 5, e.g. at intervals of 0.1, and finding the smallest nIQR
at which flagging is indicated. This yields a more continu-
ous representation of inconsistency and facilitates straight-
forward filtering. The recalculation of flags for different con-
sistency strictness values is preferable over using the incon-
sistency score because the flagging takes additional consid-
erations into account (see Sect. 2.2.4).

The approach for daily data outlined here can, in principle,
be adapted to sub-daily data, but it would require modifying
some of the constraints and settings. Hourly C2F could also
help in detecting inconsistencies in radiation data for certain
sun angles when parts of the tower infrastructure, like guy
wires, may shade individual sensors. We developed the ap-
proach for daily data because these are still used most fre-
quently in synthesis studies and because of the much smaller
computational costs. For applications using sub-daily data,
we recommend discarding all sub-daily data of a flagged
daily value for now.

C2F delivers flags for individual daily data points for a
variable and site, as well as flags for entire-site variables.
While it is not feasible to scrutinize every flagged data point
to make a decision on whether one wants to include this or
not, we suggest that scrutinizing the entirety of the flagged
site variables manually is feasible and recommended; i.e. the
flagging of site variables is only meant to draw attention to
potential data issues that require further investigation. This is
particularly relevant because, for example, GPP from sites at
the fringes of the tower distribution in climate space is more
frequently flagged, and these sites are, in principle, particu-
larly precious for global synthesis studies.

4.2.2 Flagging temporal discontinuities

The detected discontinuities in flux tower variables are meant
to draw attention to potential artefacts in the data, which
then require further investigation and judgement depending
on the application and data needs. In particular, discontinu-
ities in ecosystem fluxes can be due to real changes in the
ecosystem, e.g. due to disturbances, harvest, crop rotations,
or other management practices. While it is hard to formal-
ize, we can provide some guidance on collecting indications
of which of the reasons may apply based on logical reason-
ing. For a disturbance-like event in the ecosystem, we expect
breaks in several ecosystem fluxes around the same time but
not for meteorological variables like SW_IN and TA (or, at
least, much less severe changes). In addition, we expect that
a disturbance would shift the ecosystem NEE towards less
carbon uptake on average. Detected discontinuities around
the same time in ecosystem fluxes and meteorological vari-
ables may indicate a major change in the instrumentation in-
frastructure, such as raising or moving of the tower. To in-
fer whether a flagged discontinuity is due to a trend in the

variable, one could simply remove the trend in the residuals
before inputting them to the calculation of the test statistic.

How to deal with detected discontinuities in the time se-
ries can also be very application dependent and may vary be-
tween discarding the site, keeping only the longest segment,
running the analysis separately within segments, or not doing
anything about it. Clearly, analysis targeting interannual vari-
ations or trends should consider discontinuities in the time
series that could be artefacts of changes in the measurement
setup.

4.3 Flagging patterns

Applying C2F to FLUXNET 2015 has revealed three ma-
jor patterns of data inconsistencies: (1) comparatively large
flagging frequencies for GPP and RECO, with a systematic
pattern of more frequent flagging under dry–hot conditions,
especially after rain; (2) comparatively frequent flagging for
SW_IN and NETRAD; and (3) frequently detected discon-
tinuities in long time series of LE, NEE, SW_IN, and NE-
TRAD.

4.3.1 Flagged data points

The high proportions of flagged GPP and RECO data in dry
seasons can be because the relationship between nighttime
respiration and temperatures breaks down or because fast
rain pulse responses get obscured by the moving-window ap-
proach used for NEE partitioning. For the daytime partition-
ing, we see a tendency toward more flagging at high temper-
atures and higher GPP compared to the nighttime method.
Potentially, this is due to imperfect accounting of the VPD
effect on GPP in the parameterized light response curves
used to derive GPP_DT. While the absolute values of GPP
and RECO are often quite small under such dry conditions,
this issue causes comparatively little uncertainty for annual
budgets. However, they imply some limits in our ability to
better understand ecohydrological functioning under water
stress and rain pulses. Respiration rain pulses were recently
identified as a phenomenon of large-scale relevance for the
carbon cycle (Metz et al., 2023; Rousk and Brangarí, 2022),
and we recommend analysing those with flux tower data us-
ing NEE due to the issues of currently implemented methods
for deriving RECO and GPP. Novel flux-partitioning meth-
ods like (Tramontana et al., 2020) that take water stress con-
ditions into better account and avoid fitting in moving win-
dows would be important complements to have in the near
future.

Relatively frequent inconsistencies in radiation variables
may be due to issues in correctly installing, calibrating, and
maintaining the sensors. For example, quantum sensors for
measuring photosynthetically active radiation are known to
drift over time if not frequently calibrated. C2F could eas-
ily be extended to detect this specific drift problem by as-
sessing trends in the residuals of the SW_IN vs. PPFD_IN
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constraint. Radiation data are crucial for the interpretation
of ecosystem fluxes and are required as forcing variables for
models. Clearly, faulty radiation inputs would cause faulty
flux predictions. Furthermore, NETRAD is often used to es-
timate evaporative fraction as a water stress indicator and is
needed for analysing or correcting the energy balance clo-
sure gap problem. This calls again to the importance of the
maintenance of the sensors and the correct and full recording
and reporting of all sensors replacements or calibrations in
the metadata.

4.3.2 Flagged discontinuities in time series

We found that most long-term sites show discontinuities in
terms of radiation variables, LE, and NEE. Obviously, this
might have large implications for studying many outstand-
ing questions regarding interannual variations and trends of
ecosystem fluxes using FLUXNET. While such discontinu-
ities can also be due to real changes in the ecosystem, we
have indications that data issues are likely the prevalent rea-
son (see Sect. 3.2). Even if half of those would be attributable
to false alarms in a very conservative scenario, this would
still represent a very relevant problem for the community.

Comparatively rarely detected discontinuities in TA and
H could be because the associated instruments are quite ro-
bust and long lasting. In contrast, radiation sensors need re-
placement and maintenance more frequently and are subject
to drifts, which could explain more frequently detected dis-
continuities in radiation variables. For LE and NEE in partic-
ular, the involvement of two different sensors in the measure-
ments – and, for closed-path systems, an additional tube that
also requires substitutions or maintenance – could increase
the chances of temporal discontinuities. In addition, changes
in the flux calculations, corrections, and filtering can be rea-
sons for temporal discontinuities. It would be important to
better understand what aspects related to instrumentation and
maintenance change are causing the main problems here to
facilitate consistent long time series in the future. Also, in
this case, the availability of metadata about sensors, setup
changes, or major disturbances or management activities at
the sites are very important for the interpretation of detected
discontinuities and could allow for more tailored approaches
in the future. In the case of meteorological variables, redun-
dant measurements could be used to support the construction
of a consistent time series in the case of sensor replacement.
This would improve C2F overall as more constraints could
be defined and used.

5 Conclusions

Using expert knowledge and experience, we designed and
implemented C2F, a complementary data-screening algo-
rithm for flux tower data based on the principle of detect-
ing inconsistencies. It is fully automated, transparent, follows

objective principles, and delivers simple Boolean flags that
are straightforward to use.

Clearly, C2F is not perfect – it complements and cannot
replace the typical quality control of flux tower data done by
PIs and during centralized processing like ICOS or NEON.
In fact, it relies on the assumption that the vast majority of
data are appropriate already. The quality of our flags also re-
lies on data availability in terms of variables, i.e. the number
of constraints that can be used, and data quantity for robust
estimation of the statistical metrics used. To further develop
and improve C2F, it would be desirable to be able to bench-
mark it objectively using a large set of synthetic data, where
flux tower data, with all their potential issues and noise prop-
erties, are realistically emulated with labels for inappropriate
data that are available.

Applying C2F to the FLUXNET2015 dataset uncovered,
for instance, issues in the NEE flux partitioning into GPP
and RECO under dry and hot conditions, as well as temporal
discontinuities in long time series of, for example, LE and
NEE. While the potential existence of such problems is no
surprise for eddy covariance specialists, C2F provides asso-
ciated flags, which were not available before. This is espe-
cially useful for synthesis activities, ecosystem modellers, or
remote sensing integration with machine learning. We there-
fore hope that C2F helps in making scientific progress, in
improving FLUXCOM and process-based models, and in
flux tower data becoming more accessible and used across
communities. In addition, C2F could help in assisting PIs to
assess data consistency before submission to regional net-
works, and it could help in accelerating feedback loops be-
tween PIs and centralized processing units of regional net-
works if it were to be implemented in ONEFLUX and run
routinely by the regional networks.
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