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S1 Summary table of constraints 
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Machine learning S S S S S S S S S S S S 

u*         S           

GPP_NT vs GPP_DT H H                   

1GPP_NT*sqrt(VPD) vs 
LE 

S        

S 

         

S 
1GPP_DT*sqrt(VPD) vs 
LE 

 S                

RECO_NT vs RECO_DT     H H               

RECO_NT_NIGHT vs 
NEE_NIGHT 

    H                

RECO_DT_NIGHT vs 
NEE_NIGHT 

     H               

NETRAD vs LE+H           S S S       

2NETRAD vs SW_IN               S S     

2NETRAD vs PPFD_IN               S   S   

SW_IN vs PPFD_IN                 H H   

TA vs TA ERA-5           S  

VPD vs VPD ERA-5            S 

# constraints for 
samples (within site) 

 3 3  3  3  2  3  2  4  3  3  2 3 

# constraints for 
variable (between 
sites)  

4 4 4 4 3 4 3 5 4 4 3 4 

Table S1: List of hard (H) and soft (S) constraints.   1 excluding rain days. 2 excluding NETRAD < 0. 
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S2 Accounting for heteroscedasticity in the outlier score 

 5 

We developed a non-parametric method to estimate the heteroscedastic behaviour of residuals that is capable of handling 

heterogenous patterns of heteroscedasticity found for different constraints and sites, and the typically very skewed data 

distribution of Ypred.  

(1) We first calculate the residuals Ri and sort them ascending according to Ypred. 

(2) We calculate the 25th and 75th percentile (P25, P75) of R included in a moving (non-overlapping) step window (see 10 

Fig. SI-2.1 bottom right panel). Default window size is 100 daily data points, which is reduced if necessary to yield 

at least 15 estimates for P25 and P75 if the time series is short. This yields vectors of Ypred
w (mean), P25w, and P75w 

which are typically shorter than the original R and Ypred vectors by a factor of 100. We observed that the estimated 

interquartile range (iqrw = P75w- P25w) is occasionally (very close to or) zero, for example when flux partitioning 

results were truncated at 0 causing long consecutive periods of zero flux in winters for instance. In these rare cases 15 

of extremely small interquartile range of residuals the outlier score could become very large even for a tiny absolute 

residual due to dividing by a number close to zero. To counteract this we imposed a minimum iqrw, i.e. we take the 

max(iqrw, iqrmin) and adjust P75 and P25 accordingly if necessary. iqrmin was chosen to be 7% of the standard 

deviation of Ypred – this heuristic choice is based on empirical trials and visual inspections.  

(3) Since the step window approach does not provide an estimate for P25 and P75 for the smallest and largest values of 20 

Ypred, linear regression is used to extrapolate P25w and P75w for the smallest and largest values in Ypred. The linear 

regression uses the smallest or largest 10% of Ypred
w respectively, and corresponding P25w, and P75w obtained from 

step (2) and at least 5 data points. The linear regression then estimates P25w and P75w for the smallest and largest 

value of Ypred and those values are inserted in the respective vectors (see e.g. most right data point plotted in bottom 

right panel of Fig. SI-2.1). 25 

(4) Since the empirical estimation of P25w and P75w is typically noisy we perform a lowess (locally weighted 

scatterplot smoothing, (Cleveland and Devlin, 1988)) filtering with a span of 20% of the length of the vector and by 

also specifying Ypred
w as the corresponding exogenous variable locations. This yields a smooth variation of how 

P25w and P75w vary with Ypred
w  (see plotted lines in bottom right panel of Fig. S1).  

(5) The smoothed versions of P25w and P75w at locations Ypred
w are linearly interpolated at the locations of the original, 30 

full, Ypred vector to obtain the finally required P25i and P75i. 

The presence of outliers can inflate the estimated interquartile range of residuals and could result in false negatives, in 

particular if the distribution of outliers is in some way systematic with the magnitude. To counteract this, steps (2) to (5) 

are repeated several times and outliers detected in the current iteration (defined as exceeding nIQR=3) are masked out for 

the calculations of the next iteration. The iteration stops when a stable set of outliers are found. 35 

 

The procedure described above has been developed to obtain a reasonable solution with tractable computational costs since 

the calculation of the heteroscedastic outlier score needs to be done for each site and constraint several times. Because the data 

adaptive and non-parametric estimation of percentiles also accounts for systematic changes of the median residual with 

predicted magnitude it effectively relaxes the linearity assumption of bivariate constraints. For some constraints this is an 40 

advantage (e.g. for LE vs GPP*sqrt(VPD)), while for others it is a conceptual disadvantage (e.g. for NETRAD vs LE+H). 
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Fig. S1: Illustration of the behavior and calculation of the heteroscedastic outlier score for the machine learning constraint for 

GPP_NT for US-Wkg (see also Fig. 1). Top row shows the effect of accounting for heteroscedastic residuals for the outlier score (on 

colour). Bottom left illustrates how the variability of residuals vary with magnitude. Bottom right shows the empirically estimated 45 
quartiles by the step window (dots) and the smoothed and interpolated estimates for each data point (lines). The blue dots show the 

frequency distribution of data points. The example corresponds to nIQR=3. 

S3 Implementation of machine learning constraints 

Inputs are a set of specified and gap-filled predictor variables, and the target variable Y of the constraint (not gap-filled). The 

predictor sets (Table 3) were chosen to increase independence among different constraints, e.g. that variables used in bivariate 50 

constraints for the same target variable are excluded from the predictor set (e.g. NETRAD and PPFD_IN are not used to model 

SW_IN with machine learning). The outputs are 1) the outlier score for each data point i which is used in the within-site 

processing, and 2) robust estimates of correlation and root mean squared error later used for flagging site-variables (see section 

2.2.5 and S7). The algorithm is: 
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(1) Run a cross-validation with a machine learning algorithm to obtain the cross-validated predictions Ypred. We chose a 55 

3-fold cross-validation with random partitioning, and the scikit-learn implementation of Random Forests (Breiman, 

2001) with default parameters as machine learning model. 

(2) Calculate the outlier score OML based on Y and Ypred following equation 1. 

(3) Calculate correlation and RMSE from Y and Ypred with outliers removed (i.e. where OML < 3IQR). 

Steps (1)-(2) are iterated a few times where outliers identified in the current iteration are masked out in the training data 60 

for the next iteration. 

Missing values in the predictor variables of the training data set were imputed using missForest (Stekhoven and Bühlmann, 

2011), which is an iterative gap-filling procedure for a set of variables based on Random Forests. This was done to maximize 

data availability and applicability. We calculated a set of water balance indicators from daily gap-filled precipitation (P) and 

evapotranspiration (E) to improve predictability for water-stressed conditions, especially because measured soil moisture 65 

contents are provided inconsistently. Those are added as predictors whenever measured soil moisture content was specified as 

predictor. These are cumulative water deficit (CWD), truncated cumulative water deficit (tCWD) with storage capacities of 

15,50,100,150,200,250 mm, and detrended cumulative water balance (CWB): 

CWDt = min(CWDt-1+Pt-Et,0)            

tCWDt
C = max(0,min(tCWDt-1+Pt-Et,C))           70 

CWBt = CWBt-1+Pt-Et (detrended)            

where C is the specified storage capacity.  

 

S4 Implementation of bivariate constraints 

Inputs are two variables, Y1 and Y2, and the outputs are 1) an outlier score for each data point i which is used in the within-75 

site processing, and 2) robust estimates of correlation, root mean squared error, slope and intercept of a linear model used later 

for flagging site-variables (see section 2.2.5 and S7). The algorithm is: 

(1) Compute a robust linear regression with X=Y1 and Y=Y2. Predict Y2pred as a function of Y1 accordingly. Calculate 

the outlier score OY2,Y2pred following equation 1. 

(2) Repeat step (1) with X and Y swapped and obtain OY1,Y1pred 80 

(3) Take the maximum to obtain the final outlier score for the bivariate constraints: OB = max(OY1,Y1pred, OY2,Y2pred).  

(4) Calculate an orthogonal regression between Y1 and Y2 but with outliers removed (i.e. where OB < 3IQR) and report 

correlation, RMSE, slope and intercept. 

As robust linear regression we used RANSAC (random sample consensus, (Fischler and Bolles, 1981)) implemented in 

scikit-learn which is based on finding consensus among many linear models fitted to different random subsets of the data. 85 

We chose a subset of random 50% of the data and a maximum iteration limit of 200.  
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S5 Implementation of u* uncertainty constraint for NEE 

Inputs are the u* uncertainty calculated by Pastorello et al. (2020), and observed daily NEE. Outputs are the outlier score for 

each data point and the estimated median upper limit of tolerated u* uncertainty used for flagging site-variables (see section 90 

2.2.5 and S7). The difference of the 84th and 16th percentiles (corresponding to 1 standard deviation for a normal distribution) 

of the estimated NEE distribution by Pastorello et al. was chosen as u* uncertainty metric U. The calculation of the outlier 

score follows as described in section 2.2.2 and S2 but with the modification that heteroscedasticity is modelled as a function 

of observed (instead of predicted) NEE and that only positive deviations are penalized since U is strictly positive (in contrast 

to residuals): 95 

𝑂𝑖
𝑢∗  =

𝑈𝑖−𝑃75𝑖

2(𝑃75𝑖−𝑃50𝑖)
           

 (5) 

The median of P75i is used for flagging site-variables as it can indicate sites where the u* uncertainty is unusual large. 

S6 Attribution for flagging hard constraints 

This step is relevant only if a) an outlier score from a hard constraint exceeds nIQR (e.g. an outlier in the SW_IN vs PPFD_IN 100 

constraint), and if b) none of the target variables assigned to this constraint (here SW_IN and PPFD_IN) were flagged for this 

data point. This can happen when all the inconsistency scores for this data point and the target variables are below 1 (e.g. ISW_IN 

< 1 and IPPFD_IN < 1), e.g. when all other constraints assigned to target variables give outlier scores < nIQR or when no other 

constraint was available for the data point. The simplest solution would be to flag both variables, while we want to avoid this 

to retain as much data as possible.  105 

We use an iterative attribution scheme that aims at identifying and flagging which of the target variable is more likely to show 

an issue. In each iteration, we loop over the hard constraints and identify and handle only those data points that are outlier 

points in the current hard constraint but where none of the assigned target variables were flagged yet. Each iteration also 

executes steps (1) and (2) described in section 2.2.4, i.e. the propagation of flags to dependent variables and the consecutiveness 

constraint. Since each iteration causes flagging, the number of non-attributed outliers of hard constraints decreases with 110 

iteration.  

In the first iteration, we force flagging for hard constraints that were assigned only to one variable. For example, outliers of 

the relationship between NEENIGHT and RECONIGHT_DT are attributed to RECO_DT only. The flag will be propagated to 

GPP_DT due to dependencies. Applying the constraint on consecutiveness will reject further data points in RECO_DT and 

GPP_DT. In the second iteration, we inspect if the inconsistency scores for the assigned target variables deviate by more than 115 

0.5. If so, the target variable with largest inconsistency score is flagged. For the example on the SW_IN vs PPFD_IN constraint 

(Fig. S2), the second sample shows ISW_IN = 0.8 and IPPFD_IN=0 causing flagging for SW_IN. In the third iteration, we flag those 

variables where the inconsistency score exceeds 0.5 – this corresponds to relaxing the specified nIQR threshold to half (e.g. to 

1.5 from 3). This step catches conditions where e.g. ISW_IN = 0.7 and IPPFD_IN=0.3 where no attribution was done in the previous 
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iteration because the difference of inconsistency scores was smaller than 0.5. In the last iteration, we flag the remaining outlier 120 

data points for all variables assigned to the hard constraint.  

 

 

 

Fig. S2: Schematic flow chart for flagging data points for the example SW_IN. Data points with black background show values 125 
above the threshold nIQR or flagging (T=True, F=False). na indicates a missing value. The first two data points show outliers for 

the PPFD_IN vs SW_IN hard constraint, where PPFD is flagged for the first data point, while for the second data point, SW_IN is 

flagged in the process of forcing hard constraints (highlighted by orange colours) by considering the inconsistency scores for SW_IN 

and PPFD_IN. For the fifth data point, SW_IN is flagged because the inconsistency score exceeds nIQR. Forcing consecutiveness 

additionally rejects the third and fourth data point for SW_IN. Flagged SW_IN data points are propagated to the daytime flux 130 
partitioning variables due to dependence on SW_IN.  

 

S7 Outlier scores for site-variables 

The calculation of the outlier score for a constraint that is attributed to entire site-variables follows the principle of the box-

plot rule modified for accounting of asymmetric distributions. Here we also need to distinguish constraints according to 135 
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whether outliers are in the upper or lower tail. For example, a data issue is indicated by an unusual low correlation (and not by 

a high one) and by an unusual high fraction of rejected values (and not by a low one).  

𝑂𝑠
𝑙𝑜𝑤𝑒𝑟 =

𝑃25−𝑣𝑠

2(𝑃50−𝑃25)
             

𝑂𝑠
𝑢𝑝𝑝𝑒𝑟

=
𝑣𝑠−𝑃75

2(𝑃75−𝑃50)
             

Where P25 and P50 are the 25th and 50th percentile of the distribution of values v and s is the index for site. Except for the 140 

correlations whose outlier score is only sensitive to the lower tail, all other metrics used for flagging site-variables are only 

sensitive to the upper tail. 

The performance of a machine learning or bivariate constraint is measured by correlation, in a robust way since outliers were 

removed before calculation (see S3 and S4). Occasionally, low correlations are due to very low variance, e.g. in the absence 

of a seasonal cycle, which we account for by increasing the correlation value passed to the outlier score calculation under 145 

conditions of low variance (see below). This conditional upward adjustment of the correlation value is achieved by truncating 

at a specified minimum variance (VAR*), which is calculated from the median R2 and the median MSE observed across sites 

for low variance conditions. We chose the 7th percentile of variances to identify low variance conditions. Please note that this 

adjustment of the correlation is only relevant for a very small percentage of sites, and that its effect is a decrease of the outlier 

score compared to no adjustment. 150 

𝑟𝑠
∗ = √1 −

𝑀𝑆𝐸𝑠

𝑚𝑎𝑥 (𝑉𝐴𝑅𝑠 ,𝑉𝐴𝑅∗ )
           

𝑉𝐴𝑅∗ =
𝑀𝑆𝐸∗

1−𝑚𝑒𝑑𝑖𝑎𝑛(𝑟𝑠
2)

             

Where 𝑀𝑆𝐸∗  is the median MSE where 𝑉𝐴𝑅𝑠 < 𝑃7(𝑉𝐴𝑅𝑠 ).  

The outlier score for the regression lines of the bivariate constraints is based on slope and intercept of the linear orthogonal 

regression line calculated after removing outliers for robustness (see S4). Orthogonal regression minimizes errors 155 

perpendicular to the regression line, i.e. in both X and Y direction, such that slope and intercept are not sensitive to the choice 

for X or Y. The outlier score based on slope and intercept is based on first calculating the mean distance of a site to all other 

sites, and then the outlier scores sensitive to the upper tail is calculated using the distribution of distances. Because the values 

of slope and intercept are not comparable and have different units, the Euclidean distances are calculated in two dimensional 

space where the two dimensions is a pair of values that define the regression line: 1) Y at x=0 which is the intercept, and 2) Y 160 

at a typical value of x=xa, i.e. for the pair (bs, xa*ms+bs). xa is calculated based on the (robust) range of intercepts and the slopes 

for a given constraint:  

𝑥𝑎 = 𝑚𝑒𝑑𝑖𝑎𝑛 (
𝑃99(𝑏𝑠)−𝑃1(𝑏𝑠)

𝑚𝑠
)            

The final between-site outlier score for a bivariate constraint is then the maximum of the regression line based outlier score 

and the correlation based outlier score. The maximum corresponds to a logical OR operation, i.e. outliers appear if the bivariate 165 

constraint shows unusually weak performance or its regression line is unusual. Using both outlier scores individually as a 
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constraint instead of their maximum composite would cause problems due to violating the requirement of independence among 

constraints.  

S8 Detection of temporal discontinuities 

For a given site and target variable, we model the entire time series with two Random Forests: (1) using SW_IN, PPFD_IN, 170 

SW_IN_POT, TA, VPD, and water balance indicators (see S3) as predictors to account for variations in weather (the target 

variable was removed from the predictor set when relevant), and (2) using only SW_IN_POT and day of year as predictors to 

account for seasonality only. We use the cross-validated predictions of these models to calculate the residuals, and normalize 

those by the estimated IQR of the residuals varying with magnitude of the predictions (see Equation 1) respectively.  The 

distance based test statistic (Szekely and Rizzo, 2004) given in equation (3) for the difference of two distributions X and Y 175 

(here from two temporal segments) is calculated based on the normalized residuals of the two models.  

We did not calculate the significance for the test statistic, i.e. whether the difference in distributions is significant, because we 

found that it is not useful for our purpose: the significance test almost always returned significance while being computationally 

very expensive due to the necessity of recalculating the test statistic for many random permutations. To obtain a measure for 

the severity of a temporal discontinuity in a time series that is comparable across sites and variables we calculate the change 180 

in relative segment dispersion associated with each split. Dispersion is the sum of distances among data points (i.e. the sum of 

the distance matrix). Relative segment dispersion D is the sum of within segment dispersion Dl over all segments  normalized 

by the initial dispersion D0 among all data points (i.e. before segmentation):  

𝐷 =
∑ 𝐷𝑙

𝑛𝐿
𝑙=1

𝐷0
 with 𝐷𝑙 = ∑ ∑ ||𝑋𝑖 − 𝑋𝑗||

𝑛𝑙
𝑗=1

𝑛𝑙
𝑖=1           

At the beginning and before the first split, D=1. With every split z, D decreases and our break severity measure is the difference 185 

in D associated to the split compared to before the split (ΔDz = Dz-1 - Dz). For example, consider that with the first split D 

decreased from 1 to 0.7, i.e. by 0.3, while for the second split it decreased from 0.7 to 0.68, i.e. only by 0.02 – the first split 

was obviously much more severe and relevant compared to the second. 

After the break point detection was run for all sites and all target variables we estimate the outlier score (sensitive only to the 

upper tail) for every split based on the distribution of ΔD pooled for all sites and variables. This helps judging on how unusual 190 

a detected break point is given the context of the site network. 

 

 


