Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Electronic Population Reconstruction from Strong-Field-Modified Absorption Spectra with a Convolutional Neural Network

MPG-Autoren
/persons/resource/persons275170

Richter,  Daniel
Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons191813

Magunia,  Alexander       
Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons130296

Rebholz,  Marc       
Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons37850

Ott,  Christian       
Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30892

Pfeifer,  Thomas       
Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Richter, D., Magunia, A., Rebholz, M., Ott, C., & Pfeifer, T. (2024). Electronic Population Reconstruction from Strong-Field-Modified Absorption Spectra with a Convolutional Neural Network. Optics, 5(1), 88-100. doi:10.3390/opt5010007.


Zitierlink: https://hdl.handle.net/21.11116/0000-000F-29D6-2
Zusammenfassung
We simulate ultrafast electronic transitions in an atom and corresponding absorption line changes with a numerical, few-level model, similar to previous work. In addition, a convolutional neural network (CNN) is employed for the first time to predict electronic state populations based on the simulated modifications of the absorption lines. We utilize a two-level and four-level system, as well as a variety of laser-pulse peak intensities and detunings, to account for different common scenar- ios of light–matter interaction. As a first step towards the use of CNNs for experimental absorption data in the future, we apply two different noise levels to the simulated input absorption data.