Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Neurofilament sidearms modulate parallel and crossed-filament orientations inducing nematic to isotropic and re-entrant birefringent hydrogels

MPG-Autoren
Es sind keine MPG-Autoren in der Publikation vorhanden
Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Deek, J., Chung, P. J., Kayser, J., Bausch, A. R., & Safinya, C. R. (2013). Neurofilament sidearms modulate parallel and crossed-filament orientations inducing nematic to isotropic and re-entrant birefringent hydrogels. NATURE COMMUNICATIONS, 4: 2224. doi:10.1038/ncomms3224.


Zitierlink: https://hdl.handle.net/21.11116/0000-000F-2E61-1
Zusammenfassung
Neurofilaments are intermediate filaments assembled from the subunits
neurofilament-low, neurofilament-medium and neurofilament-high. In
axons, parallel neurofilaments form a nematic liquid-crystal hydrogel
with network structure arising from interactions between the
neurofilaments' C-terminal sidearms. Here we report, using small-angle
X-ray-scattering, polarized-microscopy and rheometry, that with
decreasing ionic strength, neurofilament-low-high,
neurofilament-low-medium and neurofilament-low-medium-high hydrogels
transition from the nematic hydrogel to an isotropic hydrogel (with
random, crossed-filament orientation) and to an unexpected new
re-entrant liquid-crystal hydrogel with parallel filaments-the
bluish-opaque hydrogel-with notable mechanical and water retention
properties reminiscent of crosslinked hydrogels. Significantly, the
isotropic gel phase stability is sidearm-dependent:
neurofilament-low-high hydrogels exhibit a wide ionic strength range,
neurofilament-low-medium hydrogels a narrow ionic strength range,
whereas neurofilament-low hydrogels lack the isotropic gel phase. This
suggests a dominant regulatory role for neurofilament-high sidearms in
filament reorientation plasticity, facilitating organelle transport in
axons. Neurofilament-inspired biomimetic hydrogels should therefore
exhibit remarkable structure-dependent moduli and slow and fast
water-release properties.