Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Emergence of Memory in Equilibrium versus Nonequilibrium Systems

MPG-Autoren
/persons/resource/persons297762

Zhao,  Xizhu
Research Group of Mathematical Biophysics, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

/persons/resource/persons208623

Hartich,  David
Research Group of Mathematical Biophysics, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

/persons/resource/persons206062

Godec,  Aljaž
Research Group of Mathematical Biophysics, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

PhysRevLett.132.147101.pdf
(Verlagsversion), 515KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Zhao, X., Hartich, D., & Godec, A. (2024). Emergence of Memory in Equilibrium versus Nonequilibrium Systems. Physical Review Letters, 132(14): 147101. doi:10.1103/PhysRevLett.132.147101.


Zitierlink: https://hdl.handle.net/21.11116/0000-000F-2B20-D
Zusammenfassung
Experiments often probe observables that correspond to low-dimensional projections of high-dimensional dynamics. In such situations distinct microscopic configurations become lumped into the same observable state. It is well known that correlations between the observable and the hidden degrees of freedom give rise to memory effects. However, how and under which conditions these correlations emerge remain poorly understood. Here we shed light on two fundamentally different scenarios of the emergence of memory in minimal stationary systems, where observed and hidden degrees of freedom either evolve cooperatively or are coupled by a hidden nonequilibrium current. In the reversible setting the strongest memory manifests when the timescales of hidden and observed dynamics overlap, whereas, strikingly, in the driven setting maximal memory emerges under a clear timescale separation. Our results hint at the possibility of fundamental differences in the way memory emerges in equilibrium versus driven systems that may be utilized as a “diagnostic” of the underlying hidden transport mechanism.