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Abstract

The Atmosphere and Ocean non-tidal De-aliasing Level-1B (AOD1B) product is widely used in precise orbit determination
and satellite gravimetry to correct for transient effects of atmosphere—ocean mass variability that would otherwise alias
into monthly mean global gravity fields. The most recent release is based on the global ERAS reanalysis and ECMWF
operational data together with simulations from the general ocean circulation model MPIOM consistently forced with fields
from the corresponding atmospheric dataset. As background models are inevitably imperfect, residual errors will consequently
propagate into the resulting geodetic products. Accounting for uncertainties of the background model data in a statistical sense,
however, has been shown before to be a useful approach to mitigate the impact of residual errors leading to temporal aliasing
artefacts. In light of the changes made in the new release RLO7 of AOD1B, previous uncertainty assessments are deemed too
pessimistic and thus need to be revisited. We here present an analysis of the residual errors in AOD 1B RLO7 based on ensemble
statistics derived from different atmospheric reanalyses, including ERAS, MERRA?2 and JRASS. For the oceans, we investigate
the impact of both the forced and intrinsic variability through differences in MPIOM simulation experiments. The atmospheric
and oceanic information is then combined to produce a new time-series of true errors, called AOe07, which is applicable in
combination with AOD1B RLO0O7. AOe07 is further complemented by a new spatial error variance—covariance matrix. Results
from gravity field recovery simulation experiments for the planned Mass-Change and Geosciences International Constellation
(MAGIC) based on GFZ’s EPOS software demonstrate improvements that can be expected from rigorously implementing
the newly available stochastic information from AOD1B RLO7 into the gravity field estimation process.

Keywords Satellite gravimetry - Atmosphere—ocean mass variability - Stochastic modelling

1 Introduction

X Linus Shihora For over two decades now, the satellite gravimetry missions
linus.shihora@gfz-potsdam.de GRACE (Tapley et al. 2004) and GRACE-FO (Landerer et al.
Zhijun Liu 2020) have been monitoring and are continuing to monitor
zhijun.liu@mpimet.mpg.de large-scale mass changes on Earth. The twin satellites are
Kyriakos Balidakis tracking ice mass loss in both Greenland (Velicogna and
kyriakos.balidakis @gfz-potsdam.de Wahr 2005; Sasgen et al. 2020) and Antarctica (Velicogna
Josefine Wilms etal. 2014, 2020), changes in terrestrial water storage (Rodell
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et al. 2018) including the severity of drought (Boergens et al.
2020), and also sea-level change and ocean bottom pressure
variations related to internal ocean dynamics (Hamlington
et al. 2020; Dobslaw et al. 2020). All those processes are
characterised by spatial divergence in mass transports in the
Earth system that are well resolved by the monthly grav-
ity field solutions obtained from satellite gravimetry. Mass
changes in e.g. the atmosphere and ocean, however, also have
significant variations at much shorter, i.e. sub-monthly, time
scales. Without prior information, these high-frequency mass
transport signals would degrade the monthly gravity field
solutions through the effects of temporal aliasing. For this
reason, they are usually accounted for in the gravity field
estimation by application of a priori background model data.

Non-tidal variations in the atmosphere and oceans are rou-
tinely subtracted in satellite gravimetry processing through
the Atmosphere and Ocean De-Aliasing Level-1B (AOD1B)
data product (Shihora et al. 2022a,b) specifically prepared
within the US-German Science Data System of the GRACE
and GRACE-FO missions. AODIB was recently updated
to its most recent release AOD1B RLO7 and is expected
to be used as a background model in the next GRACE
and GRACE-FO Level-2 releases. AODIB RL0O7 is based
on 3-hourly atmospheric data from the ERAS reanalysis
(Hersbach et al. 2023) by the European Centre for Medium-
Range Weather Forecasts (ECMWF) as well as simulated
ocean bottom pressure (OBP) variations from the MPIOM
ocean model (Jungclaus et al. 2013) forced with ERAS
atmospheric data. Even though background models are occa-
sionally updated and thereby improved over time, they will
necessarily remain imperfect. As a result, high-frequency
signals not removed from the GRACE and GRACE-FO sen-
sor data will lead to residual temporal aliasing artefacts in
the monthly solutions. In fact, the errors due to imperfect de-
aliasing are considered to be among the largest contributors
to the overall GRACE and GRACE-FO error (Flechtner et al.
2016).

There are different approaches for mitigating the impact
of residual aliasing errors in GRACE data processing. Most
notably, several studies have shown that including an esti-
mation of the uncertainty of the background model data
can help improve the quality of the gravity field solutions.
Zenner et al. (2010) and Kvas et al. (2019) suggested that
including uncertainty estimations allows for a weighting of
the measurements according to the associated model error.
As a result, measurements associated with a larger model
uncertainty have a reduced impact on the final gravity field
solutions and therefore mitigate some of the effects from
residual temporal aliasing. Similarly, employing the uncer-
tainty estimates of ocean tide models has been shown to have
a positive impact on the gravity solutions in dedicated per-
formance simulation studies (Abrykosov et al. 2021).
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While assessments of the residual errors of AOD1B have
been performed in the past (Dobslaw et al. 2016; Poropatet al.
2019), they were only based on AOD1B RLOS. This assess-
ment is now believed to be no longer representative for the
uncertainties of AOD1B RLO7 given the numerous changes
made over the last two releases (Shihora et al. 2023b). In
this study, we thus derive a new estimation of the non-tidal
atmosphere and ocean background model errors associated
with AOD1B RLO7 that can be readily used in the gravity
field estimation process of satellite gravimetry as well as in
simulation studies. Our update is especially timely in light of
the ongoing efforts towards developing future generations of
satellite gravimetry missions, which include both double-pair
constellations and novel quantum gravity concepts (Schlaak
et al. 2022; Zhou et al. 2023).

We start this work by assessing the signal content in
AODIB RLO7 and how the represented variability has
changed, especially for the oceanic component in Sect.?2.
This is done by comparing the AODIB update to the
ITSG2018 daily gravity field solutions (Kvas et al. 2019;
Mayer-Giirr et al. 2018). We then develop an estimation of
the uncertainties in the atmospheric component of AOD1B
through a comparison of the employed ERAS reanalysis data
to other state-of-the-art atmospheric reanalyses (Sect.3). In
Sect.4, we focus on the uncertainties in the oceanic com-
ponent using ensemble simulations where we quantify both
the impact of the atmospheric forcing and the impact of the
intrinsic variability. The derivation of a new time-series of
true errors representative of the uncertainties within AOD1B
RLO7 is presented in Sect.5, and the computation of new
error variance—covariance matrices for the application in sim-
ulation studies is described in Sect.6. The paper concludes
with early application examples of the newly derived stochas-
tic information for GRACE-like simulations (Sect.7) and a
summary in Sect. 8.

2 Comparing AOD1B to ITSG daily solutions

We start by examining the signal content of AOD1B RLO07 in
relation to residual signals remaining in previously published
GRACE/GRACE-FO gravity field time-series. A compari-
son of the new release RLO7 to its predecessor RLO6 shows
that the largest differences in variability are found in the
oceanic domain. In contrast, the atmospheric differences
over the continents are much smaller (Shihora et al. 2023b).
This can be expected given the lack of assimilated obser-
vations in the ocean simulation. In turn, this also suggests
that the uncertainties of AOD1B are going to be dominated
by the dynamic contribution of the simulated ocean bottom
pressure. To assess the degree to which the oceanic mass
variations are not captured in RL0O7, we make use of a series
of daily gravity field solutions provided by the Institute of
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Geodesy at Graz University of Technology (ITSG). ITSG-
GRACE2018 (ITSG2018 in the following) is provided in
terms of spherical harmonic coefficients up to degree and
order 40 and is based on a combination of GRACE measure-
ments and prior stochastic information in a Kalman smoother
framework (Kvas et al. 2019; Mayer-Giirr et al. 2018). These
daily solutions incorporated AOD1B RLO06 in its processing
in conjunction with the previous estimate of the associated
AODI1B uncertainties. They thus represent residual mass
variations not captured by AOD1B RL06. Given their global
coverage and connection to actual GRACE observation, the
daily gravity field solutions have already been applied suc-
cessfully in several oceanic applications (Bonin and Save
2020) and were also utilised in the assessment of differences
in high-frequency ocean model simulations (Schindelegger
et al. 2021).

For our analyses, we synthesise an equiangular one-
degree grid based on spherical harmonic coefficients from
daily ITSG2018 solutions for 2004-2006. Similar to the
approaches of Eicker et al. (2020) and Schindelegger et al.
(2021), we transform a binary land—ocean mask from spher-
ical harmonics onto the same grid and reject all grid points
with a value below 0.8 to generate a coastal buffer. As a ref-
erence, the resulting standard deviation of the residual OBP
signal of the ITSG2018 solutions is shown in Fig. 1 for three
frequency bands as obtained from a fourth order Butterworth
filter. The variability is shown for 3—10 days (Fig. 1a), 10-30
days (Fig. 1b) and 30-60 days (Fig. lc).

For the highest frequencies, the residual OBP variations
are mainly located in coastal regions as well as in the
Southern Ocean in resonant basins and in the band of the
Antarctic Circumpolar Current (ACC). Especially in the
Bellingshausen Basin, the residual variability reaches values
up to 2 hPa, i.e. 2 cm in equivalent water-height. The picture
is similar for the moderate frequencies (10-30 days) although
the strongest signals are now found south-west of Australia.
For the longest frequencies we consider here (30-60 days),
the residual OBP variability is generally much weaker, sug-
gesting that the OBP variations at these frequencies are better
captured by the AOD1B RL0O6 background model data which
were subtracted during the satellite data processing. As a ref-
erence, we also show the standard deviation of AOD1B RL0O7
in the same frequency bands in Fig.2. Comparing both fig-
ures indicates that for the shortest periods, the residual ITSG
variability matches the overall variability of the background
model, i.e. the residual circulation signal is proportional to
the overall signal. This is especially visible in the Southern
Ocean. In other parts, such as the northern part of the Pacific
and especially for longer periods, that correspondence is sig-
nificantly reduced.

Next, we consider the impact of the new release AOD1B
RLO7 on the residual OBP variations. As the ITSG2018
time-series already considers the AOD1B RL06 background

model data, we compare the ITSG signal content only to
the update of AODI1B, i.e. the difference (RLO7-RL06). We
then assess the impact of the model update by computing
explained variances using:

Var(ITSG — AAODIB)
var(ITSG)

PVE=|1-

where Apopip is the update to the AODI1B background
model data through RLO7.

The results are shown in Fig.3 for the same three fre-
quency bands as before. In all three bands, there are clearly
regions where the update to AODI1B captures part of the
residual circulation signal (red) and regions where the update
does not capture the residual variability (blue). Blue areas
are especially prevalent for the highest frequencies in the
lower latitudes. While the same is true for the 10-30-day and
30-60-day bands, the effect is less pronounced. However, it
should be noted that the negative explained variances could
also indicate that the ITSG solution does not capture the
variability properly, which may particularly hold for high-
est frequencies (Schindelegger et al. 2021). Regions where
the AOD1B update captures the residual variability are in
all three cases found in the band of the ACC as well as in
the Arctic Ocean for the medium and long periods. Compar-
ing the results to the amount of residual variability presented
in Fig. 1, we find that the regions with negative explained
variances correspond largely to areas where there is very lit-
tle residual variability present in the ITSG time-series. This
is especially clear for the shortest periods where the ITSG
variability around the equator is close to zero. As a result,
the explained variances, which are a metric relative to the
ITSG variability, likely appear as highly exaggerated. When
focusing only on regions with a significant amount of residual
circulation signal, however, it turns out that these correspond
to the areas with a positive explained variance. Examples
are, for instance, the Bellingshausen Basin for the 3 — 10-day
band, or off the coast of south-western Australia in the 10
— 30-day case. So while in many regions, especially lower
latitudes, the two datasets do not correspond well, there are
some regions such as parts of the Southern Ocean and the
Arctic, where the variability is better captured by AODI1B
RLO7. Those conclusions are also consistent with previous
evidence based on satellite altimetry and GRACE-FO along-
track data reported by Shihora et al. (2022a).

Based on the results presented so far, there are local and
regional improvements when considering the new release of
AOD1B. However, not all of the residual oceanic mass vari-
ations present in the ITSG2018 daily solutions are captured.
Hence, the uncertainty of the background model data can be
expected to show significant changes compared to the earlier
estimation of Dobslaw et al. (2016) which calls for a new
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(a) 3-10 days

'

0.4 0.8

Fig.1 Standard deviation of the residual circulation signal given by the
ITSG2018 daily gravity field time-series. Results are bandpass filtered
into 3 frequency bands: 3—10 days (a), 10-30 days (b), 30-60 days (c).

(b) 10 - 30 days

- *,

1.2
Standard Deviation Residual OBP [hPa]

1.6

Note that the residual circulation given by ITSG2018 already includes
the AOD1B RLO06 background model data

Standard Deviation AOD1B RLO7 [hPa]

Fig. 2 Standard deviation of AODI1B RLO07 as a reference. Results are bandpass filtered into 3 frequency bands: 3—10 days (a), 10-30 days (b),

30-60 days (c)

error assessment. In the following section, we thus focus on
the calculation of a new realisation of true errors for AOD1B
RLO7 based on model differences from atmospheric reanal-
yses as well as differences in ocean model simulations for
subsequent use in satellite gravity data analysis.

3 Atmospheric surface pressure differences

AODIB considers the non-tidal mass variations from both
the oceans and the atmosphere. For RLO7, the atmospheric
component is based on the ECMWEF’s ERAS reanalysis data
(Hersbach et al. 2023) until 2017, followed by operational
ECMWEF data from 2018 onward. While the reanalysis data
are constrained through observations, they will still include
errors induced by insufficient or conflicting observations
as well as insufficient modelling of atmospheric dynam-
ics. These uncertainties are typically distributed globally and
depend for example on parametrisations, orography, etc. A
common approach to address these is through the comparison
of NWM fields published by different institutions.

We therefore compare the ERAS surface pressure data
to two other state-of-the-art atmospheric reanalyses: the
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Modern-Era Retrospective Analysis for Research and Appli-
cations, Version 2 (MERRA2) (Gelaro et al. 2017), from
NASA’s Global Modeling and Assimilation Office, and the
Japanese 55-year Reanalysis (JRAS55) (Kobayashi et al.
2015) from the Japan Meteorological Agency. Some charac-
teristics regarding resolutions and data assimilation scheme
are given in Table 1.

As all three reanalyses feature a different horizontal res-
olution, we unify all datasets by remapping to a regular 0.5°
grid following Dobslaw et al. (2016). We further resample
to a six-hourly temporal resolution and subtract the mean
surface pressure in each case. This is also in line with the
resolution of the previous error assessment. To eliminate the
impact of low frequencies and high-frequency atmospheric
tidal signals which are not part of AOD1B, we subsequently
apply a bandpass filter with cut-off periods of 1 and 30 days.
The results are shown in Fig.4 as standard deviation differ-
ences between ERAS5 & MERRA2 (a), ERAS5 & JRAS5 (b)
and MERRA?2 & JRASS (c).

In all three cases, the largest differences in surface pressure
variations are found in the Southern Ocean and Antarctica.
Differences between ERAS & MERRA?2 as well as MERRA2
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(c) 30 - 60 days

-0.4 0.0

Explained Variance Residual OBP

Fig. 3 Amount of variance explained by the update of AODIB, i.e.
the difference (RLO7-RL06) using the residual circulation signal from
ITSG2018 daily gravity field solutions as a base time-series. Results

are bandpass filtered into 3 frequency bands: 3—10 days (a), 10-30 days
(b), 30-60 days (c). Red indicates areas where the update of AOD1B
captures more of the residual signal

Table 1 Summary of

atmospheric reanalysis products Name Resolution Data assimilation Period

used in this study ERA5 0.28x0.28, hourly 4D-VAR 1940—present
MERRA?2 0.5x0.625, hourly 3D-VAR 1980—present
JRASS 1.25x1.25, 3-hourly 4D-VAR 1958—present

I
0.0 0.3 0.6

(b) ERAS - JRAS5

(c) MERRAZ2 - JRA55

ot
/2 <
/ o
&

0.9 1.2 1.5

Standard Deviation Difference SP [hPa]

Fig. 4 Standard deviation differences of surface pressure (SP) from
three different atmospheric reanalyses. Subfigures show the results for
differences between ERAS5 and MERRA?2 (a), ERAS and JRASS (b) as

& JRASS reach values of up to 2 hPa in the Ross and Weddell
Seas. Over the rest of the continents, differences are much
smaller and generally at or below 0.5 hPa, although the differ-
ences between ERAS & JRASS are the smallest. Computing
area-weighted spatial averages of the absolute value gives an
average difference of 0.4 hPa in the ERAS & MERRAZ2 and
MERRA?2 & JRASS cases. The average difference between
ERAS5 & JRASS is with 0.3 hPa slightly smaller, i.e. the
ERAS and JRASS reanalysis correspond better to each other
than to the MERRA?2 reanalysis. Compared to the standard
deviation of just ERAS surface pressure as given in Fig.5a
where the surface pressure variability exceeds 10 hPa in high
latitudes, differences between the reanalyses reach up to 30%

well as MERRA?2 and JRASS (c). All surface pressure fields are band-
pass filtered using a 4th-order Butterworth filter to only contain periods
in the 1-30-day band

for low latitudes (< 20°) and only 10% for higher latitudes
(> 20°).

These small differences between the reanalyses show that
surface pressure variations are generally well captured by
all three of them. The result is not surprising, given that the
reanalyses share essentially the same physics and observa-
tional data considered for assimilation. Only in regions where
the density of observations is sparse, e.g. in Antarctica, larger
differences are found. Based on the differences in the reanal-
yses presented in this section, we thus choose to base the
atmospheric component of the new uncertainty estimation
on the differences between ERAS5 and MERRAZ2.

@ Springer
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4 MPIOM ensemble simulations

Next to the residual uncertainties in the atmospheric com-
ponent, we also consider uncertainties in the ocean domain.
In contrast with the atmospheric mass variations provided
by NWMs, the OBP variability is not observationally con-
strained. Instead, it is based on free-running forward simula-
tions with the Max-Planck-Institute for Meteorology Ocean
Model (MPIOM) (Jungclaus et al. 2013) forced using atmo-
spheric fields from the ERAS5 reanalysis. More details on
the configuration of the ocean model are given in Shihora
et al. (2022a). Given the lack of observational constraints,
the residual uncertainties in AOD1B RL0O7 are expected to
be much larger compared to the atmospheric component as
it was already the case for the previous estimation. To get an
estimate of the residual uncertainty of the oceanic component
of AOD1B, we set up an ensemble simulation using MPIOM.
In particular, we focus on two sources of uncertainty. The first
source is based on the differences in the atmospheric reanal-
yses which will result in differences in the ocean dynamics
and consequently also in differences in the OBP variability.
In the following, we will refer to the variability induced by
the atmosphere as forced variability. As a second contribu-
tion, chaotic intrinsic variability can arise through non-linear
ocean processes. While they are typically associated with
smaller scales, they can map into larger variations through
non-linear interactions (Arbic et al. 2012; Zhao et al. 2021).
We will refer to these variations as intrinsic variability going
forward.

4.1 Forced variability

Excluding tides, high-frequency mass variations in the
oceans are largely caused by atmospheric surface winds lead-
ing to a redistribution of water masses. These wind-driven
barotropic changes are particularly pronounced in middle
to high latitudes. Gradients in atmospheric surface pressure
over the oceans can also drive relevant OBP variations (Ponte
1993). While at low frequencies the ocean surface can be
expected to compensate the atmospheric pressure anoma-
lies, at higher frequencies, the response is non-equilibrium
(i.e. involves currents and mass motion). While atmospheric
reanalyses such as ERAS capture atmospheric dynamics with
a great deal of realism, they are of course not perfect and
residual uncertainties remain as shown in the previous sec-
tion. This includes presented differences in surface pressure
but also differences in other relevant atmospheric fields such
as surface winds.

To assess the impact of these atmospheric differences on
the MPIOM simulations, we perform three model experi-
ments from 1995 to 2020. One is forced using atmospheric
ERAS data. This simulation is thus equivalent to the simu-
lation used in AOD1B RL0O7 with the only difference being
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that for the simulation here we have used a 3-hourly forcing
frequency in order to be consistent with the other two exper-
iments. The second and third MPIOM runs use either the
MERRA?2 or the JRASS5 reanalysis data for the atmospheric
forcing. In both of these cases, we also use 3-hourly forcing.
The atmospheric forcing considers contributions from atmo-
spheric pressure, near-surface horizontal wind speed and
stresses, solar radiation, precipitation, cloud cover, tempera-
ture and dew point temperature. We extract bottom pressure
fields from the ocean model, subtract the temporal mean and
bandpass filter the results using 1- and 30-day cut-off periods.

As areference, we show the OBP variability, i.e. standard
deviation, of the ERAS forced run alone in Fig. 5b. Regions
with the highest variability exceeding 5 hPa are found in
the Southern Ocean in the region of the ACC, especially in
the Bellingshausen Basin and the South-Australian Basin.
Additionally, high variability is found in shelf areas as well
as the Arctic Ocean where OBP variations are largely driven
by barotropic pressure changes (Bingham and Hughes 2008).

We now turn to the differences between the simulations
with varied forcing. Figure 6 shows the standard deviation
of OBP differences between the ERAS5 and MERRA2 runs
(a), the ERAS5 and JRASS runs (b), and the MERRA2 and
JRAS5S runs (c). In all three cases, the largest differences in
variability match the regions that show a high variability in
the first place as shown in Fig.5b. The largest signals are
found again in the Southern Ocean, where the wind-driven
barotropic variability is generally high, but also differences
in the atmospheric reanalysis data are largest (see Fig.4). In
these regions, the OBP differences reach values of up to 1 hPa
which amounts to 15 —20% of the variability is those regions
and even over 50% east of the Drake Passage. This highlights
the sensitivity of the high-frequency mass variations in the
Southern Ocean to the atmospheric forcing. Comparing the
individual subfigures reveals that the differences between the
ERAS and JRASS forced runs are smaller than the difference
of either to the MERRA2 forced simulation. Again, this is
consistent with the differences in atmospheric surface pres-
sure 4 where the differences between ERAS and JRASS tend
to be the smallest.

4.2 Intrinsic variability

Next we turn to the estimation of the contribution due to
intrinsic variability in MPIOM. Oceanic intrinsic variations
emerge not through variations in the atmospheric forcing
but instead emerge from mesoscale turbulence on scales
of 0(10—100) km and O(10—100) days (Sérazin et al.
(2015) and references therein). Impact of this initial intrinsic
variability is also found at much larger and longer (i.e. inter-
annual) scales (Penduff et al. 2011) suggesting a spontaneous
inverse cascade to these scales (Sérazin et al. 2018). Studies
show that this intrinsic variability has a significant impact
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Fig.5 Standard deviation of
ERAS surface pressure (SP) and
simulated ocean bottom pressure
(OBP) from MPIOM using
atmospheric ERAS forcing data.
Results are bandpass filtered
using a 4th-order Butterworth
filter to only contain periods in
the 1-30-day band

(a) ERAS SP

0 2 4

Standard Deviation SP [hPa]

(b) ERAS - JRAS5

(a) ERAS - MERRA2

I
0.2 0.4

8 10 0 1 2 3 4 5
Standard Deviation OBP [hPa]

(c) MERRAZ2 - JRA55

oV,

0.6 0.8

Standard Deviation Difference OBP [hPa]

Fig.6 Standard deviation of ocean bottom pressure (OBP) differences
from three different MPIOM simulations where the atmospheric forc-
ing is varied. Subfigures show the results for differences between ERAS
vs. MERRAZ2 atmospheric forcing (a), ERAS vs. JRASS forcing (b) as

on a number of oceanic variables such as sea-level (Sérazin
et al. 2015), ocean heat content (Penduff et al. 2019), trans-
ports (Cravatte et al. 2021) or OBP (Zhao et al. 2021) on
various time-scales. In order to disentangle the impact of
the atmospheric forcing from the intrinsic variations, a com-
mon approach is to perform parallel ocean simulations with
identical forcing that only differ in some small initial pertur-
bations. Differences in the resulting variability can then be
used to examine intrinsic variations (Sérazin et al. 2015). We
employ the same approach in the following.

We perform three MPIOM simulations that are all based
on ERAS5 atmospheric forcing data. All simulations start in
the year 1994 from a transient ERAS run started in 1960
based on a 2000 year long spin-up simulation with daily cli-
matological forcing. One simulation, the reference, uses the
“correct” initial conditions for the year 1994. For the second
simulation, we start the run in 1994 but employ the initial con-
ditions based on the year 1993, thus shifting the initial state
by 1 year. The third run uses the initial conditions after only
1000 years of the spin-up. This represents a larger difference
in the initial conditions for comparison. We then compute
differences in 3-hourly OBP between all three simulations
and band-pass filter the results to only include frequencies in

well as MERRA2 vs. JRA55 forcing (¢). All OBP fields are bandpass
filtered using a 4th-order Butterworth filter to only contain periods in
the 1-30-day band

the 1-30 day range. The results in terms of standard devia-
tions of OBP differences are given in Fig. 7. Figure 7a shows
the difference between the reference simulation and the sim-
ulation with the initial conditions shifted by 1 year, whereas
Fig. 7b shows the difference between the reference and the
simulation using the initial conditions after half the spin-up.
Figure 7c shows the difference between the two simulations
using shifted initial conditions. We explicitly note here the
difference in scale, which is in this case given in Pa, compared
to previous figures.

The impact of the initial conditions varies strongly with
latitude. Differences are largest in the Southern Ocean along
the band of the ACC and reach values of up to 30 Pa. In
contrast with the impact of the atmospheric forcing, the dif-
ferences are thus smaller and amount only to 30-50% of
the forced variability in the Southern Ocean. Other regions
show a very limited sensitivity to the choice of initial con-
ditions. Most of the open ocean and also coastal areas are
largely unaffected. Comparing the three standard deviation
differences with each other shows that the spatial distribution
and magnitude are very similar suggesting that the distance in
time by which the initial conditions are shifted is not relevant
here. As the MPIOM configuration used here and in AOD1B

@ Springer
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(a) 1994 - 1993

2 s, 0l

0 10 20

(b) 1994 - s.u. 1000

(c) 1993 - s.u. 1000
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Standard Deviation Difference OBP [Pa]

Fig.7 Standard deviation of ocean bottom pressure (OBP) differences
from three different MPIOM simulations where the initial conditions
are varied. Subfigures show the results for differences between using
the correct initial conditions for 1994 vs. a 1-year shift in initial condi-

is not eddy-permitting, there is likely little mesoscale activity
and consequently also a reduced amount of intrinsic variabil-
ity (Penduff et al. 2019). This might explain why the impact
of the initial conditions is comparatively small compared to
the forced variability and compared to results presented by
Zhao et al. (2021).

5 AOe07 time-series

In the previous sections, we have analysed and compared
atmospheric mass variations from different state-of-the-art
reanalyses, which gives an estimate of the residual atmo-
spheric uncertainty. Similarly we have examined the oceanic
uncertainty in the forced variability and intrinsic chaotic vari-
ability in MPIOM through ensemble simulations. Next, we
combine the individual components to derive a single time-
series of true errors representative for AOD1B RLO7 that can
be used in the processing of either satellite gravimetry or in
simulation studies for MAGIC.

The final time-series should merge the atmospheric infor-
mation over the continents with the oceanic uncertainties
elsewhere. For the atmosphere, we choose to use the differ-
ences between the ERAS and the MERRAZ2 reanalyses. This
combination is compatible with the ERAS based AODIB
RLO7 but also shows the larger differences in atmospheric
mass variations and is thus deemed a better estimate of the
residual uncertainties. For the ocean component, we com-
bined the impact of the forced variability and the intrinsic
variability in OBP. This is done through a new MPIOM sim-
ulation forced with atmospheric MERRA?2 data that is also
based on a shift in the initial conditions by one year. The
uncertainty information over the oceans is then given by the
difference between the new simulation to the reference simu-
lation based on ERAS data. Atmospheric tides in the surface
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tions (a), 1994 vs. initial conditions after half of the spin-up simulation
(i.e. 1000 years of spin-up) (b) as well as a one-year shift vs. using the
ocean state after half of the spin-up (c¢). All OBP fields are bandpass
filtered to only contain periods in the 1-30-day band

pressure data and atmospherically induced tides in the sim-
ulated ocean bottom pressure are estimated and subtracted
in the same way as for AOD1B RL0O7 and as described by
Balidakis et al. (2022). The atmospheric and oceanic com-
ponents are subsequently combined into a single time-series
of 6-hourly fields and then highpass filtered using a cut-off
frequency of 30 days in order to only represent the high fre-
quencies relevant for satellite gravimetry.

There is, however, an issue that needs to be addressed espe-
cially for the ocean component. As the uncertainty estimation
is based on differences between OGCM simulations with
MPIOM only, the uncertainties are likely underestimated in
their magnitude. As indicated by Quinn and Ponte (2011),
model differences as they are used here tend to underestimate
the high-frequency OBP variations, especially when they are
based on simulations using the same ocean model. Simi-
larly, the impact of the intrinsic variability greatly depends
on the resolution of the ocean model (Sérazin et al. 2015).
We here use, just as in AOD1B RL0O7, MPIOM’s TP10L40
configuration based on a 1-degree tri-polar grid and thus
expect the intrinsic variations to be under-represented in the
ensemble configuration. While the spatio-temporal pattern of
OBP variability in the Southern Ocean is captured, its mag-
nitude and certain peculiarities (e.g. the Argentine Gyre) are
likely underestimated. Similar to the approach of the previ-
ous uncertainty estimation (Dobslaw et al. 2016), we thus
calculate a scaling factor for the oceanic component.

This is done through a comparison of the oceanic
uncertainty estimate to the residual OBP variations in the
ITSG2018 daily solutions after RLO7 has been subtracted.
We then select a global scaling factor to adjust the uncertainty
time-series up to the ITSG variability without exceeding it.
Note that the global factor of 2.4 is applied to the oceanic
component of the time-series only. For the atmospheric con-
tribution over the continents, the strong dependence on the
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assimilated barometer data means that no scaling is required.
We note, however, that this procedure does not introduce
any actual GRACE or GRACE-FO gravity information from
the ITSG solutions into the error time-series. This approach
merely compares the overall magnitude in variability.

The thus derived final error time-series, labelled AOe07,
can then be considered an estimation of the residual uncer-
tainties in the AOD1B RL0O7 background model. In Fig. 8, we
show the standard deviation of the new AOe(07 time-series
(a). In addition, Fig. 8b shows the previous uncertainty esti-
mation AOerr, which was developed by Dobslaw et al. (2016)
to represent the model deficiencies of AOD1B RL05. AOerr
was based on operational and ERA-Interim atmospheric data
from the ECWF as well as simulated OBP from the OMCT
ocean model. The AOerr time-series is available for the 12-
year period from 1995 to 2006 as part of the ESA ESM.

Globally, the new time-series features a smaller variability,
reflecting the improvements made to the AOD 1B background
model data over the years. The reduction is both visible over
the oceans and over the continents. The discrepancy in the
accuracy of the background model data between the atmo-
spheric component over land and the simulated ocean bottom
pressure is still reflected in the new time-series.

The largest uncertainties are found in the coastal areas
where the amplitude of the barotropic high-frequency vari-
ations is also comparatively high. Additionally, increased
uncertainties are also found in the Southern Ocean, as
described in Sect. 4.1. Compared to the previous release, the
magnitude is smaller in the Southern Ocean although the
regions with enhanced uncertainties remain similar. In con-
trast with the previous estimation, however, the uncertainties
in the Arctic Ocean are significantly reduced which can be
attributed to MPIOMs much better representation of the Arc-
tic Ocean based on a tri-polar grid.

Technically, AOeQ7 is available as a 6-hourly series of
fully normalised Stokes coefficients from a spherical har-
monic expansion up to degree and order (d/o) 180. The
time-series covers 26 years from 1995 to 2020 and thus
extends the previous version by 14 years. The data can
be accessed, together with the previous uncertainty assess-
ment, via the ESA ESM repository under ftp://ig2-dmz.gfz-
potsdam.de/ESAESM/.

6 Variance-covariance matrices

One way to include the error estimation of background mod-
els is through the use of a variance—covariance matrix (VCM)
which represents the spatio-temporal uncertainties. Such a
VCM can then be used either in the gravity field estima-
tion process or in dedicated simulation studies as shown
by Abrykosov et al. (2021) for the case of ocean tides. In
the latter case, the approach offers an opportunity to signifi-

cantly improve the gravity field retrieval performance if the
non-tidal background stochastic modelling is improved as
well. In this section, we derive a new VCM based on the
updated AOeQ7 time-series that captures the spatio-temporal
uncertainties of the non-tidal atmosphere and ocean high-
frequency mass variations.

The calculation of the VCM is based on the computation
of both variances as well as covariances between the Stokes
coefficients via

1 _
ﬁ Z (Xll,ml - Xll,ml)

t

oV (X1 my» Xymy) =
. (Xlz,mz - le,mz) M

where X, ;,, stands for the C and S Stokes coefficients of
degree /1 and order m | while X represents the temporal mean
value. Variances are computed analogously using /1 = [, and
mp; = moy.

Based on Eq. 1, a fully populated stationary VCM is calcu-
lated up to d/o0 40. This then matches the resolution of current
GRACE daily solutions such as ITSG2018. Additionally, a
second diagonal matrix, containing thus only variances, is
calculated up to the full d/o 180. Like the AOe07 time-
series, both matrices are publicly available under Shihora
et al. (2023a). We note that the VCMs computed in this way
do not include any regularisation as it is implemented, e.g.
for ocean tides (Abrykosov et al. 2021). In contrast with the
tidal case, the AO VCM is based on a much larger number
of epochs (i.e. 26 years of 6-hourly data) and in prelimi-
nary tests does not pose any problems in the application.
Nonetheless, it should be kept in mind that the VCM is not
regularised. In the following, we will turn to possible applica-
tions in GRACE-like and Next-Generation-Gravity-Mission
(NGGM) simulations.

7 Application in simulation studies

In the context of satellite gravimetry, the background model
uncertainties (as given by AOe07 and the VCM) can be
applied in a variety of ways. Specifically, within the GRACE
and GRACE-FO data processing, it can be applied in
the gravity field estimation process to weight observations
according to the uncertainty of the associated background
model information. Secondly, AOe07 can be used in dedi-
cated satellite gravimetry simulation studies. Especially the
estimation of gravity field retrieval errors is regularly per-
formed in the context of future gravity mission scenarios and
their comparison. Here we present an example application
of AOe07 in a Mass-Change and Geosciences International
Constellation (MAGIC) simulation scenario that consists of
a polar pair at 488 km and an inclined pair at 397 km.

@ Springer
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Fig.8 Standard deviation of the
new time-series of true errors
adapted for AOD1B RLO7 (a)
and the previous error estimation
(b). In both cases, 12 years from
1995 to 2006 are used

(a) AOe07

(b) Previous AOerr

As a preparatory step, we perform a GRACE-FO base-
line simulation for the year 2002 using GFZs EPOS-OC
software (Zhu et al. 2004). The time-variable source model
for the simulation is based on the ESA Earth-System-
Model (ESA ESM) which also provides the so called DEAL
coefficients (Dobslaw et al. 2016). The DEAL coefficients
contain the unperturbed de-aliasing model that is applied as a
background model in case that perfect model-based AO pre-
dictions are assumed. To arrive at a realistically perturbed
background model for the simulations, the DEAL coeffi-
cients are either perturbed using the old AOerr product, which
then results in a perturbed background model that corre-
sponds to AOD1B RLOS, or the new AOeQ7 series, which
is designed to represent the capabilities of AOD1B RLO7.

In the simulation, we perform two gravity field recoveries
using either DEAL + AOerr or DEAL + AOe(Q7 as a back-
ground model and subsequently subtract the HIS component
(i.e. terrestrially stored water, continental ice-sheets and solid
Earth) of the ESA ESM to derive gravity field retrieval errors.
We note that the retrieval errors obtained in this way contain
both the AO-aliasing error and the HIS aliasing. Alterna-
tively, the gravity field recoveries can be performed using
ether DEAL + AOerr + HIS or DEAL + AOe07 + HIS, which
then excludes any HIS aliasing errors in the final retrieval
erTors.

Figure9 illustrates the gravity field retrieval error for
the new AOe(7 error time-series (red, dashed) in compar-
ison with the previous AQOerr time-series (blue, solid). The
mean HIS signal is given in black as indicator for the actual
geophysical signal that needs to be captured by a satellite
mission. Thin lines represent monthly results for 2002, while
the bold lines indicate the yearly mean results. Subfigure (a)
shows the results including only the AO-aliasing error, while
(b) includes the AO-aliasing contribution as well as the HIS-
aliasing.

The simulation results suggest an overall reduction in the
retrieval error of a few mm EWH, which we consider as rele-
vant. For the mean results shown here, the RMSE is reduced
by about 30 mm. While some reduction is also seen in parts
at low degrees, the reduction is best visible for degrees above
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Standard Deviation [hPa]

about d/o 30, and as a result, the mean HIS signal is recov-
erable to slightly higher spatial resolution. While there are
slight variations from month to month, the results are fairly
consistent for all computed months of the year 2002, indi-
cating that when AO errors are considered, the simulated
gravity retrieval error is reduced using the new AOe(Q7 error
estimation. Most likely, this can be attributed to the over-
all reduced amplitude of the new error time-series compared
to its predecessor. Comparing the two subfigures shows that
the impact of the HIS-aliasing is much smaller than the AO-
contribution. This also underlines why we specifically focus
on the AO contribution in the error estimation. It also cor-
roborates the decision of the GRACE project team to abstain
from the application of a hydrological de-aliasing model for
Level-2 gravity field processing.

8 Summary and conclusions

For this study, we have produced and examined a new quan-
tification of the remaining uncertainties in the latest release
07 of the non-tidal Atmosphere and Ocean De-Aliasing
Level-1B (AOD1B) product. The newly updated uncertainty
estimation is called AOe07 and can be used both for the pro-
cessing of monthly gravity field solutions for mitigating the
impact of residual temporal aliasing, and for dedicated simu-
lation studies of future satellite gravimetry mission concepts.

We have shown that the new release of AODIB does
indeed improve the representation of the oceanic high-
frequency variability by comparing both RL0O7 and RL06 to
the daily ITSG2018 gravity field solutions in regions where
ITSG displays a significant amount of variability. Consider-
ing that the represented variability of AODIB is less accurate
over the oceans compared to the atmospheric contribution
over land (Shihora et al. 2023b), an update of the residual
uncertainty estimation was deemed necessary.

The new estimation is based on model inter-comparisons
both for the atmosphere and the ocean. For the atmospheric
part, we consider model differences between the latest
ECMWEF reanalysis ERAS, which is the basis of AODIB
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(a) AO-aliasing only
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(b) AO & HIS aliasing
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Fig. 9 Simulated degree amplitudes of gravity retrieval errors in mm
EWH considering only the AO noise contribution. Results using the
previous AOerr (new AOe(07) estimation are given in blue (red). Thin

RLO7, and the MERRA2 reanalysis. Over the oceans, we
calculate model differences between unconstrained MPIOM
simulations forced with ERAS5 and MERRA2, whereas the
latter also includes shifted initial conditions in order to cap-
ture the impact of the intrinsic variability. The final AOe07
time-series then combines the atmospheric contributions over
land and the oceanic contributions into a single 6-hourly
time-series of Stokes coefficients up to d/o 180.

As, however, the oceanic component is based on model
differences from the same ocean model, the uncertainties are
most likely underestimated. Similar to the previous release by
Dobslaw et al. (2016), this issue has been addressed through
a time-invariant global scaling factor that is applied to the
entire oceanic domain. The scaling factor is determined based
on a comparison of the model differences to the residual
variability in the daily ITSG data. While this is not an ideal
approach, it allows the magnitude of the variability to be ade-
quately captured. However, we note that the ratio of intrinsic
versus forced variability is smaller than in comparable studies
(Zhao et al. 2021) and the contribution of the intrinsic vari-
ability is under-represented in certain regions. We attribute
this to the limited spatial resolution of the MPIOM configura-
tion, which does not resolve mesoscale processes which are
the ultimate driver of the intrinsic variability. We believe that,
given the ongoing progress towards the next generation of
satellite gravimetry missions and the associated studies, the
timely availability of applicable background model uncer-
tainties is important, so that AOe(07 has been made available
nonetheless. In a possible future refinement, additional inves-
tigations that specifically address the impact of the ocean
model resolution as well as exploring differences based on
different ocean models including high-resolution shallow-

107!

L O M A .
SH degree

lines represent the individual monthly results and thick lines indicate
the mean for the entire year 2002. The HIS signal is given in black as a
reference

water codes should be considered along with a larger number
of model runs to better capture the effects of the intrinsic
variability. In that way, an even more realistic uncertainty
estimate could be provided.

Based on the AOe07 time-series, we also provide a
variance—covariance matrix that represents explicitly the
(time-averaged) spatial correlations for further use in sim-
ulation studies. A successful example of the application of
VCMs is given in Abrykosov et al. (2021) for the case of
ocean tides. Lastly, we have demonstrated the application of
the new data-set in an exemplary satellite gravimetry simula-
tion for the future MAGIC constellation. The results, which
compare the gravity field retrieval error when using either the
new AOe(Q7 data or the previous error estimation, show a gen-
eral improvement in the monthly retrieval by about 30 mm
EWH, especially at higher degrees, and thus demonstrate a
better signal recovery by a few degrees. We recommend that
simulation studies are based on the ESA ESM DEAL coeffi-
cients in combination with AOe07 to arrive at a realistically
perturbed de-aliasing model that is compatible with recent
developments in background models.
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