Supporting Information for

Oxygen-Donor Metalloligands Induce Slow Magnetization Relaxation in Zero Field for a Cobalt(II) Complex with {CoO₄} Motif

Giuseppe Lococciolo,^[a] Sandeep K. Gupta,^{[a],\$} Sebastian Dechert,^[a] Serhiy Demeshko,^[a] Carole Duboc,^[b] Mihail Atanasov,^{[c,d]*} Frank Neese,^{[c]*} and Franc Meyer^{[a]*}

- [a] Dr. G. Lococciolo, Dr. S. K. Gupta, Dr. S. Dechert, Dr. S. Demeshko, Prof. Dr. F. Meyer University of Göttingen, Institute of Inorganic Chemistry Tammannstraße 4, 37077 Göttingen, Germany
- [b] Dr. Carole Duboc
 Université Grenoble Alpes, CNRS UMR 5250, DCM
 F-38000 Grenoble, France
- [c] Prof. Dr. M. Atanasov, Prof. Dr. F. Neese
 Max-Planck-Institut f
 ür Kohlenforschung
 Kaiser-Wilhelm-Platz 1, 45470 M
 ülheim an der Ruhr, Germany
- [d] Prof. Dr. M. Atanasov
 Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences
 Akad. Georgi Bontchev Street 11, 1113 Sofia, Bulgaria

* To whom correspondence should be addressed E-mail: franc.meyer@chemie.uni-goettingen.de E-mail: mihail.atanasov@kofo.mpg.de E-mail: neese@kofo.mpg.de

^{\$} New address: Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India

Table of Contents

1. Spectroscopic Characterization of the proligand [H ₄ L(OTf) ₂]	S2
2. Spectroscopic Characterization of complex [(L ^{0,0} Ni)K(MeCN)(OTf)] (1)	S5
3. Spectroscopic Characterization of complex [(L ^{0,0} Ni) ₂ Co](OTf) ₂ (2)	S8
4. Single Crystal Structure Determinations	S10
5. Magnetic Studies	S14
6. Theoretical Calculations and Analysis	S22
7. References	S76

1. Spectroscopic Characterization of the proligand [H₄L(OTf)₂]

Figure S1. ¹H NMR spectrum of the proligand $[H_4L^{O,O}](OTf)_2$ in DMSO-d₆ at 295 K.

Figure S2. ¹³C NMR spectrum of the proligand $[H_4L^{O,O}](OTf)_2$ in DMSO-d₆ at 295 K.

Figure S3. MALDI(+) mass spectrum of the proligand $[H_4L^{O,O}](OTf)_2$; m/z = 705.4 for the ion $[H_4L(OTf)]^+$.

Figure S4. FTIR spectrum of the proligand [H₄L^{O,O}](OTf)₂.

Figure S5. UV-Vis spectrum of the proligand $[H_4L^{0,0}](OTf)_2$ in MeCN.

2. Spectroscopic Characterization of complex [(L^{0,0}Ni)K(MeCN)(OTf)] (1)

Figure S6. ¹H NMR spectrum of complex 1 in CD₃CN at 295 K.

Figure S7. ¹³C NMR spectrum of complex 1 in CD₃CN at 295 K.

Figure S8. ESI(+) mass spectrum of complex **1** in MeCN; the lower part shows the experimental and simulated isotopic distribution pattern for the ion $[(L^{O,O}Ni)+H]^+$.

Figure S9. FTIR spectrum of complex 1.

Figure S10. UV-Vis spectrum of complex 1 in MeCN.

3. Spectroscopic Characterization of complex $[(L^{0,0}Ni)_2Co](OTf)_2$ (2)

Figure S11. ESI(+) mass spectrum of complex **2** in MeCN. The inset shows the experimental and simulated isotopic distribution pattern for the ion $[(L^{O,O}Ni)_2CO]^{2+}$.

Figure S12. FTIR spectrum of complex 2.

Figure S13. UV-Vis spectrum of complex 2 in MeCN.

Figure S14. UV-Vis spectrum of a solid sample complex 2 (in KBr)

4. Single Crystal Structure Determinations

compound	1	2
empirical formula	$C_{39}H_{35}F_3KN_5NiO_5S$	$C_{78}H_{70}CoF_6N_{10}Ni_2O_{10}S_2$
moiety formula	$C_{39}H_{35}F_3KN_5NiO_5S$	C ₇₂ H ₆₄ CoN ₈ Ni ₂ O4 ²⁺ , 2(CF ₃ O ₃ S ⁻), 2(C ₂ H ₃ N)
formula weight	840.59	1661.91
<i>T</i> [K]	133(2)	100(2)
crystal size [mm³]	0.50 x 0.36 x 0.34	0.49 x 0.34 x 0.12
crystal system	monoclinic	monoclinic
space group	<i>P</i> 2 ₁ / <i>c</i> (No. 14)	<i>P</i> 2 ₁ / <i>c</i> (No. 14)
<i>a</i> [Å]	11.4622(3)	15.7445(17)
b [Å]	18.2636(6)	16.2910(19)
c [Å]	17.9294(4)	32.842(4)
β [°]	93.256(2)	103.091(3)
V [ų]	3747.30(18)	8204.9(16)
Ζ	4	4
ρ [g·cm⁻³]	1.490	1.345
<i>F</i> (000)	1736	3428
μ [mm ⁻¹]	0.751	0.779
T _{min} / T _{max}	0.7314 / 0.8486	0.50 / 0.58
θ-range [°]	1.593 - 26.851	2.028 - 28.130
<i>hkl</i> -range	±14, ±23, -21 to 22	-19 to 20, ±21, ±43
measured refl.	51539	224074
unique refl. [<i>R</i> _{int}]	7965 [0.0203]	19861 [0.0882]
observed refl. ($I > 2\sigma(I)$)	7258	14041
data / restr. / param.	7965 / 0 / 497	19861 / 68 / 1015
goodness-of-fit (<i>F</i> ²)	1.042	1.026
R1, wR2 (I > 2σ(I))	0.0297 / 0.0789	0.0728 / 0.1798
<i>R</i> 1, <i>wR</i> 2 (all data)	0.0336 / 0.0817	0.1056 / 0.2023
res. el. dens. [e·Å⁻³]	-0.503 / 0.566	-1.329 / 2.351

 Table S1. Crystal data and refinement details for 1 and 2.

Figure S15. Plot (30% probability thermal ellipsoids) of the molecular structures of **1** (top) and the cationic part of **2** (bottom) (hydrogen atoms omitted for clarity).

Figure S16. A view of the two intersecting O-Co-O planes in 2.

Ni(1)-C(1)	1.8462(15)	K(1)-S(1)	3.3683(6)	Ni(1)-O(2)-K(1)	108.02(5)
Ni(1)-O(1)	1.8733(11)	K(1)-C(13)	3.4490(16)	O(1)-K(1)-O(2)	56.75(3)
Ni(1)-O(2)	1.8843(11)	K(1)-C(10)	3.5170(16)	O(1)-K(1)-N(11)	100.57(5)
Ni(1)-C(6)	1.8862(16)	K(1)-C(12)	3.5235(16)	O(2)-K(1)-N(11)	100.32(7)
K(1)-O(1)	2.5967(11)	C(1)-Ni(1)-C(6)	95.38(7)	O(1)-K(1)-O(12)	173.39(4)
K(1)-O(2)	2.6373(11)	O(1)-Ni(1)-C(6)	169.03(6)	O(2)-K(1)-O(12)	121.93(4)
K(1)-N(11)	2.812(2)	O(2)-Ni(1)-C(6)	91.93(6)	N(11)-K(1)-O(12)	86.03(6)
K(1)-O(12)	2.8306(14)	C(1)-Ni(1)-O(1)	90.85(6)	O(1)-K(1)-O(11)	132.15(4)
K(1)-O(11)	2.9083(15)	C(1)-Ni(1)-O(2)	170.56(6)	O(2)-K(1)-O(11)	170.39(4)
K(1)-C(26)	3.0891(18)	O(1)-Ni(1)-O(2)	82.92(5)	N(11)-K(1)-O(11)	75.49(7)
K(1)-C(25)	3.3078(16)	Ni(1)-O(1)-K(1)	110.01(5)	O(12)-K(1)-O(11)	49.76(4)

Table S3. Selected bond distances (Å) and angles (°) in complex 2.

Ni(1)-C(1)	1.840(4)	Co(1)-O(12)	1.996(3)	C(6)-Ni(1)-O(2)	96.01(14)
Ni(1)-C(6)	1.882(4)	Co(1)-O(11)	1.996(3)	C(1)-Ni(1)-O(1)	92.04(15)
Ni(1)-O(2)	1.923(3)	O(2)-Co(1)-O(1)	79.58(11)	C(6)-Ni(1)-O(1)	168.90(16)
Ni(1)-O(1)	1.953(3)	O(2)-Co(1)-O(12)	130.02(13)	O(2)-Ni(1)-O(1)	82.18(11)
Ni(2)-C(46)	1.846(4)	O(1)-Co(1)-O(12)	125.02(11)	C(46)-Ni(2)-C(41)	90.40(17)
Ni(2)-C(41)	1.875(4)	O(2)-Co(1)-O(11)	121.62(11)	C(46)-Ni(2)-O(11)	172.45(14)
Ni(2)-O(11)	1.923(3)	O(1)-Co(1)-O(11)	128.09(12)	C(41)-Ni(2)-O(11)	96.03(15)
Ni(2)-O(12)	1.947(3)	O(12)-Co(1)-O(11)	79.69(11)	C(46)-Ni(2)-O(12)	91.89(15)
Co(1)-O(2)	1.989(3)	C(1)-Ni(1)-C(6)	90.56(17)	C(41)-Ni(2)-O(12)	167.05(17)
Co(1)-O(1)	1.992(3)	C(1)-Ni(1)-O(2)	172.51(14)	O(11)-Ni(2)-O(12)	82.72(11)

Table S4. SHAPE measures of complex $1.^1$

Complex 1	vTBPY-4	SS-4	T-4	SP-4
Ni1	27.89	14.765	27.003	0.67

Table S5. SHAPE measures of complex 2.1

Complex 2	vTBPY-4	SS-4	T-4	SP-4
Co1	9.698	9.272	6.757	22.793
Ni1	28.547	14.92	27.399	0.644
Ni2	27.626	14.125	26.461	0.782

5. Magnetic Studies

Figure S17. Variable field magnetization at 2.0 K for 2.

Figure S18. (a) In-phase (χ_M') and (b) out-of-phase (χ_M'') component of the frequency-dependent (0.1– 1000 Hz) ac susceptibility measured in an oscillating ac field of 3.0 Oe under zero dc field for complex **2**. (c) Cole-Cole plots for complex **2** under zero field. (d) The plot of the relaxation time τ versus T^{-1} . The solid blue line represents the best fit to the relaxation via a combination of Orbach, Raman and QTM relaxation pathways [$U_{eff} = 125$ K (86.9 cm⁻¹), $\tau_0 = 1.32 \times 10^{-8}$ s; C = 0.403 s⁻¹ K⁻ⁿ, n = 3.54; $\tau_{QTM} =$ 0.00349 s].

Т (К)	τ	Xs	χт	α	Residual
1.8	3.65E-03	3.24E-01	1.21E+00	4.30E-01	5.66E-05
2.2	3.53E-03	2.73E-01	9.87E-01	4.17E-01	1.46E-04
2.6	3.32E-03	2.30E-01	8.35E-01	4.20E-01	6.19E-05
3.0	3.19E-03	2.01E-01	7.27E-01	4.19E-01	6.36E-05
3.4	3.10E-03	1.84E-01	6.44E-01	4.04E-01	7.50E-05
3.8	2.93E-03	1.68E-01	5.76E-01	3.91E-01	7.51E-05
4.2	2.84E-03	1.52E-01	5.28E-01	3.90E-01	8.16E-05
4.6	2.58E-03	1.46E-01	4.75E-01	3.53E-01	9.54E-05
5.0	2.43E-03	1.37E-01	4.39E-01	3.41E-01	7.44E-05
5.4	2.26E-03	1.29E-01	4.08E-01	3.25E-01	6.99E-05
5.8	2.05E-03	1.23E-01	3.79E-01	3.01E-01	6.33E-05
6.2	1.86E-03	1.18E-01	3.54E-01	2.79E-01	6.01E-05
6.6	1.65E-03	1.12E-01	3.32E-01	2.62E-01	5.18E-05
7.0	1.48E-03	1.08E-01	3.13E-01	2.35E-01	4.53E-05
7.4	1.30E-03	1.03E-01	2.96E-01	2.23E-01	3.86E-05
7.8	1.16E-03	9.88E-02	2.81E-01	2.06E-01	3.45E-05
8.2	1.00E-03	9.54E-02	2.65E-01	1.76E-01	2.85E-05
8.6	8.71E-04	8.95E-02	2.54E-01	1.75E-01	2.58E-05
9.0	7.46E-04	8.59E-02	2.42E-01	1.55E-01	2.09E-05
9.4	6.49E-04	8.20E-02	2.32E-01	1.43E-01	1.74E-05
9.8	5.49E-04	7.73E-02	2.22E-01	1.38E-01	1.50E-05
10.2	4.62E-04	7.43E-02	2.14E-01	1.28E-01	1.38E-05
10.6	3.92E-04	7.20E-02	2.06E-01	1.19E-01	1.12E-05
11.0	3.25E-04	6.96E-02	1.99E-01	1.18E-01	1.15E-05
11.4	2.60E-04	6.43E-02	1.92E-01	1.23E-01	1.04E-05
11.8	2.11E-04	6.23E-02	1.84E-01	1.16E-01	1.54E-05
12.2	1.73E-04	5.88E-02	1.80E-01	1.36E-01	1.42E-05

Table S6. Parameters obtained by fitting the ac susceptibility data for 2 under zero applied dc field.

Figure S19. (a) In-phase (χ_M') and (b) out-of-phase (χ_M'') component of the frequency-dependent (0.1– 1000 Hz) ac susceptibility measured in an oscillating ac field of 3.0 Oe under an applied dc field of 2000 Oe for complex **2**. (c) Cole-Cole plots for complex **2** under an applied dc field of 2000 Oe. (d) The plot of the relaxation time τ versus T^{-1} . The solid blue line represents the best fit to the relaxation via a combination of Orbach and Raman relaxation pathways [$U_{eff} = 134$ K (93.1 cm⁻¹), $\tau_0 = 3.40 \cdot 10^{-9}$ s; C = 0.088 s⁻¹ K⁻ⁿ, n = 4.05].

Figure S20. Variable field magnetization for 2 at a sweep rate of 100 Oe/s at 1.8 K.

Table S7. Parameters obtained by fitting the ac susceptibility data for **2** under an applied dc field of 2000 Oe.

Т (К)	τ	Xs	χт	α	Residual
3	1.65E-01	1.06E-02	8.87E-01	2.85E-01	9.22E-04
3.5	8.74E-02	1.28E-02	7.47E-01	2.50E-01	1.97E-03
4	5.21E-02	1.06E-02	6.58E-01	2.36E-01	1.39E-03
4.5	2.96E-02	1.41E-02	5.60E-01	1.86E-01	1.54E-03
5	1.95E-02	1.26E-02	5.15E-01	1.80E-01	4.06E-03
5.5	1.22E-02	1.45E-02	4.47E-01	1.39E-01	2.70E-03
6	8.51E-03	1.31E-02	4.13E-01	1.29E-01	8.27E-04
6.5	5.97E-03	1.19E-02	3.81E-01	1.19E-01	6.08E-04
7	4.31E-03	1.21E-02	3.53E-01	1.07E-01	5.91E-04
7.5	3.17E-03	1.14E-02	3.30E-01	9.55E-02	4.56E-04
8	2.36E-03	1.04E-02	3.08E-01	8.58E-02	4.05E-04
8.5	1.76E-03	1.02E-02	2.90E-01	7.59E-02	4.08E-04
9	1.33E-03	9.61E-03	2.74E-01	6.82E-02	3.26E-04
9.5	9.67E-04	7.56E-03	2.60E-01	7.07E-02	7.60E-04
10	7.05E-04	6.25E-03	2.48E-01	7.19E-02	2.02E-04
10.5	4.93E-04	6.62E-03	2.35E-01	7.10E-02	1.44E-04
11	3.40E-04	3.24E-03	2.26E-01	8.68E-02	2.07E-04
11.5	2.30E-04	2.89E-03	2.15E-01	1.02E-01	3.41E-04
12	1.61E-04	9.45E-03	2.06E-01	1.17E-01	2.06E-04
12.5	1.02E-04	1.96E-03	1.99E-01	1.53E-01	1.80E-04
13	8.48E-05	2.16E-02	1.91E-01	1.39E-01	1.84E-04

Complex Donor Atoms	Donor Atoms	Bite Angle (°)	Dihedral Angle (°)	<i>D</i> (cm ⁻¹)	<i>E/D</i> (cm ⁻¹)	H _{dc} (Oe)	U _{eff} (cm ⁻¹)	τ _ο (s)	Reference
[LNiCoNiL](OTf) ₂ (2)	{CoO ₄ }	79.53	84.32	-74.3	0	0	86.9	1.32 × 10 ⁻⁸	This work
						2000	93.1	3.40 × 10 ⁻⁹	This work
(Ph ₄ P) ₂ [Co(OPh) ₄]·(CH ₃ CN)	{CoO ₄ }	107.77	84.30	-11.1	0	1400	21	7.0×10 ⁻¹⁰	2
K(Ph₄P)[Co(OPh)₄]	{CoO ₄ }	104.9	85.77	-23.8	0	-	-	-	2
K(Ph ₄ P)[Co _{0.06} Zn _{0.94} (OPh) ₄]						0	34.0	1.0×10 ⁻⁹	2
$[Co^{II}Co^{III}_{4}L^{1}_{2}(\mu - OH)_{2}(\mu_{1,3} - O_{2}CCH_{3})_{2}](CIO_{4})_{4} \cdot H_{2}O$	{CoO ₄ }	101.15	80.28	-23.6	0.03	1000	20.8	9.1×10 ⁻⁸	3
$[Co^{II}Co^{III}_{4}L^{1}_{2}(\mu - OH)_{2}(\mu_{1,3} - O_{2}CC_{2}H_{5})_{2}](CIO_{4})_{4} \cdot H_{2}O$	{CoO ₄ }	98.45	80.53	-24.3	0	1000	22.9	4.3×10 ⁻⁸	3
$[Co^{II}Co^{III}_{4}L^{2}_{2}(\mu_{1,3}\text{-}O_{2}CCH_{3})_{2}(\mu\text{-}OH)_{2}](CIO_{4})_{4}\text{-}4H_{2}O$	{CoO ₄ }	94.05	79.5	-31.3	0.11	500	37.5	3.6×10 ⁻⁹	4
[Co ^{II} Co ^{III} ₄ L ² ₂ (μ _{1,3} -O ₂ CC ₂ H ₅) ₂ (μ-OH)(μ- OMe)](ClO ₄) ₄ ·5H ₂ O	{CoO ₄ }	96.15	82.3	-21.9	0.08	3000	15.4	4.7 ×10 ⁻⁷	4
[TBA] ₂ [L ³ ₂ Co]	{CoN ₄ }	83.75	87.88	-113	0	0	226	1.46 × 10 ⁻¹⁰	5
[TBA] ₂ [L ³ ₂ Co] (frozen solution)						0	226	7.38 × 10 ⁻¹¹	5
(HNEt ₃) ₂ [Co(bmsab) ₂]	{CoN ₄ }	80.65	85.19	-115	0	0	230	7.63 x 10 ⁻¹¹	6
K ₂ [Co(bmsab) ₂]	{CoN ₄ }	80.72, 80.41	83.28, 87.30	-100	0	0	200	3.03 x 10 ⁻⁹	7
(HNEt ₃) ₂ [Co(btsab) ₂]	{CoN ₄ }	81.30	84.03	-110	0	0	220	1.1 x 10 ⁻¹⁰	7
[K(18C6)] ₂ [Co(bmsab) ₂]	{CoN ₄ }	81.05	86.62	-130	0	0	260	5.0 x 10 ⁻⁹	7
[Co{(N'Bu) ₃ SMe} ₂]	{CoN ₄ }	71.46	87.47	- 81.3	0	0	159	6.09 x 10 ⁻¹⁰	8-9
[Co{(N ^f Bu) ₂ SPh} ₂]	{CoN ₄ }	72.65	78.74	- 114	0	0	283	2.67 x 10 ⁻⁹	9
[Co{(N/Bu) ₃ SPh} ₂]	{CoN ₄ }	70.83	88.52	- 75.5	0	0	213	1.76 x 10 ⁻¹¹	9
[Co{(N/Bu) ₃ SCH ₂ PPh ₂ }]	{CoN ₄ }	71.40	85.42	- 79.3	0	0	199	3.08 x 10 ⁻¹¹	9
$(HNEt_3)_2[Co(L^4)_2] \cdot H_2O$	{CoN ₄ }	81.32	87.10	-144.1	0.0	0	46.0	5.40 × 10 ⁻⁶	10
(Bu ₄ N) ₂ [Co(L ⁵) ₂]·H ₂ O	{CoN ₄ }	83.38	87.49	-130.8	0.005	0	58.4	2.47 × 10 ⁻⁶	10
(HNEt ₃) ₂ [CoL ⁶]	{CoN ₄ }	81.36, 81.86	89.32, 88.87	-128.2	0.005	0	30.5	1.13 × 10 ^{−5}	11
$Co[R_1(C_6N_2H_5)R_2]_2$	{CoN ₄ }	81.86	71.31	-58.5	0	2600	117	8.96 × 10 ⁻¹⁰	12
$Co[R_3(C_6N_2H_5)R_4]_2$	{CoN ₄ }	81.74	76.35	-91.9	0	0	183.8	1.96 × 10 ⁻¹⁰	12

Table S8. Selected examples of four-coordinate Co(II) SIMs reported in the literature.

$Co[R_5(C_6N_2H_5)R_6]_2$	{CoN ₄ }	81.79	82.06	-64.5	0	0	129	6.53 × 10 ⁻¹⁰	12
$Co[R_7(C_6N_2H_5)R_8]_2$	{CoN ₄ }	82.14	89.10	-57.7	0	0	115.4	6.77 × 10 ⁻⁹	12
$Co[R_9(C_6N_2H_5)R_{10}]_2$	{CoN ₄ }	82.15	83.66	-54.1	0	0	108.2	7.01 × 10 ⁻⁹	12
$Co[R_{11}(C_6N_2H_5)R_{12}]_2$	{CoN ₄ }	81.79	85.78	-50.5	0	0	101	8.14 × 10 ⁻⁹	12
[Co(half-Pc) ₂]	{CoN ₄ }	91.02	89.96	-27.9	0	0	54.0	3.17 × 10 ⁻¹⁰	13
[CoL ⁷ ₂](ClO ₄) ₂	{CoN ₄ }	83.95	69.38	-41.2	0.18	1000	46.9	1.96 × 10 ⁻⁸	14
(Bu ₄ N) ₂ [Co(C ₃ S ₅) ₂]	{CoS ₄ }	94.09	76.50	-187	0	0	-	-	15
(Ph ₄ P) ₂ [Co(C ₃ S ₅) ₂]	{CoS ₄ }	94.05	79.70	-161	0	0	33.9	4.5×10 ^{−6}	15-16
$(PPN)_2[Co(C_3S_5)_2]$	{CoS ₄ }	93.21	81.82	-177	0	0	-	-	15
[K(18C6)] ₂ [Co(C ₃ S ₅) ₂]	{CoS ₄ }	93.95	83.08	-166	0	0	-	-	15
$C_{16}H_{52}B_{20}CoN_2S_4$	{CoS ₄ }	95.59	89.53	-71.6	0.0038	0	26.8	3.3×10 ^{−6}	17
(Ph ₄ P) ₂ [Co(SPh) ₄]	{CoS ₄ }	95.6	93.8	-62.0	0	0	21	1.0×10 ⁻⁶	2, 18-19
[Co(L ⁸) ₄](NO ₃) ₂	{CoS ₄ }	91.52, 91.03	78.12/83.34	-61.7	0	0	19.5	7.59×10 ⁻⁷	20
[Co(L ⁹) ₄](ClO4) ₂	{CoS ₄ }	95.66	88.24	-80.7	0	0	32.0	2.24×10 ⁻⁶	20
[Co(L ¹⁰) ₄](ClO4) ₂	{CoS ₄ }	99.23, 99.43	87.67/89.75	-70.8	0	2000	18.7	1.55×10 ^{−6}	20
[Co(L ¹¹) ₄](ClO4) ₂	{CoS ₄ }	104.72	85.49	-21.3	0	2000	13.2	3.21×10 ^{−8}	20
[Co(L ¹²) ₄]Br ₂	{CoS ₄ }	103.05	87.79	-5.9	0.06	-	-	-	21
[Co(L ¹²) ₄]I ₂	{CoS ₄ }	103.80	88.97	-5.1	0.06	-	-	-	21
[Co(L ¹²) ₄]((SiF ₆)	{CoS ₄ }	106.53	87.36	-12.2	0.16	0	34.8	5×10 ⁻⁷	21
(Ph ₄ P) ₂ [Co(SePh) ₄]	{CoSe ₄ }	94.3	86.29	-83.0	0	0	19	3.0×10 ⁻⁶	2
Co[(TeP ⁱ Pr ₂) ₂ N] ₂	{CoTe ₄ }	104.97	89.75	-45.1	0.10	0	16	2×10 ⁻⁷	22

Bite angle = X-Co-X angles for chelating ligands. In the case of monodentate ligands, the smallest X-Co-X angles have been considered as bite angles; Dihedral angle = angle between planes defined by X-Co-X of the respective chelating ligands. In the case of monodentate ligands, the dihedral angle is defined by the angle between planes with the smallest bite angles. $H_3L^1 = 2,6$ -bis-[{2-(2-hydroxyethylthio)ethylimino)methyl]-4-methylphenol; $H_3L^2 = 2,6$ -bis((2-(2-hydroxyethylamino)ethylimino)methyl)-4-methylphenol; $H_2L^3 = N,N'$ -bis(4-chlorophenyl)oxanilde; bmsab = 1,2-bis(methanesulfonamido)benzene; btsab = 1,2-bis(toluenesulfonamido)benzene; $H_2L^4 = N,N'$ -bis(p-toluenesulfonyl)oxamide; $H_2L^5 = N,N'$ -diphenyloxamide; $H_2L^6 = N,N'$ -bis(methanesulfonyl)oxamide; $R_1 = H, R_2 = 4$ -tert-butylphenylsulfonyl; $R_3 = H, R_4 = 5$ -(dimethylamino)naphthalen-1-ylsulfonyl; $R_5 = H, R_6$ = mesitylsulfonyl; $R_7 = H, R_8 = tosyl; R_9 = H, R_{10} = naphthalen-1-ylsulfonyl; R_{11} = Me, R_{12} = 4$ -tert-butylphenylsulfonyl; $L^7 = 2,9$ -diphenyl-1,10-phenanthroline; $C_3S_5^{2^-} = 4,5$ -dimercapto-1,3-dithiole-2-thionate; $L^8 = thiourea, L^9 = 1,3$ -dibutylthiourea, $L^{10} = 1,3$ -phenylethylthiourea, $L^{11} = 1,1,3,3$ -tetramethylthiourea); $L^{12} = thiourea$

Table S9. Selected examples of prominent two to six-coordinate cobalt and iron-based SIMs reported in the literature.

Complex	Coordination Number	Donor Atoms	<i>D</i> (cm ⁻¹)	<i>E/D</i> (cm ⁻¹)	H _{dc} (Oe)	U _{eff} (cm⁻¹)	τ _o (s)	Reference
[Co(C(SiMe ₂ ONaph) ₃) ₂]	2	{CoC ₂ }	-	-	0	450	1.79 × 10 ⁻⁹ s	23
[(IPr)CoNDmp]	2	{CoCN}	-	-	0	297	7.5 × 10 ⁻¹¹	24
[(cylPr)CoNDmp]	2	{CoCN}	-	-	0	288	8.4 × 10 ⁻¹⁰	24
[(slPr)CoNDmp]	2	{CoCN}	-	-	0	413	1.2 × 10 ⁻¹⁰	24
Fe[C(SiMe ₃) ₃] ₂	2	{FeC ₂ }	-	-	500	146	4 × 10 ⁻⁹	25
[K(crypt-222)][Fe(C(SiMe ₃) ₃) ₂]	2	{FeC ₂ }	-	-	0	226	1.3 x 10 ⁻⁹	26
Fe[N(SiMe ₃)(Dipp)] ₂	2	{FeN ₂ }	-	-	500	181	1 × 10 ⁻¹¹	25
Fe[N(H)Ar'] ₂	2	{FeN ₂ }	-	-	1800	109	5 × 10 ⁻⁹	25
Fe[N(H)Ar*] ₂	2	{FeN ₂ }	-	-	875	104	4 × 10 ⁻⁸	25
Fe(OAr') ₂	2	{FeO ₂ }	-	-	2500	43	3 × 10 ⁻⁷	25
[Na(THF) ₆][Co(OAr) ₃]	3	{CoO ₃ }	-85.4	-0.11	1500	26.0	3.04 × 10 ⁻⁸	27
[(THF) ₃ NaCo(OAr) ₃]	3	{CoO ₃ }	-80.6	0.15	-	-	-	27
[LNiCoNiL](OTf) ₂ (2)	4	{CoO ₄ }	-74.3	0	0	86.9	1.32 × 10 ⁻⁸	This work
					2000	93.1	3.40 × 10 ⁻⁹	This work
[/L2Co](TBA)2	4	{CoN ₄ }	-143	0	0	286	2.25 x 10 ⁻¹¹	28
[TBA] ₂ [L ³ ₂ Co]	4	{CoN ₄ }	-113	0	0	226	1.46 × 10 ⁻¹⁰	5
(HNEt ₃) ₂ [Co(bmsab) ₂]	4	{CoN ₄ }	-115	0	0	230	7.63 x 10 ⁻¹¹	6
K ₂ [Co(bmsab) ₂]	4	{CoN ₄ }	-100	0	0	200	3.03 x 10 ⁻⁹	7
(HNEt ₃) ₂ [Co(btsab) ₂]	4	{CoN ₄ }	-110	0	0	220	1.1 x 10 ⁻¹⁰	7
[K(18C6)] ₂ [Co(bmsab) ₂]	4	{CoN ₄ }	-130	0	0	260	5.0 x 10 ⁻⁹	7
[Co{(N/Bu) ₃ SMe} ₂]	4	{CoN ₄ }	- 81.3	0	0	159	6.09 x 10 ⁻¹⁰	8-9
[Co{(N ^t Bu) ₂ SPh} ₂]	4	{CoN ₄ }	- 114	0	0	283	2.67 x 10 ⁻⁹	9
[Co{(N/Bu) ₃ SPh} ₂]	4	{CoN ₄ }	- 75.5	0	0	213	1.76 x 10 ⁻¹¹	9
[Co{(N ^t Bu) ₃ SCH ₂ PPh ₂ } ₂]	4	{CoN ₄ }	- 79.3	0	0	199	3.08 x 10 ⁻¹¹	9
$(HNEt_3)_2[Co(L^4)_2] \cdot H_2O$	4	{CoN ₄ }	-144.1	0.0	0	46.0	5.40 × 10 ⁻⁶	10
$(Bu_4N)_2[Co(L^5)_2]\cdot H_2O$	4	{CoN ₄ }	-130.8	0.005	0	58.4	2.47 × 10 ⁻⁶	10
(HNEt ₃) ₂ [CoL ⁶]	4	{CoN ₄ }	-128.2	0.005	0	30.5	1.13 × 10 ⁻⁵	11
$Co[R_1(C_6N_2H_5)R_2]_2$	4	{CoN ₄ }	-91.9	0	0	183.8	1.96 × 10 ⁻¹⁰	12
$(Bu_4N)_2[Co(C_3S_5)_2]$	4	{CoS ₄ }	-187	0	0	-	-	15

$(Ph_4P)_2[Co(C_3S_5)_2]$	4	{CoS ₄ }	-161	0	0	33.9	4.5×10 ⁻⁶	15-16
$(PPN)_{2}[Co(C_{3}S_{5})_{2}]$	4	{CoS ₄ }	-177	0	0	-	-	15
[K(18C6)] ₂ [Co(C ₃ S ₅) ₂]	4	{CoS ₄ }	-166	0	0	-	-	15
[Co(L ⁸) ₄](NO ₃) ₂	4	{CoS ₄ }	-61.7	0	0	19.5	7.59×10 ⁻⁷	20
[Co(L ⁹) ₄](ClO4) ₂	4	{CoS ₄ }	-80.7	0	0	32.0	2.24×10 ⁻⁶	20
$C_{16}H_{52}B_{20}CoN_2S_4$	4	{CoS ₄ }	-71.6	0.0038	0	26.8	3.3×10 ^{−6}	17
[Co(L ¹⁰) ₄](ClO4) ₂	4	{CoS ₄ }	-70.8	0	2000	18.7	1.55×10 ⁻⁶	20
$(Ph_4P)_2[Co(SPh)_4]$	4	{CoS ₄ }	-62.0	0	0	21	1.0×10 ^{−6}	2, 18-19
(Ph ₄ P) ₂ [Co(SePh) ₄]	4	{CoSe ₄ }	-83.0	0	0	19	3.0×10 ^{−6}	2
$Co[(TeP'Pr_2)_2N]_2$	4	{CoTe ₄ }	-45.1	0.10	0	16	2×10 ⁻⁷	22
K[(tpa ^{Mes})Fe]	4	{FeN ₄ }	-39.6	0.01	0	42	2 × 10 ⁻⁹	29
[(PMe ₃) ₂ FeCl ₃]	5	{FeP ₂ Cl ₃ }	-50	0	0	81	1.1 × 10 ⁻¹⁰	30
[Co(tppm*)][BPh ₄] ₂	6	{CoN ₆ }	-97.2	0	0	192	2.6 × 10 ⁻¹²	31
[Co(hpy)][BPh4] ₂ ·3CH ₂ Cl ₂	6	{CoN ₆ }	-107.5	0.03	0	-	-	31
[Co(L ¹¹)] [ZnCl₄]·CH ₃ OH	6	{CoN ₆ }	-87.2	0	2000	24	1.6 × 10 ⁻⁶	32
[Co(L ¹¹)] [CIO ₄]·CH ₃ OH	6	{CoN ₆ }	-116.6	0.03	1000	26.8	1.7 × 10 ⁻⁶	32
[Co(L ¹¹)] [CIO ₄]·2CH ₃ OH	6	{CoN ₆ }	-127.6	0.001	2000	27.3	1.85 × 10 ⁻⁶	32
[Co(PzOx) ₃ (BC ₆ H ₅)]Cl·CHCl ₃	6	{CoN ₆ }	-82	0.003	0	152	2.07 x 10 ⁻⁹	33
[Co(bpp-COOMe) ₂](CIO ₄) ₂	6	{CoN ₆ }	-57.5	0.27	1000	30.3	1.2 ×10 ⁻⁷	34
[CoTp ^{py}]PF ₆	6	{CoN ₆ }	-156.5	0.01	0	52.8	1.56 × 10 ⁻⁶	35
[Co(tppm*)][BPh ₄] ₂	6	{CoN ₆ }	-97.2	0	0	192	2.6 × 10 ⁻¹²	31
[Co(hpy)][BPh ₄] ₂ ·3CH ₂ Cl ₂	6	{CoN ₆ }	-107.5	0.033	-	-	-	31
[Co ^{II} (Tpm) ₂][CIO ₄] ₂	6	{CoN ₆ }	-92	0.114	3000	30.6	2.0× 10 ⁻⁷	36
[Co ^{ll} (Tpm) ₂][BPh ₄] ₂ ·2MeCN	6	{CoN ₆ }	-93	0.124	1500	42.5	1.0 × 10 ⁻⁷	36
(HNEt ₃)(Co ^{III} Co ^{III} ₃ L ¹¹ ₆)	6	{CoO ₆ }	-115	0.024	0	75.8	1.7 x 10 ⁻⁷	37

Naph = naphthyl; IPr = 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene); dmp = 2,6-dimesitylphenyl; cyIPr = 1,3-bis(2,6-diisopropylphenyl)-tetrahydro-benzoimidazol-2-ylidene); sIPr = 1,3-bis(2,6-diisopropylphenyl)-4,5-dihydro-imidazol-2-ylidene; Dipp = C_6H_3 -2,6- Pr'_2 ; Ar' = C_6H_3 -2,6- $(C_6H_3$ -2,6- Pr'_2); Ar* = C_6H_3 -2,6- $(C_6H_2$ -2,4,6- Pr'_2); OAr⁻ = 2,6-di-*tert*-butylphenoxo; $H_2^FL = N, N'$ -bis(perfluorophenyl)oxalanilide; $H_2L^3 = N, N'$ -bis(4-chlorophenyl)oxanilide; bmsab = 1,2-bis(methanesulfonamido)benzene; btsab = 1,2-bis(toluenesulfonamido)benzene; $H_2L^4 = N, N'$ -bis(p-toluenesulfony1)oxamide; $H_2L^5 = N, N'$ -diphenyloxamide; $H_2L^6 = N, N'$ -bis(methanesulfonyl)oxamide; $R_1 = H, R_2 = 5$ -(dimethylamino)naphthalen-1-ylsulfonyl; $C_3S_5^{2^-} = 4,5$ -dimercapto-1,3-dithiole-2-thionate; $L^8 =$ thiourea, $L^9 = 1,3$ -dibutylthiourea, $L^{10} = 1,3$ -phenylethylthiourea, tpa^{Mes} = tris((5-mesityl-1H-pyrrol-2-yl)methyl)amine; tppm* = 6,6',6''-(methoxymethanetriyl)tris(2-(1H-pyrazol-1-yl)pyridine; hpy = tris(2,2'-bipyrid-6-yl)methanol; L¹¹ = tris(pyridylhydrazonyl)phosphorylsulfide; bpp-COOMe=methyl 2,6-di(pyrazol-1-yl)pyridine-4-carboxylate; hpy = tris(2,2'-bipyrid-6-yl)methanol; Tp^{py} = tri(3-pyridylpyrazolyl)borate; tppm* = 6,6',6''-(methoxymethanetriyl)tris(2-(1H-pyrazol-1-yl)pyridine; Tpm = tris(pyrazol-1-yl)methane; H_2L^{11} = R-4-bromo-2-((2-hydroxy-1-phenylethylimino)methyl)phenol

6. Theoretical Calculations and Analysis

Figure S21. The truncated model complex used in the analysis of the distributions of local spins and relative energetics based on spin-unrestricted DFT geometry optimizations.

Figure S22. Deconvolution of the UV-VIS absorption spectrum of **2** into overlapping d-d transitions with in the form of three Gauss functions, $g(x) = I_o \exp[-\frac{(x-\mu)^2}{2\sigma^2}]$ with $(\mu, \sigma, I_o) = (17582, 1041, 262)$, (19187,297,53) and (24404, 2662, 710) from in the order of increasing energies in cm⁻¹ and half-width-at-half-maximum, $HWHM = \sigma\sqrt{2 \ln 2} = 1226$, 350 and 3134 cm⁻¹, respectively.

Figure S23. Spin-orbit coupling CASSCF/NEVPT2 absorption spectrum due to Co^{II} centered d-d transitions in **2**.

Figure S24. Spin-orbit coupling CASSCF/NEVPT2 absorption spectrum due to Ni^{II} centered d-d transitions in **1**.

Figure S25. Computed IR Spectrum of 2 in the energy range from 0 to 3500 cm⁻¹.

Table S10. Energies of d-d transitions(spin-free) ΔE and oscillator strengths f_{osc} of the {*cis*-Ni^{II}O₂C₂} chromophore in **1**.

$\Delta E / cm^{-1}(nm)$	$f_{osc} * 10^5$
24824(403)	1.4
25399(394)	3.4
25991(385)	31.1
27803(360)	61.9

Table S11. Energies of d-d transitions (spin-free) and oscillator strengths f_{osc} of the {Co^{II}O₄} chromophore in **2**.

	$\Delta E / cm^{-1}(nm)$	$f_{osc} * 10^5$
	960(10415)	0.0
${}^{4}A_{2}({}^{4}F) \rightarrow {}^{4}T_{2}({}^{4}F)$	4298(2327)	0.0
	5036 (1986)	1.3
	5484 (1823)	0.0
${}^{4}A_{2}({}^{4}F) \rightarrow {}^{4}T_{1}({}^{4}F)$	5894 (1697)	1.1
	6953 (1438)	0.9
	21223(471)	3.2
${}^{4}A_{2}({}^{4}F) \rightarrow {}^{4}T_{1}({}^{4}P)$	22845(438)	16.9
	23877(419)	21.7

Figure S26. Comparison between experimental magnetic susceptibility data and the computed magnetic susceptibility using CASSCF/NEVPT2 ab-initio calculations.

Below we include the ORCA input files for the correlated CASSCF/NEVPT2 calculations along with the input files for the DFT geometry optimizations probing the valence/local spin distributions and their relative energies included in Table 1 of the main text.

Correlated CASSCF/NEVPT2 calculation of the entire complex ${\bf 2}$ without truncation.

!DKH DKH-def2-TZVP AutoAux NoFrozenCore PAL8 %rel method DKH picturechange 2 end %scf MaxCore 26000 end %casscf nel 7 norb 5 mult 4,2 nroots 10,40 trafostep ri actorbs dorbs orbstep superci switchstep diis shiftup 1 shiftdn 1 gtol 1e-6 etol 1e-11 PTMethod DLPNO NEVPT2 ci nguessmat 4000 maxiter 500 end rel printlevel 3 dosoc true gtensor true end end *xyz 2 4 0.000000 0.000000 0.000000 Со 1.782485 0.178403 0.870889 0 0 1.037494 -1.353147 -1.023763 1.413586 -0.918456 0 -1.068448 -0.177718 0 -1.735401 0.969190 Ni 2.786171 -1.026691 -0.293272 -2.775391 1.073202 -0.099741 Ni

Ν	4.670573	0.492738	1.140041
Ν	5.315393	-1.552858	1.047402
Ν	4.946145	-2.513180	-1.818359
N	3,235329	-1.845624	-2.925004
N	-3 376399	1 864668	-2 695/22
IN NT	5.570555	2 520006	1 505021
IN	-5.052664	2.520006	-1.505051
IN 	-5.218266	1.611880	1.383250
Ν	-4.591506	-0.433960	1.445596
С	4.351869	-0.711623	0.620482
С	5.823578	0.395203	1.914517
Н	6.235013	1.095700	2.407013
С	6.241182	-0.871878	1.833010
Н	7.020607	-1.237758	2.234402
C	5 438407	-2 916236	0 602089
ч	4 557260	-3 364873	0.651000
11 TJ	6 067402	-2 404705	1 100102
п	0.00/402	-3.404/03	1.190103
C	5.948274	-2.941421	-0.828057
Н	6.738739	-2.349276	-0.896288
Н	6.241469	-3.861325	-1.046955
С	3.737069	-1.913916	-1.654002
С	5.189793	-2.788693	-3.159833
Н	5.972044	-3.189354	-3.520440
С	4.109653	-2.381272	-3.850754
н	3 974991	-2.448554	-4 788755
C	3 737398	1 608166	1 107605
U U	3 507002	1 003717	0 173122
Г1 ТТ	J.JJJJJUZ 4 1042E1	2 2005717	1 (22000
H	4.104351	2.369575	1.623069
C	2.386660	1.153468	1.725496
С	1.473200	2.368793	1.913429
С	1.869800	3.663015	1.597734
Н	2.699861	3.802238	1.157123
С	1.074223	4.756174	1.914900
Н	1.361111	5.632727	1.687174
С	-0.135952	4.572232	2.562126
н	-0 676451	5 319191	2 791068
C	-0 5/6635	3 207306	2 869661
U U	-1 200476	2 166156	2 205540
п	-1.300470	3.100130	3.303340
0	0.241491	2.19/021	2.551633
Н	-0.059110	1.322569	2.769540
С	2.752325	0.568263	3.102509
С	3.204321	1.439717	4.109829
Н	3.151563	2.379789	3.983410
С	3.730214	0.923635	5.294910
Н	4.031899	1.518517	5.971341
С	3.818216	-0.436289	5.498070
н	4 187786	-0.781105	6.302423
C	3 362200	-1 287266	4 517108
U U	2 400071	-2 226220	4.51/100
п	3.409071	-2.220520	4.052995
C T	2.031232	-0./89641	3.324062
Н	2.521587	-1.393418	2.659179
С	1.881611	-1.434064	-3.261684
Н	1.662684	-1.737549	-4.178221
Н	1.822842	-0.445982	-3.243355
С	0.873714	-2.022625	-2.275892
С	-0.559919	-1.859927	-2.816723
С	-1.641034	-2.070260	-1.951560

Н	-1.480839	-2.234327	-1.029649
С	-2.947994	-2.041165	-2.429661
Н	-3.671376	-2.187344	-1.831475
С	-3.204294	-1.800172	-3.774461
Н	-4.097689	-1.776240	-4.096586
Ċ	-2 135714	-1 594123	-4 644487
U U	-2 301067	-1 /30/56	-5 567102
C	_0 02077/	_1 612220	_1 17/202
	-0.039774	-1.013330	-4.174303
н	-0.122552	-1.45/344	-4.///495
C	1.103007	-3.53/916	-2.132519
С	1.245983	-4.338994	-3.254071
Н	1.235864	-3.937600	-4.115044
С	1.401968	-5.699667	-3.150364
Η	1.510422	-6.225589	-3.934020
С	1.401423	-6.304096	-1.909879
Н	1.491622	-7.246937	-1.836209
С	1.267366	-5.519032	-0.765743
Н	1.280155	-5.927497	0.091871
С	1.116052	-4.150197	-0.872745
Н	1.020448	-3.622011	-0.088896
С	-3.797375	1.955018	-1.401356
С	-4.337706	2.309314	-3.585505
H	-4.273128	2.319887	-4.533231
C	-5,383307	2.724328	-2.844425
н	-6 200143	3 085564	-3 168150
C	-5 9/5177	3 012890	-0 119172
U U	-6 764424	2 457058	_0 //982/
п	-0.704424	2.437030	-0.449024
п	-0.211505	3.941009	-0.665075
C	-5.341312	2.98/818	0.928820
H	-4.4484/6	3.415131	0.910619
Η	-5.915218	3.496700	1.554709
С	-4.295982	0.756733	0.898463
С	-6.084655	0.960648	2.244543
Η	-6.815782	1.347803	2.711512
С	-5.694017	-0.321812	2.293421
Н	-6.090355	-1.017308	2.805015
С	-2.043672	1.443203	-3.100718
Н	-1.880374	1.719417	-4.037280
Н	-1.981590	0.456148	-3.056446
С	-0.972530	2.067035	-2.186740
С	-1.168509	3.581169	-2.040328
С	-1.428469	4.376691	-3.170805
Н	-1.555906	3.964399	-4.017127
С	-1.500652	5.760090	-3.061212
н	-1.670834	6.285475	-3.834216
C	-1 327524	6 376183	-1 841359
ч	-1 376355	7 322234	-1 769897
C	-1 079146	5 593615	
	-1.079140	5.595045	-0.709347
п	-0.956562	0.0114//	0.134920
U	-I.UIU53/	4.209546	-U.81U2U/
н	-0.85431/	3.08/95/	-0.031/33
C	0.419597	1.894089	-2.818227
С	1.556744	2.006856	-2.012050
Η	1.459085	2.102745	-1.071970
С	2.838014	1.979845	-2.576713
Н	3.602499	2.034567	-2.015409

С	2.997319	1.874003	-3.946688
Η	3.867216	1.866053	-4.328408
С	1.878501	1.779694	-4.757343
Η	1.983070	1.713667	-5.699246
С	0.619915	1.780900	-4.210402
Н	-0.134430	1.703697	-4.782678
С	-3.693390	-1.569279	1.348830
Η	-3.628979	-1.866704	0.406767
Η	-4.044385	-2.321598	1.888190
С	-2.288335	-1.159626	1.868613
С	-2.515504	-0.590956	3.283500
С	-2.676716	0.756098	3.503358
Η	-2.502282	1.367059	2.797114

Inputfile for the CASSCF/NEVPT2 calculation of the Ni-precursor complex 1 using the X-ray geometry.

!DKH DKH-def2-TZVP AutoAux NoFrozenCore PAL16 notrah %rel method DKH picturechange 2 end %scf MaxCore 8000 end %casscf nel 8 norb 5 mult 3,1 nroots 10,15 trafostep ri actorbs dorbs orbstep superci switchstep diis shiftup 1 shiftdn 1 maxiter 400 PTMethod SC NEVPT2 ci nguessmat 4000 maxiter 500 end rel printlevel 3 dosoc true gtensor true end end *xyz 1 1 28 0.000000000 0.00000000 0.00000000 19 2.727453000 -1.913204000 -1.575187000 8 1.771283000 -0.484095000 0.370611000

8	0.171339000	-1.304880000	-1.348567000
7	0.853439000	1.383540000	2.336833000
7	-0.503927000	2.598289000	1.220632000
7	-2.822121000	1.105897000	-0.239150000
7	-2 547959000	-0 975642000	-0 636827000
6	0 095632000	1 386517000	1 215280000
6	0.699246000	2 556264000	3 051759000
1	1 117950000	2 778715000	3 87/983000
L C	1.11/950000	2.770713000	2 252201000
0	-0.160395000	3.321/4/000	2.353391000
Ţ	-0.470934000	4.18/80/000	2.59001/000
6	-1.339831000	3.084594000	0.130208000
1	-0.918704000	2.846236000	-0.733453000
1	-1.395867000	4.071796000	0.178915000
6	-2.730137000	2.507300000	0.178539000
1	-3.072553000	2.584463000	1.104243000
1	-3.318348000	3.050149000	-0.404067000
6	-1.858419000	0.145268000	-0.288018000
6	-4.064420000	0.584216000	-0.564294000
1	-4.885151000	1.061462000	-0.597875000
6	-3.891250000	-0.719002000	-0.822365000
1	-4 559831000	-1 342192000	-1 081438000
6	1 766453000	0 298609000	2 663570000
1	1 25207000	0.298809800	2.003570000
1	1.253878000	-0.493099000	2.964550000
Ţ	2.369100000	0.576070000	3.398384000
6	2.596844000	-0.059083000	1.410538000
6	-1.934313000	-2.287498000	-0.790055000
1	-2.611483000	-2.937737000	-1.104261000
1	-1.589722000	-2.598618000	0.084329000
6	-0.775779000	-2.210206000	-1.808018000
6	3.499819000	-1.277338000	1.725550000
6	2.940024000	-2.411033000	2.285548000
1	2.025038000	-2.396623000	2.540701000
6	3.676873000	-3.567466000	2.484780000
1	3.272464000	-4.321479000	2.897619000
6	4 994974000	-3.627078000	2.085761000
1	5 500579000	-4 422221000	2 206518000
6	5 564835000	-2 518405000	1 511013000
1	6 470712000	-2 550027000	1 226502000
	6.470712000	-2.550057000	1 220093000
0	4.829567000	-1.346904000	1.339992000
Ţ	5.245556000	-0.585184000	0.953/00000
6	3.438149000	1.160761000	0.993225000
6	3.413639000	1.591745000	-0.332877000
1	2.849370000	1.149985000	-0.956529000
6	4.201118000	2.657609000	-0.759266000
1	4.177298000	2.929755000	-1.669128000
6	5.018759000	3.322112000	0.138603000
1	5.553222000	4.052638000	-0.149773000
6	5.050562000	2.912003000	1.462020000
1	5.608472000	3.364885000	2.083416000
-	4 269513000	1 839893000	1 886404000
1	<u> 202720000</u>	1 566907000	2 795729000
-	-0 10520000	-3 60207000	_1 Q7572000
G		-3.002097000	-I.UZJZJOUUU
0	0.613/98000	-3.984004000	-0.003493000
Ţ	0.642629000	-3.402801000	0.06/485000
6	1.290344000	-5.195648000	-0.632835000
1	1.774321000	-5.437147000	0.148162000

6	1.258574000	-6.052466000	-1.719088000
1	1.720880000	-6.881798000	-1.687476000
6	0.549667000	-5.693787000	-2.850737000
1	0.526690000	-6.279775000	-3.598117000
6	-0.131918000	-4.478126000	-2.903186000
1	-0.619727000	-4.246287000	-3.684720000
6	-1.336426000	-1.792573000	-3.183596000
6	-2.457323000	-2.398504000	-3.753440000
1	-2.889874000	-3.108812000	-3.294239000
6	-2.949932000	-1.977181000	-4.983935000
1	-3.715245000	-2.398997000	-5.356604000
6	-2.328499000	-0.943681000	-5.669361000
1	-2.662729000	-0.655609000	-6.510683000
6	-1.216216000	-0.337347000	-5.113301000
1	-0.784277000	0.370495000	-5.576870000
6	-0.725014000	-0.755913000	-3.880443000
1	0.037924000	-0.327942000	-3.509957000
*			

Input file for the calculation of the electronic energy levels of Ni^{2+} in **2** using the X-ray geometry in which Co(II) and one Ni(II) has been replaced by two diamagnetic Zn^{2+} ions. In this calculations the authors used the following truncated model complex while preserving the structure of all atoms as given by the X-ray data a optimizing the geometries of the terminal fragments only:

Figure S27.Truncated model complex used to probe the electronic structure of one Ni^{2+} in the presence of two closed shell Zn^{2+} ions replacing Co^{2+} and one Ni^{2+} .

!DKH DKH-def2-TZVP AutoAux NoFrozenCore PAL16 notrah

```
%rel method DKH
picturechange 2
end
```

%scf

MaxCore end	8000		
<pre>%casscf nel 8 norb 5 mult 3,1 nroots 1 trafoste actorbs orbstep</pre>	lo,15 ep ri dorbs superci	switchstep	diis
		shiftdn 1	
maxiter PTMethoo ci nguessma maxiter end rel printley dosoc tr gtensor	400 d SC_NEVPT2 at 4000 500 vel 3 rue true		
end end			
***** 2 1			
28 28 8 8 30 30 7 7 6 6 6 6 6 6 6 6 6 6 7 7 1 6 1 1 6 1	0.000000000 -1.003680000 -1.749110000 -3.854820000 -4.521600000 -5.561320000 -2.786410000 1.883840000 0.448790000 1.565450000 0.950830000 -0.400000000 -1.912490000 3.037550000 0.950450000 1.323360000 -0.904820000 2.528980000 2.159560000 3.448920000 3.454600000 0.811540000 1.317930000 2.403380000 1.188750000	0.000000000 1.204680000 -0.326580000 2.439740000 0.848830000 2.100240000 1.027250000 1.518880000 -0.819770000 0.314760000 -0.887380000 2.180660000 -0.996200000 1.422000000 1.42200000 -1.354160000 -0.525890000 -1.486400000 2.121560000 0.154790000 2.929950000 3.396280000 -1.762270000 -1.422210000	0.000000000 1.163480000 -0.730380000 -0.625290000 1.262710000 0.192610000 0.292530000 1.432910000 -2.632040000 0.913570000 -1.361010000 2.018470000 -1.982050000 2.207860000 1.401500000 -2.968030000 1.340980000 -1.525180000 2.125690000 0.466120000 1.916780000 -2.866670000 -4.495000000
1 1	-1.123740000 -0.963550000	-0.711270000 0.580360000	-3.885840000 -2.950630000
6	2.651850000	-1.889540000	0.895660000

6	3.162430000	-1.915390000	-0.535470000
6	-3.758490000	3.093570000	-1.894530000
6	-5.074350000	-0.133010000	2.160660000
1	4.234720000	-0.210570000	2.527720000
1	3.186130000	-2.162430000	-3.228040000
1	1.770960000	-2.338420000	0.944300000
1	3.281210000	-2.378190000	1.483170000
1	3.952990000	-1.322220000	-0.603980000
1	3.455580000	-2.834590000	-0.754320000
7	-6.162850000	2.891280000	-2.402330000
7	-7.377600000	0.592410000	1.738770000
6	-6.583990000	2.981770000	-1.107870000
6	-7.082310000	1.783610000	1.192090000
6	-4.829730000	2.469690000	-2.808440000
6	-6.479460000	-0.543110000	1.641140000
6	-7.123260000	3.336300000	-3.292810000
6	-8.479740000	0.705320000	2.585950000
7	-7.818200000	3.547100000	-1.213480000
7	-8.003900000	2.639280000	1.676120000
1	-4.666890000	2.746670000	-3.743820000
1	-4.767960000	1.482880000	-2.763700000
1	-6.415200000	-0.839860000	0.699900000
1	-6.830460000	-1.294260000	2.179840000
1	-7.059560000	3.346800000	-4.239910000
6	-8.168720000	3.750500000	-2.553010000
6	-8.869940000	1.987560000	2.536970000
1	-8.876280000	0.008860000	3.097320000
6	-8.730600000	4.039840000	-0.157380000
6	-8.126690000	4.013990000	1.221030000
1	-8.985900000	4.112980000	-2.873380000
1	-9.601480000	2.374910000	3.005380000
1	-9.550630000	3.484570000	-0.155600000
1	-8.998100000	4.969100000	-0.370370000
1	-7.234990000	4.442110000	1.205240000
1	-8.701340000	4.523640000	1.849550000
1	-3.913299523	4.154862018	-1.767670772
1	-1.114858653	2.983317705	2.123910575
1	-0.166051938	1.793797037	2.999288715
1	-5.142859611	0.293497976	3.150507150
1	-4.444146681	-1.008949755	2.205082100
1	-2.782088994	2.963531793	-2.337396955
1	-2.922870702	-0.853226486	-2.335729815
1	-1.738655577	-2.057011839	-1.877839462
*			

Ι

С	-3.090229	1.243150	4.739333
Н	-3.210679	2.176738	4.867383
С	-3.327624	0.356089	5.790669
Н	-3.608982	0.682788	6.637215
С	-3.153232	-0.982364	5.595379

Н	-3.305556	-1.584609	6.314131
С	-2.752070	-1.481536	4.347792
Н	-2.640446	-2.416460	4.221405
С	-1.393347	-2.400951	1.937708
С	-1.821825	-3.663471	1.559667
Н	-2.671102	-3.763645	1.145927
С	-1.030899	-4.785367	1.775238
Н	-1.336241	-5.639716	1.493483
С	0.215155	-4.663722	2.406181
Н	0.748186	-5.430523	2.580519
С	0.647927	-3.411124	2.766501
Н	1.499273	-3.313817	3.176690
С	-0.129611	-2.286849	2.544948
Н	0.192906	-1.431963	2.805047

Input file for the calculation of the electronic energy levels of Co^{2+} in **2** using the X-ray geometry in which the two Ni(II) ions has been replaced by two diamagnetic Zn^{2+} ions. In this calculations the authors used the following truncated model complex while preserving the structure of all atoms as given by the X-ray data a optimizing the geometries of the terminal fragments only:

Figure S28.Truncated model complex used to probe the electronic structure of Co^{2+} in the presence of two closed shell Zn^{2+} ions replacing Ni²⁺.

Preparation of initial guess of orbitals

cozn2nevlft2tscguess.inp

!DKH DKH-def2-TZVP AutoAux NoFrozenCore PAL8 NoIter %maxcore 3000

%rel method DKH

pictured end	change 2		
#%scf #MaxCore #end	e 26000		
%casscf nel 7 norb 5 mult 4,2 nroots 2 trafoste maxiter end	2 10,40 ep ri 1		
*xyz 2 4 27 8 8 8 30 30 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.000000000 1.782730000 1.03730000 -1.068410000 -1.735190000 2.786410000 -2.774910000 4.670250000 3.235200000 4.351860000 3.737240000 2.386410000 0.873920000 5.823960000 3.736860000 4.109770000 1.881590000 5.315390000 4.945970000 6.241010000 3.597950000 4.104340000 5.189790000 3.975160000 1.662670000 1.822860000 5.438260000 5.948840000 -0.972080000 5.972540000 5.972540000	0.00000000000000000000000000000000000	0.00000000000000000000000000000000000
1 1 7 7	6.067620000 6.739400000 6.241990000 -3.376440000 -4.591190000	-3.405440000 -2.349470000 -3.861840000 1.864030000 -0.434840000	1.190640000 -0.896510000 -1.046850000 -2.694860000 1.446240000

6	-3.797580000	1.954520000	-1.400400000
6	-4.295900000	0.756360000	0.899560000
6	-2.043320000	1.442440000	-3.100970000
6	-3.693050000	-1.570360000	1.348610000
6	-4.336850000	2.309050000	-3.585340000
6	-5.693330000	-0.321930000	2.293420000
7	-5.031790000	2.519850000	-1.506010000
7	-5.217490000	1.612030000	1.383590000
1	-1.880480000	1.719420000	-4.036350000
1	-1.981550000	0.455630000	-3.056230000
1	-3.628790000	-1.867110000	0.407370000
1	-4.044050000	-2.321510000	1.887310000
1	-4.273150000	2.319550000	-4.532440000
6	-5.382310000	2.723250000	-2.845540000
6	-6.083530000	0.960310000	2.244440000
1	-6.089870000	-1.018390000	2.804790000
6	-5.944190000	3.012590000	-0.449910000
6	-5.340280000	2.986740000	0.928500000
1	-6.199490000	3.085730000	-3.165910000
1	-6.815070000	1.347660000	2.712850000
1	-6.764220000	2.457320000	-0.448130000
1	-6.211690000	3.941850000	-0.662900000
1	-4.448580000	3.414860000	0.912710000
1	-5.914930000	3.496390000	1.557020000
1	-1.126889523	3.127612018	-2.060200772
1	1.671551347	1.956067705	1.831380575
1	2.620358062	0.766547037	2.706758715
1	-2.356449611	-0.733752024	2.857977150
1	-1.657736681	-2.036199755	1.912552100
1	0.004321006	1.936281793	-2.629926955
1	-0.136460702	-1.880476486	-2.628259815
1	1.047754423	-3.084261839	-2.170369462
*			

Reading the initial guess of orbitals (cozn2nevlft2tscguess.gbw) rotating orbitals of Co²⁺ outside cas- into the cas space cozn2nevlft2t.inp:

!DKH DKH-def2-TZVP AutoAux NoFrozenCore PAL16 moread %moinp "cozn2nevlft2tscguess.gbw" %maxcore 10000

%rel method DKH
picturechange 2
end
%scf rotate {171,174,90} {172,175,90} end end
%casscf
nel 7
norb 5
mult 4,2
nroots trafost	10,40 cep ri		
actorbs	s dorbs		
orbstep	o superci		
		switchstep d	iis
		shiftup 1	
	1.0.0	shiftdn 1	
#maxite	er 100		
##gtol	1e-6		
##elol	TG-II		
ci	JU SC_NEVFIZ		
nquessi	nat 4000		
maxiter	500		
end			
rel			
printle	evel 3		
dosoc t	crue		
gtensor	true		
end			
end			
***** 2	Л		
27		0.00000000	0.00000000
8	1.782730000	0.177430000	0.870950000
8	1.037300000	-1.353830000	-1.022910000
8	-1.068410000	1.412490000	-0.917820000
8	-1.735190000	-0.178420000	0.970180000
30	2.786410000	-1.027250000	-0.292530000
30	-2.774910000	1.072990000	-0.099920000
7	4.670250000	0.491630000	1.140380000
	3.235200000	-1.84/020000	-2.924570000
6	4.351860000	-0.712490000 -1.914630000	-1.653540000
6	2 386410000	1 153410000	1 725940000
6	0.873920000	-2.023450000	-2.274580000
6	5.823960000	0.394750000	1.915330000
6	3.736860000	1.607820000	1.108970000
6	4.109770000	-2.381410000	-3.850190000
6	1.881590000	-1.434810000	-3.260560000
7	5.315390000	-1.553140000	1.048450000
7	4.945970000	-2.513650000	-1.817710000
1	6.235330000	1.094310000	2.407170000
6	6.241010000	-0.872460000	1.833160000
⊥ 1	3.397950000	2 369030000	1 624250000
1	5 189790000	-2 789520000	-3 15920000
1	3.975160000	-2.449460000	-4.787530000
1	1.662670000	-1.738520000	-4.178370000
1	1.822860000	-0.446890000	-3.243160000
6	5.438260000	-2.916790000	0.603130000
6	5.948840000	-2.942640000	-0.828000000
6	-0.972080000	2.066320000	-2.187060000
6	-2.287940000	-1.160260000	1.868130000
⊥ 1	7.021130000	-1.23/820000	2.235190000
1	J.Y/Z540000	-3.189680000	-3.520570000

1	4.557370000	-3.365670000	0.651770000
1	6.067620000	-3.405440000	1.190640000
1	6.739400000	-2.349470000	-0.896510000
1	6.241990000	-3.861840000	-1.046850000
7	-3.376440000	1.864030000	-2.694860000
7	-4.591190000	-0.434840000	1.446240000
6	-3.797580000	1.954520000	-1.400400000
6	-4.295900000	0.756360000	0.899560000
6	-2.043320000	1.442440000	-3.100970000
6	-3.693050000	-1.570360000	1.348610000
6	-4.336850000	2.309050000	-3.585340000
6	-5.693330000	-0.321930000	2.293420000
7	-5.031790000	2.519850000	-1.506010000
7	-5.217490000	1.612030000	1.383590000
1	-1.880480000	1.719420000	-4.036350000
1	-1.981550000	0.455630000	-3.056230000
1	-3.628790000	-1.867110000	0.407370000
1	-4.044050000	-2.321510000	1.887310000
1	-4.273150000	2.319550000	-4.532440000
6	-5.382310000	2.723250000	-2.845540000
6	-6.083530000	0.960310000	2.244440000
1	-6.089870000	-1.018390000	2.804790000
6	-5.944190000	3.012590000	-0.449910000
6	-5.340280000	2.986740000	0.928500000
1	-6.199490000	3.085730000	-3.165910000
1	-6.815070000	1.347660000	2.712850000
1	-6.764220000	2.457320000	-0.448130000
1	-6.211690000	3.941850000	-0.662900000
1	-4.448580000	3.414860000	0.912710000
1	-5.914930000	3.496390000	1.557020000
1	-1.126889523	3.127612018	-2.060200772
1	1.671551347	1.956067705	1.831380575
1	2.620358062	0.766547037	2.706758715
1	-2.356449611	-0.733752024	2.857977150
1	-1.657736681	-2.036199755	1.912552100
1	0.004321006	1.936281793	-2.629926955
1	-0.136460702	-1.880476486	-2.628259815
1	1.047754423	-3.084261839	-2.170369462
*			

DFT optimization of the entire complex without truncation

!UKS wB97X-D4 D3BJ DKH2 DKH-def2-SVP opt Autoaux

%basis
newgto Co "dkh-def2-tzvp" end
newgto Ni "dkh-def2-tzvp" end
end

%pal nprocs 16 end

%maxcore 8000

%rel	method DKH			
pictu	ırechange 2			
end				
%scf	maxiter 500 shi	ft shift 0	.5 erroff 0	end end
*xyz	2 4			
Со	0.000000	0.000000	0.000000	
0	1.782485	0.178403	0.870889	
0	1.037494	-1.353147	-1.023763	
0	-1.068448	1.413586	-0.918456	
0	-1.735401	-0.177718	0.969190	
Ni	2.786171	-1.026691	-0.293272	
Ni	-2.775391	1.073202	-0.099741	
Ν	4.670573	0.492738	1.140041	
Ν	5.315393	-1.552858	1.047402	
Ν	4.946145	-2.513180	-1.818359	
Ν	3.235329	-1.845624	-2.925004	
Ν	-3.376399	1.864668	-2.695422	
Ν	-5.032684	2.520006	-1.505031	
Ν	-5.218266	1.611880	1.383250	
Ν	-4.591506	-0.433960	1.445596	
С	4.351869	-0.711623	0.620482	
С	5.823578	0.395203	1.914517	
Н	6.235013	1.095700	2.407013	
С	6.241182	-0.871878	1.833010	
Н	7.020607	-1.237758	2.234402	
С	5.438407	-2.916236	0.602089	
Н	4.557260	-3.364873	0.651000	
Н	6.067482	-3.404705	1.190103	
С	5.948274	-2.941421	-0.828057	
Н	6.738739	-2.349276	-0.896288	
Н	6.241469	-3.861325	-1.046955	
С	3.737069	-1.913916	-1.654002	
С	5.189793	-2.788693	-3.159833	
Н	5.972044	-3.189354	-3.520440	
С	4.109653	-2.381272	-3.850754	
Н	3.974991	-2.448554	-4.788755	
С	3.737398	1.608166	1.107605	
Н	3.597902	1.903717	0.173122	
Н	4.104351	2.369575	1.623069	
С	2.386660	1.153468	1.725496	
С	1.473200	2.368793	1.913429	
С	1.869800	3.663015	1.597734	
Н	2.699861	3.802238	1.157123	
С	1.074223	4.756174	1.914900	
Н	1.361111	5.632727	1.687174	
С	-0.135952	4.572232	2.562126	
Н	-0.676451	5.319191	2.791068	
С	-0.546635	3.297396	2.869664	
Н	-1.380476	3.166156	3.305540	
С	0.241491	2.197021	2.551633	
Н	-0.059110	1.322569	2.769540	
С	2.752325	0.568263	3.102509	
С	3.204321	1.439717	4.109829	

Н	3.151563	2.379789	3.983410
С	3.730214	0.923635	5.294910
Н	4.031899	1.518517	5,971341
С	3.818216	-0.436289	5,498070
с Ц	4 187786	-0 781105	6 302423
C	3 362200	_1 287266	1 517108
	2.100071	-1.207200	4.51/100
H	3.409071	-2.226328	4.652995
С	2.831232	-0.789641	3.324062
Η	2.521587	-1.393418	2.659179
С	1.881611	-1.434064	-3.261684
Н	1.662684	-1.737549	-4.178221
Н	1.822842	-0.445982	-3.243355
С	0.873714	-2.022625	-2.275892
C	-0 559919	-1 859927	-2 816723
C	-1 6/103/	-2 070260	_1 951560
	1 400020	-2.070200	-1.951500
н	-1.480839	-2.234327	-1.029649
С	-2.94/994	-2.041165	-2.429661
H	-3.671376	-2.187344	-1.831475
С	-3.204294	-1.800172	-3.774461
Η	-4.097689	-1.776240	-4.096586
С	-2.135714	-1.594123	-4.644487
Н	-2.301067	-1.439456	-5.567102
С	-0.839774	-1.613330	-4.174383
н	-0 122552	-1 457344	-4 777495
C	1 103007	-3 537016	-2 132510
	1 245007	1 220004	2.152515
	1.245983	-4.338994	-3.2540/1
Н	1.235864	-3.93/600	-4.115044
С	1.401968	-5.699667	-3.150364
Η	1.510422	-6.225589	-3.934020
С	1.401423	-6.304096	-1.909879
Н	1.491622	-7.246937	-1.836209
С	1.267366	-5.519032	-0.765743
Н	1.280155	-5.927497	0.091871
C	1 116052	-4 150197	-0 872745
U U	1 020448	-3 622011	-0 088896
п С	2 707275	-3.022011	1 101256
C	-3.797373	1.955018	-1.401356
C	-4.337706	2.309314	-3.585505
H	-4.273128	2.319887	-4.533231
С	-5.383307	2.724328	-2.844425
Н	-6.200143	3.085564	-3.168150
С	-5.945177	3.012890	-0.449472
Η	-6.764424	2.457058	-0.449824
Н	-6.211505	3.941689	-0.665075
С	-5.341312	2.987818	0.928820
н	-4 448476	3 415131	0 910619
и П	-5 015210	2 406700	1 554700
п	-3.913210	3.490700	1.554709
C	-4.295982	0./56/33	0.898463
С	-6.084655	0.960648	2.244543
H	-6.815782	1.347803	2.711512
С	-5.694017	-0.321812	2.293421
Н	-6.090355	-1.017308	2.805015
С	-2.043672	1.443203	-3.100718
Н	-1.880374	1.719417	-4.037280
Н	-1.981590	0.456148	-3,056446
C	-0 972530	2 067035	-2 186740
C	_1 160500	2 501160	_2 010220
\cup	-1.100009	J.JOTIDA	-2.040328

С	-1.428469	4.376691	-3.170805
Н	-1.555906	3.964399	-4.017127
С	-1.500652	5.760090	-3.061212
Н	-1.670834	6.285475	-3.834216
C	-1 327524	6 376183	-1 841359
ч	-1 376355	7 322234	-1 769897
C	-1 079146	5 593615	-0 709347
U U	-0 956382	6 011/77	0.13/028
С	-0.930302 -1.010537	1 2005/6	-0.810207
11	-I.010337	2 607057	
п	-0.034317	1 00/000	-0.031733
C	1 556744	2 006956	-2.010227
	1.00000	2.000000	-2.012030
Н	1.459085	2.102/45	-1.0/19/0
C	2.838014	1.9/9845	-2.5/6/13
H	3.602499	2.034567	-2.015409
C	2.99/319	1.8/4003	-3.946688
H	3.86/216	1.866053	-4.328408
С	1.878501	1.779694	-4.757343
H	1.983070	1.713667	-5.699246
С	0.619915	1.780900	-4.210402
Н	-0.134430	1.703697	-4.782678
С	-3.693390	-1.569279	1.348830
Η	-3.628979	-1.866704	0.406767
Н	-4.044385	-2.321598	1.888190
С	-2.288335	-1.159626	1.868613
С	-2.515504	-0.590956	3.283500
С	-2.676716	0.756098	3.503358
Н	-2.502282	1.367059	2.797114
С	-3.090229	1.243150	4.739333
Η	-3.210679	2.176738	4.867383
С	-3.327624	0.356089	5.790669
Н	-3.608982	0.682788	6.637215
С	-3.153232	-0.982364	5.595379
Н	-3.305556	-1.584609	6.314131
С	-2.752070	-1.481536	4.347792
Н	-2.640446	-2.416460	4.221405
С	-1.393347	-2.400951	1.937708
С	-1.821825	-3.663471	1.559667
Н	-2.671102	-3.763645	1.145927
С	-1.030899	-4.785367	1.775238
Н	-1.336241	-5.639716	1.493483
С	0.215155	-4.663722	2.406181
H	0.748186	-5.430523	2.580519
C	0.647927	-3.411124	2.766501
Н	1.499273	-3.313817	3.176690
C	-0.129611	-2.286849	2.544948
н	0,192906	-1,431963	2.805047
± 1	0.172700		2.0000 I/

*

xyz file of the optimized geometry:

151

Coordinates from ORCA-job coni2nevlft2opt

Co 0.01567280752068 0.00611071929467 -0.07743058655135

0.7	7	8	3	9	4	9	4	5	1	6	3	1	5	
-1.0	9	3	6	3	2	3	9	1	4	5	8	3	6	
-0.	9	9	9	3	6	9	4	4	0	7	7	3	9	3
0.	8	8	8	0	2	1	6	6	5	1	7	8	0	3
-0.3	35	2	0	8	1	4	3	8	9	1	9	0	4	
-0.	1	4	8	1	5	5	1	0	7	1	9	0	8	0
1.0	8	2	4	4	8	8	1	9	8	3	7	6	5	
1.0	8	0	3	4	4	5	1	3	3	1	4	8	6	
-1.6	52	9	7	9	7	5	3	6	5	6	9	7	2	
-2.8	6	4	7	6	1	9	3	2	9	5	8	7	7	
-2.	6	2	2	0	8	6	7	1	7	2	4	6	2	0
-1.	2	7	7	8	6	1	5	7	6	2	6	4	1	0
1.	4	3	6	1	6	9	3	0	3	9	0	1	6	4
1.	3	6	5	4	8	5	7	6	4	1	3	9	2	5
0.5	8	2	9	6	6	4	4	0	0	0	2	1	3	
1.9	1	6	4	9	1	0	7	6	7	4	9	6	2	
2.4	4	3	7	1	0	8	6	8	5	1	0	2	5	
1.9	0	9	3	9	2	9	6	9	2	9	5	1	2	
2.4	1	9	4	7	6	7	1	7	4	9	1	9	3	
0.8	3	4	8	8	1	6	6	2	9	8	0	1	9	
1.0	1	6	0	2	2	9	2	5	6	9	7	4	2	
1.5	5	8	3	7	2	5	2	5	5	4	1	8	9	
-0.5	6	3	1	2	2	0	1	3	9	9	5	2	8	
-0.7	7	3	9	9	3	5	0	2	0	9	6	5	3	
-0.6	50	7	1	0	4	1	4	7	5	8	0	7	7	
-1.6	51	2	6	6	4	8	5	6	4	7	6	8	8	
-2.8	87	9	6	1	2	7	3	2	5	1	6	7	8	
-3.0	9	6	4	1	5	8	8	9	4	6	4	6	9	
-3.6	55	3	3	2	0	7	4	0	6	0	0	8	2	
-4.6	8	0	7	6	9	2	2	5	3	2	7	5	8	
1.0	1	1	4	3	4	2	6	8	5	5	2	6	7	
-0.0)3	0	2	1	4	3	4	0	2	4	6	9	6	

0.27945602476186	0
-1.34733119691646	-1
1.39473348814606	-
-0.26952056133573	
-0.96633338149734	-0
1.00811904102153	-
0.68238905645643	1
-1.35230435199484	1
-2.82596264276432	-1
-2.14222135998244	-2
2.18490907454125	_
2.89051328910409	_
1.39310370249738	
-0.64757339276149	
-0.53803965955370	0
0.63640792756394	1
1.50923780122105	2
-0.64949246221984	1
-1.12037562130457	2
-2.78631688726438	0
-3.18439264780399	1
-3.24832139110657	1
-3.12777557083070	-0
-2.60385308376004	-0
-4.20556778404054	-0
-2.04463749040220	-1
-3.40948530795152	-2
-4.07699510899446	-3
-2.98321679885138	-3
-3.21138347661433	-4
1.76572647033367	1
2.06645993365475	-0

0	1.78548287997566
0	1.04716986161428
0	-1.06076504145759
0	-1.69557441818677
Ni	2.83405016743709
Ni	-2.80115302920703
N	4.64105482948348
N	5.31904330184489
N	4.84523883519819
N	3.22874057626418
N	-3.36007460340841
N	-4.87737208422274
N	-5.18980206560601
N	-4.53214565279255
С	4.36820890897909
С	5.74895815166641
Н	6.11632667591648
С	6.18624650801238
Н	7.01903295424326
С	5.32966845615316
Н	4.32371612201384
Н	6.00941563694753
С	5.80342819534116
Н	6.74514150020474
Н	5.99926308014740
С	3.73375920140863
С	5.01750181770035
Н	5.84383973610741
С	3.99169646958640
Н	3.73368110644858
С	3.67154971155291
Н	3.53842719429350

Η	4.07050387464736
С	2.32503539011717
С	1.35816823799631
С	1.62610916311466
Н	2.49586620030693
С	0.80043774036913
Η	1.03579354387879
С	-0.30965286103177
Η	-0.93214854349104
С	-0.61507611915103
Η	-1.47261840595735
С	0.20967447540215
Η	-0.00369744382612
С	2.66450825647886
С	2.96686958089931
Η	2.85427267121532
С	3.39399006296817
Η	3.61775568064207
С	3.52794820351992
Η	3.86013425182087
С	3.22595572757499
Η	3.32429160383483
С	2.79729053273992
Н	2.55717357382785
С	1.93622344954465
Н	1.76038170704430
Η	1.97206961298218
С	0.83698309401650
С	-0.56249182808857
С	-1.66475134942526
Н	-1.48444115798260
С	-2.96688199681215

2.61010753809855
1.28483670126642
2.46596418320534
3.74303319775921
3.93018474358825
4.82637782309889
5.81322089661466
4.64466337111179
5.49520148183250
3.36554314407981
3.21799938589590
2.28503084168400
1.30395701910044
0.73926182999390
1.62710983902458
2.70167121278411
1.15064197193290
1.85365479749902
-0.22379816712220
-0.59736020248979
-1.11231288205788
-2.18600727198963
-0.63136794392737
-1.31869972188715
-1.60798445334265
-1.99143786131452
-0.51852336603466
-2.05170911873335
-1.78952664678076
-1.98411309984688
-2.23697786186592
-1.91038679988379

1.57916484746424	
1.61188060433860	
1.75325994940444	
1.24391710522298	
0.61654542058323	
1.55418260906090	
1.15722251236099	
2.37634061462749	9
2.65419825200694	1
2.84649887866727	7
3.50079498507082	2
2.53440549021226	
2.95667449300593	3
3.01064958482429	
4.05252480914519	
3.90071238157293	
5.29205021742420	
6.09436225061575	
5.50749840975972	
6.47584902378224	
4.47554800151455	
4.64082196158635	
3.23490958510054	
2.42831119338789	
-3.27768619650532	
-4.28374223446007	
-3.31094877618706	
-2.29375756542107	
-2.86710258351532	2
-2.02357569256465	5
-0.98044038132430)
-2.51986002573444	1

-3.81936883579681	-2.07887323741180	-1.86231051526644
-3.19510220352501	-1.66002832243585	-3.87629759046171
-4.21167000137955	-1.63192120594000	-4.26769388409903
-2.10652332288985	-1.45582846840376	-4.72252670401234
-2.26591294042380	-1.25997842551330	-5.78303092688037
-0.80293970002102	-1.50922377360466	-4.21779496466528
0.01806998595446	-1.33744484768892	-4.90944549551911
0.98504749617705	-3.57031834555020	-2.09050440735455
0.74356298292061	-4.44062026147882	-3.16379858068661
0.35074975410532	-4.05144674183326	-4.10412485358927
0.98149426699982	-5.80821274253041	-3.03970597458506
0.78413663326009	-6.47218462141590	-3.88129465510706
1.46960393322315	-6.32635829995947	-1.83600468335964
1.66080627879308	-7.39483852256279	-1.73712509877716
1.69170137679799	-5.46791249826188	-0.76048218349361
2.04926965017746	-5.86814881148587	0.18807931347091
1.44253896824952	-4.09658361591620	-0.88336815010279
1.58415278576776	-3.43137649016908	-0.03403802648221
-3.77535370071970	2.09915216667660	-1.33687773940287
-4.16908985232191	3.03014439450356	-3.35858196173899
-3.98381383671202	3.24998908654417	-4.40335595519648
-5.13223166089569	3.47101948394714	-2.51528460734222
-5.96557193983816	4.14565808935954	-2.67605232980842
-5.75373733786179	3.20333692026125	-0.14597085702755
-6.72045145319464	2.70599852202138	-0.30040169827236
-5.92417950419849	4.28627871092996	-0.16371580998999
-5.19761543944490	2.83128254636349	1.21370547653645
-4.17675925250342	3.21323358824654	1.33717272708112
-5.82379897480108	3.29033771485210	1.98579040227550
-4.27722968609146	0.57861422232666	0.87221352726110
-6.01490883560442	0.68326899992934	2.30171702436436
-6.81238205189202	1.15234650495101	2.86693624059838

Η

С

Н

С

Н

С

Η

С

С

Н

С

Н

С

Н

С

Н

С

Н

С

С

Н

С

Н

С

Н

Н

С

Н

Н

С

С

Н

-5.58972688632205	-0.60641552757310	2.26271861914593
-5.93480587470647	-1.48479549572885	2.79582186860273
-2.10290980743870	1.63459826796790	-3.11645481448794
-1.99805060725614	1.99503845538340	-4.14068921036703
-2.14726003180887	0.54490287426029	-3.12419817254250
-0.93588234287976	2.08876814941681	-2.21759616552134
-1.07284111321803	3.60870128113423	-2.01539150253494
-0.92091977033111	4.47189034838754	-3.11034801369308
-0.60548123795284	4.07700583688996	-4.07698413734047
-1.14912282664961	5.84022615845386	-2.97611268617262
-1.02158511655983	6.49871102488975	-3.83530004204930
-1.53759987270588	6.36594559667891	-1.73988237474773
-1.71941240854707	7.43519987985991	-1.63223948840306
-1.67357813776229	5.51386971346494	-0.64501765383162
-1.95399748903950	5.91995421188623	0.32686821446521
-1.43562157774345	4.14168334523564	-0.77938128032909
-1.51309614073200	3.48023800593148	0.08095641313398
0.42296439080635	1.82560777871905	-2.88155445169137
1.57590979933806	1.97023776881085	-2.09843759171503
1.46242989266281	2.18371182189675	-1.03768106657021
2.84594028342789	1.88833939321628	-2.67090918141807
3.73807419971411	2.00878587471538	-2.05690525470771
2.99095345483359	1.68398093444828	-4.04603930918139
3.98258724494319	1.64831144292923	-4.49631476013736
1.85133113527775	1.53255389580707	-4.83438475856656
1.94550917201856	1.37270096709112	-5.90862439736022
0.58015362116571	1.59106972509601	-4.25323073316207
-0.28224673420350	1.46063466963669	-4.90249814296520
-3.58200020571711	-1.73948914755472	1.20981034504432
-3.51890280462732	-2.01687521596545	0.15512819325807
-3.95462808167434	-2.59143073193133	1.78399371666250
-2.19359860278586	-1.28729301224518	1.73210520248290

С

Н

С

Н

Η

С

С

С

Н

С

Η

С

Η

С

Η

С

Н

С

С

Н

С

Н

С

Н

С

Н

С

Н

С

Н

Н

С

С	-2.43603118910503	-0.77214256999004	3.16257116840147
С	-2.55253885476618	0.59327546938709	3.42453989546772
Н	-2.36586683105337	1.29741073456983	2.61857496169785
С	-2.89799876774177	1.04747341505017	4.70068098621631
Н	-2.98484488483506	2.11720425114284	4.89544142716052
С	-3.13120867308626	0.13706573158918	5.73131093912310
Η	-3.39787017490744	0.48991511468831	6.72730022850899
С	-3.01327089962413	-1.23231048280316	5.47803973783258
Η	-3.18447391933461	-1.95237728469299	6.27816022791226
С	-2.66946412670966	-1.68219065850818	4.20306934004689
Η	-2.56876918390516	-2.75319436216367	4.02128065144345
С	-1.23225606115521	-2.47970034473840	1.78687065807768
С	-1.55494990481644	-3.75271338166423	1.30015360946913
Η	-2.47326820470763	-3.92867378969629	0.74243629713191
С	-0.72139667046981	-4.84644927845209	1.54754395603084
Η	-0.99840610547739	-5.83069829283311	1.17157889842565
С	0.44873842615087	-4.67944008705799	2.28497826317077
Η	1.07720913208693	-5.53874873668770	2.51840022940324
С	0.80816499218845	-3.40387701408495	2.72541196471757
Η	1.71517499470846	-3.26698063953979	3.31210301884953
С	-0.02320472604409	-2.31291269283146	2.47389687484664
Н	0.23415280641079	-1.33390604258243	2.87576120925477

Using this geometry harmonic frequencies have been calculated using the following input file:

!UKS wB97X-D4 D3BJ DKH2 DKH-def2-SVP freq Autoaux moread %moinp "coni2nevlft2opt.gbw"

%basis
newgto Co "dkh-def2-tzvp" end
newgto Ni "dkh-def2-tzvp" end
end

%pal nprocs 8 end

%maxcore 100000

%rel method DKH

picturechange 2 end

%scf maxiter 500 shift shift 0.5 erroff 0 end end

*xyzfile 2 4 coni2nevlft2opt.xyz

Computed IR frequencies and intensities are:

IR SPECTRUM

_	_	_	_	_	_	_	_	_	_	_

Mode	freq	eps	Int	T**2	TX	ΤY	ΤZ
	cm**-1	L/(mol*cm)	km/mol	a.u.			
6: 7.	20.98	0.000000	0.00	0.000007	(0.000798	0.002562	0.000273)
/:	25.95	0.000140	0.71	0.001684	(0.008127	0.019650	-0.035103)
8: 0.	20.43	0.000142	0.72	0.001678	(-0.010324	-0.031051	-0.021157)
10.	34.15	0.000107	0.54	0.000979	(-0.001079	-0 000160	0.005027)
11.	40 23	0.000020	0.10	0.000102	(0.012303	0.000100	-0.018125
12:	41.11	0.000140	0.71	0.001060	(0.002860	0.032393	0.001687
13:	44.71	0.000251	1.27	0.001753	(0.030864	0.028275	-0.001153)
14:	46.80	0.000016	0.08	0.000108	(-0.009830	-0.001677	-0.002931)
15:	48.35	0.000006	0.03	0.000039	(0.003119	-0.003255	-0.004375)
16:	53.49	0.000170	0.86	0.000994	(-0.004413	-0.003200	-0.031053)
17:	57.22	0.000025	0.12	0.000135	(0.000880	0.002014	0.011394)
18:	57.90	0.00038	0.19	0.000203	(-0.007446	-0.010124	0.006681)
19:	61.50	0.000022	0.11	0.000113	(-0.000182	0.000368	0.010624)
20:	64.87	0.000210	1.06	0.001010	(-0.012136	-0.006463	-0.028651)
21:	66.64	0.000517	2.61	0.002419	(0.037570	0.030636	-0.008329)
22:	68.91	0.000033	0.17	0.000149	(-0.009706	0.007265	0.001410)
23:	70.88	0.000026	0.13	0.000115	(-0.001044	-0.010678	0.000414)
24:	71.99	0.000033	0.1/	0.000144	(-0.006668	0.009848	-0.001472)
25:	76.10	0.000009	0.04	0.000036	(-0.004403	-0.004059	0.000340)
20:	70.0J 02 17	0.000048	0.24	0.000195	(-0.001030	-0.000/170	0.000387)
28.	86 15	0.000108	0.33	0.000410	(-0.001039	-0.000413	-0.020211)
20.	88 00	0.000021	0.12	0 000082	(-0.007403	-0 005214	-0.00000000000000000000000000000000000
30:	90.44	0.000627	3.17	0.002162	(0.041222)	0.021365	-0.002533
31:	96.45	0.000102	0.52	0.000331	(0.000807	-0.018125	-0.001437)
32:	100.38	0.000006	0.03	0.000020	(-0.002930	-0.000539	-0.003312)
33:	104.30	0.000013	0.07	0.000039	(-0.001996	-0.000843	-0.005852)
34:	106.62	0.000248	1.25	0.000726	(-0.022780	-0.014276	0.001825)
35:	113.79	0.000010	0.05	0.000028	(-0.000991	-0.000550	-0.005139)
36:	119.89	0.000059	0.30	0.000153	(0.006705	-0.010406	-0.000126)
37:	121.71	0.000155	0.78	0.000398	(0.000507	0.003625	-0.019616)
38:	128.77	0.000298	1.51	0.000723	(0.005356	0.025250	0.007531)
39:	131.09	0.000739	3.73	0.001758	(0.000480	-0.004757	0.041658)
40:	134.81	0.000250	1.26	0.000579	(0.021566	0.010484	-0.002041)
41:	141.09	0.000081	0.41	0.0001/9	(0.000838	0.0010/1	0.013305)
42:	151 40	0.000006	0.03	0.000012	(0.001323	-0.001992	0.002550)
43:	152 75	0.000074	0.37	0.000131	(-0.011303	-0 000114	-0.004391)
11. 45.	155 57	0.000120	0.01	0.0000245	(0 0002752	-0 000462	-0 000814)
46.	172 23	0.000122	0.60	0 000221	(-0.012643	0 007679	-0.001364
47:	174.37	0.000222	1.12	0.000398	(-0.001351)	-0.001090	-0.019865)
48:	177.63	0.000179	0.91	0.000315	(-0.002914	0.004268	0.016983)
49:	180.62	0.001198	6.06	0.002070	(0.022914	-0.039307	-0.000235)
50:	190.84	0.003594	18.16	0.005877	(0.035493	0.067935	0.001612)
51:	196.24	0.000497	2.51	0.000790	(-0.017329	0.022078	-0.001616)
52:	203.19	0.004050	20.47	0.006220	(-0.001563	0.001963	-0.078826)
53:	211.86	0.000330	1.67	0.000486	(-0.000083	0.000551	-0.022048)
54:	226.58	0.000195	0.99	0.000269	(0.005825	0.015309	-0.000560)
55:	240.20	0.000825	4.17	0.001072	(0.001367	0.008966	-0.031456)
56:	241.45	0.001266	6.40	0.001636	(0.011001	0.038700	0.004166)
57:	246.98	0.000356	1.80	0.000450	(0.004074	-0.000425	-0.020810)
58:	24/.40	0.000218	1.10	0.000275	(U.UI6316	-0.001405	0.002539)
59:	254.04	0.000659	3.33	0.000810	(0.001190	0.00107062	0.028418)
61.	∠00.13 257 /0	0.001322	0.68	0.00161/		-U.UI2/86	U.UUZ369)
62.	260 61	0.000207	1 04	0.000248	(0,002800	-0.015456	-0.0002040)
~ - •		0.000207		2.000210	, 0.002000	0.010100	

63:	269.96	0.000268	1.35	0.000309	(-0.002331	0.001117	-0.017395)
64:	271.31	0.000892	4.51	0.001025	(-0.030787	-0.008608	0.001882)
65:	274.98	0.000250	1.26	0.000283	(-0.003663	-0.001274	-0.016380)
66:	278.00	0.001214	6.14	0.001363	(-0.030510)	-0.020698	0.001990)
67.	200.00	0.0001211	0.20	0.0001000	(0.0000000	0.000161	0.007922)
07. CO	202.33	0.0000000	0.20	0.000001	(0.000090	0.000101	-0.007823)
68:	291.08	0.000350	1.//	0.000375	(0.006556	-0.018205	-0.000617)
69:	299.66	0.000130	0.66	0.000135	(0.000392	0.001219	-0.011556)
70:	307.41	0.000026	0.13	0.000026	(-0.003769	-0.000945	-0.003351)
71:	309.64	0.001038	5.24	0.001046	(-0.001291	-0.000919	-0.032302)
72:	314.55	0.000804	4.06	0.000797	(0.009574	0.026552	-0.000789
73.	315 8/	0 000407	2 06	0 000402	(-0.000544	-0 001306	0 010007)
73.	220 12	0.000407	2.00	0.000402	(0.0000044	0.001300	0.01007)
74:	330.13	0.000048	0.24	0.000048	(0.004890	0.004/30	-0.001027)
/5:	330.25	0.000222	1.12	0.000209	(0.0109/1	0.009420	-0.000535)
76:	334.94	0.000424	2.14	0.000395	(0.013367	-0.014685	-0.000783)
77:	337.59	0.000005	0.03	0.000005	(0.000766	-0.001963	0.000535)
78:	345.58	0.002360	11.92	0.002131	(-0.022738	0.039826	0.005261)
79:	347.18	0.001094	5.53	0.000984	(-0.005170	0.005829	-0.030381)
80:	349.41	0.002162	10.93	0.001931	(-0.028025)	-0.033760	0.002490)
81.	355 86	0 001007	5 09	0 000883	(0 002113	-0 000606	0 029640)
02.	360.36	0 002069	10 46	0.0000000	(0 0/1/37	-0 000320	-0.002370)
02.	300.30	0.002009	10.40	0.001/92	(0.041437	-0.000320	-0.002379)
83:	367.97	0.000222	1.12	0.000188	(0.009367	0.0028/0	0.009604)
84:	369.66	0.001987	10.04	0.001677	(0.036019	0.019168	-0.003532)
85:	382.87	0.000272	1.37	0.000222	(-0.005092	0.009504	-0.010270)
86:	384.12	0.000348	1.76	0.000283	(-0.008729	0.012958	0.006233)
87:	397.41	0.000002	0.01	0.000002	(-0.000432)	0.000706	0.001055)
88:	408.29	0.003539	17.89	0.002705	(-0.039463	0.033830	0.001844)
89.	417 58	0 000244	1 23	0 000182	(-0 002041	0 013335	0 0004131
00.	420.04	0.000244	1.23	0.000102	(0.002041	0.010000	0.000415)
90:	420.94	0.000014	0.07	0.000010	(-0.000483	0.000449	-0.003103)
91:	422.24	0.000049	0.25	0.000036	(-0.004858	-0.003511	0.000589)
92:	423.58	0.000042	0.21	0.000031	(0.000631	0.001487	0.005336)
93:	430.50	0.000057	0.29	0.000041	(0.000450	-0.001552	0.006205)
94:	430.66	0.000053	0.27	0.000038	(0.001549	-0.001921	-0.005673)
95:	434.16	0.000396	2.00	0.000284	(-0.001516	0.006059	-0.015667)
96:	435.27	0.001969	9,95	0.001412	(-0.018062)	0.032947	0.000272)
97.	436 45	0 000264	1 33	0 000188	(0 008735	0 010510	0 001306)
00.	130.33	0.000204	1.00	0.000100	(0.000735	0.01757	-0.000150)
90. 00.	430.23	0.000004	10.02	0.000003	(0.000023	0.001/3/	-0.000130)
99:	443.07	0.003765	19.03	0.002652	(0.025822	0.044250	0.005192)
100:	447.49	0.004788	24.19	0.003339	(-0.000104	-0.002069	0.057744)
101:	468.85	0.001492	7.54	0.000993	(0.003630	-0.001759	-0.031250)
102:	470.58	0.001376	6.95	0.000913	(-0.026452	0.014271	-0.003041)
103:	484.62	0.001969	9.95	0.001268	(-0.016489	-0.031525	0.001520)
104:	487.02	0.002214	11.19	0.001419	(0.000629	0.000197	0.037660)
105:	492.58	0.000009	0.05	0.000006	(-0.000302)	-0.001604	-0.001815)
106.	498 98	0 009858	49 82	0 006165	(-0 067092	0 040742	0 001981)
107.	521 02	0 000030	0.20	0.000103	(0 000429	-0.000900	-0.004758)
100.	521.02	0.0000000	0.20	0.000025	(0.000420	0.000000	0.004/00)
100:	521.79	0.000020	0.13	0.000010	(-0.002378	0.002975	-0.000493)
109:	534.88	0.000063	0.32	0.000037	(-0.003897	0.000315	0.004623)
110:	535.65	0.000106	0.53	0.000062	(-0.007425	-0.000703	-0.002450)
111:	540.22	0.001445	7.30	0.000834	(0.000295	0.000645	0.028879)
112:	540.81	0.000080	0.41	0.000046	(0.001613	-0.005490	0.003689)
113:	590.29	0.001303	6.58	0.000689	(-0.007533	0.017357	-0.018185)
114:	591.15	0.001248	6.31	0.000659	(-0.003754)	0.011624	0.022579)
115.	595 79	0 000102	0 52	0 000054	(-0, 0.02013)	0 002321	0 006643)
116.	500 50	0 002213	11 10	0 001154	(0 023402	-0.024614	-0.000242)
117.	CO1 44	0.002213	2 10	0.001134	(0.025402	0.024014	0.000242)
110	021.44	0.000032	J.19	0.00031/	(0.015221	-0.000493	-0.009241)
118:	622.02	0.002942	14.8/	0.0014/6	(-0.005311	0.000637	-0.038043)
119:	624.30	0.004600	23.24	0.002299	(-0.014310	-0.045763	-0.000417)
120:	624.85	0.000837	4.23	0.000418	(0.006403	0.019236	-0.002679)
121:	634.88	0.000602	3.04	0.000296	(0.016976	0.002742	-0.000043)
122:	635.46	0.000087	0.44	0.000043	(0.002113	0.001180	0.006058)
123:	635.76	0.000111	0.56	0.000054	(-0.005436	-0.004070	0.002866)
124	635 83	0.001521	7.68	0.000746	(-0.020650	-0.017874	0.000654)
125.	636 18	0 000072	0.36	0 000035	(-0 004390	-0 004005	-0.000270)
126.	626.10	0 000072	1 17	0 000114	(_0_001040	_0 001050	0.010571)
107	030.39	0.000232	1.1/	0.000114	(-0.001040	-0.001050	0.0100/1)
100	030.48	0.000005	0.03	0.000003	(0.000006	0.000066	0.001620)
128:	637.34	0.000054	0.27	0.000027	(0.004024	0.003158	-0.000620)
129:	642.37	0.000007	0.03	0.00003	(0.001765	0.000035	0.000383)
130:	643.69	0.001239	6.26	0.000600	(-0.023386	0.007275	0.000820)
131:	645.67	0.002551	12.89	0.001233	(0.013070	0.032584	0.000716)
132:		0 000303	1.94	0.000185	(0.000962	-0.013255	-0.002878)
-	646.38	0.000303	-		· · · · · · · · · · · · · · · · · · ·		,
133	646.38 646.95	0.000383	2.11	0.000201	(0,006950)	0.001209	-0.012304
133: 134:	646.38 646.95 647 41	0.000417	2.11	0.000201	(0.006950)	0.001209	-0.012304)
133: 134:	646.38 646.95 647.41	0.000383	2.11	0.000201	(0.006950) (0.035200) (-0.002641)	0.001209	-0.012304)
133: 134: 135:	646.38 646.95 647.41 661.93	0.000417 0.003574 0.000181	2.11 18.06 0.91	0.000201 0.001723 0.000085	(0.006950 (0.035200 (-0.002641	0.001209 -0.021978 0.002688	-0.012304) 0.000806) 0.008432)
133: 134: 135: 136:	646.38 646.95 647.41 661.93 662.66	0.000383 0.000417 0.003574 0.000181 0.002063	2.11 18.06 0.91 10.43	0.000201 0.001723 0.000085 0.000972	(0.006950 (0.035200 (-0.002641 (0.023864	0.001209 -0.021978 0.002688 -0.020055	-0.012304) 0.000806) 0.008432) -0.000005)
133: 134: 135: 136: 137:	646.38 646.95 647.41 661.93 662.66 674.42	0.000417 0.003574 0.000181 0.002063 0.000054	2.11 18.06 0.91 10.43 0.27	0.000201 0.001723 0.000085 0.000972 0.000025	(0.006950 (0.035200 (-0.002641 (0.023864 (-0.001349	0.001209 -0.021978 0.002688 -0.020055 0.001370	-0.012304) 0.000806) 0.008432) -0.000005) 0.004595)
133: 134: 135: 136: 137: 138:	646.38 646.95 647.41 661.93 662.66 674.42 675.46	0.000417 0.003574 0.000181 0.002063 0.000054 0.002446	2.11 18.06 0.91 10.43 0.27 12.36	0.000201 0.001723 0.000085 0.000972 0.000025 0.001130	(0.006950 (0.035200 (-0.002641 (0.023864 (-0.001349 (0.027405	0.001209 -0.021978 0.002688 -0.020055 0.001370 -0.019446	-0.012304) 0.000806) 0.008432) -0.000005) 0.004595) -0.000901)

140:	692.69	0.000446	2.26	0.000201	(0.013419	0.002910	-0.003548)
141:	712.09	0.003987	20.15	0.001747	(-0.011238	-0.040225	-0.001712)
1/2.	712 37	0 000864	1 37	0 000379	· · - 0 000738	-0 007608	0 017801)
142.	712.57	0.000004	111 00	0.000575	(0.000730	0.007000	0.017031)
143:	720.53	0.022103	111.70	0.009573	(0.028236	0.093665	0.001544)
144:	723.54	0.001285	6.50	0.000554	(0.003987	0.006055	-0.022402)
1/5.	725 00	0 02/308	122 8/	0 010463	(-0 100675	-0 017279	0 005383)
145.	723.00	0.024500	122.04	0.010405	(0.100075	0.01/2/5	0.0000000)
146:	726.44	0.011282	57.02	0.004847	(0.006250	0.001027	0.069329)
147:	728.93	0.000151	0.76	0.000065	(-0.005584	-0.004903	0.003081)
1/18.	729 86	0 011077	55 98	0 004736	(-0 000805	0 000583	-0 068813)
140.	725.00	0.0110//	55.50	0.004730	(0.000000	0.000505	0.000013)
149:	735.18	0.003648	18.43	0.001548	(0.038872	-0.000389	-0.006098)
150:	735.67	0.001917	9.69	0.000813	(0.027600	0.000753	0.007131)
151.	730 00	0 001595	0 01	0 000669	(_0 021373	_0 01/5/5	_0 000024)
151.	755.50	0.001000	0.01	0.000000	(0.021373	0.014343	0.000024)
152:	740.67	0.001289	6.51	0.000543	(-0.000490	-0.001064	0.023271)
153:	747.69	0.000646	3.26	0.000270	(0.010231	-0.000385	-0.012834)
151.	717 72	0 004572	23 11	0 001908	0 043653	-0 000503	-0 001529)
134.	141.12	0.004372	23.11	0.001000	(0.043033	0.000505	0.001323)
155:	751.76	0.033853	171.08	0.014053	(-0.115617	-0.026051	0.002609)
156:	751.79	0.002976	15.04	0.001235	(-0.002039	-0.000689	0.035079)
157.	760 06	0 000464	2 35	0 000191	(0 003241	0 000580	0 013411)
157.	700.00	0.000101	2.55	0.000101	(0.000241	0.000500	0.013411)
128:	/60.31	0.000169	0.85	0.000069	(0.002381	0.000623	-0.00/951)
159:	762.92	0.002896	14.64	0.001185	(0.006612	0.032794	0.008095)
160:	763.23	0.001406	7.11	0.000575	(-0.002124)	-0.014862	0.018696)
1 (1 .	700.20	0.007000	25 71	0.000010	(0.025007	0.022010	0.010(20)
TOT:	102.32	0.007066	55./I	0.002019	(0.035907	-0.033619	0.019030)
162:	783.07	0.010525	53.19	0.004195	(-0.045660	0.041502	0.019679)
163:	789.00	0.004050	20.47	0.001602	(-0.013665	-0.003146	0.037488)
161.	789 13	0 005302	26 79	0 002096	· (_0_0/3321	-0 006445	-0 013329)
104.	705.45	0.005502	20.75	0.002090	(0.045521	0.000445	0.013323)
165:	792.27	0.000539	2.72	0.000212	(0.009708	0.002472	-0.010577)
166:	794.29	0.006996	35.35	0.002749	(-0.046785)	-0.023656	-0.000229)
167.	801 26	0 002851	1///1	0 001106	(-0 016969	0 017177	0 022877)
107.	004.20	0.002051	17.71	0.001100	(0.010505	0.01/1//	0.022077)
168:	805.01	0.005027	25.41	0.001949	(0.031586	-0.028829	0.010958)
169:	817.24	0.000480	2.42	0.000183	(0.008391	-0.010362	-0.002315)
170.	818 61	0 000622	3 15	0 000237	(-0 001098	-0 001648	-0 015275)
171.	010.01	0.000022	25.13	0.000237	(0.001000	0.001040	0.013273)
1/1:	819.51	0.005078	25.66	0.001934	(0.016367	0.040691	-0.003144)
172:	821.98	0.004792	24.22	0.001819	(0.002504	0.002964	0.042478)
173:	869.22	0.000101	0.51	0.000036	(0.003851	0.004636	-0.000188
174.	070 01	0 000000	0 4 2	0 000021	(0 000536	0 000120	0 005506)
1/4.	072.31	0.000000	0.45	0.000031	(-0.000330	0.000130	-0.005500)
175:	873.95	0.000027	0.13	0.000010	(0.002806	0.000026	-0.001289)
176:	876.60	0.000016	0.08	0.000006	(0.000633	0.000408	0.002303)
177.	003 61	0 000050	0 30	0 000021		_0 001097	
177.	003.01	0.0000059	0.50	0.000021	(0.003930	-0.001087	-0.002033)
1/8:	883.97	0.000051	0.26	0.000018	(-0.002976	0.001231	-0.002/86)
179:	886.45	0.000010	0.05	0.00003	(0.000153	-0.000021	0.001836)
180:	886.67	0.000020	0.10	0.00007	(0,002627	-0.000036	-0.000094
101.	000.00	0.0000000	0.05	0 000000	(0.001202)	0.000725	0.001070)
191:	890.08	0.000009	0.05	0.000003	(0.001209	0.000/35	0.0010/8)
182:	890.56	0.000514	2.60	0.000180	(-0.011113	-0.007499	0.000645)
183:	891.51	0.000076	0.38	0.000027	(-0.003557)	-0.000335	-0.003712
104.	001 00	0.000055	0.00	0.000010	(0.000500	0.000000	0.000510
184:	891.82	0.000055	0.28	0.000019	(-0.002598	-0.000029	0.003513)
185:	933.48	0.008759	44.26	0.002928	(-0.053279	-0.009435	0.000694)
186:	938.90	0.002690	13.59	0.000894	(0.000634	0.001751	-0.029842)
107.	044 75	0 006044	26 00	0 002204	(0 000105	0 016700	0 004505)
10/:	944.75	0.000944	55.09	0.002294	(-0.009103	0.040/00	-0.004303)
188:	948.29	0.004757	24.04	0.001565	(0.000556	-0.007106	-0.038919)
189:	953.55	0.000250	1.26	0.000082	(0.008449	0.002928	0.001304)
190.	954 47	0 000159	0 80	0 000052	0 001102	-0 000311	0 007122)
101	057.10	0.000133	0.00	0.0000002	(0.001102	0.000511	0.00/122)
191:	957.19	0.005218	26.37	0.001/01	(0.041009	0.003946	-0.001933)
192:	959.98	0.000144	0.73	0.000047	(0.002041	0.001844	0.006271)
193:	960.78	0.003166	16.00	0.001028	(-0.020631)	-0.020628	0.013314
104.	0.61 27	0 002122	10 70	0 000602	(0 012066	0 011111	0 010040)
105	JUL.3/	0.002132	10.10	0.000092	(0.013000	0.011111	0.0120249)
195:	966.63	0.000916	4.63	0.000296	(-0.000609	-0.013136	-0.011083)
196:	967.12	0.000706	3.57	0.000228	(-0.001091	0.010682	-0.010604)
197.	968.25	0.000002	0.01	0.000001	(0.000247	-0.000276	0.000743
100	070.20	0.000002	0.01	0.000001	(0.00021)	0.000210	0.0007107
198:	970.33	0.000900	4.55	0.000290	(-0.014144	0.009410	0.000992)
199:	984.58	0.000284	1.43	0.000090	(-0.003731	-0.001768	0.008539)
200:	986.12	0.002208	11.16	0.000699	(0.023459	0.012161	0.000750)
201.	1000 00	0 000001	0 46	0 000020	(0 004549	0 000705	0 000400)
201.	1000.00	0.000091	0.40	0.000020	(0.004348	0.002725	-0.000490)
202:	1000.17	0.000055	0.28	0.000017	(0.000467	0.000236	0.004098)
203:	1002.33	0.001473	7.44	0.000459	(0.001922	0.006464	-0.020323)
204.	1003 30	0.003201	16 18	0.000996	(0 011067	0.029096	0.005161)
201.	1010 70	0.000201		0.0000000	(0 0007007	0.020000	0.000101)
203:	TOTO'/0	0.000010	0.05	0.000003	(-0.000/03	0.001438	-0.000697)
206:	1011.60	0.000019	0.09	0.000006	(0.001005	-0.002138	0.000430)
207:	1015.55	0.000344	1.74	0.000106	(0.008201	-0.005430	-0.002993)
200-	1016 44	0 000034	1 01	0 000070	(0 002101	_0 001001	0 007745
200:	1010.44	0.000239	1.21	0.0000/4	(0.003101	-0.001981	0.00//45)
209:	1022.52	0.000339	1.71	0.000103	(-0.001926	-0.009450	0.003227)
210:	1023.24	0.000313	1.58	0.000095	(0.002032)	0.008783	0.003755)
211.	1026 44	0 000664	3 36	0 000202	(-0 000075	0 000500	-0 01/162
211; 010	1020.44	0.000004	5.50	0.000202	(-0.0009/5	0.000389	0.014102)
212:	1026.75	0.001187	6.00	0.000361	(-0.004384	0.018461	0.000803)
213:	1026.88	0.000268	1.35	0.000081	(0.000054	0.001917	-0.008812)
214.	1027 22	0 000464	2 35	0 000141	(0 010424	0 005669	0 000484)
		0.000101	2.00	0.000191	(0 00010724	0.001407	0.0105501
() 7	1000 10	// ////////////////////////////////////			1_0 003196		
215:	1029.13	0.000646	3.27	0.000196	(-0.003100	-0.001491	-0.013550)

217:	1031.06	0.001026	5.18	0.000311	(-0.015563)	0.008235	0.000694)
218.	1031 07	0 000031	0 16	0 000009	(-0.000217	0 000303	-0.003044)
210.	1031.97	0.0000001	0.10	0.000000	(0.000217	0.000505	0.00045()
219:	1032.20	0.000063	0.32	0.000019	(0.003397	-0.002682	0.000456)
220:	1033.77	0.000093	0.47	0.000028	(0.000350	-0.000867	0.005216)
221:	1035.89	0.000108	0.54	0.000032	(-0.004624	0.003273	0.000553)
222:	1036.10	0.000072	0.36	0.000022	(0.003630	-0.002890	0.000231)
223.	10/1 /3	0 000121	0 61	0 000036		-0 000164	-0 005973)
223.	1041.45	0.000121	0.01	0.0000000	(0.000720	0.000104	0.00000707
224:	1041.52	0.000098	0.49	0.000029	(0.002831	-0.00158/	0.004334)
225:	1044.56	0.000272	1.38	0.000081	(-0.008434	0.002858	-0.001425)
226:	1044.99	0.000138	0.70	0.000041	(-0.002723	0.001195	0.005691)
227.	1045 92	0 000528	2 67	0 000157	(-0 012456	-0 000267	0 001486)
227.	1015.92	0.000020	0.46	0.000107	(0.012100	0.000100	0.001225)
220;	1043.90	0.000091	0.40	0.000027	(0.002072	0.000199	0.004555)
229:	1057.21	0.005518	27.89	0.001629	(0.03/291	-0.015201	0.002663)
230:	1058.53	0.001275	6.44	0.000376	(-0.005982	0.002762	0.018233)
231:	1067.95	0.002269	11.47	0.000663	(0.004709	-0.025254	0.001747)
232.	1068 36	0 000990	5 00	0 000289	(0 000456	-0 002680	-0 016784)
222.	1075 05	0.0000000	10 01	0.000203	(0.000100	0.002000	0.010042)
233:	1073.03	0.001980	10.01	0.000374	(0.021703	0.001366	-0.010043)
234:	1076.25	0.003199	16.17	0.000928	(-0.029726	-0.001011	-0.006553)
235:	1079.96	0.000915	4.62	0.000264	(0.007840	-0.014172	0.001409)
236:	1080.67	0.000669	3.38	0.000193	(-0.000583	-0.001484	-0.013808)
237.	1082 08	0 000409	2 07	0 000118	(0 008534	-0 005949	0 003135)
227.	1002.00	0.000405	12.07	0.000110	(0.0000004	0.0000040	0.000100)
238:	1082.37	0.002604	13.10	0.000/51	(0.023117	-0.014236	-0.003/03)
239:	1084.70	0.000439	2.22	0.000126	(-0.000566	0.001172	0.011159)
240:	1085.01	0.000534	2.70	0.000154	(0.008125	-0.009358	-0.000048)
241:	1085.37	0.000090	0.46	0.000026	(-0.001850	0.002709	-0.003900)
212.	1085 60	0 000152	0 77	0 000044	(-0 006450	-0 000752	-0 001263)
212.	1000 00	0.000102	50 21	0 000044	(0.000400	0.000732	0.001/70)
243:	1099.65	0.011/3/	59.31	0.003331	(0.05/043	0.008638	-0.0014/9)
244:	1101.05	0.000207	1.05	0.000059	(0.001972	0.000741	0.007363)
245:	1102.36	0.000280	1.41	0.000079	(0.005537	0.002980	0.006296)
246:	1102.56	0.000570	2.88	0.000161	(-0.002332	-0.002071	0.012308)
247.	1103 75	0 000114	0 58	0 000032	0 002698	-0 002148	0 004523)
210.	110/ 95	0.001005	5 0 9	0.000002	(-0.015426)	0.006694	0.001105)
240.	11104.00	0.001003	5.00	0.000204	(-0.013420	0.000004	0.001103)
249:	1110.90	0.002239	11.31	0.000629	(0.01/153	-0.01425/	0.011464)
250:	1111.31	0.001440	7.28	0.000404	(0.010895	-0.006946	-0.015405)
251:	1113.79	0.013613	68.80	0.003814	(0.024042	0.056882	0.000825)
252:	1114.60	0.017407	87.97	0.004873	(0.000419	-0.001999	0.069780)
253:	1121.49	0.000047	0.24	0.000013	(0,001881	-0.000780	-0.003001)
254.	1122 16	0 001307	6 61	0 000364	(-0 012703	0 01/20/	-0 000669)
254.	1122.10	0.001307	10.01	0.000304	(0.012705	0.014204	0.0000000)
255:	1124.01	0.003927	19.85	0.001090	(0.021/55	0.022568	-0.010351)
256:	1125.21	0.004434	22.41	0.001230	(-0.008063	-0.008383	-0.033083)
257:	1130.82	0.000502	2.54	0.000138	(-0.000486	0.000731	-0.011733)
258:	1131.45	0.000501	2.53	0.000138	(-0.000669	0.011628	0.001553)
259:	1138.53	0.004196	21.20	0.001150	(0.025348	-0.022525	-0.000404)
260.	11/1 87	0 000760	3 8/	0 000208	(-0.000427	0 000544	0 014400)
200.	1141.07	0.000700	10 00	0.000200	(0.000427	0.000344	0.014400)
201:	1149.46	0.008078	40.82	0.002193	(0.001091	-0.001331	0.046/98)
262:	1150.34	0.003113	15.73	0.000844	(-0.001562	0.028953	0.001917)
263:	1166.76	0.002970	15.01	0.000794	(0.004216	0.027765	0.002361)
264:	1168.81	0.013652	68.99	0.003645	(0.001458	-0.001442	0.060338)
265:	1174.65	0.006223	31.45	0.001653	(-0.005345)	-0.040304	-0.000427
266.	1176 34	0 000187	0 95	0 000050	(-0 000114	-0 002977	-0 006385)
200.	1100.54	0.000107	0.55	0.000000	(0.000114	0.002577	0.0000000)
267:	1180.55	0.000032	0.16	0.000008	(0.000120	-0.002560	-0.001362)
268:	1180.93	0.001645	8.31	0.000435	(-0.015391	0.014007	-0.001297)
269:	1181.65	0.002568	12.98	0.000678	(-0.006609	-0.024494	0.005881)
270:	1181.88	0.001498	7.57	0.000395	(-0.001842)	-0.015889	-0.011813
271 •	1184 13	0 000651	3 29	0 000172	0 000118	0 000578	-0 013085)
272.	118/ 56	0 000165	0 03	0 00004.2	(-0 000360	0 006300	0 0015200
272.	1104.30	0.000100	0.05	0.000043	(0.000302	0.000550	0.001525)
2/3:	1186.45	0.001938	9.80	0.000510	(0.000199	0.022526	0.001543)
274:	1187.81	0.001219	6.16	0.000320	(0.000484	0.000059	0.017888)
275:	1205.22	0.000387	1.96	0.000100	(0.008682	0.004835	0.001244)
276:	1205.54	0.000116	0.58	0.000030	(-0.001628)	-0.000836	0.005153)
277.	1207 33	0 000302	1 53	0 000078	(-0 003218	0 003795	0 007304)
270.	1209 06	0 000401	2 03	0.000104	(-0.006155	0 007111	-0 003803)
270.	1200.00	0.000401	2.05	0.000104	(0.000133	0.007111	0.005055)
219:	1212.49	0.000506	2.36	0.000130	(-0.00///4	-0.005548	0.006251)
280:	1212.78	0.000577	2.91	0.000148	(-0.002092	-0.005161	-0.010833)
281:	1215.79	0.007007	35.41	0.001799	(0.030302	-0.029672	0.000006)
282:	1216.57	0.000188	0.95	0.000048	(-0.003977	0.005226	0.002244)
283:	1221.23	0.000109	0.55	0.000028	(-0.000483	-0.004908	-0.001858)
284 •	1221 77	0.001079	5 45	0.000276	(0 008248	0.014401	-0.000400)
201.	1220 //	0 00010710	12 71	0 000270	(-0 000230	0 0013901	0 0260703)
200:	1000 00	0.002/12	10.71		(-0.002329	0.001308	0.0200/8)
∠४७:	1230.28	0.003314	10./5	0.000841	(-0.028256	0.005697	-0.003137)
287:	1233.32	0.000737	3.72	0.000186	(0.001873	-0.002483	-0.013294)
288:	1237.53	0.000541	2.73	0.000136	(0.009297	-0.007062	-0.000091)
289:	1245.96	0.011094	56.06	0.002779	(-0.000851	0.002269	-0.052656)
290:	1246.11	0.007844	39.64	0.001964	(0.004977	0.043987	0.002216)
291:	1250.38	0.000869	4.39	0.000217	(0.006234	0.013336	-0.000500)
292.	1250 95	0 000173	0 87	0 000043	(0 002170	0 005663	0 0025221
202.	1075 70	0.0001/3	1 07	0.000043	(0.0021/9	0.0000000	0.002322)
と > ン :	1213.13	0.000213	1.0/	0.000002	(-0.003024	0.003/23	0.0024/9)

004	1075 07	0 00000	4 0 0	0 000100	(0 000000	0 001017	0 012005
294:	12/5.8/	0.000808	4.09	0.000198	(-0.000920	0.00101/	-0.013995)
295:	1278.94	0.007536	38.08	0.001839	(0.038457	0.018885	-0.001781)
296:	1280.41	0.004157	21.01	0.001013	(0.003158	-0.000389	0.031670)
207.	1205 00	0 002010	14 70	0 000706	(0 006151	_0 013409	_0 022049)
297:	1203.00	0.002910	14.70	0.000708	(0.000131	-0.013496	-0.022040)
298:	1286.96	0.016823	85.02	0.004079	(0.027036	-0.057742	0.003782)
299:	1306.40	0.011450	57.86	0.002735	(-0.003193	-0.007859	0.051605)
300.	1307 02	0 003428	17 32	0 000819	(-0 013542	-0 022149	-0 012024)
201.	1212 00	0.0000120	15.52	0.0000144	(0.010012	0.022115	0.012021)
301:	1312.89	0.009021	45.59	0.002144	(-0.032158	-0.032965	-0.004826)
302:	1314.96	0.001768	8.94	0.000420	(-0.005033	-0.006937	0.018606)
303:	1323.05	0.000937	4.73	0.000221	(-0.012466)	0.008094	0.000124
204.	1202 20	0 000100	1 00	0 000047	(0 005100	0 004330	0.001247)
304:	1323.32	0.000196	1.00	0.000047	(0.005109	-0.004336	-0.001347)
305:	1339.40	0.000852	4.30	0.000198	(-0.012360	-0.006231	0.002623)
306:	1340.43	0.000401	2.03	0.000093	(-0.004784)	-0.002686	-0.007959)
307.	1341 95	0 000505	2 55	0 000117	(-0, 0.01224)	0 008532	0 006572)
200.	1242 20	0.001000	0.14	0.000110	(0.001221	0.0000002	0.0000072)
308:	1342.39	0.001808	9.14	0.000420	(0.001030	-0.020186	0.003183)
309:	1345.16	0.001026	5.19	0.000238	(-0.011605	-0.009982	-0.001928)
310:	1346.17	0.002392	12.09	0.000555	(-0.000403)	-0.001180	0.023517)
311.	1346 68	0 001095	5 5 3	0 000254	0 006141	-0 014639	-0 001327)
212.	1047 51	0.001095	0.55	0.000234	(0.0001102	0.011000	0.001027)
312:	134/.51	0.000507	2.56	0.000118	(-0.001103	0.001316	-0.010/04)
313:	1361.48	0.000061	0.31	0.000014	(0.000135	0.000575	0.003706)
314:	1361.53	0.000041	0.21	0.000010	(-0.000727)	-0.000225	0.002989)
315.	1363 //	0 000829	1 10	0 000190	(-0 013188	0 003835	0 001058)
515.	1000.44	0.000020	1.10	0.000100	(0.010100	0.0000000	0.001030)
310:	1303.62	0.000/23	3.65	0.000165	(0.012388	-0.003405	-0.000529)
317:	1364.64	0.003577	18.07	0.000818	(0.026836	-0.009445	-0.002914)
318:	1365.48	0.001052	5.32	0.000241	(0.014157	-0.003999	0.004909)
310.	1368 20	0 000104	0 00	0 000044	(-0 002609	0 005776	0 0010071
200	1000.20	0.000194	0.90	0.000044	(0.002008	0.003776	0.00199/)
320:	1368.59	0.000392	1.98	0.000089	(-0.004057	0.001749	-0.008353)
321:	1369.84	0.003969	20.06	0.000904	(0.030008	-0.000632	-0.001790)
322:	1370.63	0.001604	8.11	0.000365	(0.019077	-0.000119	-0.001100
303.	1303 50	0 005210	26 27	0 001177	(0 000306	0 000031	-0 034204)
525.	1303.39	0.003219	20.57	0.0011//	(0.000300	0.000951	-0.034294)
324:	1384.42	0.001768	8.94	0.000399	(-0.019091	-0.005545	-0.001829)
325:	1387.79	0.002094	10.58	0.000471	(0.011817	0.017954	0.002963)
326.	1388 92	0 000998	5 04	0 000224	(0 001178	0 002094	-0 014779)
220.	1405 40	0.0000000	0.01	0.000221	(0.0012040	0.002001	0.001004)
327:	1405.46	0.001913	9.67	0.000425	(-0.013646	0.015411	-0.001024)
328:	1405.75	0.002447	12.37	0.000543	(0.014815	-0.017917	-0.001647)
329:	1438.76	0.001991	10.06	0.000432	(-0.010385	-0.008265	0.015991)
330.	1439 03	0 002438	12 32	0 000529	(-0 007712	-0 005604	-0 020924)
221.	1444 00	0.002100	2 1 2	0.000020	(0.001020	0.000446	0.020921)
331:	1444.06	0.000422	2.13	0.000091	(0.001828	0.000446	0.009360)
332:	1444.14	0.002843	14.37	0.000614	(0.023663	0.007320	-0.000846)
333:	1450.63	0.000238	1.20	0.000051	(-0.007036	-0.000525	-0.001181)
334.	1450 75	0 000138	0 70	0 000030	0 005311	0 000418	-0 001149)
225	1467 64	0.000130	10.05	0.0000000	(0.000010	0.000074	0.001140)
335:	146/.64	0.003948	19.95	0.000839	(-0.000018	0.0289/4	-0.000058)
336:	1467.98	0.000541	2.73	0.000115	(0.000267	-0.010719	0.000008)
337:	1482.55	0.003345	16.90	0.000704	(0.015787	0.010108	-0.018779
338.	1/83 /8	0 003865	10 53	0 000813	(0 011000	0 007672	0 024707)
550.	1400.40	0.003003	19.55	0.000015	(0.011))0	0.007072	0.024707)
339:	1488.88	0.004/89	24.20	0.001004	(0.02/830	-0.005956	0.013918)
340:	1489.07	0.003675	18.57	0.000770	(0.023362	-0.003993	-0.014440)
341 :	1490.10	0.000935	4.72	0.000196	(0.012473	-0.006066	0.001844
242.	1400 71	0 001000	10 05	0 000416	(0 010004	0.007076	0.002126)
342:	1490.71	0.001969	10.05	0.000416	(-0.010004	0.007076	0.003120)
343:	1498.29	0.000062	0.31	0.000013	(0.000976	0.002826	0.001977)
344:	1498.52	0.000110	0.56	0.000023	(0.000760	-0.004709	0.000445)
345:	1501.99	0.001678	8.48	0.000349	(-0.013828)	-0.012431	0.001682)
346.	1502 10	0 001651	0 31	0 000343	(-0.014065	_0 011016	_0 001760)
540.	1502.15	0.001001	0.54	0.000343	(0.014005	0.011010	0.001/00)
34/:	1503.43	0.005491	27.75	0.001140	(0.01328/	0.031035	-0.000199)
348:	1504.53	0.000045	0.23	0.000009	(0.000802	0.001519	-0.002522)
349:	1505.05	0.001758	8.88	0.000365	(-0.000845)	0.000412	-0.019069
350.	1505 50	0 000270	11 01	0 001716	(-0 004714	_0 000032	0 041156)
350.	1505.50	0.000275	11.01	0.001/10	(0.004/14	0.000052	0.041130)
351:	1505.86	0.004020	20.32	0.000833	(-0.009411	0.000/14	-0.02/2/8)
352:	1506.09	0.000739	3.74	0.000153	(0.011221	-0.004998	-0.001510)
353:	1522.13	0.003073	15.53	0.000630	(0.005350	0.015218	-0.019230)
354.	1522 25	0 005033	25 / 3	0 001031	(_0_001523	_0 011212	-0 030040)
354.	1525.55	0.0000000	23.43	0.001051	(-0.001323	-0.011212	-0.030049)
355:	1532.25	0.005197	26.27	0.001059	(-0.017105	-0.018059	-0.020971)
356:	1533.03	0.005324	26.90	0.001084	(-0.011649	-0.014212	0.027314)
357:	1539.27	0.017602	88.95	0.003569	(0.056004	-0.016274	0.012934)
350.	1540 21	0 010606	54 05	0 002167	(-0 0305004	0 010/30	0 021114
250.	1550.01	0.010090	JI.UJ	0.002107	(0.039300	0.012432	0.021114)
359:	1552.20	0.009478	47.90	0.001905	(0.026109	-0.034766	-0.003892)
360:	1552.80	0.025802	130.39	0.005185	(-0.043361	0.057484	-0.000897)
361:	1553.15	0.009268	46.83	0.001862	(0.016188	-0.040000	-0.000032)
362.	1552 26	0 000260	1 36	0 000054	(_0 005105	0 001037	_0 0010151
202:	1555.20	0.000209	1.30	0.000054	(-0.000195	0.00483/	.0.00TATO)
363:	1555.17	0.005404	27.31	0.001084	(0.016627	-0.021177	0.018959)
364:	1555.31	0.006557	33.13	0.001316	(-0.017666	0.024405	0.020195)
365:	1561.21	0.000239	1.21	0.000048	(-0.004621)	0.005086	0.000790)
366.	1561 70	0 000001	- · C + () / 1	0 000010	(0 0000024	_0 001770	0 000/00/
200:	TJ0T./U	0.000081	0.41	0.000016	(0.000934	-0.001//8	0.00349/)
367:	1562.86	0.001243	6.28	0.000248	(0.015199	0.004144	0.000316)
368:	1563.10	0.000271	1.37	0.000054	(0.002337	0.000885	-0.006919)
369:	1653.01	0.001731	8.75	0.000327	(-0.011415)	-0.005162	0.013031
270	1053.01	0.001731	0.75	0.0000027	(0.010000	0.000102	0.01001
510:	⊥vJJ./4	0.001/31	Ø./J	0.00032/	(-0.012020	-0.004805	-u.uizbi4)

371:	1671.42	0.001390	7.02	0.000260	(0.005861	-0.008499	0.012366)
372:	1672.10	0.001438	7.27	0.000268	(0.004730	-0.008145	-0.013405)
373.	1687 50	0 000243	1 23	0 000045	(0 003171)	-0 003887	0 004444)
274.	1007.00	0.000210	1 01	0.000013	(0.0001)1	0.0000007	0.001111)
3/4:	108/.5/	0.000240	1.21	0.000044	(-0.002906	0.004066	0.004398)
375:	1690.22	0.000546	2.76	0.000101	(0.002660	0.009601	-0.001232)
376:	1690.75	0.000125	0.63	0.000023	(-0.001197)	-0.003385	-0.003178)
377.	1692 62	0 000136	0 69	0 000025	0 002903	-0 001219	-0 003883)
270.	1002.02	0.000130	0.00	0.000020	(0.002300	0.0001219	0.003003)
3/8:	1692.75	0.0001/6	0.89	0.000032	(-0.002/20	0.000881	-0.004921)
379:	1693.41	0.000118	0.59	0.000022	(0.003706	-0.002810	0.000196)
380:	1693.57	0.000034	0.17	0.000006	(-0.001328)	0.001398	0.001575)
201.	1710 10	0 000015	1 62	0 000167	(-0 004715	0 012029	_0 000105)
501.	1710.10	0.000010	4.02	0.000107	(0.004/15	0.012020	0.000100)
382:	1/10.44	0.0000/3	0.37	0.000013	(0.000920	-0.003096	-0.001695)
383:	1712.25	0.000154	0.78	0.000028	(0.000163	-0.000108	0.005302)
384:	1713.08	0.000019	0.09	0.000003	(0.001798	-0.000381	0.000147)
385.	1713 70	0 000127	0 64	0 000023	0 004791	0 000003	-0 000334)
200.	1710.70	0.00012/	0.01	0.000023	(0.0001/91	0.000170	0.0000001)
386:	1/13.84	0.000024	0.12	0.000004	(0.000348	-0.0001/0	0.002075)
387:	1714.75	0.000650	3.28	0.000118	(0.010863	0.000426	-0.000326)
388:	1715.09	0.000018	0.09	0.000003	(-0.000001	-0.000166	-0.001811)
389.	3111.01	0.001848	9.34	0.000185	(0.012525	-0.004263	-0.003218)
200.	2111 10	0 001710	0 61	0 000172	(0 012256	0 002001	0.002400)
390:	3111.10	0.001/10	0.04	0.0001/2	(0.012236	-0.003001	0.002498)
391:	3127.08	0.000477	2.41	0.000048	(0.000081	-0.006348	-0.002704)
392:	3127.25	0.000507	2.56	0.000051	(0.000331	-0.006561	0.002734)
393:	3161.05	0.001175	5.94	0.000116	(0.003496	-0.010174	-0.000517
301.	3161 26	0 001337	6 75	0 000132	(0 003535	_0 010027	0 000210)
JJ4.	2174.50	0.001337	0.75	0.000132	(0.005555	0.010527	0.000210)
395:	31/4.56	0.000239	1.21	0.000023	(0.000930	0.004/42	-0.000338)
396:	3175.15	0.000245	1.24	0.000024	(-0.000784	-0.004831	-0.000375)
397:	3180.66	0.000993	5.02	0.000097	(0.004776	0.006484	0.005708)
308.	3181 /2	0 001306	6 60	0 000128	(-0 006205	-0 008534	0 004091)
590.	3101.42	0.001300	0.00	0.000120	(-0.000203	-0.0000034	0.004091)
399:	3195.32	0.000096	0.49	0.000009	(0.003020	-0.000151	-0.000517)
400:	3195.43	0.000109	0.55	0.000011	(0.003231	-0.000148	0.000444)
401:	3214.33	0.000596	3.01	0.000058	(-0.000146)	0.006989	-0.003000)
402.	3215 00	0 000662	3 34	0 000064	(0 000651	0 007377	0 003065)
402.	3213.00	0.000002	5.54	0.000004	(0.0000001	0.007377	0.005005)
403:	3215.07	0.000494	2.50	0.000048	(0.001/58	-0.005321	0.004069)
404:	3215.67	0.000447	2.26	0.000043	(0.001467	-0.004222	-0.004840)
405:	3218.07	0.000448	2.26	0.000043	(-0.002342)	-0.005897	-0.001775)
406.	3218 37	0 000364	1 84	0 000035	(-0, 0.02112)	-0 005061	0 002278)
400.	2222 0.07	0.000100	1.04	0.0000000	(0.002112	0.000001	0.002270)
407:	3223.00	0.000100	0.94	0.000010	(0.000401	0.002200	-0.003361)
408:	3223.79	0.000548	2.77	0.000053	(0.006522	-0.001169	-0.003030)
409:	3223.92	0.000554	2.80	0.000054	(-0.003905	0.001646	-0.005975)
410:	3224.20	0.000327	1.65	0.000032	(0.000171)	-0.002510	-0.005030
411.	3225 00	0 000062	0 31	0 000006	(-0 001944	-0 001366	0 000500)
411.	3223.00	0.000002	0.31	0.000000	(-0.001944	-0.001300	0.000390)
412:	3226.27	0.000094	0.48	0.000009	(0.002731	0.000768	0.001031)
413:	3230.56	0.000326	1.65	0.000031	(0.005469	0.000234	-0.001237)
414:	3230.77	0.002271	11.47	0.000219	(-0.000901)	0.000619	-0.014769
115.	3234 20	0 000256	1 30	0 000025	(0 000079	0 004840	-0 001145)
415.	3234.20	0.000230	1.30	0.000025	(0.000079	0.004040	-0.001143)
416:	3234.33	0.0001//	0.90	0.00001/	(0.00051/	0.004048	0.0006/8)
417:	3234.44	0.000904	4.57	0.000087	(0.001077	0.009214	0.001075)
418:	3234.59	0.001020	5.15	0.000098	(-0.000689	0.000787	0.009862)
419.	3234 60	0 000234	1 18	0 000023	(-0 000257	-0 002082	-0 004266)
420.	2224 05	0.000231	1 00	0.000025	(0.000269	0.002340	0.005502)
420:	3234.93	0.000372	1.00	0.000036	(0.000200	-0.002340	0.005502)
421:	3235.75	0.000362	1.83	0.000035	(0.002474	-0.002312	0.004839)
422:	3236.34	0.000229	1.16	0.000022	(-0.001691	0.002010	0.003902)
423:	3238.35	0.001691	8.54	0.000163	(0.010305	-0.007483	-0.000848)
424.	3239 41	0 000171	0 87	0 000016	(-0 002231	0 001217	-0 003167)
121.	2245 02	0.0001042	5 27	0.000100	(0.0002201	0.0001217	0.003164)
420:	3243.02	0.001042	5.21	0.000100	(-0.000606	-0.009480	-0.003164)
426:	3245.37	0.000958	4.84	0.000092	(-0.000627	-0.009277	0.002379)
427:	3245.42	0.000373	1.88	0.000036	(-0.005273	0.002366	-0.001562)
428:	3245.68	0.001593	8.05	0.000153	(-0.012099)	-0.002403	0.001014)
129.	3217 25	0 000310	1 56	0 000030	0 003040	0 000016	-0 003761)
420.	2247.23	0.000310	1.30	0.000030	(0.003)4)	0.000010	0.00007017
430:	3247.27	0.001137	5./5	0.000109	(0.001078	0.000104	-0.010398)
431:	3248.01	0.001074	5.43	0.000103	(0.007020	0.004441	0.005849)
432:	3248.74	0.001072	5.42	0.000103	(0.005450	0.003996	-0.007567)
433:	3250.81	0.000378	1.91	0.000036	(-0.004651)	0.001837	-0.003358)
131.	2251 /0	0 000350	1 01	0.000000	(0 004/14	_0 001007	_0 003410
434:	3231.00	0.000358	τ.δτ	0.000034	(0.004614	-0.001205	-0.003412)
435:	3252.34	0.000710	3.59	0.000068	(-0.007057	0.002656	-0.003354)
436:	3253.45	0.000474	2.39	0.000045	(-0.004614	0.004838	-0.000867)
437:	3253.69	0.001363	6.89	0.000131	(0.008021	-0.008136	-0.000471)
438.	3254 18	0 000509	2 57	0 000049	(-0 005213	0 003269	0 0033131
120.	J2J7.10	0.000009	2.3/	0.000049	(0.0000210	0.003209	0.001000)
439:	3235.47	0.000099	0.50	0.000010	(-0.001838	-0.001485	0.001988)
440:	3256.78	0.000137	0.69	0.000013	(0.002374	-0.002071	-0.001794)
441:	3261.20	0.000416	2.10	0.000040	(-0.001760	0.005692	0.002088)
442:	3263.59	0.000610	3.08	0.000058	(0.000874	-0.003545	-0.006708)
112.	3263.00	0 000/75	5.00	0.0000055	(_0_001700	0 00/201	_0 0064000
443:	2203.03	0.0000/3	J.41	0.000065	(-0.001/82	0.004391	-0.006490)
444:	3264.62	0.001364	6.90	0.000130	(0.003141	0.010975	-0.000327)
445:	3310.34	0.002170	10.97	0.000205	(0.012246	-0.005960	0.004368)
446:	3310.42	0.001884	9.52	0.000178	(0.010772	-0.005614	-0.005478)
447.	3311 /0	0 002175	10 00	0 000205	(0 006333	-0 012793	-0 001101
111.	~~~~~	0.0021/J	±0.))	0.000200	, 0.0000002	0.012/00	0.0011/1/

448:	3311.64	0.002260	11.42	0.000213	(0.006701 -0.012948 0.000632 (0.011188 0.005355 -0.010701
450:	3331.94	0.003185	16.10	0.000208	(0.002438 0.009065 0.014498
451:	3332.02	0.001830	9.25	0.000171	(0.012958 -0.000889 0.001639
452:	3332.18	0.002059	10.41	0.000193	(0.006355 -0.006998 0.010172

The following input files have been used to probe the relative energeties of the possible local spin arrangements of **2** yielding information for the discussion based on Table 1 in the main text. In this series of geometry optimizations the authors used the broken symmetry approach along with a truncated model complex shown in Figure S29 below. In thiese calculations basis sets of DKH quality (DKH-def2-SVP for atoms other than Ni and Co) and DKH-def2-TZVP for Ni and Co have been used along the exchange correlation functional wB97X-D4 and D3BJ for non-bonding interactions.

Figure S29. The truncated model complex for the NiCoNi employed in the study of the local spin energetics and the valence formulations of Ni and Co.

Total spin Ms=1/2, spin-distribution on NiCoNi [0,1/2,0].

%pal nprocs 16 end

Input file - single point calculation using the truncated geometry coni2wb97xtdub.inp: !UKS wB97X-D4 D3BJ DKH2 DKH-def2-SVP Autoaux %basis newgto Co "dkh-def2-tzvp" end newgto Ni "dkh-def2-tzvp" end end

%maxcore 8000 %rel method DKH picturechange 2 end %scf maxiter 500 shift shift 0.5 erroff 0 end end *xyz 2 2 27 0.00000000 0.00000000 0.00000000 28 -1.027250000 2.786410000 -0.292530000 28 -2.774910000 1.072990000 -0.099920000 8 1.782730000 0.177430000 0.870950000 8 1.037300000 -1.353830000 -1.022910000 8 -1.068410000 1.412490000 -0.917820000 8 -1.735190000 -0.178420000 0.970180000 7 4.670250000 0.491630000 1.140380000 7 3.235200000 -1.847020000 -2.924570000 6 4.351860000 -0.7124900000.621040000 6 3.737240000 -1.914630000 -1.653540000 2.386410000 1.153410000 1.725940000 6 0.873920000 -2.023450000 -2.274580000 6 6 5.823960000 0.394750000 1.915330000 6 3.736860000 1.607820000 1.108970000 6 4.109770000 -2.381410000 -3.850190000 6 1.881590000 -1.434810000 -3.260560000 7 5.315390000 -1.553140000 1.048450000 7 4.945970000 -2.513650000-1.8177100001 6.235330000 1.094310000 2.407170000 6 6.241010000 -0.872460000 1.833160000 3.597950000 1.902700000 0.173590000 1 1 4.104340000 2.369030000 1.624250000 6 5.189790000 -2.789520000-3.1592000001 3.975160000 -2.449460000 -4.787530000 1 1.662670000 -1.738520000-4.1783700001 1.822860000 -0.446890000 -3.243160000 6 5.438260000 -2.916790000 0.603130000 -0.82800000 6 5.948840000 -2.942640000 6 -0.972080000 2.066320000 -2.187060000 6 -2.287940000 -1.160260000 1.868130000 1 7.021130000 -1.2378200002.235190000 1 5.972540000 -3.189680000 -3.520570000 1 4.557370000 -3.365670000 0.651770000 1 6.067620000 -3.405440000 1.190640000 1 6.739400000 -2.349470000 -0.896510000 1 6.241990000 -3.861840000 -1.046850000 7 -3.376440000 1.864030000 -2.694860000 7 -4.591190000 -0.434840000 1.446240000 -3.797580000 1.954520000 6 -1.400400000 6 -4.295900000 0.756360000 0.899560000 6 -2.043320000 1.442440000 -3.1009700006 -3.693050000 -1.570360000 1.348610000 6 -4.336850000 2.309050000 -3.585340000 6 -5.693330000 -0.321930000 2.293420000

2.519850000

-1.506010000

7

-5.031790000

7	-5.217490000	1.612030000	1.383590000
1	-1.880480000	1.719420000	-4.036350000
1	-1.981550000	0.455630000	-3.056230000
1	-3.628790000	-1.867110000	0.407370000
1	-4.044050000	-2.321510000	1.887310000
1	-4.273150000	2.319550000	-4.532440000
6	-5.382310000	2.723250000	-2.845540000
6	-6.083530000	0.960310000	2.244440000
1	-6.089870000	-1.018390000	2.804790000
6	-5.944190000	3.012590000	-0.449910000
6	-5.340280000	2.986740000	0.928500000
1	-6.199490000	3.085730000	-3.165910000
1	-6.815070000	1.347660000	2.712850000
1	-6.764220000	2.457320000	-0.448130000
1	-6.211690000	3.941850000	-0.662900000
1	-4.448580000	3.414860000	0.912710000
1	-5.914930000	3.496390000	1.557020000
1	-1.126889523	3.127612018	-2.060200772
1	1.671551347	1.956067705	1.831380575
1	2.620358062	0.766547037	2.706758715
1	-2.356449611	-0.733752024	2.857977150
1	-1.657736681	-2.036199755	1.912552100
1	0.004321006	1.936281793	-2.629926955
1	-0.136460702	-1.880476486	-2.628259815
1	1.047754423	-3.084261839	-2.170369462
*			
FINAL	SINGLE POINT ENERGY	-6106.888548	765292

Reading the geometry and the electron density geometry optimization using the following input:

!UKS wB97X-D4 D3BJ DKH2 DKH-def2-SVP opt Autoaux moread %moinp "coni2wb97xtdub.gbw"

%basis
newgto Co "dkh-def2-tzvp" end
newgto Ni "dkh-def2-tzvp" end
end

%pal nprocs 16 end

%maxcore 8000

%rel method DKH
picturechange 2
end

%scf maxiter 500 shift shift 0.5 erroff 0 end end

*xyz	22			
27		0.000000000	0.00000000	0.00000000
28		2.786410000	-1.027250000	-0.292530000
28		-2.774910000	1.072990000	-0.099920000

8	1.782730000	0.177430000	0.870950000
8	1.037300000	-1.353830000	-1.022910000
8	-1.068410000	1.412490000	-0.917820000
8	-1.735190000	-0.178420000	0.970180000
7	4 670250000	0.491630000	1 140380000
7	3 235200000	-1 847020000	-2 924570000
6	4 351860000	-0 712490000	0 621040000
6	3 737240000	-1 914630000	-1 653540000
6	2 386410000	1 153410000	1 725940000
G	2.300410000	2 022450000	2 274590000
0	0.073920000	-2.023430000	-2.2/400000
6	5.823960000	0.394/30000	1.915330000
6	3.736860000	1.607820000	1.1089/0000
6	4.109770000	-2.381410000	-3.850190000
6	1.881590000	-1.434810000	-3.260560000
1	5.315390000	-1.553140000	1.048450000
7	4.945970000	-2.513650000	-1.817710000
1	6.235330000	1.094310000	2.407170000
6	6.241010000	-0.872460000	1.833160000
1	3.597950000	1.902700000	0.173590000
1	4.104340000	2.369030000	1.624250000
6	5.189790000	-2.789520000	-3.159200000
1	3.975160000	-2.449460000	-4.787530000
1	1.662670000	-1.738520000	-4.178370000
1	1.822860000	-0.446890000	-3.243160000
6	5.438260000	-2.916790000	0.603130000
6	5.948840000	-2.942640000	-0.82800000
6	-0.972080000	2.066320000	-2.187060000
6	-2,287940000	-1,160260000	1,868130000
1	7 021130000	-1 237820000	2 235190000
1	5 972540000	-3 189680000	-3 520570000
⊥ 1	4 557370000	-3 365670000	0 651770000
⊥ 1	6 067620000	-3.405440000	1 100640000
⊥ 1	6.73040000	-3.403440000	1.190040000
1	6.739400000	-2.349470000	-0.896510000
	6.241990000	-3.861840000	-1.046850000
/	-3.3/6440000	1.864030000	-2.694860000
1	-4.591190000	-0.434840000	1.446240000
6	-3.797580000	1.954520000	-1.400400000
6	-4.295900000	0.756360000	0.899560000
6	-2.043320000	1.442440000	-3.100970000
6	-3.693050000	-1.570360000	1.348610000
6	-4.336850000	2.309050000	-3.585340000
6	-5.693330000	-0.321930000	2.293420000
7	-5.031790000	2.519850000	-1.506010000
7	-5.217490000	1.612030000	1.383590000
1	-1.880480000	1.719420000	-4.036350000
1	-1.981550000	0.455630000	-3.056230000
1	-3.628790000	-1.867110000	0.407370000
1	-4.044050000	-2.321510000	1.887310000
1	-4.273150000	2.319550000	-4.532440000
6	-5.382310000	2.723250000	-2.845540000
6	-6.083530000	0.960310000	2.244440000
1	-6.089870000	-1.018390000	2.804790000
6	-5,944190000	3,012590000	-0.449910000
6	-5 340280000	2 986740000	0 02850000
1	-6 100/0000	2.005730000	-3 165010000
⊥ 1		1 347660000	2 712050000
T	-0.0100/0000	1.34/000000	2.112030000

1	-6.764220000	2.457320000	-0.448130000
1	-6.211690000	3.941850000	-0.662900000
1	-4.448580000	3.414860000	0.912710000
1	-5.914930000	3.496390000	1.557020000
1	-1.126889523	3.127612018	-2.060200772
1	1.671551347	1.956067705	1.831380575
1	2.620358062	0.766547037	2.706758715
1	-2.356449611	-0.733752024	2.857977150
1	-1.657736681	-2.036199755	1.912552100
1	0.004321006	1.936281793	-2.629926955
1	-0.136460702	-1.880476486	-2.628259815
1	1.047754423	-3.084261839	-2.170369462
*			

Optimized geometry:

71

Coordinates from ORCA-job coni2wb97xtdubopt

Со	-0.05503045386216	-0.04635197600678	-0.48725674434699
Ni	2.79111284642286	-0.98749493504058	-0.54297003327092
Ni	-2.75945563065292	1.04340974790127	-0.32036718477289
0	1.41436232547936	-0.31275447848346	0.67982610457349
0	1.25246846679218	-0.80019496947788	-1.68982150863289
0	-1.32830726834753	0.86950146967271	-1.54083746733226
0	-1.39912663233610	0.34862149609898	0.80674671808636
Ν	4.02254793350294	-0.05411802050641	1.83379959163312
Ν	3.62686847959424	-1.43083871509206	-3.24968890512701
С	4.03377346793159	-0.98109447206430	0.85106578984117
С	3.95342781231528	-1.59875762368484	-1.93940990624140
С	1.62526351200347	0.38879973582873	1.87759612492504
С	1.18485585124910	-1.31205040628261	-2.98405303787363
С	4.97160143087905	-0.34761598342637	2.80134952001057
С	3.01801005021467	1.00746033076552	1.90380888602944
С	4.62020480543887	-1.90800954138168	-4.08485778796405
С	2.39135671729404	-0.83541344132633	-3.77068156189395
Ν	4.98892545107740	-1.86199694276207	1.20694449800238
Ν	5.16974170988563	-2.20976257627889	-1.97581349072975
Н	5.12587360403221	0.27457225957201	3.67583421290911

	2	•	4	0	3	5	0	5	7	2	7	0	2	7	9	7	
	1	•	0	5	2	2	4	0	4	3	5	4	5	3	0	0	
	2	•	8	2	7	8	3	0	2	0	4	8	1	9	2	4	
_	3	•	2	8	3	6	6	8	0	6	0	3	1	7	3	3	
_	5	•	1	6	5	6	2	0	6	9	4	1	0	8	1	8	
_	4	•	8	2	4	3	5	7	3	4	8	6	9	2	7	4	
_	3	•	7	1	1	0	9	9	9	9	3	6	9	6	5	4	
	0	•	4	0	3	9	8	4	5	4	3	7	1	9	1	5	
-	0	•	8	7	8	0	8	9	0	2	9	8	6	1	3	7	
	_	2	•	8	8	1	5	6	0	8	3	1	6	9	6	7	5
		1	•	9	7	8	0	3	0	9	1	6	4	1	2	2	3
	2	•	8	6	1	9	3	7	8	8	1	8	7	3	7	8	
-	3	•	5	2	3	9	8	6	9	2	7	0	9	5	7	3	
	0	•	1	9	4	6	6	8	8	2	3	3	9	2	9	0	
	1	•	0	0	0	6	0	4	1	2	0	9	4	4	9	9	
-	0	•	6	7	0	6	1	3	4	7	8	5	2	2	4	2	
-	1	•	2	4	7	1	9	6	9	6	6	4	5	1	1	5	
	-	2	•	9	4	8	1	4	8	4	1	2	3	4	2	8	5
		2	•	0	6	7	5	3	0	1	0	4	4	3	6	0	7
	-	1	•	6	3	1	5	2	6	1	6	7	5	8	1	9	0
		1	•	1	1	1	0	1	2	5	2	7	1	9	2	1	8
	-	3	•	5	1	8	9	3	0	8	0	2	5	6	0	5	3
		2	•	0	6	6	4	8	0	1	4	4	7	2	1	5	8
	-	3	•	7	2	8	3	5	5	1	1	4	7	0	6	9	1
		3	•	0	7	5	0	2	4	4	0	1	2	0	1	7	3
	-	1	•	6	0	7	9	3	0	8	1	8	3	1	7	4	4
		1	•	5	1	9	0	5	5	1	1	0	2	6	5	2	6
	_	4	•	5	9	7	7	3	5	3	6	8	1	7	5	7	5
	_	3	•	3	5	2	8	9	5	4	8	5	0	7	1	8	1
		1	•	2	1	1	6	3	8	9	1	6	1	7	8	6	7
		2	•	9	8	7	9	1	9	8	9	4	7	9	2	7	7
	_	4	•	8	0	4	9	6	6	4	8	8	7	5	6	7	0

-1.49099889350614	2
1.68647034173321	1
1.57293639968235	2
-2.39946461044054	-3
-1.86602972710211	-5
-1.12508908203057	-4
0.25834657208896	-3
-3.02433802316632	0
-2.62814654493398	-0
1.25403870684805	-:
-0.40667191314928	
-2.06607005709191	2
-2.87322621271413	-3
-3.60868120925401	0
-3.65049952813656	1
-1.82818908052434	-0
-3.49471159170776	-1
1.35889656929574	-:
0.10887276309205	:
1.63561713491811	- 1
1.05952207150346	
0.70667119674318	-
-0.98825870893168	:
1.80824441083344	-
0.42232170182928	
2.28740725771425	-
1.97692306985193	
0.89607615811835	-
-0.37689240588861	-
-1.64531714770709	
-1.56585334036649	:
1.68260131228370	-

С	5.58869430147846
Н	3.15140004615980
Н	3.18037524837862
С	5.59366652609659
Η	4.54412591515778
Н	2.31338652680837
Η	2.46499329580822
С	5.33914923846507
С	6.04874792646667
С	-1.36761755579457
С	-1.56807864753727
Н	6.38580595346351
Η	6.53895389010381
Н	4.43555211746408
Η	6.01038308010938
Η	6.77181033494636
Н	6.60781241215751
Ν	-3.81108324543532
Ν	-3.93937807950347
С	-4.01010824291505
С	-3.93690174072086
С	-2.62986167042781
С	-2.97402052311145
С	-4.86106498793644
С	-4.84040567543891
Ν	-5.20557234873060
Ν	-4.83301033095689
Η	-2.64212450387049
Η	-2.69391625507129
Η	-3.17675911472310
Η	-3.10383854227183
Н	-4.88547552846134

С	-5.74173327926245	2.39335562343071	-2.88428624415512
С	-5.41210709428335	1.60477870319233	2.72615948323762
Н	-4.99588013208537	-0.21371951051907	3.93949231753233
С	-5.96591420758530	2.84129041863632	-0.48107531421578
С	-5.14637341844749	3.17160292467185	0.75078326170094
Н	-6.69016282158353	2.88323079822464	-3.07536876007481
Н	-6.16280660230983	2.20704255716769	3.22604915280942
Н	-6.76791644861002	2.13993693106990	-0.21467884492921
Н	-6.43362507348185	3.76293592058314	-0.84497351195622
Н	-4.21564247355786	3.68638833206568	0.48575739211114
Н	-5.72793141057315	3.84194227719558	1.39221936379731
Н	-1.35470279629579	2.35242515364917	-2.96829587957950
Н	0.87881277414419	1.18966657877366	1.97911417647619
Н	1.52022264178648	-0.28853725416461	2.74180177198964
Н	-1.39091854219947	0.22608904443274	2.86410889842361
Н	-0.84104994716245	-1.23213622580773	2.00282309580645
Н	-0.48938190567056	0.87189850128725	-3.41709840399179
Н	0.27194009267462	-0.97186817057855	-3.49280058165195
Н	1.16097466643146	-2.41516270222021	-2.97770541963055

FINAL SINGLE POINT ENERGY -6107.201948948021 Hartree

```
Total spin Ms=3/2, spin-distribution on NiCoNi [0,3/2,0].
```

Single point calculation !UKS wB97X-D4 D3BJ DKH2 DKH-def2-SVP Autoaux %basis newgto Co "dkh-def2-tzvp" end newgto Ni "dkh-def2-tzvp" end end %pal nprocs 16 end %maxcore 8000 %rel method DKH picturechange 2

end

%scf maxiter 500 shift shift 0.5 erroff 0 end end

*xvz	2	4		
27		0.000000000	0.00000000	0.00000000
28		2.786410000	-1.027250000	-0.292530000
28		-2.774910000	1.072990000	-0.099920000
8		1.782730000	0.177430000	0.870950000
8		1.037300000	-1.353830000	-1.022910000
8		-1.068410000	1.412490000	-0.917820000
8		-1.735190000	-0.178420000	0.970180000
7		4.670250000	0.491630000	1.140380000
7		3.235200000	-1.847020000	-2.924570000
6		4.351860000	-0.712490000	0.621040000
6		3.737240000	-1.914630000	-1.653540000
6		2.386410000	1.153410000	1.725940000
6		0.873920000	-2.023450000	-2.274580000
6		5.823960000	0.394750000	1.915330000
6		3.736860000	1.607820000	1.108970000
6		4.109770000	-2.381410000	-3.850190000
6		1.881590000	-1.434810000	-3.260560000
7		5.315390000	-1.553140000	1.048450000
7		4.945970000	-2.513650000	-1.817710000
1		6.235330000	1.094310000	2.407170000
6		6.241010000	-0.872460000	1.833160000
1		3.597950000	1.902700000	0.173590000
1		4.104340000	2.369030000	1.624250000
6		5.189790000	-2.789520000	-3.159200000
1		3.975160000	-2.449460000	-4.787530000
1		1.662670000	-1.738520000	-4.178370000
1		1.822860000	-0.446890000	-3.243160000
6		5.438260000	-2.916790000	0.603130000
6		5.948840000	-2.942640000	-0.82800000
6		-0.972080000	2.066320000	-2.187060000
6		-2.287940000	-1.160260000	1.868130000
1		7.021130000	-1.237820000	2.235190000
1		5.972540000	-3.189680000	-3.520570000
1		4.557370000	-3.365670000	0.651770000
1		6.067620000	-3.405440000	1.190640000
1		6.739400000	-2.349470000	-0.896510000
1		6.241990000	-3.861840000	-1.046850000
7		-3.376440000	1.864030000	-2.694860000
7		-4.591190000	-0.434840000	1.446240000
6		-3.797580000	1.954520000	-1.400400000
6		-4.295900000	0.756360000	0.899560000
6		-2.043320000	1.442440000	-3.100970000
6		-3.693050000	-1.570360000	1.348610000
6		-4.336850000	2.309050000	-3.585340000
6		-5.693330000	-0.321930000	2.293420000
7		-5.031790000	2.519850000	-1.506010000
7		-5.217490000	1.612030000	1.383590000
1		-1.880480000	1.719420000	-4.036350000
1		-1.981550000	0.455630000	-3.056230000
1		-3.628790000	-1.867110000	0.407370000
1		-4.044050000	-2.321510000	1.887310000

1	-4.273150000	2.319550000	-4.532440000
6	-5.382310000	2.723250000	-2.845540000
6	-6.083530000	0.960310000	2.244440000
1	-6.089870000	-1.018390000	2.804790000
6	-5.944190000	3.012590000	-0.449910000
6	-5.340280000	2.986740000	0.928500000
1	-6.199490000	3.085730000	-3.165910000
1	-6.815070000	1.347660000	2.712850000
1	-6.764220000	2.457320000	-0.448130000
1	-6.211690000	3.941850000	-0.662900000
1	-4.448580000	3.414860000	0.912710000
1	-5.914930000	3.496390000	1.557020000
1	-1.126889523	3.127612018	-2.060200772
1	1.671551347	1.956067705	1.831380575
1	2.620358062	0.766547037	2.706758715
1	-2.356449611	-0.733752024	2.857977150
1	-1.657736681	-2.036199755	1.912552100
1	0.004321006	1.936281793	-2.629926955
1	-0.136460702	-1.880476486	-2.628259815
1	1.047754423	-3.084261839	-2.170369462
*			

Using input geometry and electron density geometry optimization: !UKS wB97X-D4 D3BJ DKH2 DKH-def2-SVP opt Autoaux moread %moinp "coni2wb97xt.gbw" #!UKS B3LYP D3BJ DKH2 DKH-def2-SVP Autoaux %basis newgto Co "dkh-def2-tzvp" end newgto Ni "dkh-def2-tzvp" end end %pal nprocs 16 end %maxcore 8000 %rel method DKH picturechange 2 end %scf maxiter 500 shift shift 0.5 erroff 0 end end *xyz 2 4 27 0.000000000 0.000000000 0.00000000 2.786410000 -1.027250000 -0.292530000 28 28 -2.774910000 1.072990000 -0.099920000 1.782730000 0.177430000 0.870950000 8 8 1.037300000 -1.353830000 -1.022910000 8 -1.068410000 1.412490000 -0.917820000 -1.735190000 -0.178420000 0.970180000 8 7 4.670250000 0.491630000 1.140380000 -1.847020000 7 3.235200000 -2.924570000

-0.712490000

0.621040000

6

4.351860000

6	3.737240000	-1.914630000	-1.653540000
6	2.386410000	1.153410000	1.725940000
6	0.873920000	-2.023450000	-2.274580000
6	5 823960000	0 394750000	1 915330000
6	3 736860000	1 607820000	1 108070000
0	1 1 0 0 7 7 0 0 0 0	2 201410000	2 95010000
6	4.109770000	-2.381410000	-3.850190000
6	1.881590000	-1.434810000	-3.260560000
7	5.315390000	-1.553140000	1.048450000
7	4.945970000	-2.513650000	-1.817710000
1	6.235330000	1.094310000	2.407170000
6	6.241010000	-0.872460000	1.833160000
1	3.597950000	1.902700000	0.173590000
1	4.104340000	2.369030000	1.624250000
-	5 189790000	-2 789520000	-3 159200000
1	3 975160000	-2 449460000	-1 787530000
1	1 ((2)(70000	1 720520000	4.1707550000
1	1.662670000	-1./38520000	-4.1/83/0000
1	1.822860000	-0.446890000	-3.243160000
6	5.438260000	-2.916790000	0.603130000
6	5.948840000	-2.942640000	-0.82800000
6	-0.972080000	2.066320000	-2.187060000
6	-2.287940000	-1.160260000	1.868130000
1	7.021130000	-1.237820000	2.235190000
1	5,972540000	-3.189680000	-3.520570000
1	4 557370000	-3 365670000	0 651770000
1	6 067620000	-3 405440000	1 1906/0000
1	6.007020000	-3.403440000	1.190040000
1	6.739400000	-2.3494/0000	-0.896510000
1	6.241990000	-3.861840000	-1.046850000
7	-3.376440000	1.864030000	-2.694860000
7	-4.591190000	-0.434840000	1.446240000
6	-3.797580000	1.954520000	-1.400400000
6	-4.295900000	0.756360000	0.899560000
6	-2.043320000	1.442440000	-3.100970000
6	-3.693050000	-1.570360000	1.348610000
6	-4 336850000	2 309050000	-3 585340000
6	-5 693330000	-0.321930000	2 293420000
0 7	-5 031790000	2 519850000	_1 506010000
7	-3.031/90000	2.319830000	-1.300010000
/	-5.21/490000	1.612030000	1.383590000
1	-1.880480000	1./19420000	-4.036350000
1	-1.981550000	0.455630000	-3.056230000
1	-3.628790000	-1.867110000	0.407370000
1	-4.044050000	-2.321510000	1.887310000
1	-4.273150000	2.319550000	-4.532440000
6	-5.382310000	2.723250000	-2.845540000
6	-6.083530000	0.960310000	2.244440000
1	-6.089870000	-1.018390000	2.804790000
-	-5 944190000	3 012590000	-0 449910000
6	-5 240280000	2 996740000	0.99950000
1	-5.540280000	2.988740000	0.920300000
1	-6.199490000	3.085/30000	-3.165910000
T	-6.815070000	1.34/660000	2./12850000
1	-6.764220000	2.457320000	-0.448130000
1	-6.211690000	3.941850000	-0.662900000
1	-4.448580000	3.414860000	0.912710000
1	-5.914930000	3.496390000	1.557020000
1	-1.126889523	3.127612018	-2.060200772
1	1.671551347	1.956067705	1.831380575
-	2 620358062	0 766547037	2 706759715
1	2.020330002	0./0034/03/	2.100/30/13

1	-2.356449611	-0.733752024	2.857977150
1	-1.657736681	-2.036199755	1.912552100
1	0.004321006	1.936281793	-2.629926955
1	-0.136460702	-1.880476486	-2.628259815
1	1.047754423	-3.084261839	-2.170369462
*			

The optimized geometry is:

71

Coordinates from ORCA-job coni2wb97xtopt

Со	-0.04274593418960	-0.09538536291624	-0.51313172833008
Ni	2.83838188994890	-0.95419979817498	-0.52455719142323
Ni	-2.87043491109969	0.90963324276880	-0.33449430026512
0	1.65483509946737	0.31547990758183	0.35865833148559
0	1.18485275011567	-1.26133623607309	-1.50858709650877
0	-1.28153722108351	1.11396532532991	-1.43250931171208
0	-1.70008963365875	-0.43550321437356	0.46415879517227
Ν	4.36118940535006	0.67561650636365	1.24825995573228
Ν	3.51233085113707	-2.20071664824857	-2.97620859939257
С	4.20027427209924	-0.53403526464716	0.67171582591969
С	3.87854574605374	-2.06107969755577	-1.67490536853375
С	2.01162853889577	1.33602195510028	1.24799348504841
С	1.08184657233921	-1.91006436499881	-2.74049709877890
С	5.38785871219355	0.64508202518907	2.18025007133812
С	3.44649795467551	1.79175711862716	1.00339038783144
С	4.42066688263201	-2.97363171149690	-3.67689956677347
С	2.31228440797367	-1.61875247245820	-3.58374347534818
Ν	5.12261479712977	-1.33000631022634	1.24938226678705
Ν	5.03049290188403	-2.77496329090056	-1.57020514278057
Н	5.67964232073750	1.51634636854474	2.75633629165105
С	5.87436442438381	-0.62384782451511	2.18009497568808
Η	3.56600766785970	2.13407300254901	-0.03207197341607
Н	3.71903151469207	2.61226440764277	1.67608365130835
С	5.37875401520721	-3.33710963189476	-2.79181561326956
Η	4.30497707144926	-3.20007750463663	-4.73083474392549

-4.58654494122521
-3.68233623842130
0.93832173263212
-0.41202546060069
-2.66361431411860
1.39646040155542
2.75845975991078
-2.91636189845054
0.99196220750331
1.71149250270118
-0.51847929669776
-0.45488939915599
-2.73615654357032
1.57133318049000
-1.41293113288857
0.96798590599938
-3.42739060513836
1.26862745329730
-3.37164641240392
2.58143669089638
-1.22897995830154
1.60670085260989
-4.43051614862777
-3.52667062214422
0.24904045718498
1.96876199661493
-4.43068929324842
-2.42288575660518
2.60346112104452
3.18908868657883
-0.01299455847262
1.28959906762350

-	2	•	0	4	7	6	5	6	7	8	7	0	3	9	5	7	
_	0	•	5	3	3	9	7	9	2	2	8	6	6	6	9	9	
_	2	•	7	4	6	1	2	6	5	7	6	3	5	4	4	3	
_	2	•	9	8	3	0	0	4	2	8	9	2	8	7	8	1	
		1	•	7	6	7	7	4	3	3	2	4	4	7	7	9	0
	_	1	•	4	1	8	7	9	4	1	9	3	6	8	5	2	8
_	1	•	0	8	0	1	5	9	2	4	3	4	6	7	6	5	
_	3	•	9	4	7	6	0	5	9	7	0	7	6	8	6	9	
_	3	•	2	2	0	4	1	9	1	7	5	4	3	2	5	7	
_	3	•	1	9	9	0	9	8	3	1	1	1	2	1	4	8	
_	2	•	3	4	1	0	3	3	1	5	6	0	9	7	2	7	
_	4	•	0	2	5	4	3	4	7	5	0	7	7	6	2	0	
		2	•	2	0	6	5	5	4	8	8	0	4	9	2	4	0
	_	0	•	6	0	7	6	7	9	6	1	0	4	4	0	4	8
		2	•	0	8	1	0	9	9	5	9	8	4	1	1	9	5
		0	•	5	8	4	7	5	9	9	9	6	4	5	8	2	4
		1	•	5	6	1	2	1	6	6	2	0	4	8	6	8	7
	_	1	•	7	8	1	5	8	9	0	8	6	7	0	1	0	5
		3	•	0	3	7	4	0	7	5	9	3	9	1	0	4	2
	_	0	•	5	0	6	7	0	8	5	5	4	5	9	7	8	5
		2	•	8	6	3	5	8	8	4	2	0	7	9	0	5	9
		1	•	4	4	0	5	9	2	7	0	5	1	3	7	4	7
		1	•	9	9	6	9	4	8	3	0	4	5	9	1	5	7
		0	•	4	8	7	8	2	6	2	6	3	3	1	0	4	1
	_	2	•	1	2	1	3	2	2	1	3	0	1	0	4	4	4
	_	2	•	5	7	8	8	8	4	3	4	9	9	2	8	9	9
		3	•	2	6	2	4	5	8	1	0	7	8	5	2	6	4
		3	•	4	5	3	2	4	2	2	9	0	2	0	0	7	0
		0	•	7	8	9	5	7	6	2	8	9	4	9	7	9	1
	_	1	•	3	5	4	0	7	8	4	3	8	6	5	8	1	4
		3	•	1	2	3	0	6	1	4	1	7	3	3	0	2	6
		2	•	8	5	9	6	1	8	8	8	7	2	6	7	8	1

Η	2.21030507708906
Н	2.44976570271766
С	5.25872595377731
С	5.90709805039574
С	-1.21518379662870
С	-2.05231747369892
Н	6.67018703055352
Н	6.26627105435799
Н	4.27204746008875
Н	5.88791900817153
Н	6.79146415393394
Н	6.24279388487100
Ν	-3.63228804988026
Ν	-4.34861927111865
С	-3.91736867540182
С	-4.16085665531677
С	-2.51205733378495
С	-3.52829770340199
С	-4.53735412515674
С	-5.29359342821287
Ν	-5.01392253397120
Ν	-4.98453274458050
Н	-2.45021556908331
Η	-2.71988890248832
Η	-3.74943336828344
Н	-3.80030540499439
Η	-4.48051154275955
С	-5.40924260232837
С	-5.70070955245475
Н	-5.59152344168413
С	-5.79309410331365
С	-5.06279612988469

Η	-6.26473428567056	4.11686052415175	-2.48570201952529
Η	-6.41990064798232	1.29849084329677	3.23583416138819
Н	-6.71620094018351	2.52967737199125	-0.04952079220322
Η	-6.07478738804185	4.18183534397762	-0.04107742083585
Н	-4.05031148172110	3.27913106250245	1.26694399870625
Н	-5.60848557025188	3.35294974008403	2.10064525713991
Н	-1.03519534875297	2.84873156458474	-2.53395776997564
Н	1.34704183853398	2.20343067947461	1.11219221716501
Н	1.91525598251537	0.99798343431413	2.29396727265498
Η	-1.85453610904236	-1.07486770408626	2.42617465774193
Н	-1.45812188300831	-2.32980169038589	1.22588474604526
Η	-0.38739844299907	1.36359416910463	-3.26823090009987
Н	0.19422086920060	-1.55545760199952	-3.28827347512336
Н	0.97833666468197	-3.00063066167911	-2.61034066115422

FINAL SINGLE POINT ENERGY -6107.227195048673 Hatree

Total spin Ms=5/2, spin-distribution on NiCoNi [0,3/2,1] or

[1,3/2,0].

Input file - single point calculation using the truncated geometry coni2wb97xtsext.inp !UKS wB97X-D4 D3BJ DKH2 DKH-def2-SVP Autoaux %basis newgto Co "dkh-def2-tzvp" end newgto Ni "dkh-def2-tzvp" end end %pal nprocs 16 end %maxcore 8000 %rel method DKH picturechange 2 end %scf maxiter 500 shift shift 0.5 erroff 0 end end *xyz 2 6 0.00000000 0.0000000 0.0000000 27

28	2.786410000	-1.027250000	-0.292530000
28	-2.774910000	1.072990000	-0.099920000
8	1.782730000	0.177430000	0.870950000
8	1.037300000	-1.353830000	-1.022910000
8	-1.068410000	1.412490000	-0.917820000
8	-1 735190000	-0 178420000	0 970180000
7	1 670250000	0.191630000	1 1/0380000
7	3 22520000	1 947020000	2 024570000
1	3.235200000	-1.847020000	-2.924570000
6	4.351860000	-0.712490000	0.621040000
6	3.737240000	-1.914630000	-1.653540000
6	2.386410000	1.153410000	1.725940000
6	0.873920000	-2.023450000	-2.274580000
6	5.823960000	0.394750000	1.915330000
6	3.736860000	1.607820000	1.108970000
6	4.109770000	-2.381410000	-3.850190000
6	1.881590000	-1.434810000	-3.260560000
7	5 315390000	-1 553140000	1 048450000
7 7	<i>A</i> 9/5970000	-2 513650000	-1 817710000
7	4.949970000	1 004210000	2 407170000
1 C	6.235330000	1.094310000	2.40/1/0000
6	6.241010000	-0.872460000	1.833160000
1	3.597950000	1.902700000	0.173590000
1	4.104340000	2.369030000	1.624250000
6	5.189790000	-2.789520000	-3.159200000
1	3.975160000	-2.449460000	-4.787530000
1	1.662670000	-1.738520000	-4.178370000
1	1.822860000	-0.446890000	-3.243160000
6	5,438260000	-2.916790000	0.603130000
6	5.948840000	-2.942640000	-0.828000000
6		2 066320000	-2 187060000
6	-2 287040000	-1 160260000	1 969120000
0	-2.20/940000	-1.100200000	2.22510000
	7.021130000	-1.237820000	2.235190000
	5.972540000	-3.189680000	-3.520570000
1	4.55/3/0000	-3.365670000	0.651770000
1	6.067620000	-3.405440000	1.190640000
1	6.739400000	-2.349470000	-0.896510000
1	6.241990000	-3.861840000	-1.046850000
7	-3.376440000	1.864030000	-2.694860000
7	-4.591190000	-0.434840000	1.446240000
6	-3.797580000	1.954520000	-1.400400000
6	-4.295900000	0.756360000	0.899560000
6	-2 043320000	1 442440000	-3 100970000
6	-3 693050000	-1 570360000	1 348610000
6	-4 336850000	2 309050000	-3 585340000
0	-4.330830000	2.309030000	-3.363340000
6	-5.693330000	-0.321930000	2.293420000
/	-5.031/90000	2.519850000	-1.506010000
./	-5.217490000	1.612030000	1.383590000
1	-1.880480000	1.719420000	-4.036350000
1	-1.981550000	0.455630000	-3.056230000
1	-3.628790000	-1.867110000	0.407370000
1	-4.044050000	-2.321510000	1.887310000
1	-4.273150000	2.319550000	-4.532440000
6	-5.382310000	2.723250000	-2.845540000
6	-6.083530000	0.960310000	2.244440000
1	-6 089870000	-1 018390000	2 201790000
÷ 6	-5 9 $1/1$ 90000	3 01250000	
6	-5 24020000	2 006740000	0.449910000
Ø	-3.340280000	2.900/40000	0.928500000

1	-6.199490000	3.085730000	-3.165910000
1	-6.815070000	1.347660000	2.712850000
1	-6.764220000	2.457320000	-0.448130000
1	-6.211690000	3.941850000	-0.662900000
1	-4.448580000	3.414860000	0.912710000
1	-5.914930000	3.496390000	1.557020000
1	-1.126889523	3.127612018	-2.060200772
1	1.671551347	1.956067705	1.831380575
1	2.620358062	0.766547037	2.706758715
1	-2.356449611	-0.733752024	2.857977150
1	-1.657736681	-2.036199755	1.912552100
1	0.004321006	1.936281793	-2.629926955
1	-0.136460702	-1.880476486	-2.628259815
1	1.047754423	-3.084261839	-2.170369462

FINAL SINGLE POINT ENERGY -6106.872390653029 Optimization: !UKS wB97X-D4 D3BJ DKH2 DKH-def2-SVP opt Autoaux moread %moinp "coni2wb97xtsext.gbw" %basis newgto Co "dkh-def2-tzvp" end newgto Ni "dkh-def2-tzvp" end end %pal nprocs 16 end %maxcore 8000 %rel method DKH picturechange 2 end %scf maxiter 500 shift shift 0.5 erroff 0 end end *xyz 2 6 27 0.000000000 0.00000000 0.00000000 -1.027250000 -0.292530000 28 2.786410000 28 -2.774910000 1.072990000 -0.099920000 1.782730000 0.177430000 0.870950000 8 8 1.037300000 -1.353830000 -1.022910000 8 -1.068410000 1.412490000 -0.917820000 8 -1.735190000 -0.178420000 0.970180000 7 4.670250000 0.491630000 1.140380000 7 3.235200000 -1.847020000 -2.924570000 6 4.351860000 -0.7124900000.621040000 6 3.737240000 -1.914630000 -1.6535400006 2.386410000 1.153410000 1.725940000 6 0.873920000 -2.023450000 -2.274580000

6	5.823960000	0.394750000	1.915330000
6	3 736860000	1 607820000	1 108970000
6	1 109770000	-2 381/10000	-3 850190000
G	1 00150000	1 424810000	2 260560000
0	1.881390000	-1.434810000	-3.200300000
/	5.315390000	-1.553140000	1.048450000
./	4.945970000	-2.513650000	-1.81//10000
1	6.235330000	1.094310000	2.407170000
6	6.241010000	-0.872460000	1.833160000
1	3.597950000	1.902700000	0.173590000
1	4.104340000	2.369030000	1.624250000
6	5.189790000	-2.789520000	-3.159200000
1	3.975160000	-2.449460000	-4.787530000
1	1 662670000	-1 738520000	-4 178370000
1	1 822860000	-0 446890000	-3 243160000
	I.8228600000	-0.440890000	-3.243100000
6	5.438260000	-2.916/90000	0.603130000
6	5.948840000	-2.942640000	-0.828000000
6	-0.972080000	2.066320000	-2.187060000
6	-2.287940000	-1.160260000	1.868130000
1	7.021130000	-1.237820000	2.235190000
1	5.972540000	-3.189680000	-3.520570000
1	4.557370000	-3.365670000	0.651770000
1	6.067620000	-3.405440000	1.190640000
1	6 739400000	-2 349470000	-0 896510000
1	6 241990000	-3 861840000	-1 046850000
1 7	-2 276440000	1 964030000	-2 604860000
7	-3.378440000	1.884030000	-2.09400000
1	-4.591190000	-0.434840000	1.446240000
6	-3./9/580000	1.954520000	-1.400400000
6	-4.295900000	0.756360000	0.899560000
6	-2.043320000	1.442440000	-3.100970000
6	-3.693050000	-1.570360000	1.348610000
6	-4.336850000	2.309050000	-3.585340000
6	-5.693330000	-0.321930000	2.293420000
7	-5.031790000	2.519850000	-1.506010000
7	-5 217490000	1 612030000	1 383590000
, 1	-1 880480000	1 719/20000	-1 036350000
1	-1 981550000	0 455630000	-3 056230000
1	-1.981330000	1 0.7110000	-3.030230000
1	-3.628790000	-1.86/110000	0.407370000
1	-4.044050000	-2.321510000	1.88/310000
1	-4.273150000	2.319550000	-4.532440000
6	-5.382310000	2.723250000	-2.845540000
6	-6.083530000	0.960310000	2.244440000
1	-6.089870000	-1.018390000	2.804790000
6	-5.944190000	3.012590000	-0.449910000
6	-5.340280000	2,986740000	0.928500000
1	-6,199490000	3,085730000	-3.165910000
1	-6 815070000	1 347660000	2 712850000
⊥ 1	6.764220000	2 457320000	2.712030000
1	-6.764220000	2.437320000	-0.446130000
1	-6.211690000	3.941850000	-0.662900000
1	-4.448580000	3.414860000	0.912/10000
1	-5.914930000	3.496390000	1.557020000
1	-1.126889523	3.127612018	-2.060200772
1	1.671551347	1.956067705	1.831380575
1	2.620358062	0.766547037	2.706758715
1	-2.356449611	-0.733752024	2.857977150
1	-1.657736681	-2.036199755	1.912552100
1	0.004321006	1 936281793	-2.629926955
-	0.001321000	T. J. O. COT 1 J.	2.027720733

1	-0.136460702	-1.880476486	-2.628259815
1	1.047754423	-3.084261839	-2.170369462
*			

Optimized geometry:

Coord	inates from ORCA-job	coni2wb97xtsextopt	
Со	-0.06594603018430	-0.06780395277610	-0.48605092967489
Ni	2.80649831665552	-0.96140757181674	-0.56328004844995
Ni	-2.91507041303596	0.71881765408807	-0.39828222493925
0	1.58696864553522	0.07215652177971	0.56315154964101
0	1.21273253840683	-0.96732793356016	-1.65990757831842
0	-1.25460332527340	1.24179678425903	-1.30554995405252
0	-1.68309357215537	-0.57334324934850	0.47816979879120
Ν	4.25503865834919	0.17870175872881	1.60925080506211
Ν	3.54421075469122	-1.70961240530506	-3.20997730161737
С	4.11358981338665	-0.86111792700601	0.76003839823000
С	3.87174402124833	-1.82358125890068	-1.89519386516004
С	1.91540212507488	0.86350456022273	1.66898669876030
С	1.11968498858813	-1.39429440849380	-2.98442086026232
С	5.22763090141501	-0.08947874797512	2.56107564237214
С	3.36284154364707	1.33820199851311	1.58857815221930
С	4.45679068010864	-2.36254841570723	-4.01872408724920
С	2.37681261447966	-1.00026062375436	-3.73893509857402
N	4.99394085974371	-1.78945311375889	1.18580660312011
N	5.00708081240896	-2.57270058364649	-1.89796275329591
Н	5.49720145294005	0.61963041177707	3.33590485916122
С	5.69995475117434	-1.33489361389183	2.29231139809477
Н	3.52737548750099	1.90160232308369	0.66167885676681
Н	3.61655639107410	1.98125175374864	2.43818421955577
С	5.38086598397481	-2.90676995489589	-3.19280494525575
Н	4.36617146826582	-2.38872908644153	-5.09883685437741
Н	2.29280018648177	-1.25426341739148	-4.80120621980536
Н	2.54244813663029	0.08149351123695	-3.65128072211580
С	5.14135390564348	-3.09571188611851	0.56005905663025
С	5.84777887956221	-3.01244121620875	-0.77912305357875
С	-1.14504410607909	1.96560391208227	-2.49957584203130
С	-1.68393612142656	-0.84188912371317	1.85392606492438
Н	6.45900284151094	-1.93012272885184	2.78797564715509
Н	6.25898370509823	-3.50637831665589	-3.40551044254017
Н	4.15357177108052	-3.56000387354040	0.45814153235384
Н	5.73575471613237	-3.72247545121801	1.23288029982011
Н	6.71600473930464	-2.34476173210744	-0.70093971206482
Н	6.21557028457479	-4.01128536822519	-1.03941331998131
Ν	-3.56251939520437	1.92114931665733	-3.03280975682270
Ν	-3.98222645197141	-0.00331081095694	2.29677956019930
С	-4.04353498898694	1.61715335344410	-1.80564314199093
С	-4.05311979610320	0.84931521908594	1.25147463993444
C	-2.22221/30456363	1.55810834555353	-3.49980/563065/3
C	-3.07979208444980	-1.159/433/784652	2.36/300598933/8
C	-4.48299206243145	2.64842895726514	-3.76940272514290
C		0.2949631551//54	3.24916/4/393589
IN NT	-5.2/5/8688341032	2.1/062054834562	-1.//208144098/32
IN TT	-3.0594/83/144/20	1.00/33001932100	1.33316423437099
H U	-2.UJYUY44JUJ/010 -2.1856036077051/	2.U010/3104U3081 0 /7/13065065500	-4.43920040394049
п u	-2.1000000000000000000000000000000000000	-1 08033004040651	1 7833546000000
п u	-3.027/77//608621	-1 /72738270/6110	1./0000400000000000000000000000000000000
и Ц	-4 29119261658953	2 98494895411097	-4 78228816169798
C	-5.56915153104739	2.81150660107917	-2.97075485589520
0			

С	-5.63281169940092	1.36825348963351	2.77939022817398
Н	-5.05436363386602	-0.27144479279670	4.16738815834292
С	-6.18864304933784	2.16103987024211	-0.62786582007290
С	-5.57250486378096	2.72754103635567	0.65888962863513
Н	-6.51127862193464	3.31778267190387	-3.15050719748620
Н	-6.45744583397240	1.92535435372106	3.21078488218280
Н	-6.54834363193200	1.13925335995272	-0.45682884319116
Н	-7.05388297519136	2.76800076139353	-0.91308260132813
Н	-4.76401701062164	3.42775835365019	0.41971660202688
Н	-6.33432666333599	3.28357599395239	1.21467915729121
Н	-1.22167324709482	3.04737635683836	-2.30355981335248
Н	1.26540043324653	1.75208445358128	1.70697517852435
Н	1.77479469548498	0.30316746430099	2.60967621638193
Н	-1.28142912065288	0.01088695053166	2.42987738489878
Н	-1.04595577439288	-1.71336041714182	2.07005204487918
Н	-0.16336821683128	1.78639495221484	-2.96682419838516
Н	0.25588997196403	-0.92069150025131	-3.47855334443752
Н	0.97992545925720	-2.48692053035727	-3.04465841663147

FINAL SINGLE POINT ENERGY -6107.198982016148

Total spin Ms=7/2, spin-distribution on NiCoNi [1,3/2,1].

Input file - single point calculation using the truncated geometry coni2wb97xtoct.inp:

!UKS wB97X-D4 D3BJ DKH2 DKH-def2-SVP Autoaux

%basis newgto Co "dkh-def2-tzvp" end newgto Ni "dkh-def2-tzvp" end end

%pal nprocs 16 end

%maxcore 8000

%rel method DKH picturechange 2 end

%scf maxiter 500 shift shift 0.5 erroff 0 end end

*xyz 2 8

27	0.00000000	0.00000000	0.00000000
28	2.786410000	-1.027250000	-0.292530000
28	-2.774910000	1.072990000	-0.099920000
8	1.782730000	0.177430000	0.870950000
8	1.037300000	-1.353830000	-1.022910000
8	-1.068410000	1.412490000	-0.917820000
8	-1.735190000	-0.178420000	0.970180000
7	4.670250000	0.491630000	1.140380000
7	3.235200000	-1.847020000	-2.924570000
6	4.351860000	-0.712490000	0.621040000
6	3.737240000	-1.914630000	-1.653540000

6	2.386410000	1.153410000	1.725940000
6	0.873920000	-2.023450000	-2.274580000
6	5 823960000	0 394750000	1 915330000
6	3 736860000	1 607820000	1 108070000
0	1 100770000	1.007820000	2 05010000
6	4.109//0000	-2.381410000	-3.850190000
6	1.881590000	-1.434810000	-3.260560000
7	5.315390000	-1.553140000	1.048450000
7	4.945970000	-2.513650000	-1.817710000
1	6.235330000	1.094310000	2.407170000
6	6.241010000	-0.872460000	1.833160000
1	3.597950000	1.902700000	0.173590000
1	4 104340000	2.369030000	1 624250000
-	5 189790000	-2 789520000	-3 159200000
1	3 975160000	-2 449460000	-1 787530000
1	1 662670000	1 720520000	4.1707550000
1	1.0020/0000	-1./38520000	-4.1/83/0000
Ţ	1.822860000	-0.446890000	-3.243160000
6	5.438260000	-2.916790000	0.603130000
6	5.948840000	-2.942640000	-0.82800000
6	-0.972080000	2.066320000	-2.187060000
6	-2.287940000	-1.160260000	1.868130000
1	7.021130000	-1.237820000	2.235190000
1	5.972540000	-3.189680000	-3.520570000
1	4 557370000	-3.365670000	0.651770000
1	6 067620000	-3 405440000	1 190640000
1	6 739400000	-2 349470000	_0 896510000
1	6.24100000	-2.349470000	1 0400000
1	6.241990000	-3.861840000	-1.046850000
/	-3.376440000	1.864030000	-2.694860000
./	-4.591190000	-0.434840000	1.446240000
6	-3.797580000	1.954520000	-1.400400000
6	-4.295900000	0.756360000	0.899560000
6	-2.043320000	1.442440000	-3.100970000
6	-3.693050000	-1.570360000	1.348610000
6	-4.336850000	2.309050000	-3.585340000
6	-5.693330000	-0.321930000	2.293420000
7	-5.031790000	2.519850000	-1.506010000
7	-5.217490000	1.612030000	1.383590000
, 1	-1 880480000	1 719420000	-4 036350000
⊥ 1	-1 001550000	1.719420000	-2 056220000
1	-1.981330000	1 0.7110000	-3.030230000
1	-3.628/90000	-1.86/110000	0.407370000
1	-4.044050000	-2.321510000	1.88/310000
1	-4.273150000	2.319550000	-4.532440000
6	-5.382310000	2.723250000	-2.845540000
6	-6.083530000	0.960310000	2.244440000
1	-6.089870000	-1.018390000	2.804790000
6	-5.944190000	3.012590000	-0.449910000
6	-5.340280000	2.986740000	0.928500000
1	-6.199490000	3.085730000	-3.165910000
1	-6.815070000	1,347660000	2.712850000
1	-6 764220000	2 457320000	-0 448130000
⊥ 1	6.21160000	2.457520000	0.44010000
⊥ 1		J. J4LOJUUUU 2 /1/0/0000	
1	-4.448580000	3.414860000	0.912/10000
1	-5.914930000	3.496390000	1.55/020000
1	-1.126889523	3.127612018	-2.060200772
1	1.671551347	1.956067705	1.831380575
1	2.620358062	0.766547037	2.706758715
1	-2.356449611	-0.733752024	2.857977150

1 -1.657736681 -2.036199755 1.912552100 1.936281793 1 0.004321006 -2.6299269551 -0.136460702 -1.880476486 -2.628259815 1 1.047754423 -3.084261839 -2.170369462 FINAL SINGLE POINT ENERGY -6106.815677234925 Geometry optimization: !UKS wB97X-D4 D3BJ DKH2 DKH-def2-SVP opt Autoaux moread %moinp "coni2wb97xtoct.gbw" %basis newgto Co "dkh-def2-tzvp" end newgto Ni "dkh-def2-tzvp" end end %pal nprocs 16 end %maxcore 8000 %rel method DKH picturechange 2 end %scf maxiter 500 shift shift 0.5 erroff 0 end end *xyz 2 8 27 0.000000000 0.00000000 0.00000000 28 2.786410000 -1.027250000 -0.292530000 28 -2.774910000 1.072990000 -0.099920000 8 1.782730000 0.177430000 0.870950000 1.037300000 -1.353830000 -1.022910000 8 8 -1.068410000 1.412490000 -0.917820000 8 -1.735190000 -0.178420000 0.970180000 7 4.670250000 0.491630000 1.140380000 7 3.235200000 -1.847020000 -2.924570000 6 4.351860000 -0.712490000 0.621040000 6 3.737240000 -1.914630000 -1.653540000 2.386410000 6 1.153410000 1.725940000 -2.274580000 6 0.873920000 -2.023450000 6 5.823960000 0.394750000 1.915330000 6 3.736860000 1.607820000 1.108970000 6 4.109770000 -2.381410000 -3.850190000 6 1.881590000 -1.434810000 -3.260560000 7 5.315390000 -1.553140000 1.048450000 7 4.945970000 -2.513650000 -1.817710000 1 6.235330000 1.094310000 2.407170000 6.241010000 1.833160000 6 -0.8724600001 3.597950000 1.902700000 0.173590000 1 4.104340000 2.369030000 1.624250000 6 5.189790000 -2.789520000 -3.159200000 1 3.975160000 -2.449460000 -4.787530000
1	1.662670000	-1.738520000	-4.178370000
1	1.822860000	-0.446890000	-3.243160000
6	5.438260000	-2.916790000	0.603130000
6	5.948840000	-2.942640000	-0.82800000
6	-0.972080000	2.066320000	-2.187060000
6	-2.287940000	-1.160260000	1.868130000
1	7.021130000	-1.237820000	2.235190000
1	5.972540000	-3.189680000	-3.520570000
1	4.557370000	-3.365670000	0.651770000
1	6.067620000	-3.405440000	1.190640000
1	6.739400000	-2.349470000	-0.896510000
1	6.241990000	-3.861840000	-1.046850000
7	-3.376440000	1.864030000	-2.694860000
7	-4.591190000	-0.434840000	1.446240000
6	-3.797580000	1.954520000	-1.400400000
6	-4.295900000	0.756360000	0.899560000
6	-2.043320000	1,442440000	-3,100970000
6	-3,693050000	-1.570360000	1,348610000
6	-4.336850000	2,309050000	-3.585340000
6	-5,693330000	-0.321930000	2,293420000
3 7	-5.031790000	2.519850000	-1.506010000
7	-5 217490000	1 612030000	1 383590000
, 1	-1 880480000	1 719420000	-4 036350000
1	-1 981550000	0 455630000	-3 056230000
1	-3 628790000	-1 867110000	0 407370000
1	-4 044050000	-2 321510000	1 887310000
1	-4 273150000	2 319550000	-4 532440000
÷	-5 382310000	2 723250000	-2 845540000
6	-6 083530000	0 960310000	2 244440000
1	-6 089870000	-1 018390000	2 804790000
6	-5 944190000	3 012590000	-0 449910000
6	-5 340280000	2 986740000	0 928500000
1	-6 199490000	3 085730000	-3 165910000
1	-6 815070000	1 347660000	2 712850000
1	-6 764220000	2 457320000	-0 448130000
1	-6 211690000	3 941850000	-0 66290000
1	-4 448580000	3 414860000	0.00200000
1	-5 91/930000	3 496390000	1 557020000
⊥ 1	-1 126889523	3 127612018	-2 060200772
⊥ 1	1 671551347	1 956067705	1 831380575
⊥ 1	2 620259062	0 766547027	2 706750715
⊥ 1	-2 356449611	-0 733752024	2 857077150
⊥ 1	-2.550445011	-2 036199755	1 012552100
⊥ 1	-1.00//20100E	1 036201702	-2 620026055
⊥ 1	-0 136460702	1,900201/93 _1,90076006	-2.029920900
⊥ 1	-U.IJU4UU/UZ 1 0/775//02	-1.0004/0400 -3 00/061000	-2.020209010
⊥ *	1.04//04423	-2.004201039	-2.1/0309402

Optimized geometry:

71 Coordinates from ORCA-job coni2wb97xtoctopt Co -0.04976021947411 -0.07857932207027 -0.67810549130494 Ni 2.84379256691407 -0.78291399876491 -0.67157284532769 Ni -2.90737915034363 0.73871827633650 -0.51449303753913

0	1.59658400014810	0.51047220758557	0.19518689822067
0	1.16951349735032	-1.33070197535109	-1.53377439346752
0	-1.28282951404944	1.17395079526866	-1.51899887566368
0	-1.66477175861565	-0.61098323717397	0.28088740260374
N	4.02997966744855	0.20023756527495	1.89006190175638
N	3,44122983589197	-2.14727836035752	-3,24966534644575
C	4 07227276812415	-0 73726439009792	0 91902757077250
C	3 94731302556540	-1 76322456642029	-2 05492659788548
C	1 68636287797023	0 935/22/29/211/	1 52/37621050/78
C	1 02745101020004	-2 15070677206000	-2 65521522567941
C	E 02025571561164	-2.13970077590000	2 02025546076524
C	2 10510722150720		1 00762772075402
C	3.10519722156759	1.34013690252913	2.0000772405000
	4.55617140859625	-2.09021750500044	-3.96627734936693
C	2.08690273515258	-1.83034143680339	-3./1058056436//8
N	5.10696745130072	-1.53889164832158	1.25284115012440
Ν	5.19221990725415	-2.2962/49//92/68	-2.02483692608432
Η	5.16625792965463	0.63360139463183	3.69108133250420
С	5.71173227741550	-1.11247599232854	2.42565936415582
Η	3.47164877733118	2.09950565611637	1.19431780491838
Η	3.11974760938527	1.76958225624377	2.90565103529958
С	5.46645032438194	-2.99383508752518	-3.19237519259961
Η	4.14369322490683	-3.29612314962830	-4.95447836319335
Η	1.90465909438529	-2.41040988309002	-4.62220302614580
Η	2.03714297687779	-0.76404716789203	-3.96788995421209
С	5.58370628870055	-2.64823534530693	0.43103394218950
С	6.14575721502907	-2.18575304210130	-0.91951142992288
С	-1.18890487310981	1.97490907805502	-2.66385694801999
С	-1.68885987354715	-1.05248373593664	1.60748876153158
Η	6.55727410284082	-1.62532021437743	2.87150407632664
Η	6.41288890738479	-3.49330349326401	-3.36875827003896
Η	4.77277724460721	-3.37011889612673	0.28163393307551
Η	6.37045720162372	-3.15232796483931	1.00157077490237
Η	6.50367768092952	-1.15180895920903	-0.84402216181878
Н	7.00470517167761	-2.80870078154451	-1.18783751923853
Ν	-3.62852526304406	2.12762110372208	-3.04677860842405
Ν	-3.93176173546842	-0.13620071629761	2.15096681408954
С	-4.05630524930810	1.78909496718191	-1.80856392515160
С	-3.98248612852399	0.80106549762708	1.18013307901971
С	-2.34676641790609	1.70559564772903	-3.61792444594516
С	-3.10313466612299	-1.34600674582640	2.08696611524696
С	-4.53927980745302	2.94894124789742	-3.68962109428323
С	-4.83026977897329	0.14908517948604	3.16653915716413
Ν	-5.24611493548728	2.42248179017640	-1.67415968884666
Ν	-4.92127998436582	1.68060379772186	1.59232122153777
Н	-2.20459216571952	2.25640296218899	-4.55442416249077
Н	-2.39614376630087	0.63473316185872	-3.85493303584322
H	-3.58333131673866	-2.06968745462525	1.41540129099354
H	-3.07397283589422	-1.77921868159185	3.09295461073716
H	-4.38302604138532	3.32597512651248	-4.69427118753060
С	-5.56513083723965	3.13692318945423	-2.82001126705685
C	-5,45812370876396	1.30215376698478	2.81380275362858
н	-4,94601841906705	-0.48200291912276	4.04088317287323
C	-6 10060985589210	2 39656600743347	-0 48574634466826
C	-5 38105851120725	2 81984768241458	0 80204033872456
н	-6.48037882277592	3,71055192919536	-2,91803981626559
ц Ц	-6 22305881865417	1 8770005751/051	3 37317695371666
п	0.2230300100341/	T.0//9900/014201	J.JZJ4/09JJZI000

Н	-6.53308925066092	1.39598948740393	-0.36460815420868
Н	-6.92715135898878	3.08613712039300	-0.68366973982838
Н	-4.53090515992560	3.47095323056924	0.56920029571757
Н	-6.06793217421181	3.39083661275086	1.43524056692746
Н	-1.18007155712453	3.04272196215607	-2.39112568212669
Н	1.04102863288482	1.81429324129791	1.68716344296842
Н	1.35164921343233	0.14582767290014	2.22182957303517
Н	-1.23677671990298	-0.30715568509284	2.28684980401700
Н	-1.10857056933760	-1.98408982358631	1.70914207157232
Н	-0.25025527522025	1.76770003414135	-3.20149012637336
Н	0.04378331969508	-2.03156769111258	-3.11246937435036
Η	1.12929395893465	-3.21923023685114	-2.36588892096093
FINAL	SINGLE POINT ENERGY	-6107.169355108423	

Unsing final energies we got the following list:

spin dublet (M_s=1/2) single point
-6106.888548765292 Hartree
spin dublet DFT geometry optimized
FINAL SINGLE POINT ENERGY -6107.201948948021

Comparing the energy stabilizations between optimized and single point energy for each spin we get the geometric response to the change of spin: -6878, -6561, -7168, -7762 cm⁻¹ in this order.

The stabilizations of the spin-arrangements resulting in the $M_s=1/2$, $M_s=5/2$ and $M_s=7/2$ values of the total spin with respect to the $M_s=3/2$ one results in 5541, 6192 and 12694 cm⁻¹, respectively which are 15.84, 17.70 and 36.29 in kcal/mol and are listed in Table 1 of the main text.

7. References

- 1. Llunell, M.; Casanova, D.; Cirera, J.; Bofill, J.; Alemany, P.; Alvarez, S., SHAPE program, version 2.1. SHAPE program, version 2.1, Universitat de Barcelona: Barcelona, Spain 2013.
- Zadrozny, J. M.; Telser, J.; Long, J. R., Slow magnetic relaxation in the tetrahedral cobalt(II) complexes [Co(EPh)4]2- (EO, S, Se). *Polyhedron* 2013, 64, 209-217.
- Das, M.; Basak, D.; Trávníček, Z.; Vančo, J.; Ray, D., Entrapment of a Pseudo-Tetrahedral Coll Center by Thioether Sulfur Bound {Co2(µ-L)} Fragments: Synthesis, Field-Induced Single-Ion Magnetism and Catechol Oxidase Mimicking Activity. *Chem. Asian J.* 2019, *14* (21), 3898-3914.
- Chattopadhyay, K.; Heras Ojea, M. J.; Sarkar, A.; Murrie, M.; Rajaraman, G.; Ray, D., Trapping of a Pseudotetrahedral CollO4 Core in Mixed-Valence Mixed-Geometry [Co5] Coordination Aggregates: Synthetic Marvel, Structures, and Magnetism. *Inorg. Chem.* **2018**, *57* (21), 13176-13187.
- Gupta, S. K.; Nielsen, H. H.; Thiel, A. M.; Klahn, E. A.; Feng, E.; Cao, H. B.; Hansen, T. C.; Lelièvre-Berna, E.; Gukasov, A.; Kibalin, I.; Dechert, S.; Demeshko, S.; Overgaard, J.; Meyer, F., Multi-Technique Experimental Benchmarking of the Local Magnetic Anisotropy of a Cobalt(II) Single-Ion Magnet. *JACS Au* 2023, 3 (2), 429-440.
- Rechkemmer, Y.; Breitgoff, F. D.; van der Meer, M.; Atanasov, M.; Hakl, M.; Orlita, M.; Neugebauer, P.; Neese, F.; Sarkar, B.; van Slageren, J., A four-coordinate cobalt(II) single-ion magnet with coercivity and a very high energy barrier. *Nat. Commun.* 2016, 7 (1), 10467.
- Bamberger, H.; Albold, U.; Dubnická Midlíková, J.; Su, C.-Y.; Deibel, N.; Hunger, D.; Hallmen, P. P.; Neugebauer, P.; Beerhues, J.; Demeshko, S.; Meyer, F.; Sarkar, B.; van Slageren, J., Iron(II), Cobalt(II), and Nickel(II) Complexes of Bis(sulfonamido)benzenes: Redox Properties, Large Zero-Field Splittings, and Single-Ion Magnets. *Inorg. Chem.* 2021, 60 (5), 2953-2963.
- Carl, E.; Demeshko, S.; Meyer, F.; Stalke, D., Triimidosulfonates as Acute Bite-Angle Chelates: Slow Relaxation of the Magnetization in Zero Field and Hysteresis Loop of a Coll Complex. *Chem. Eur. J.* 2015, *21* (28), 10109-10115.
- Legendre, C. M.; Damgaard-Møller, E.; Overgaard, J.; Stalke, D., The Quest for Optimal 3 d Orbital Splitting in Tetrahedral Cobalt Single-Molecule Magnets Featuring Colossal Anisotropy and Hysteresis. *Eur. J. Inorg. Chem.* 2021, 2021 (30), 3108-3114.
- Cui, H.-H.; Lu, F.; Chen, X.-T.; Zhang, Y.-Q.; Tong, W.; Xue, Z.-L., Zero-Field Slow Magnetic Relaxation and Hysteresis Loop in Four-Coordinate Coll Single-Ion Magnets with Strong Easy-Axis Anisotropy. *Inorg. Chem.* 2019, 58 (19), 12555-12564.
- Wang, M.; Xu, H. J.; Sun, T. M.; Cui, H. H.; Zhang, Y.-Q.; Chen, L.; Tang, Y. F., Optimal N–Co–N bite angle for enhancing the magnetic anisotropy of zero-field Co(II) single-ion magnets in tetrahedral [N4] coordination environment. J. Solid State Chem. 2021, 299, 122209.
- 12. Wu, T.; Zhai, Y.-Q.; Deng, Y.-F.; Chen, W.-P.; Zhang, T.; Zheng, Y.-Z., Correlating magnetic anisotropy with the subtle coordination geometry variation of a series of cobalt(ii)-sulfonamide complexes. *Dalton Trans.* **2019**, *48* (41), 15419-15426.
- 13. Ishizaki, T.; Fukuda, T.; Akaki, M.; Fuyuhiro, A.; Hagiwara, M.; Ishikawa, N., Synthesis of a Neutral Mononuclear Four-Coordinate Co(II) Complex Having Two Halved Phthalocyanine Ligands That Shows Slow Magnetic Relaxations under Zero Static Magnetic Field. *Inorg. Chem.* **2019**, *58* (8), 5211-5220.
- Wu, C.-M.; Tsai, J.-E.; Lee, G.-H.; Yang, E.-C., Slow magnetization relaxation in a tetrahedrally coordinated mononuclear Co(ii) complex exclusively ligated with phenanthroline ligands. *Dalton Trans.* 2020, 49 (46), 16813-16820.
- Fataftah, M. S.; Coste, S. C.; Vlaisavljevich, B.; Zadrozny, J. M.; Freedman, D. E., Transformation of the coordination complex [Co(C3S5)2]2– from a molecular magnet to a potential qubit. *Chem. Sci.* 2016, 7 (9), 6160-6166.
- 16. Fataftah, M. S.; Zadrozny, J. M.; Rogers, D. M.; Freedman, D. E., A Mononuclear Transition Metal Single-Molecule Magnet in a Nuclear Spin-Free Ligand Environment. *Inorg. Chem.* **2014**, *53* (19), 10716-10721.
- 17. Tu, D.; Shao, D.; Yan, H.; Lu, C., A carborane-incorporated mononuclear Co(ii) complex showing zero-field slow magnetic relaxation. *Chem. Commun.* **2016**, *52* (99), 14326-14329.
- 18. Zadrozny, J. M.; Long, J. R., Slow Magnetic Relaxation at Zero Field in the Tetrahedral Complex [Co(SPh)4]2–. *J. Am. Chem. Soc.* **2011**, *133* (51), 20732-20734.
- Suturina, E. A.; Nehrkorn, J.; Zadrozny, J. M.; Liu, J.; Atanasov, M.; Weyhermüller, T.; Maganas, D.; Hill, S.; Schnegg, A.; Bill, E.; Long, J. R.; Neese, F., Magneto-Structural Correlations in Pseudotetrahedral Forms of the [Co(SPh)4]2– Complex Probed by Magnetometry, MCD Spectroscopy, Advanced EPR Techniques, and ab Initio Electronic Structure Calculations. *Inorg. Chem.* 2017, *56* (5), 3102-3118.
- Vaidya, S.; Tewary, S.; Singh, S. K.; Langley, S. K.; Murray, K. S.; Lan, Y.; Wernsdorfer, W.; Rajaraman, G.; Shanmugam, M., What Controls the Sign and Magnitude of Magnetic Anisotropy in Tetrahedral Cobalt(II) Single-Ion Magnets? *Inorg. Chem.* 2016, *55* (19), 9564-9578.
- Tripathi, S.; Vaidya, S.; Ansari, K. U.; Ahmed, N.; Rivière, E.; Spillecke, L.; Koo, C.; Klingeler, R.; Mallah, T.; Rajaraman, G.; Shanmugam, M., Influence of a Counteranion on the Zero-Field Splitting of Tetrahedral Cobalt(II) Thiourea Complexes. *Inorg. Chem.* **2019**, *58* (14), 9085-9100.
- 22. Yao, X.-N.; Yang, M.-W.; Xiong, J.; Liu, J.-J.; Gao, C.; Meng, Y.-S.; Jiang, S.-D.; Wang, B.-W.; Gao, S., Enhanced magnetic anisotropy in a tellurium-coordinated cobalt single-ion magnet. *Inorg. Chem. Front.* 2017, 4 (4), 701-705.

- Bunting, P. C.; Atanasov, M.; Damgaard-Møller, E.; Perfetti, M.; Crassee, I.; Orlita, M.; Overgaard, J.; Slageren, J. v.; Neese, F.; Long, J. R., A linear cobalt(II) complex with maximal orbital angular momentum from a non-Aufbau ground state. *Science* **2018**, *362* (6421), eaat7319.
- Yao, X.-N.; Du, J.-Z.; Zhang, Y.-Q.; Leng, X.-B.; Yang, M.-W.; Jiang, S.-D.; Wang, Z.-X.; Ouyang, Z.-W.; Deng, L.; Wang, B.-W.; Gao, S., Two-Coordinate Co(II) Imido Complexes as Outstanding Single-Molecule Magnets. *J. Am. Chem. Soc.* 2017, 139 (1), 373-380.
- 25. Zadrozny, J. M.; Atanasov, M.; Bryan, A. M.; Lin, C.-Y.; Rekken, B. D.; Power, P. P.; Neese, F.; Long, J. R., Slow magnetization dynamics in a series of two-coordinate iron(ii) complexes. *Chem. Sci.* **2013**, *4*(1), 125-138.
- 26. Zadrozny, J. M.; Xiao, D. J.; Atanasov, M.; Long, G. J.; Grandjean, F.; Neese, F.; Long, J. R., Magnetic blocking in a linear iron(I) complex. *Nat. Chem.* **2013**, *5* (7), 577-581.
- 27. Deng, Y.-F.; Han, T.; Yin, B.; Zheng, Y.-Z., On balancing the QTM and the direct relaxation processes in singleion magnets – the importance of symmetry control. *Inorganic Chemistry Frontiers* **2017**, *4* (7), 1141-1148.
- 28. Gupta, S. K.; Rao, S. V.; Demeshko, S.; Dechert, S.; Bill, E.; Atanasov, M.; Neese, F.; Meyer, F., Air-stable four-coordinate cobalt(ii) single-ion magnets: experimental and ab initio ligand field analyses of correlations between dihedral angles and magnetic anisotropy. *Chem. Sci.* 2023, *14* (23), 6355-6374.
- 29. Freedman, D. E.; Harman, W. H.; Harris, T. D.; Long, G. J.; Chang, C. J.; Long, J. R., Slow Magnetic Relaxation in a High-Spin Iron(II) Complex. J. Am. Chem. Soc. 2010, 132 (4), 1224-1225.
- 30. Feng, X.; Hwang, S. J.; Liu, J.-L.; Chen, Y.-C.; Tong, M.-L.; Nocera, D. G., Slow Magnetic Relaxation in Intermediate Spin S = 3/2 Mononuclear Fe(III) Complexes. J. Am. Chem. Soc. 2017, 139 (46), 16474-16477.
- 31. Yao, B.; Singh, M. K.; Deng, Y.-F.; Wang, Y.-N.; Dunbar, K. R.; Zhang, Y.-Z., Trigonal Prismatic Cobalt(II) Single-Ion Magnets: Manipulating the Magnetic Relaxation Through Symmetry Control. *Inorg. Chem.* 2020, 59 (12), 8505-8513.
- 32. Landart-Gereka, A.; Quesada-Moreno, M. M.; Díaz-Ortega, I. F.; Nojiri, H.; Ozerov, M.; Krzystek, J.; Palacios, M. A.; Colacio, E., Large easy-axis magnetic anisotropy in a series of trigonal prismatic mononuclear cobalt(ii) complexes with zero-field hidden single-molecule magnet behaviour: the important role of the distortion of the coordination sphere and intermolecular interactions in the slow relaxation. *Inorganic Chemistry Frontiers* 2022, 9 (12), 2810-2831.
- Novikov, V. V.; Pavlov, A. A.; Nelyubina, Y. V.; Boulon, M.-E.; Varzatskii, O. A.; Voloshin, Y. Z.; Winpenny, R. E. P., A Trigonal Prismatic Mononuclear Cobalt(II) Complex Showing Single-Molecule Magnet Behavior. *J. Am. Chem. Soc.* 2015, *137* (31), 9792-9795.
- 34. Rigamonti, L.; Bridonneau, N.; Poneti, G.; Tesi, L.; Sorace, L.; Pinkowicz, D.; Jover, J.; Ruiz, E.; Sessoli, R.; Cornia, A., A Pseudo-Octahedral Cobalt(II) Complex with Bispyrazolylpyridine Ligands Acting as a Zero-Field Single-Molecule Magnet with Easy Axis Anisotropy. *Chem. Eur. J.* **2018**, *24* (35), 8857-8868.
- Saber, M. R.; Singh, M. K.; Dunbar, K. R., Geometrical control of the magnetic anisotropy in six coordinate cobalt complexes. *Chem. Commun.* 2020, 56 (60), 8492-8495.
- 36. Zhang, Y.-Z.; Gómez-Coca, S.; Brown, A. J.; Saber, M. R.; Zhang, X.; Dunbar, K. R., Trigonal antiprismatic Co(ii) single molecule magnets with large uniaxial anisotropies: importance of Raman and tunneling mechanisms. *Chem. Sci.* **2016**, *7* (10), 6519-6527.
- Zhu, Y.-Y.; Cui, C.; Zhang, Y.-Q.; Jia, J.-H.; Guo, X.; Gao, C.; Qian, K.; Jiang, S.-D.; Wang, B.-W.; Wang, Z.-M.; Gao, S., Zero-field slow magnetic relaxation from single Co(ii) ion: a transition metal single-molecule magnet with high anisotropy barrier. *Chem. Sci.* 2013, *4* (4), 1802-1806.